1
|
Sudar FP, Zekerallah SS, Paulzen M, Mathiak K, Gaebler AJ. Unraveling antipsychotic induced weight gain in schizophrenia - A proof-of-concept study exploring the impact of the cumulative historical occupancy of different receptors by antipsychotics. Psychiatry Res 2025; 348:116452. [PMID: 40147087 DOI: 10.1016/j.psychres.2025.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Obesity is a common complication in schizophrenia contributing to increased mortality rates. We present a proof-of-concept study displaying a new method to investigate the impact of antipsychotic drugs (APs) on obesity in terms of their cumulative historical receptor occupancy (CHRO) in 150 selected from 174 patients with schizophrenia. Based on a thorough medication history, we estimated CHRO of serotonin 5-HT2C, histamine H1, dopamine D2 and muscarinic M3 receptors and studied their relationship with different metabolic outcome variables utilizing stepwise regression analysis and structural equation modelling (SEM). Stepwise regression analysis revealed a significant positive relationship of Body Mass Index (BMI) with H1-CHRO, but a negative relationship with M3-CHRO. Moreover, H1-CHRO was associated with increased triglyceride concentration, while 5-HT2C-CHRO was associated with increased waist circumference and blood pressure. SEM, while confirming the diverging effects of H1-/5-HT2C- and M3-CHRO on obesity, suggested that their effect on other metabolic variables was indirect, i.e. mediated by obesity. Our results suggest that the metabolic side effects of antipsychotics can be described by their cumulative historical receptor occupancy with unique contributions of the different receptors. In particular, M3 receptor antagonism seems to exert a protective effect, confirming findings from rodent M3 receptor knock out models. These findings may provide a framework for estimating the metabolic burden of future APs, guiding the development of drugs with more favorable metabolic profiles.
Collapse
Affiliation(s)
- Federico Pacheco Sudar
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany
| | - Samar Samy Zekerallah
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany; Alexianer Hospital, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany
| | - Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany; Institute for Neurophysiology, Faculty of Medicine, RWTH Aachen, Germany.
| |
Collapse
|
2
|
Blake L, Williams KC, Uhlmann AA, Temmingh H, Burger A, Stein DJ, Naudé PJW. Subcortical volumes, frontal cortical thickness, and pro-inflammatory cytokines in schizophrenia versus methamphetamine-induced psychosis. Brain Imaging Behav 2025:10.1007/s11682-025-01022-9. [PMID: 40425916 DOI: 10.1007/s11682-025-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
Schizophrenia is associated with alterations in subcortical volumes, cortical thickness and pro-inflammatory cytokines, that may correlate with clinical features. However, analogous work on methamphetamine-induced psychosis is lacking. This study examines subcortical volumes, frontal cortical thickness and pro-inflammatory cytokines in schizophrenia and methamphetamine-induced psychosis.Diagnosis and symptom severity were determined using the Structured Clinical Interview for Axis I Disorders and the Positive and Negative Syndrome Scale, respectively. Structural T1-weighted images were acquired using a 3-Tesla magnetic resonance imaging scanner. Serum peripheral cytokine concentrations were measured using a multiplex bead array.Schizophrenia (n = 36) and methamphetamine-induced psychosis (n = 27) participants showed decreased left amygdala volumes and frontal cortical thickness compared to healthy controls (n = 32). Schizophrenia participants had increased bilateral caudate, putamen, and nucleus accumbens volumes compared to controls, and greater right globus pallidus and nucleus accumbens volumes compared to the methamphetamine-induced psychosis group. No significant differences were found in cytokine levels between groups or associations with neuroimaging measures.The novel discovery of increased globus pallidus and nucleus accumbens volumes in schizophrenia group compared with methamphetamine-induced psychosis group may show important distinctions in the neurobiology between these conditions. Future investigations should employ larger sample sizes, incorporate longitudinal study designs, and integrate magnetic resonance spectroscopy which may show important neurometabolic signatures in these brain regions in methamphetamine-induced psychosis.
Collapse
Affiliation(s)
- Lauren Blake
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Kimberley C Williams
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Anne A Uhlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
| | - Antoinette Burger
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
- University of Missouri, Columbia, United States of America
| | - Dan J Stein
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Petrus J W Naudé
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Main Road, Observatory Cape Town, Cape Town, 7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Aflouk Y, Kenz A, Saoud H, Yacoub S, Zaafrane F, Gaha L, Bel Hadj Jrad B. Genetic Predisposition of TLR 1 and TLR 6 Polymorphisms to Schizophrenia Onset and Prediction of Treatment Response. Biochem Genet 2025:10.1007/s10528-025-11127-x. [PMID: 40360845 DOI: 10.1007/s10528-025-11127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Immunological dysregulation was described as one of the underlying mechanisms of schizophrenia (SCZ). Indeed, altered inflammation triggered by toll-like receptors (TLR) complexes TLR2-1 and TLR2-6 has gained attention in SCZ pathophysiology and treatment response. However, the genetic contribution of TLR1 and TLR6 remains unclear. Therefore, the present study aims to explore the possible association of TLR1 and TLR6 polymorphisms with the genetic predisposition to SCZ and treatment response. The current study included 240 controls and 226 patients genotyped for TLR1 and TLR6 polymorphisms by PCR-RFLP. Genotypic, allelic, and haplotype associations with SCZ and between patient groups based on their response to treatment were analyzed. In the dominant model, TLR1-S602I GG+TG and minor allele were significantly higher in responders compared to controls (p = 0.004; OR = 3.0, p = 0.002; OR = 3.0, respectively). Before treatment, male patients with TLR1-S602I GG+TG and TLR6-S249P TT+CT showed significantly higher SAPS scores (p = 0.01) compared to TT carriers. In response to treatment, TLR1-S602I TT carriers demonstrated a significant decrease in SANS scores (p < 10-4). Moreover, SANS scores were significantly lower in GG+TG carriers compared to TT carriers (p = 0.01), after treatment. Furthermore, TLR6-S249P CC carriers showed a significant decrease in SANS scores (p < 10-4) in opposite to TT+CT carriers (p = 0.6) in response to treatment. Moreover, TLR1-S602I GG+TG revealed a significantly elevated onset age compared to TT in schizophrenic males (p = 0.01). To conclude, our findings suggest that TLR1-S602I and TLR6-S249P could be potential genetic factors for schizophrenia susceptibility and the prediction of treatment response, particularly in males.
Collapse
Affiliation(s)
- Youssef Aflouk
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia.
| | - Amira Kenz
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| | - Hana Saoud
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| | - Saloua Yacoub
- Regional Center of Blood Transfusion, University Hospital Farhat Hached, Sousse, Tunisia
| | - Ferid Zaafrane
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, Monastir, Tunisia
| | - Lotfi Gaha
- Department of Psychiatry and Vulnerability to Psychoses Laboratory-CHU Fattouma Bourguiba Monastir, University of Monastir, Monastir, Tunisia
| | - Besma Bel Hadj Jrad
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources GBVB (LR11ES41), Higher Institute of Biotechnology of Monastir (ISBM), University of Monastir, Monastir, Tunisia
| |
Collapse
|
4
|
Park SI, Hwang S, Lee Y, Lee HY, Kim S, Hong J, Jo SH, Choi SY. Chlorpromazine directly inhibits Kv1.3 channels by facilitating the inactivation of channels. Mol Brain 2025; 18:41. [PMID: 40340862 PMCID: PMC12063219 DOI: 10.1186/s13041-025-01211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025] Open
Abstract
Kv1.3 channels in microglia are pivotal in regulating neuroinflammation. The antipsychotic chlorpromazine (CPZ) demonstrates anti-inflammatory effects by decreasing Kv1.3 activity in mPFC microglia. However, the precise mechanism of CPZ's effect in the mPFC remains unclear, given that CPZ is known to inhibit dopamine receptors and the mPFC contains various cell types with dopamine receptors. In this study, we investigate how CPZ inhibits Kv1.3 channels using human Kv1.3 channel-expressing Xenopus laevis oocytes. CPZ directly inhibits Kv1.3 channel currents in a concentration-dependent manner. The CPZ-mediated Kv1.3 channel inhibition is not voltage-dependent, and CPZ accelerates Kv1.3 channel inactivation without significantly affecting its activation. Our findings suggest that CPZ directly blocks Kv1.3 channels without involving other ion channels or receptors, including dopamine receptors, thereby contributing to the understanding of its neuroinflammation-suppressing mechanism.
Collapse
Affiliation(s)
- Seo-In Park
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea
| | - Soobeen Hwang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea
| | - Young Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Hee-Yoon Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Soohyun Kim
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea
| | - Junseo Hong
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea.
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080, Republic of Korea.
| |
Collapse
|
5
|
Hewitt K, Huang XF. The Role of Microglial Exosomes in Clozapine Treatment: Effect on Cognition in Schizophrenia. J Neuroimmune Pharmacol 2025; 20:42. [PMID: 40238023 PMCID: PMC12003456 DOI: 10.1007/s11481-024-10160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/22/2024] [Indexed: 04/18/2025]
Abstract
Schizophrenia is a complex neuropsychiatric disorder characterized by a spectrum of symptoms including cognitive impairments and psychotic episodes. Clozapine, an atypical antipsychotic drug, is a widely recognised treatment option for patients with drug-resistant schizophrenia, due to it having the highest efficacy out of all the antipsychotic drugs. Despite its efficacy, clozapine's impact on cognition and brain structure in schizophrenia patients remains a subject of ongoing research and debate, with accumulating evidence indicating negative impacts on cognitive performance and changes in brain volume. Changes in the immune system are linked to variations in cognitive functioning in schizophrenia. Previous research has indicated that microglia, the primary innate immune cells of the brain, have been associated with decreased cognitive performance when dysfunctional. Evidence suggests that brain structure may mediate the observed relationship between microglia and cognition. Microglial exosomes, integral to neuroinflammation and cellular communication, could provide insight into the neurobiological mechanisms underpinning the effects of clozapine treatment. This review focuses on the proposition that alterations in microglial exosome composition, particularly miRNAs, are involved in mediating clozapine's diverse effects on cognition by influencing brain macrostructure. This review aims to highlight new directions for future research that could lead to more effective and targeted therapeutic approaches in the management of schizophrenia.
Collapse
Affiliation(s)
- Kyle Hewitt
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, 2522, Australia
| | - Xu-Feng Huang
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, 2522, Australia.
| |
Collapse
|
6
|
Lee HY, Lee Y, Chung C, Park SI, Shin HJ, Joe EH, Lee SJ, Kim DW, Jo SH, Choi SY. The antipsychotic chlorpromazine reduces neuroinflammation by inhibiting microglial voltage-gated potassium channels. Glia 2025; 73:210-227. [PMID: 39435609 DOI: 10.1002/glia.24629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Neuroinflammation, the result of microglial activation, is associated with the pathogenesis of a wide range of psychiatric and neurological disorders. Recently, chlorpromazine (CPZ), a dopaminergic D2 receptor antagonist and schizophrenia therapy, was proposed to exert antiinflammatory effects in the central nervous system. Here, we report that the expression of Kv1.3 channel, which is abundant in T cells, is upregulated in microglia upon infection, and that CPZ specifically inhibits these channels to reduce neuroinflammation. In the mouse medial prefrontal cortex, we show that CPZ lessens Kv1.3 channel activity and reduces proinflammatory cytokine production. In mice treated with LPS, we found that CPZ was capable of alleviating both neuroinflammation and depression-like behavior. Our findings suggest that CPZ acts as a microglial Kv1.3 channel inhibitor and neuroinflammation modulator, thereby exerting therapeutic effects in neuroinflammatory psychiatric/neurological disorders.
Collapse
Affiliation(s)
- Hee-Yoon Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Young Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Chaelin Chung
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Seo-In Park
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Hyo Jung Shin
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Joong Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Oral Anatomy & Developmental Biology, Kyung Hee University College of Dentistry, Seoul, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
7
|
da Silva A, Bobermin LD, Santos CL, de Souza Almeida RR, Lissner LJ, Dos Santos TM, Seady M, Leite MC, Wyse ATS, Gonçalves CA, Quincozes-Santos A. Glia-related Acute Effects of Risperidone and Haloperidol in Hippocampal Slices and Astrocyte Cultures from Adult Wistar Rats: A Focus on Inflammatory and Trophic Factor Release. Neurochem Res 2024; 50:22. [PMID: 39560678 DOI: 10.1007/s11064-024-04273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024]
Abstract
Antipsychotics are drugs commonly prescribed to treat a variety of psychiatric conditions. They are classified as typical and atypical, depending on their affinity for dopaminergic and serotonergic receptors. Although neurons have been assumed to be the major mediators of the antipsychotic pharmacological effects, glia, particularly astrocytes, have emerged as important cellular targets for these drugs. In the present study, we investigated the effects of acute treatments with the antipsychotics risperidone and haloperidol of hippocampal slices and astrocyte cultures, focusing on neuron-glia communication and how antipsychotics act in astrocytes. For this, we obtained hippocampal slices and primary astrocyte cultures from 30-day-old Wistar rats and incubated them with risperidone or haloperidol (1 and 10 μM) for 30 min and 24 h, respectively. We evaluated metabolic and enzymatic activities, the glutathione level, the release of inflammatory and trophic factors, as well as the gene expression of signaling proteins. Haloperidol increased glucose metabolism; however, neither of the tested antipsychotics altered the glutathione content or glutamine synthetase and Na+K+-ATPase activities. Haloperidol induced a pro-inflammatory response and risperidone promoted an anti-inflammatory response, while both antipsychotics seemed to decrease trophic support. Haloperidol and risperidone increased Nrf2 and HO-1 gene expression, but only haloperidol upregulated NFκB and AMPK gene expression. Finally, astrocyte cultures confirmed the predominant effect of the tested antipsychotics on glia and their opposite effects on astrocytes. Therefore, antipsychotics cause functional alterations in the hippocampus. This information is important to drive future research for strategies to attenuate antipsychotics-induced neural dysfunction, focusing on glia.
Collapse
Affiliation(s)
- Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Marina Seady
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Marina Concli Leite
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
8
|
Li Y, Zhu M, Dong Y, Liu N, Wang X, Yang B, Li Z, Li S. Immunoinflammatory features and cognitive function in treatment-resistant schizophrenia: unraveling distinct patterns in clozapine-resistant patients. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01885-x. [PMID: 39196353 DOI: 10.1007/s00406-024-01885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Patients with treatment-resistant schizophrenia (TRS), particularly those resistant to clozapine (CTRS), pose a clinical challenge due to limited response to standard antipsychotic treatments. Inflammatory factors like tumor necrosis factor-alpha (TNF-α), interleukin 2 (IL-2), and interleukin 6 (IL-6) are implicated in schizophrenia's pathophysiology. Our study examines cognitive function, psychopathological symptoms and inflammatory factors in TRS patients, focusing on differences between CTRS and non-CTRS individuals, as well as healthy controls. A cohort of 115 TRS patients and 84 healthy controls were recruited, assessing IL-2, IL-6 and TNF-α. The Positive and Negative Syndrome Scale (PANSS) was applied to assess psychopathological symptoms, while the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was applied to assess cognitive functioning. CTRS patients showed lower visuospatial constructional score (p = 0.015), higher PANSS scores, higher levels of IL-2 and reduced TNF-α than non-CTRS patients (p < 0.05). Notably, IL-2 was independently associated with psychopathology symptoms in CTRS patients (Beta = 0.268, t = 2.075, p = 0.042), while IL-6 was associated with psychopathology symptoms in non-CTRS patients (Beta = - 0.327, t = - 2.109, p = 0.042). Sex-specific analysis in CTRS patients revealed IL-2 associations with PANSS total and positive symptoms in females, and TNF-α associations with PANSS positive symptoms in males. Furthermore, IL-2, IL-6, and TNF-α displayed potential diagnostic value in TRS patients and CTRS patients (p < 0.05). Clozapine‑resistant symptoms represent an independent endophenotype in schizophrenia with distinctive immunoinflammatory characteristics, potentially influenced by sex.
Collapse
Affiliation(s)
- Yanzhe Li
- Tianjin Anding Hospital, Institute of Mental Health, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
- Psychoneuromodulation Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Minghuan Zhu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, 200124, China
| | - Yeqing Dong
- Tianjin Anding Hospital, Institute of Mental Health, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
- Psychoneuromodulation Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Nannan Liu
- Tianjin Anding Hospital, Institute of Mental Health, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
- Psychoneuromodulation Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Xinxu Wang
- Tianjin Anding Hospital, Institute of Mental Health, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
- Psychoneuromodulation Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Bing Yang
- Department of Cell Biology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Mingxin Road #36, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.
| | - Shen Li
- Tianjin Anding Hospital, Institute of Mental Health, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China.
- Psychoneuromodulation Center, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China.
| |
Collapse
|
9
|
Dongol A, Xie Y, Zheng P, Chen X, Huang XF. Olanzapine attenuates amyloid-β-induced microglia-mediated progressive neurite lesions. Int Immunopharmacol 2024; 137:112469. [PMID: 38908083 DOI: 10.1016/j.intimp.2024.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The accumulation of amyloid-β (Aβ) in the brain is the first pathological mechanism to initiate Alzheimer's disease (AD) pathogenesis. However, the precise role of Aβ in the disease progression remains unclear. Through decades of research, prolonged inflammation has emerged as an important core pathology in AD. Previously, a study has demonstrated the neurotoxic effect of Aβ-induced neuroinflammation in neuron-glia co-culture at 72 h. Here, we hypothesise that initial stage Aβ may trigger microglial inflammation, synergistically contributing to the progression of neurite lesions relevant to AD progression. In the present study, we aimed to determine whether olanzapine, an antipsychotic drug possessing anti-inflammatory properties, can ameliorate Aβ-induced progressive neurite lesions. Our study reports that Aβ induces neurite lesions with or without inflammatory microglial cells in vitro. More intriguingly, the present study revealed that Aβ exacerbates neurite lesions in synergy with microglia. Moreover, the time course study revealed that Aβ promotes microglia-mediated neurite lesions by eliciting the secretion of pro-inflammatory cytokines. Furthermore, our study shows that olanzapine at lower doses prevents Aβ-induced microglia-mediated progressive neurite lesions. The increase in pro-inflammatory cytokines induced by Aβ is attenuated by olanzapine administration, associated with a reduction in microglial inflammation. Finally, this study reports that microglial senescence induced by Aβ was rescued by olanzapine. Thus, our study provides the first evidence that 1 µM to 5 µM of olanzapine can effectively prevent Aβ-induced microglia-mediated progressive neurite lesions by modulating microglial inflammation. These observations reinforce the potential of targeting microglial remodelling to slow disease progression in AD.
Collapse
Affiliation(s)
- Anjila Dongol
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Yuanyi Xie
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Peng Zheng
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Xi Chen
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia
| | - Xu-Feng Huang
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Northfields Avenue, NSW 2522, Australia.
| |
Collapse
|
10
|
Yin Y, Zeng Z, Wei S, Shen Z, Cong Z, Zhu X. Using the sympathetic system, beta blockers and alpha-2 agonists, to address acute respiratory distress syndrome. Int Immunopharmacol 2024; 139:112670. [PMID: 39018694 DOI: 10.1016/j.intimp.2024.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) manifests as an acute inflammatory lung injury characterized by persistent hypoxemia, featuring a swift onset, high mortality, and predominantly supportive care as the current therapeutic approach, while effective treatments remain an area of active investigation. Adrenergic receptors (AR) play a pivotal role as stress hormone receptors, extensively participating in various inflammatory processes by initiating downstream signaling pathways. Advancements in molecular biology and pharmacology continually unveil the physiological significance of distinct AR subtypes. Interventions targeting these subtypes have the potential to induce specific alterations in cellular and organismal functions, presenting a promising avenue as a therapeutic target for managing ARDS. This article elucidates the pathogenesis of ARDS and the basic structure and function of AR. It also explores the relationship between AR and ARDS from the perspective of different AR subtypes, aiming to provide new insights for the improvement of ARDS.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Zhaojin Zeng
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Senhao Wei
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Ziyuan Shen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhukai Cong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China.
| | - Xi Zhu
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
11
|
Casetta C, Santosh P, Bayley R, Bisson J, Byford S, Dixon C, Drake RJ, Elvins R, Emsley R, Fung N, Hayes D, Howes O, James A, James K, Jones R, Killaspy H, Lennox B, Marchant L, McGuire P, Oloyede E, Rogdaki M, Upthegrove R, Walters J, Egerton A, MacCabe JH. CLEAR - clozapine in early psychosis: study protocol for a multi-centre, randomised controlled trial of clozapine vs other antipsychotics for young people with treatment resistant schizophrenia in real world settings. BMC Psychiatry 2024; 24:122. [PMID: 38355533 PMCID: PMC10865566 DOI: 10.1186/s12888-023-05397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Clozapine is an antipsychotic drug with unique efficacy, and it is the only recommended treatment for treatment-resistant schizophrenia (TRS: failure to respond to at least two different antipsychotics). However, clozapine is also associated with a range of adverse effects which restrict its use, including blood dyscrasias, for which haematological monitoring is required. As treatment resistance is recognised earlier in the illness, the question of whether clozapine should be prescribed in children and young people is increasingly important. However, most research to date has been in older, chronic patients, and evidence regarding the efficacy and safety of clozapine in people under age 25 is lacking. The CLEAR (CLozapine in EARly psychosis) trial will assess whether clozapine is more effective than treatment as usual (TAU), at the level of clinical symptoms, patient rated outcomes, quality of life and cost-effectiveness in people below 25 years of age. Additionally, a nested biomarker study will investigate the mechanisms of action of clozapine compared to TAU. METHODS AND DESIGN This is the protocol of a multi-centre, open label, blind-rated, randomised controlled effectiveness trial of clozapine vs TAU (any other oral antipsychotic monotherapy licenced in the British National Formulary) for 12 weeks in 260 children and young people with TRS (12-24 years old). AIM AND OBJECTIVES The primary outcome is the change in blind-rated Positive and Negative Syndrome Scale scores at 12 weeks from baseline. Secondary outcomes include blind-rated Clinical Global Impression, patient-rated outcomes, quality of life, adverse effects, and treatment adherence. Patients will be followed up for 12 months and will be invited to give consent for longer term follow-up using clinical records and potential re-contact for further research. For mechanism of action, change in brain magnetic resonance imaging (MRI) biomarkers and peripheral inflammatory markers will be measured over 12 weeks. DISCUSSION The CLEAR trial will contribute knowledge on clozapine effectiveness, safety and cost-effectiveness compared to standard antipsychotics in young people with TRS, and the results may guide future clinical treatment recommendation for early psychosis. TRIAL REGISTRATION ISRCTN Number: 37176025, IRAS Number: 1004947. TRIAL STATUS In set-up. Protocol version 4.0 01/08/23. Current up to date protocol available here: https://fundingawards.nihr.ac.uk/award/NIHR131175# /.
Collapse
Affiliation(s)
- C Casetta
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - P Santosh
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - R Bayley
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - J Bisson
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - S Byford
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - C Dixon
- Wonford House Hospital, Devon Partnership NHS Trust, Exeter, UK
| | - R J Drake
- Division of Psychology & Mental Health, University of Manchester, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - R Elvins
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - R Emsley
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - N Fung
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - D Hayes
- South London and Maudsley NHS Foundation Trust, London, UK
| | - O Howes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - A James
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - K James
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - R Jones
- Birmingham and Solihull Mental Health Foundation Trust, Birmingham, UK
| | - H Killaspy
- Division of Psychiatry, University College London, London, UK
| | - B Lennox
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - L Marchant
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - P McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - E Oloyede
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - M Rogdaki
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - R Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK
- Birmingham Early Intervention Service, Birmingham Womens and Childrens NHS Foundation Trust, Birmingham, UK
| | - J Walters
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - A Egerton
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - J H MacCabe
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Duc Nguyen H, Hee Jo W, Hong Minh Hoang N, Kim MS. Short-term treatment with risperidone ameliorated 1,2-diacetylbenzene-induced liver dysfunction. Int Immunopharmacol 2023; 123:110687. [PMID: 37499398 DOI: 10.1016/j.intimp.2023.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
1,2-Diacetylbenze (C10H10O2, DAB) is a potential inducer or activator of toxic mechanisms. DAB exerts high absorption by the gastrointestinal tract and high blood-brain barrier penetration. However, only the effects of DAB on the central nervous system were reported, with a dearth of evidence of DAB's effects on the liver, which is more susceptible to toxic substances. Risperidone, an atypical antipsychotic drug, has been shown to protect against DAB-induced cognitive impairment in an animal model. Risperidone was found to have little or no effect on the liver after short-term administration. The question of whether risperidone can protect against DAB-induced liver dysfunction, particularly after short-term administration, is unknown. Thus, this study aimed to assess the hepatoprotective effects of risperidone on DAB-induced liver dysfunction in male C57BL/6 mice treated with DAB 5 mg/kg for 1 week and risperidone 0.125-0.25 mg/kg for 2 weeks. After exposure to DAB 5 mg/kg for 1 week, we found that DAB induced liver damage by increasing liver function biomarkers (GGT, ALT, and AST), reactive oxygen species, nitric oxide, and proinflammatory cytokines (IL-1α, IL-1β, IL-6, IL-12, and TNF- α), activating apoptosis (elevated Caspase-3 and Bax levels and reduced Bcl2 level), TLR4/JNK/NF-κB, Jak2/Stat5 pathways, and suppressing Jak2/Stat3 and IRS1/PI3K/AKT/MDM2 pathways. After a 2-week course of treatment, risperidone was able to lessen these effects; the higher dose (0.25 mg/kg) appeared to be more effective than the lower dose (0.125 mg/kg). To strengthen findings from in vivo analysis, in silico analysis also found three targets (Stat3, Caspase-3, AKT, IL-1β), two miRNAs (miR-26b-5p and miR-34a-5p), two transcription factors (NFKB1 and NFKB2), and numerous pathways ("AGE-RAGE signaling pathway in diabetic complications", "hepatitis B", "alcoholic liver disease", "apoptosis", and "liver cirrhosis") as the key molecular processes involved in the pathogenesis of DAB-induced liver damage and targeted by risperidone. The physicochemical characteristics and pharmacokinetics of DAB and risperidone also support the toxic effects of DAB and the beneficial properties of risperidone in the liver. In conclusion, these findings reflect the therapeutic effects of risperidone on DAB-induced liver dysfunction after 1 week and 2 weeks exposure to DAB and risperidone, respectively.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
13
|
Zheng C, Liu H, Tu W, Lin L, Xu H. Hypercoagulable state in patients with schizophrenia: different effects of acute and chronic antipsychotic medications. Ther Adv Psychopharmacol 2023; 13:20451253231200257. [PMID: 37781686 PMCID: PMC10540600 DOI: 10.1177/20451253231200257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Background Previous studies reported higher incidences of venous thromboembolism and cardiovascular disease in schizophrenia patients and higher indicators of thrombosis, thrombocyte activation, and platelet dysfunction. Objectives To check if first-episode schizophrenia (FES) patients have a hypercoagulable state and determine whether acute and chronic antipsychotics have the same effect on blood coagulation or fibrinolysis-related biomarkers. Design Case-control study. Methods A total of 81 participants were grouped in FES, chronic schizophrenia (CS), and healthy controls (HCs). In addition to demographic data and clinical characteristics, immunological analyses were performed to measure plasma levels of D-dimer, plasminogen activator inhibitor-1 (PAI-1), soluble P selectin (sP-sel), tissue plasminogen activator (tPA), thrombotic precursor protein (TpP), and von Willebrand's disease factor (vWF). Results Compared to HC group, FES patients showed higher PAI-1 (28.61 ng/ml versus 15.69 ng/ml), sP-sel (2.78 ng/ml versus 1.18 ng/ml), and TpP (15.61 µg/ml versus 5.59 µg/ml) along with a higher PAI-1/tPA (3.12 versus 2.00). Acute antipsychotic medication reduced higher PAI-1 (28.61 → 21.99), sP-sel (2.78 → 1.87), tPA (9.59 → 5.83), TpP (15.61 → 10.54), and vWF (383.18 → 291.08) in FES patients. However, plasma sP-sel and vWF in CS patients returned to the pre-treatment levels in FES patients, and PAI-1/tPA significantly decreased compared to FES patients. Conclusion These results suggest a hypercoagulable state in FES patients and demonstrate contrast effects of acute and chronic antipsychotics on coagulation or fibrinolysis in schizophrenia patients.
Collapse
Affiliation(s)
- Caiji Zheng
- Mental Health Center of Shantou University, Shantou 515065, China
- Shantou University Medical College - Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou 515065, China
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen 518020, China
| | - Haiyan Liu
- Mental Health Center, Shantou University Medical College, Shantou, 515065, China
- Shantou University Medical College - Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou 515065, China
| | - Weifeng Tu
- Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen 518020, China
| | - Lingyun Lin
- Mental Health Center, Shantou University Medical College, Shantou, China
- Mental Health Center of Shantou University, Shantou 515065, China
- Shantou University Medical College - Faculty of Medicine of University of Manitoba Joint Laboratory of Biological Psychiatry, Shantou 515065, China
| | - Haiyun Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Illness, Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
14
|
Kılıçaslan AK, Emir BS, Yıldız S, Kılıçaslan G, Kurt O. Arterial Stiffness in Patients with Bipolar Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:516-525. [PMID: 37424419 PMCID: PMC10335908 DOI: 10.9758/cpn.22.1009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/21/2022] [Accepted: 01/03/2023] [Indexed: 07/11/2023]
Abstract
Objective Bipolar disorder (BD) is an inflammatory and metabolic disease. The disease and the drugs used to treat it may affect cardiovascular disease (CVD) risk. The aim of this study is to investigate arterial stiffness in patients with BD and compare them with healthy controls. Methods Thirty-nine patients with BD type I in remission and 39 healthy control subjects were included in the study. Carotid and femoral artery intima-media thickness (IMT) and arterial thickness parameters were measured by Doppler ultrasonography. Results The elastic modulus value of the carotid artery was significantly higher in the patients than in the control group (p = 0.015). Although the IMT of both carotid and femoral artery was thicker in patients than in healthy control subjects, this difference was not statistically significant (p = 0.105; p = 0.391). There was a significant positive correlation between chlorpromazine equivalent dose and femoral elastic modulus value (p = 0.021, r = 0.539). There was a positive correlation between lithium equivalent dose and carotid compliance; a significant negative correlation between lithium equivalent dose and carotid elastic modulus was also determined (both p = 0.007, r = 0.466; p = 0.027, r = -0.391, respectively). No predictor was observed between drug dose and arterial stiffness parameters. Conclusion Arterial stiffness might be investigated for its potential to reduce CVD risk in patients with BD. Given the established CVD complications in this patient population, further studies are needed to determine whether the results are specific to antipsychotic treatment or BD and to clarify the potential arterial protective effects of mood stabilizers.
Collapse
Affiliation(s)
| | - Burcu Sırlıer Emir
- Department of Psychiatry, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - Sevler Yıldız
- Department of Psychiatry, University of Binali Yıldırım, Erzincan, Turkey
| | - Gülhan Kılıçaslan
- Department of Radiology, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - Osman Kurt
- Adıyaman Provincial Health Directorate, Adıyaman, Turkey
| |
Collapse
|
15
|
Long Y, Wang Y, Shen Y, Huang J, Li Y, Wu R, Zhao J. Minocycline and antipsychotics inhibit inflammatory responses in BV-2 microglia activated by LPS via regulating the MAPKs/ JAK-STAT signaling pathway. BMC Psychiatry 2023; 23:514. [PMID: 37464316 DOI: 10.1186/s12888-023-05014-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Abnormal activation of microglia is involved in the pathogenesis of schizophrenia. Minocycline and antipsychotics have been reported to be effective in inhibiting the activation of microglia and thus alleviating the negative symptoms of patients with schizophrenia. However, the specific molecular mechanism by which minocycline and antipsychotics inhibit microglial activation is not clear. In this study, we aimed to explore the molecular mechanism of treatment effect of minocycline and antipsychotics on schizophrenia. METHODS Microglia cells were activated by lipopolysaccharide (LPS) and further treated with minocycline, haloperidol, and risperidone. Then cell morphology, specific marker, cytokines, and nitric oxide production process, and the proteins in related molecular signaling pathways in LPS-activated microglia were compared among groups. RESULTS The study found that minocycline, risperidone, and haloperidol significantly inhibited morphological changes and reduced the expression of OX-42 protein induced by LPS. Minocycline significantly decreased the production of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β). Risperidone also showed significant decrease in the production of IL-6 and TNF-α, while haloperidol only showed significant decrease in the production of IL-6. Minocycline, risperidone, and haloperidol were found to significantly inhibit nitric oxide (NO) expression, but had no effect on inducible nitric oxide synthase (iNOS) expression. Both minocycline and risperidone were effective in decreasing the activity of c‑Jun N‑terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in the mitogen-activated protein kinases (MAPKs) signal pathway. Additionally, minocycline and risperidone were found to increase the activity of phosphorylated-p38. In contrast, haloperidol only suppressed the activity of ERK. Minocycline also suppressed the activation of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), while risperidone and haloperidol only suppressed the activation of STAT3. CONCLUSIONS The results demonstrated that minocycline and risperidone exert stronger anti-inflammatory and neuroprotective effects stronger than haloperidol, through MAPKs and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathways in BV2 cells stimulated with LPS, revealing the underlying mechanisms of minocycline and atypical antipsychotics in the treatment of negative schizophrenia symptoms.
Collapse
Affiliation(s)
- Yujun Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ying Wang
- Mental Health Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yidong Shen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yamin Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
16
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
17
|
Safari H, Mashayekhan S. Inflammation and Mental Health Disorders: Immunomodulation as a Potential Therapy for Psychiatric Conditions. Curr Pharm Des 2023; 29:2841-2852. [PMID: 37946352 DOI: 10.2174/0113816128251883231031054700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Mood disorders are the leading cause of disability worldwide and their incidence has significantly increased after the COVID-19 pandemic. Despite the continuous surge in the number of people diagnosed with psychiatric disorders, the treatment methods for these conditions remain limited. A significant number of people either do not respond to therapy or discontinue the drugs due to their severe side effects. Therefore, alternative therapeutic interventions are needed. Previous studies have shown a correlation between immunological alterations and the occurrence of mental health disorders, yet immunomodulatory therapies have been barely investigated for combating psychiatric conditions. In this article, we have reviewed the immunological alterations that occur during the onset of mental health disorders, including microglial activation, an increased number of circulating innate immune cells, reduced activity of natural killer cells, altered T cell morphology and functionality, and an increased secretion of pro-inflammatory cytokines. This article also examines key studies that demonstrate the therapeutic efficacy of anti-inflammatory medications in mental health disorders. These studies suggest that immunomodulation can potentially be used as a complementary therapy for controlling psychiatric conditions after careful screening of candidate drugs and consideration of their efficacy and side effects in clinical trials.
Collapse
Affiliation(s)
- Hanieh Safari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
18
|
Yang H, Zhang J, Yang M, Xu L, Chen W, Sun Y, Zhang X. Catalase and interleukin-6 serum elevation in a prediction of treatment-resistance in male schizophrenia patients. Asian J Psychiatr 2023; 79:103400. [PMID: 36521406 DOI: 10.1016/j.ajp.2022.103400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress (OS) and neuroinflammatory pathways play an important role in the pathophysiology of schizophrenia. The present study investigated the relationship between OS, inflammatory cytokines, and clinical features in male patients with treatment-resistant schizophrenia (TRS). METHOD We measured plasma OS parameters, including manganese-superoxide dismutase (Mn-SOD), copper/zinc-containing SOD (CuZn-SOD), total-SOD (T-SOD), malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px); and serum inflammatory cytokines, including interleukin (IL)- 1α, IL-6, tumor necrosis factor-alpha (TNF-α), and interferon (IFN)-γ, from 80 male patients with chronic schizophrenia (31 had TRS and 49 had chronic stable schizophrenia (CSS)), and 42 healthy controls. The severity of psychotic symptoms was evaluated using the Positive and Negative Syndrome Scale (PANSS). RESULTS Compared with healthy controls, plasma Mn-SOD, CuZn-SOD, T-SOD, GSH-Px, and MDA levels were significantly lower, while CAT and serum IL-6 levels were higher in both TRS and CSS male patients (all P < 0.05). Significant differences in the activities of CAT (F = 6.068, P = 0.016) and IL-6 levels (F = 6.876, P = 0.011) were observed between TRS and CSS male patients after analysis of covariance. Moreover, a significant positive correlation was found between IL-6 levels and PANSS general psychopathology subscores (r = 0.485, P = 0.006) and between CAT activity and PANSS total scores (r = 0.409, P = 0.022) in TRS male patients. CAT and IL-6 levels were predictors for TRS. Additionally, in chronic schizophrenia patients, a significant positive correlation was observed between IL-6 and GSH-Px (r = 0.292, P = 0.012), and the interaction effect of IL-6 and GSH-Px was positively associated with PANSS general psychopathology scores (r = 0.287, P = 0.014). CONCLUSION This preliminary study indicated that variations in OS and inflammatory cytokines may be involved in psychopathology for patients with chronic schizophrenia, especially in male patients with TRS.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China; Medical College of Yangzhou University, Yangzhou 225003, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Yujun Sun
- Department of Psychiatry, Kunshan Mental Health Center, Kunshan 215311, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, PR China.
| |
Collapse
|
19
|
Fitton R, Sweetman J, Heseltine-Carp W, van der Feltz-Cornelis C. Anti-inflammatory medications for the treatment of mental disorders: A scoping review. Brain Behav Immun Health 2022; 26:100518. [PMID: 36217374 PMCID: PMC9547233 DOI: 10.1016/j.bbih.2022.100518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022] Open
Abstract
This scoping review assessed the effect of anti-inflammatory medications in mental disorders. A search in Medline and the Cochrane database focusing on randomised controlled trials and systematic reviews identified 53 primary research articles, conducted in major depression, bipolar disorder, schizophrenia and somatic symptom disorders and related disorders (SSRD). The findings suggest that there is scope to consider the use of anti-inflammatory agents in mental disorders, however, not as a one-size-fits-all solution. Treatment could be especially helpful in subgroups with evidence of baseline inflammation. Anti-inflammatory medications that seem mostly effective in bipolar disorder or major depressive disorder, such as Celecoxib, Pioglitazone and statins, may differ from the ones with indications of effectiveness in schizophrenia, such as Minocycline and Aspirin. This might suggest a different underlying mechanism for treatment success in those two main illness groups. Further studies with larger sample sizes are needed that take levels of inflammation markers into account.
Collapse
Affiliation(s)
- Rebecca Fitton
- Kings College London, London, United Kingdom
- Tees Esk and Wear Valley NHS Foundation Trust, Darlington, United Kingdom
- Leeds and York Partnership NHS Foundation Trust, Leeds, United Kingdom
| | | | - William Heseltine-Carp
- Hull York Medical School (HYMS), University of York, York, United Kingdom
- Hull University Teaching Hospitals NHS Trust, United Kingdom
| | - Christina van der Feltz-Cornelis
- Tees Esk and Wear Valley NHS Foundation Trust, Darlington, United Kingdom
- Dept of Health Sciences, University of York, York, United Kingdom
- Hull York Medical School (HYMS), University of York, York, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
| |
Collapse
|
20
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Parksepp M, Haring L, Kilk K, Taalberg E, Kangro R, Zilmer M, Vasar E. A Marked Low-Grade Inflammation and a Significant Deterioration in Metabolic Status in First-Episode Schizophrenia: A Five-Year Follow-Up Study. Metabolites 2022; 12:983. [PMID: 36295885 PMCID: PMC9610466 DOI: 10.3390/metabo12100983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 08/31/2023] Open
Abstract
The objective of this study was to evaluate how schizophrenia spectrum disorders and applied long-term (5.1 years) antipsychotic (AP) treatment affect the serum level of acylcarnitines (ACs), cytokines and metabolic biomarkers and to characterize the dynamics of inflammatory and metabolic changes in the early course of the disorder. A total of 112 adults participated in the study (54 patients with first-episode psychosis (FEP) and 58 control subjects). Biomolecule profiles were measured at the onset of first-episode psychosis and 0.6 years and 5.1 years after the initiation of APs. The results of the present study confirmed that specific metabolic-inflammatory imbalance characterizes AP-naïve patients. Short-term (0.6-years) AP treatment has a favourable effect on psychotic symptoms, as well as the recovery of metabolic flexibility and resolution of low-level inflammation. However, 5.1 years of AP treatment resulted in weight gain and increased serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, interferon-γ, hexoses, acetylcarnitine, short-chain ACs (C3, C4) and long-chain ACs (C16:2, C18:1, C18:2). In conclusion, despite the improvement in psychotic symptoms, 5.1 years of AP treatment was accompanied by a pronounced metabolic-inflammatory imbalance, which was confirmed by the presence of enhanced pro-inflammatory activity and increased obesity with changes in the metabolism of carbohydrates, lipids, and their metabolites.
Collapse
Affiliation(s)
- Madis Parksepp
- Institute of Clinical Medicine, University of Tartu, 50417 Tartu, Estonia
- Psychiatry Clinic of Viljandi Hospital, 71024 Viljandi, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, 50417 Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, 50417 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Kalle Kilk
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Egon Taalberg
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, 51009 Tartu, Estonia
| | - Mihkel Zilmer
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Eero Vasar
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| |
Collapse
|
22
|
Al Abadey A, Connor B, Flamme ACL, Robichon K. Clozapine reduces chemokine-mediated migration of lymphocytes by targeting NF-κB and AKT phosphorylation. Cell Signal 2022; 99:110449. [PMID: 36031090 DOI: 10.1016/j.cellsig.2022.110449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis is a disease characterised by demyelination of axons in the central nervous system. The atypical antipsychotic drug clozapine has been shown to attenuate disease severity in experimental autoimmune encephalomyelitis (EAE), a mouse model that is useful for the study of multiple sclerosis. However, the mechanism of action by which clozapine reduces disease in EAE is poorly understood. To better understand how clozapine exerts its protective effects, we investigated the underlying signalling pathways by which clozapine may reduce immune cell migration by evaluating chemokine and dopamine receptor-associated signalling pathways. We found that clozapine inhibits migration of immune cells by reducing chemokine production in microglia cells by targeting NF-κB phosphorylation and promoting an anti-inflammatory milieu. Furthermore, clozapine directly targets immune cell migration by changing Ca2+ levels within immune cells and reduces the phosphorylation of signalling protein AKT. Linking these pathways to the antagonising effect of clozapine on dopamine and serotonin receptors, we provide insight into how clozapine alters immune cells migration by directly targeting the underlying migration-associated pathways.
Collapse
Affiliation(s)
- Afnan Al Abadey
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand; Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
23
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
24
|
Ferrari M, Godio M, Martini S, Callegari C, Cosentino M, Marino F. Effect of quetiapine on inflammation and immunity: a systematic review. Int J Psychiatry Clin Pract 2022:1-12. [PMID: 35913757 DOI: 10.1080/13651501.2022.2101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Knowledge about the neurobiology of psychiatric disorders is increasing in the last decades and evidence from literature suggests a central role for immuno-inflammatory mechanisms in these illnesses. The antipsychotic quetiapine acts on dopamine and serotonin signalling and well-established evidence demonstrates that these neurotransmitters can modulate immune functions in healthy and diseased conditions. Starting from this perspective, in the last few decades, a number of studies attempted to identify quetiapine effects on immune functions in order to highlight a possible additional effect of this drug in psychotic diseases, although no conclusive results were obtained. METHODS We critically reviewed preclinical and clinical studies evaluating quetiapine effects on immune systems, suggesting strategies for future work in this field. RESULTS Computerised search, in PubMed and Embase databases, was performed in March 2020: 120 studies were identified but only 29 relevant papers were selected for detailed review. CONCLUSION Despite some interesting preliminary findings about anti-inflammatory effects of quetiapine, mainly supported by preclinical studies, it is possible to conclude further studies are needed to investigate the immunomodulatory effects of this drug and achieve a better understanding of its relevance on clinical outcomes to finally identify new therapeutic approaches in psychiatric treatment.KeypointsMounting evidence points to a role for immuno-inflammatory mechanisms in psychiatric disorders.Quetiapine (QUE) acts on catecholamine (dopamine and norepinephrine) and serotonin signalling.The immunomodulatory effects of catecholamines are well established.Treatment with QUE in psychiatric disorders could leverage immunomodulatory effects.QUE unclear role in immune function modulation suggests future work.
Collapse
Affiliation(s)
- Marco Ferrari
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Godio
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.,PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy
| | - Stefano Martini
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Camilla Callegari
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Varese, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
25
|
Zhu Y, Webster MJ, Murphy CE, Middleton FA, Massa PT, Liu C, Dai R, Weickert CS. Distinct Phenotypes of Inflammation Associated Macrophages and Microglia in the Prefrontal Cortex Schizophrenia Compared to Controls. Front Neurosci 2022; 16:858989. [PMID: 35844224 PMCID: PMC9279891 DOI: 10.3389/fnins.2022.858989] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022] Open
Abstract
Approximately 40% of people with schizophrenia are classified as having "high inflammation." This subgroup has worse neuropathology than patients with "low inflammation." Thus, one would expect the resident microglia and possibly monocyte-derived macrophages infiltrating from the periphery to be "activated" in those with schizophrenia with elevated neuroinflammation. To test whether microglia and/or macrophages are associated with increased inflammatory signaling in schizophrenia, we measured microglia- and macrophage-associated transcripts in the postmortem dorsolateral prefrontal cortex of 69 controls and 72 people with schizophrenia. Both groups were stratified by neuroinflammatory status based on cortical mRNA levels of cytokines and SERPINA3. We found microglial mRNAs levels were either unchanged (IBA1 and Hexb, p > 0.20) or decreased (CD11c, <62% p < 0.001) in high inflammation schizophrenia compared to controls. Conversely, macrophage CD163 mRNA levels were increased in patients, substantially so in the high inflammation schizophrenia subgroup compared to low inflammation subgroup (>250%, p < 0.0001). In contrast, high inflammation controls did not have elevated CD163 mRNA compared to low inflammation controls (p > 0.05). The pro-inflammatory macrophage marker (CD64 mRNA) was elevated (>160%, all p < 0.05) and more related to CD163 mRNA in the high inflammation schizophrenia subgroup compared to high inflammation controls, while anti-inflammatory macrophage and cytokine markers (CD206 and IL-10 mRNAs) were either unchanged or decreased in schizophrenia. Finally, macrophage recruitment chemokine CCL2 mRNA was increased in schizophrenia (>200%, p < 0.0001) and CCL2 mRNA levels positively correlated with CD163 mRNA (r = 0.46, p < 0.0001). Collectively, our findings support the co-existence of quiescent microglia and increased pro-inflammatory macrophages in the cortex of people with schizophrenia.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Maree J. Webster
- Stanley Medical Research Institute, Rockville, MD, United States
| | - Caitlin E. Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Frank A. Middleton
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Paul T. Massa
- Department of Neurology and Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Cyndi Shannon Weickert
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
26
|
Romanova Z, Hlavacova N, Jezova D. Psychotropic Drug Effects on Steroid Stress Hormone Release and Possible Mechanisms Involved. Int J Mol Sci 2022; 23:ijms23020908. [PMID: 35055090 PMCID: PMC8779609 DOI: 10.3390/ijms23020908] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
There is no doubt that chronic stress accompanied by adrenocortical stress hormone release affects the development and treatment outcome of several mental disorders. Less attention has been paid to the effects of psychotropic drugs on adrenocortical steroids, particularly in clinical studies. This review focuses on the knowledge related to the possible modulation of cortisol and aldosterone secretion under non-stress and stress conditions by antipsychotic drugs, which are being used in the treatment of several psychotic and affective disorders. The molecular mechanisms by which antipsychotic drugs may influence steroid stress hormones include the modulation of central and/or adrenocortical dopamine and serotonin receptors, modulation of inflammatory cytokines, influence on regulatory mechanisms in the central part of the hypothalamic-pituitary axis, inhibition of corticotropin-releasing hormone gene promoters, influencing glucocorticoid receptor-mediated gene transcription, indirect effects via prolactin release, alteration of signaling pathways of glucocorticoid and mineralocorticoid actions. Clinical studies performed in healthy subjects, patients with psychosis, and patients with bipolar disorder suggest that single and repeated antipsychotic treatments either reduce cortisol concentrations or do not affect its secretion. A single and potentially long-term treatment with dopamine receptor antagonists, including antipsychotics, has a stimulatory action on aldosterone release.
Collapse
Affiliation(s)
- Zuzana Romanova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (Z.R.); (N.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, 83232 Bratislava, Slovakia
| | - Natasa Hlavacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (Z.R.); (N.H.)
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (Z.R.); (N.H.)
- Correspondence:
| |
Collapse
|
27
|
Arabska J, Wysokiński A, Brzezińska-Błaszczyk E, Kozłowska E. Serum Levels and in vitro CX3CL1 (Fractalkine), CXCL8, and IL-10 Synthesis in Phytohemaglutinin-Stimulated and Non-stimulated Peripheral Blood Mononuclear Cells in Subjects With Schizophrenia. Front Psychiatry 2022; 13:845136. [PMID: 35782435 PMCID: PMC9247257 DOI: 10.3389/fpsyt.2022.845136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/28/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Although schizophrenia is a severe mental illness, whose etiology is still largely unknown, its pathogenesis may be associated with dysregulation of the immune mechanisms. The present study compares the levels of interleukin (IL)-10, interleukin-8 (CXCL8), and fractalkine (CX3CL1) between schizophrenia patients and healthy controls. It also assesses the ability of peripheral peripheral blood mononuclear cells (PBMCs) to produce these cytokines spontaneously and following mitogen-stimulation. MATERIALS AND METHODS A prospective study was performed of 60 adult schizophrenia patients and 32 controls. CXCL8, IL-10, and fractalkine concentrations were measured in serum and supernatants from cultured PBMCs. Anthropometric (BMI, WHR) and body composition measurements were taken using bioimpedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). RESULTS AND CONCLUSION The schizophrenia patients demonstrated significantly higher levels of serum CXCL8 (schizophrenia: 13.4 ± 15.7 pg/mL, control: 6.9 ± 4.2 pg/mL, p = 0.001) and lower level of serum fractalkine (schizophrenia: 22.8 ± 9.9 pg/mL, control: 45.4 ± 84.5 pg/mL, p = 0.041). Serum IL-10 levels did not significantly differ. No in vitro synthesis of fractalkine was observed. Neither unstimulated or PHA-stimulated CXCL8 secretion differed between the two groups (p >0.05). The patients not taking mood stabilizers (MS-) demonstrated significantly higher CXCL8 levels than those on mood stabilizers (MS+) (p = 0.03) and control (p < 0.001). In addition, the MS- sub-group demonstrated significantly lower serum fraktalkine than controls (p = 0.009). These effects could be described as pseudo-normalization of CXCL8 and fractalkine in schizophrenia patients taking mood stabilizers.
Collapse
Affiliation(s)
- Jaśmina Arabska
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | | | - Elżbieta Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) 2A receptor is most well known as the common target for classic psychedelic compounds. Interestingly, the 5-HT2A receptor is the most widely expressed mammalian serotonin receptor and is found in nearly every examined tissue type including neural, endocrine, endothelial, immune, and muscle, suggesting it could be a novel and pharmacological target for several types of disorders. Despite this, the bulk of research on the 5-HT2A receptor is focused on its role in the central nervous system (CNS). Recently, activation of 5-HT2A receptors has emerged as a new anti-inflammatory strategy. This review will describe recent findings regarding psychedelics as anti-inflammatory compounds, as well as parse out differences in functional selectivity and immune regulation that exist between a number of well-known hallucinogenic compounds.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
29
|
Blaylock RL, Faria M. New concepts in the development of schizophrenia, autism spectrum disorders, and degenerative brain diseases based on chronic inflammation: A working hypothesis from continued advances in neuroscience research. Surg Neurol Int 2021; 12:556. [PMID: 34877042 PMCID: PMC8645502 DOI: 10.25259/sni_1007_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
This paper was written prompted by a poignant film about adolescent girl with schizophrenia who babysits for a younger girl in an isolated cabin. Schizophrenia is an illness that both authors are fascinated with and that they continue to study and investigate. There is now compelling evidence that schizophrenia is a very complex syndrome that involves numerous neural pathways in the brain, far more than just dopaminergic and serotonergic systems. One of the more popular theories in recent literature is that it represents a hypo glutaminergic deficiency of certain pathways, including thalamic ones. After much review of research and study in this area, we have concluded that most such theories contain a number of shortcomings. Most are based on clinical responses to certain drugs, particularly antipsychotic drugs affecting the dopaminergic neurotransmitters; thus, assuming dopamine release was the central cause of the psychotic symptoms of schizophrenia. The theory was limited in that dopamine excess could only explain the positive symptoms of the disorder. Antipsychotic medications have minimal effectiveness for the negative and cognitive symptoms associated with schizophrenia. It has been estimated that 20–30% of patients show either a partial or no response to antipsychotic medications. In addition, the dopamine hypothesis does not explain the neuroanatomic findings in schizophrenia.
Collapse
Affiliation(s)
| | - Miguel Faria
- Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States
| |
Collapse
|
30
|
Chen Y, Zhang M, Ding X, Yang Y, Chen Y, Zhang Q, Fan Y, Dai Y, Wang J. Mining Anti-Inflammation Molecules From Nippostrongylus brasiliensis-Derived Products Through the Metabolomics Approach. Front Cell Infect Microbiol 2021; 11:781132. [PMID: 34858883 PMCID: PMC8632049 DOI: 10.3389/fcimb.2021.781132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023] Open
Abstract
Hookworm is one type of soil-transmitted helminth, which could exert an anti-inflammatory effect in human or animal host, which provides a beneficial possibility for the discovery of inflammatory-related disease interventions. The identification of hookworm-derived anti-inflammatory molecules is urgently needed for future translational research. The emergence of metabolomics has become a powerful approach to comprehensively characterize metabolic alterations in recent times. Herein, excretory and secretory products (ESPs) were collected from cultured adult worm, while small intestinal contents were obtained from Nippostrongylus brasiliensis (N. brasiliensis, Nb)-infected mice. Through ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) platform, metabolomics analysis was used to explore the identification of anti-inflammatory molecules. Out of 45 differential metabolites that were discovered from ESPs, 10 of them showed potential anti-inflammatory properties, which could be subclassed into amino acids, furanocoumarins, linear diarylheptanoids, gamma butyrolactones, and alpha-keto acids. In terms of intestinal contents that were derived from N. brasiliensis-infected mice, 14 out of 301 differential metabolites were discovered to demonstrate anti-inflammatory effects, with possible subclassification into amino acids, benzylisoquinolines, quaternary ammonium salts, pyrimidines, pregnane steroids, purines, biphenyls, and glycerophosphocholines. Furthermore, nine of the differential metabolites appeared both in ESPs and infected intestinal contents, wherein four were proven to show anti-inflammation properties, namely, L-glutamine, glutamine (Gln), pyruvate, and alanine-Gln (Ala-Gln). In summary, we have provided a method for the identification and analysis of parasite-derived molecules with potential anti-inflammatory properties in the present study. This array of anti-inflammatory metabolites could provide clues for future evaluation and translational study of these anti-inflammatory molecules.
Collapse
Affiliation(s)
- Yuying Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Mingming Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Ding
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yougui Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yujia Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yinwen Fan
- Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Yang Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| |
Collapse
|
31
|
Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Lenze EJ, Reiersen AM, Abellán M, de la Muela P, Vernet R, Blanco C, Cougoule C, Beeker N, Neuraz A, Gorwood P, Alvarado JM, Meneton P, Limosin F. Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVID-19: An Observational Multicenter Study. Clin Pharmacol Ther 2021. [PMID: 34050932 DOI: 10.1002/cpt.2317.10.1002/cpt.2317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Several medications commonly used for a number of medical conditions share a property of functional inhibition of acid sphingomyelinase (ASM), or FIASMA. Preclinical and clinical evidence suggest that the ASM/ceramide system may be central to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. We examined the potential usefulness of FIASMA use among patients hospitalized for severe coronavirus disease 2019 (COVID-19) in an observational multicenter study conducted at Greater Paris University hospitals. Of 2,846 adult patients hospitalized for severe COVID-19, 277 (9.7%) were taking an FIASMA medication at the time of their hospital admission. The primary end point was a composite of intubation and/or death. We compared this end point between patients taking vs. not taking an FIASMA medication in time-to-event analyses adjusted for sociodemographic characteristics and medical comorbidities. The primary analysis was a Cox regression model with inverse probability weighting (IPW). Over a mean follow-up of 9.2 days (SD = 12.5), the primary end point occurred in 104 patients (37.5%) receiving an FIASMA medication, and 1,060 patients (41.4%) who did not. Despite being significantly and substantially associated with older age and greater medical severity, FIASMA medication use was significantly associated with reduced likelihood of intubation or death in both crude (hazard ratio (HR) = 0.71, 95% confidence interval (CI) = 0.58-0.87, P < 0.001) and primary IPW (HR = 0.58, 95%CI = 0.46-0.72, P < 0.001) analyses. This association remained significant in multiple sensitivity analyses and was not specific to one particular FIASMA class or medication. These results show the potential importance of the ASM/ceramide system in COVID-19 and support the continuation of FIASMA medications in these patients. Double-blind controlled randomized clinical trials of these medications for COVID-19 are needed.
Collapse
Affiliation(s)
- Nicolas Hoertel
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France
| | - Marina Sánchez-Rico
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France.,Department of Psychobiology and Behavioural Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Erich Gulbins
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Carpinteiro
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany.,Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eric J Lenze
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Angela M Reiersen
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Miriam Abellán
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France
| | - Pedro de la Muela
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France.,Department of Psychobiology and Behavioural Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Raphaël Vernet
- Medical Informatics, Biostatistics and Public Health Department, Assistance Publique-Hopitaux de Paris, Centre-Université de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Carlos Blanco
- Division of Epidemiology, Services, and Prevention Research, National Institute on Drug Abuse, North Bethesda, Maryland, USA
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France
| | - Nathanaël Beeker
- Unité de Recherche clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Antoine Neuraz
- INSERM, UMR_S 1138, Cordeliers Research Center, Université de Paris, Paris, France.,Department of Medical Informatics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris, Centre-Université de Paris, Paris, France
| | - Philip Gorwood
- INSERM, U1266 (Institute of Psychiatry and Neuroscience of Paris), Université de Paris, Paris, France
| | - Jesús M Alvarado
- Department of Psychobiology and Behavioural Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Pierre Meneton
- INSERM U1142 LIMICS, UMRS 1142, Sorbonne Universities, UPMC University of Paris 06, University of Paris 13, Paris, France
| | - Frédéric Limosin
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France
| | | |
Collapse
|
32
|
Zafiriou E, Daponte AI, Siokas V, Tsigalou C, Dardiotis E, Bogdanos DP. Depression and Obesity in Patients With Psoriasis and Psoriatic Arthritis: Is IL-17-Mediated Immune Dysregulation the Connecting Link? Front Immunol 2021; 12:699848. [PMID: 34367160 PMCID: PMC8334867 DOI: 10.3389/fimmu.2021.699848] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
Patients with psoriasis are frequently obese and experience anxiety or suffer from depressive disorders. The immunopathogenesis of psoriasis and indeed psoriatic arthritis is largely based on the pivotal role of IL-17/IL-23 axis, to an extent that currently monoclonal antibodies selectively inhibiting IL-17 or IL-23 are routinely used for the treatment of psoriatic diseases. Emerging data, demonstrating a decisive role for IL-17 and IL-17 producing cell subsets, such as Th17 in the induction and progression of obesity and depression has led authors to suggest that psoriatic disease, obesity and anxiety/depression may indeed be interconnected manifestation of a state of immunedysregulation, the linked being IL-17 and its related cells. We discuss this hypothetical link in depth taking into account the beneficial effects anti-IL17 and anti-IL-17 receptor inhibitors in treating psoriatic disease and the on-going debate as to whether these biologics may exert a direct or indirect effect in ameliorating concomitant obesity and depressive disorders, which are frequently noted in the same patient.
Collapse
Affiliation(s)
- Efterpi Zafiriou
- Academic Department of Dermatology, University General Hospital of Larissa and Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Athina I. Daponte
- Academic Department of Dermatology, University General Hospital of Larissa and Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Vasileios Siokas
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Christina Tsigalou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efthymios Dardiotis
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| | - Dimitrios P. Bogdanos
- Academic Department of Neurology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Thessaly, Greece
| |
Collapse
|
33
|
Zhao T, Zhang K, Zhang Y, Yang Y, Ning X, Hu Y, Li X, Zhang Y, Xia L, Ren Z, Liu H. Do proinflammatory cytokines play a role in clozapine-associated glycometabolism disorders? Psychopharmacology (Berl) 2021; 238:1979-1990. [PMID: 33774704 PMCID: PMC8233252 DOI: 10.1007/s00213-021-05824-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVE Clozapine (CLZ) is the most effective drug for treatment-resistant schizophrenia but is associated with many side effects, including glycometabolism disorders. Immunological mechanisms may be involved in the development of clozapine side effects. Research relating the immunomodulatory effects of clozapine and its early markers to clinically relevant adverse events is needed to reduce the harmful side effects of clozapine. This study aimed to investigate the role of proinflammatory cytokines in clozapine-associated glycometabolism disorders. METHODS We measured the effect of a range of doses of clozapine on glycometabolism-related parameters and proinflammatory cytokines levels in mice peripheral blood. We also examined the differences between these indicators in the peripheral blood of clozapine-treated schizophrenia patients and healthy controls. Furthermore, we detected proinflammatory cytokines expression in mice pancreatic tissue. RESULTS Following clozapine administration, glucagon significantly decreased in mouse serum, and proinflammatory cytokine IL-β levels markedly increased. Clozapine reliably increased proinflammatory cytokines (IL-1β, IL-6, and TNF-α) expression in murine pancreatic tissue. Compared with healthy controls, clozapine-treated patients' BMI, blood glucose, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) increased significantly. In clozapine-treated patients, a higher clozapine daily dosage was associated with higher levels of the proinflammatory cytokines IL-1β and IL-6, and a significant positive correlation was observed between blood glucose levels and the proinflammatory cytokines IL-6 and TNF-α. CONCLUSION Findings from animal experiments and clinical trials have shown clear evidence that clozapine has a regulatory effect on immune-related proinflammatory cytokines and influences glycometabolism indicators.
Collapse
Affiliation(s)
- Tongtong Zhao
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Yelei Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Yating Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaoshuai Ning
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Hu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaoyue Li
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Yulong Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, Road Hefei, Meishan, 81, Anhui Province, China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 North Chaohu Road, Hefei, Anhui Province, China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
34
|
Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Lenze EJ, Reiersen AM, Abellán M, de la Muela P, Vernet R, Blanco C, Cougoule C, Beeker N, Neuraz A, Gorwood P, Alvarado JM, Meneton P, Limosin F. Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVID-19: An Observational Multicenter Study. Clin Pharmacol Ther 2021; 110:1498-1511. [PMID: 34050932 PMCID: PMC8239599 DOI: 10.1002/cpt.2317] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
Several medications commonly used for a number of medical conditions share a property of functional inhibition of acid sphingomyelinase (ASM), or FIASMA. Preclinical and clinical evidence suggest that the ASM/ceramide system may be central to severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) infection. We examined the potential usefulness of FIASMA use among patients hospitalized for severe coronavirus disease 2019 (COVID‐19) in an observational multicenter study conducted at Greater Paris University hospitals. Of 2,846 adult patients hospitalized for severe COVID‐19, 277 (9.7%) were taking an FIASMA medication at the time of their hospital admission. The primary end point was a composite of intubation and/or death. We compared this end point between patients taking vs. not taking an FIASMA medication in time‐to‐event analyses adjusted for sociodemographic characteristics and medical comorbidities. The primary analysis was a Cox regression model with inverse probability weighting (IPW). Over a mean follow‐up of 9.2 days (SD = 12.5), the primary end point occurred in 104 patients (37.5%) receiving an FIASMA medication, and 1,060 patients (41.4%) who did not. Despite being significantly and substantially associated with older age and greater medical severity, FIASMA medication use was significantly associated with reduced likelihood of intubation or death in both crude (hazard ratio (HR) = 0.71, 95% confidence interval (CI) = 0.58–0.87, P < 0.001) and primary IPW (HR = 0.58, 95%CI = 0.46–0.72, P < 0.001) analyses. This association remained significant in multiple sensitivity analyses and was not specific to one particular FIASMA class or medication. These results show the potential importance of the ASM/ceramide system in COVID‐19 and support the continuation of FIASMA medications in these patients. Double‐blind controlled randomized clinical trials of these medications for COVID‐19 are needed.
Collapse
Affiliation(s)
- Nicolas Hoertel
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France
| | - Marina Sánchez-Rico
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France.,Department of Psychobiology and Behavioural Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Erich Gulbins
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Carpinteiro
- Institute for Molecular Biology, University Medicine Essen, University of Duisburg-Essen, Essen, Germany.,Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Eric J Lenze
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Angela M Reiersen
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Miriam Abellán
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France
| | - Pedro de la Muela
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France.,Department of Psychobiology and Behavioural Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Raphaël Vernet
- Medical Informatics, Biostatistics and Public Health Department, Assistance Publique-Hopitaux de Paris, Centre-Université de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Carlos Blanco
- Division of Epidemiology, Services, and Prevention Research, National Institute on Drug Abuse, North Bethesda, Maryland, USA
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, Toulouse, France
| | - Nathanaël Beeker
- Unité de Recherche clinique, Hopital Cochin, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Antoine Neuraz
- INSERM, UMR_S 1138, Cordeliers Research Center, Université de Paris, Paris, France.,Department of Medical Informatics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris, Centre-Université de Paris, Paris, France
| | - Philip Gorwood
- INSERM, U1266 (Institute of Psychiatry and Neuroscience of Paris), Université de Paris, Paris, France
| | - Jesús M Alvarado
- Department of Psychobiology and Behavioural Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Pierre Meneton
- INSERM U1142 LIMICS, UMRS 1142, Sorbonne Universities, UPMC University of Paris 06, University of Paris 13, Paris, France
| | - Frédéric Limosin
- Assistance Publique-Hopitaux de Paris, DMU Psychiatrie et Addictologie, Hôpital Corentin-Celton, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR_S1266, Université de Paris, Paris, France
| | | |
Collapse
|
35
|
Thériault RK, St-Denis M, Hewitt T, Khokhar JY, Lalonde J, Perreault ML. Sex-Specific Cannabidiol- and Iloperidone-Induced Neuronal Activity Changes in an In Vitro MAM Model System of Schizophrenia. Int J Mol Sci 2021; 22:ijms22115511. [PMID: 34073710 PMCID: PMC8197248 DOI: 10.3390/ijms22115511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cortical circuit dysfunction is thought to be an underlying mechanism of schizophrenia (SZ) pathophysiology with normalization of aberrant circuit activity proposed as a biomarker for antipsychotic efficacy. Cannabidiol (CBD) shows potential as an adjunctive antipsychotic therapy; however, potential sex effects in these drug interactions remain unknown. In the present study, we sought to elucidate sex effects of CBD coadministration with the atypical antipsychotic iloperidone (ILO) on the activity of primary cortical neuron cultures derived from the rat methylazoxymethanol acetate (MAM) model used for the study of SZ. Spontaneous network activity measurements were obtained using a multielectrode array at baseline and following administration of CBD or ILO alone, or combined. At baseline, MAM male neurons displayed increased bursting activity whereas MAM female neurons exhibited no difference in bursting activity compared to sex-matched controls. CBD administered alone showed a rapid but transient increase in neuronal activity in the MAM networks, an effect more pronounced in females. Furthermore, ILO had an additive effect on CBD-induced elevations in activity in the MAM male neurons. In the MAM female neurons, CBD or ILO administration resulted in time-dependent elevations in neuronal activity, but the short-term CBD-induced increases in activity were lost when CBD and ILO were combined. Our findings indicate that CBD induces rapid increases in cortical neuronal activity, with sex-specific drug interactions upon ILO coadministration. This suggests that sex should be a consideration when implementing adjunct therapy for treatment of SZ.
Collapse
Affiliation(s)
- Rachel-Karson Thériault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.-K.T.); (M.S.-D.); (T.H.); (J.L.)
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Myles St-Denis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.-K.T.); (M.S.-D.); (T.H.); (J.L.)
| | - Tristen Hewitt
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.-K.T.); (M.S.-D.); (T.H.); (J.L.)
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Jibran Y. Khokhar
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.-K.T.); (M.S.-D.); (T.H.); (J.L.)
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melissa L. Perreault
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 52013)
| |
Collapse
|
36
|
MacDowell KS, Munarriz-Cuezva E, Meana JJ, Leza JC, Ortega JE. Paliperidone Reversion of Maternal Immune Activation-Induced Changes on Brain Serotonin and Kynurenine Pathways. Front Pharmacol 2021; 12:682602. [PMID: 34054556 PMCID: PMC8156415 DOI: 10.3389/fphar.2021.682602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence indicates that early-life exposure to environmental factors may increase the risk for schizophrenia via inflammatory mechanisms. Inflammation can alter the metabolism of tryptophan through the oxidative kynurenine pathway to compounds with neurotoxic and neuroprotective activity and compromise serotonin (5-HT) synthesis. Here we investigate the role of serotonergic and kynurenine pathways in the maternal immune activation (MIA) animal model of schizophrenia. The potential reversion exerted by long-term antipsychotic treatment was also evaluated. MIA was induced by prenatal administration of polyinosinic:polycytidylic acid (poly (I:C)) in mice. Expression of different proteins and the content of different metabolites involved in the function of serotonergic and kynurenine pathways was assessed by RT-PCR, immunoblot and ELISA analyses in frontal cortex of the offspring after puberty. MIA decreased tissue 5-HT content and promoted changes in the expression of serotonin transporter, 5-HT2A and 5-HT2C receptors. Expression of indoleamine 2,3-dioxygenase 2 (IDO2) and kynurenine 3-monooxygenase (KMO) was increased by poly (I:C) whereas kynurenine aminotransferase II and its metabolite kynurenic acid were not altered. Long-term paliperidone was able to counteract MIA-induced changes in 5-HT and KMO, and to increase tryptophan availability and tryptophan hydroxylase-2 expression in poly (I:C) mice but not in controls. MIA-induced increase of the cytotoxic risk ratio of kynurenine metabolites (quinolinic/kynurenic acid) was also reversed by paliperidone. MIA induces specific long-term brain effects on serotonergic activity. Such effects seem to be related with alternative activation of the kynurenine metabolic pathway towards a cytotoxic status. Atypical antipsychotic paliperodine partially remediates abnormalities observed after MIA.
Collapse
Affiliation(s)
- Karina S MacDowell
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM, Madrid, Spain
| | - Eva Munarriz-Cuezva
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - J Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM, Madrid, Spain
| | - Jorge E Ortega
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Bizkaia, Madrid, Spain.,Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| |
Collapse
|
37
|
Uzzan S, Azab AN. Anti-TNF-α Compounds as a Treatment for Depression. Molecules 2021; 26:molecules26082368. [PMID: 33921721 PMCID: PMC8073844 DOI: 10.3390/molecules26082368] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Millions of people around the world suffer from psychiatric illnesses, causing unbearable burden and immense distress to patients and their families. Accumulating evidence suggests that inflammation may contribute to the pathophysiology of psychiatric disorders such as major depression and bipolar disorder. Copious studies have consistently shown that patients with mood disorders have increased levels of plasma tumor necrosis factor (TNF)-α. Given these findings, selective anti-TNF-α compounds were tested as a potential therapeutic strategy for mood disorders. This mini-review summarizes the results of studies that examined the mood-modulating effects of anti-TNF-α drugs.
Collapse
Affiliation(s)
- Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, School for Community Health Professions—Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, School for Community Health Professions—Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- Department of Nursing, School for Community Health Professions—Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- Correspondence: ; Tel.: +972-8-6479880; Fax: +972-8-6477683
| |
Collapse
|
38
|
Guo JY, Lesh TA, Niendam TA, Ragland JD, Tully LM, Carter CS. Brain free water alterations in first-episode psychosis: a longitudinal analysis of diagnosis, course of illness, and medication effects. Psychol Med 2021; 51:1001-1010. [PMID: 31910929 PMCID: PMC7340574 DOI: 10.1017/s0033291719003969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple lines of evidence suggest the presence of altered neuroimmune processes in patients with schizophrenia (Sz) and severe mood disorders. Recent studies using a novel free water diffusion tensor imaging (FW DTI) approach, proposed as a putative biomarker of neuroinflammation, atrophy, or edema, have shown significantly increased FW in patients with Sz. However no studies to date have investigated the longitudinal stability of FW alterations during the early course of psychosis, nor have studies focused separately on FE psychosis patients with Sz or bipolar disorder (BD) with psychotic features. METHODS The current study included 188 participants who underwent diffusion magnetic resonance imaging scanning at baseline. Sixty-four participants underwent follow-up rescanning after 12 months. DTI-based alterations in patients were calculated using voxelwise tract-based spatial statistics and region of interest analyses. RESULTS Patients with FE psychosis, both Sz and BD, exhibited increased FW at illness onset which remained unchanged over the 12-month follow-up period. Preliminary analyses suggested that antipsychotic medication exposure was associated with higher FW in gray matter that reached significance in the BD group. Higher FW in white matter correlated with negative symptom severity. CONCLUSIONS Our results support the presence of elevated FW at the onset of psychosis in both Sz and BD, which remains stable during the early course of the illness, with no evidence of either progression or remission.
Collapse
Affiliation(s)
- J. Y. Guo
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Center for Neuroscience, the University of California at Davis, Davis, CA, USA
| | - T. A. Lesh
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - T. A. Niendam
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - J. D. Ragland
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - L. M. Tully
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - C. S. Carter
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Center for Neuroscience, the University of California at Davis, Davis, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| |
Collapse
|
39
|
MacDowell KS, Martín-Hernández D, Ulecia-Morón C, Bris ÁG, Madrigal JLM, García-Bueno B, Caso JR. Paliperidone attenuates chronic stress-induced changes in the expression of inflammasomes-related protein in the frontal cortex of male rats. Int Immunopharmacol 2021; 90:107217. [PMID: 33290967 DOI: 10.1016/j.intimp.2020.107217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023]
Abstract
Several stress-related neuropsychiatric diseases are related to inflammatory phenomena. Thus, a better understanding of stress-induced immune responses could lead to enhanced treatment alternatives. Little is known about the possible involvement of inflammasomes in the stress-induced proinflammatory response. Antipsychotics have anti-inflammatory effects, but the possible antipsychotic treatment actions on inflammasomes remain unexplored. Our aim was to study whether inflammasomes are involved in the neuroinflammation induced by a paradigmatic model of chronic stress and whether the monoamine receptor antagonist paliperidone can modulate the possible stress-induced inflammasomes activation in the frontal cortex (FC). Thus, the effects of paliperidone (1 mg/Kg, oral gavage) administered during a chronic restraint stress protocol (6 h/day for 21 days) on the possible stress-related inflammasomes protein induction were evaluated through Western blot in the FC of male Wistar rats. Stress increased protein expression levels of the inflammasome complexes NALP1, NLRP3 and AIM2 and augmented caspase-1 and mature interleukin (IL)-1β protein levels. Paliperidone pre-treatment normalized the protein expression of the inflammasome pathway. In conclusion, our data indicate an induction of inflammasome complexes by chronic restraint stress in the FC of rats. The antipsychotic paliperidone has an inhibitory action on some of the stress-induced inflammasomes stimulation trying to normalize the neuroinflammatory scenario caused by stress. Considering the emerging role of inflammation in neuropsychiatric diseases, the development of new drugs targeting inflammasome pathways is a promising approach for future therapeutic interventions.
Collapse
Affiliation(s)
- Karina S MacDowell
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - Cristina Ulecia-Morón
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - Álvaro G Bris
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - José L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica UCM (IUINQ), Avda. Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
40
|
Ma J, Zhang Y, Huang Z, Liu X, Lv L, Li Y. Relationship Between Curative Effect and Serum Inflammatory Factors Level in Male Patients With First-Episode Schizophrenia Treated With Olanzapine. Front Psychiatry 2021; 12:782289. [PMID: 34955927 PMCID: PMC8695839 DOI: 10.3389/fpsyt.2021.782289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: A growing body of evidence shows that immune system disorders are one of the important etiological factors of schizophrenia. Inflammatory cytokines play a very critical role in the pathogenesis and treatment of schizophrenia. However, in the actual clinical practice, there is still a lack of confirmed biological indicators that can be used to evaluate the therapeutic effect of antipsychotics. Methods: In this study, 82 male patients with first-episode schizophrenia and 30 healthy controls were included. The Positive and Negative Syndrome Scale (PANSS) scores were evaluated, and the serum levels of high-sensitivity C-reactive protein (hs-CRP), interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 17 (IL-17), and transforming growth factor β1 (TGF-β1) were detected, both at baseline and 4 weeks later. The patients were divided into two groups, the effective group and the ineffective group, according to the reduction rate of PANSS. Results: In the case group, the levels of hs-CRP were significantly elevated (p = 0.00), whereas IL-1β, IL-6, and IL-17 were significantly reduced as compared to the baseline (p = 0.01, 0.02, and 0.00, respectively). Importantly, the baseline levels of the five inflammatory factors were significantly higher in the case group as compared to the control group (p = 0.00, 0.00, 0.00, 0.00, and 0.00, respectively). Post-treatment, the serum levels for IL-1β, IL-6, and IL-17 were significantly higher in the effective group than in the ineffective group (p = 0.00, 0.00, and 0.01, respectively). For every increase in the amount of IL-1β, the risk of ineffectiveness increased by 7% (OR = 0.93 [0.86-1.00]; p = 0.04), whereas for every increase in the amount of IL-17, the risk of ineffectiveness increased by 5% (OR = 0.95 [0.90-0.99]; p = 0.03). Conclusion: The results of the study showed that the levels of inflammatory factors in patients with different therapeutic effects were different, and the changes in the amounts of IL-1β and IL-17 acted as predictors of poor efficacy.
Collapse
Affiliation(s)
- Jun Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | | | - Zhuowei Huang
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Xuebing Liu
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Luxian Lv
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
41
|
Kelsven S, de la Fuente-Sandoval C, Achim CL, Reyes-Madrigal F, Mirzakhanian H, Domingues I, Cadenhead K. Immuno-inflammatory changes across phases of early psychosis: The impact of antipsychotic medication and stage of illness. Schizophr Res 2020; 226:13-23. [PMID: 32089474 PMCID: PMC7438230 DOI: 10.1016/j.schres.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Research examining the role of inflammation in psychosis has produced inconsistent results. Variables that influence inflammation, including antipsychotic medication, are inconsistently controlled across studies and variation of inflammatory analytes across stages of psychosis may also influence findings. The purpose of this study was to assess for evidence of immuno-inflammatory dysregulation across the stages of early psychosis. We examined a immuno-inflammatory analytes in subjects at clinical high risk (CHR) for developing a psychotic disorder, antipsychotic-naïve (-n) and antipsychotic treated (-a) subjects in their first episode of psychosis (FEP), and healthy control (HC) subjects. METHODS A total of 11 subjects at CHR, 50 subjects within their FEP (40 FEP-n, 10 FEP-a), and 10 HC subjects were recruited from early psychosis programs in San Diego and Mexico City. Plasma was collected for biomarker assay. RESULTS Immuno-inflammatory analytes significantly differed between groups: Interferon-gamma (IFN-γ), Interleukin-10 (IL-10), Eotaxin-1, Interferon Gamma-Induced Protein-10 (IP-10), Monocyte Chemotactic Protein-1 (MCP-1), Macrophage-Derived Chemokine (MDC), Macrophage Inflammatory Protein-1 beta (MIP-1β), Thymus and Activation Regulated Chemokine (TARC), and Brain Derived Neurotropic Factor (BDNF). Post-hoc analyses revealed an overall pattern of higher levels of IL-10, MCP-1, MIP-1β, TARC, and BDNF in CHR as compared to FEP-a, FEP-n, and HC subjects. CONCLUSIONS Results reveal a profile of immuno-inflammatory dysregulation in early stages of psychosis prior to psychotic conversion and treatment with antipsychotic medication. The CHR phase of early psychosis may represent a period of increased immuno-inflammatory activation, but due to limited sample size, these results deserve replication in a well characterized early psychosis population.
Collapse
Affiliation(s)
- Skylar Kelsven
- San Diego State University/University of California, San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States.
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico,Neuropsychiatry Department, INNN, Mexico City, Mexico
| | - Cristian L. Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Heline Mirzakhanian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Isabel Domingues
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
42
|
Dinesh AA, Islam J, Khan J, Turkheimer F, Vernon AC. Effects of Antipsychotic Drugs: Cross Talk Between the Nervous and Innate Immune System. CNS Drugs 2020; 34:1229-1251. [PMID: 32975758 DOI: 10.1007/s40263-020-00765-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Converging lines of evidence suggest that activation of microglia (innate immune cells in the central nervous system [CNS]) is present in a subset of patients with schizophrenia. The extent to which antipsychotic drug treatment contributes to or combats this effect remains unclear. To address this question, we reviewed the literature for evidence that antipsychotic exposure influences brain microglia as indexed by in vivo neuroimaging and post-mortem studies in patients with schizophrenia and experimental animal models. We found no clear evidence from clinical studies for an effect of antipsychotics on either translocator protein (TSPO) radioligand binding (an in vivo neuroimaging measure of putative gliosis) or markers of brain microglia in post-mortem studies. In experimental animals, where drug and illness effects may be differentiated, we also found no clear evidence for consistent effects of antipsychotic drugs on TSPO radioligand binding. By contrast, we found evidence that chronic antipsychotic exposure may influence central microglia density and morphology. However, these effects were dependent on the dose and duration of drug exposure and whether an immune stimulus was present or not. In the latter case, antipsychotics were generally reported to suppress expression of inflammatory cytokines and inducible inflammatory enzymes such as cyclooxygenase and microglia activation. No clear conclusions could be drawn with regard to any effect of antipsychotics on brain microglia from current clinical data. There is evidence to suggest that antipsychotic drugs influence brain microglia in experimental animals, including possible anti-inflammatory actions. However, we lack detailed information on how these drugs influence brain microglia function at the molecular level. The clinical relevance of the animal data with regard to beneficial treatment effects and detrimental side effects of antipsychotic drugs also remains unknown, and further studies are warranted.
Collapse
Affiliation(s)
- Ayushi Anna Dinesh
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Juned Islam
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Javad Khan
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Centre for Neuroimaging Sciences, De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RT, United Kingdom.
| |
Collapse
|
43
|
Yousefi-Manesh H, Dejban P, Mumtaz F, Abdollahi A, Chamanara M, Dehpour A, Hasanvand A, Rashidian A. Risperidone attenuates acetic acid-induced colitis in rats through inhibition of TLR4/NF-kB signaling pathway. Immunopharmacol Immunotoxicol 2020; 42:464-472. [PMID: 32787472 DOI: 10.1080/08923973.2020.1808987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM The purpose of the present study is to explore the anti-inflammatory potential of risperidone in acetic acid-induced rat colitis through inhibition of TLR4/NF-kB pathway. METHODS Acute colitis induction was done by intra-rectal administration of 2 mL of 4% diluted acetic acid solution. Two h after colitis induction, dexamethasone (2 mg/kg) as standard drugorrisperidone (2, 4 and 6 mg/kg) were administered orally to wistar rats for five consecutive days. 24 h after the last treatment, animals were sacrificed by cervical dislocation. Macroscopic and microscopic damage evaluation was done. Biochemical and ELISA methods were used to assess myeloid peroxidase (MPO) enzyme activity and tumor necrosis factor-α (TNF-α) level respectively. Moreover, immunohistochemistry (IHC) was performed to detect the expression of TLR4 and pNF-kBproteins. RESULTS Dexamethasone (2 mg/kg) or risperidone (2, 4 and 6 mg/kg) improved acetic acid-induced macroscopic (p < .001) and microscopic lesions. Additionally, risperidone (2, 4 and 6 mg/kg) inhibited the activity of MPO and TNF-α (p < .01, p < .001) in the colon tissue compared to acetic acid group. Furthermore, bothdexamethasone and risperidone (2, 4 and 6 mg/kg) significantly reduced acetic acid-induced expression of TLR4and pNF-kB proteins (p < .05, p < .01, p < .001). CONCLUSION The anti-inflammatory effect of risperidone on acetic acid-induced colitis in rats may involve inhibition of TLR4 and NF-kB signaling pathway.
Collapse
Affiliation(s)
- Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Dejban
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Hasanvand
- Department of Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Garcia-Rosa S, Carvalho BS, Guest PC, Steiner J, Martins-de-Souza D. Blood plasma proteomic modulation induced by olanzapine and risperidone in schizophrenia patients. J Proteomics 2020; 224:103813. [DOI: 10.1016/j.jprot.2020.103813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
|
45
|
You MJ, Bang M, Park HS, Yang B, Jang KB, Yoo J, Hwang DY, Kim M, Kim B, Lee SH, Kwon MS. Human umbilical cord-derived mesenchymal stem cells alleviate schizophrenia-relevant behaviors in amphetamine-sensitized mice by inhibiting neuroinflammation. Transl Psychiatry 2020; 10:123. [PMID: 32341334 PMCID: PMC7186225 DOI: 10.1038/s41398-020-0802-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
At present, therapeutic options available for treating schizophrenia are limited to monoamine-based antipsychotic drugs. Recent genome wide association study (GWAS) indicated a close relationship between immune system and schizophrenia. To leverage the GWAS finding for therapeutic strategy, we conducted a mechanism and effect study on application of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with potent immune-modulatory effect in an animal model useful for the study of schizophrenia. Schizophrenia-relevant behaviors were induced by amphetamine administration (amphetamine-sensitized mice) and the effect of a single intravenous administration of hUC-MSC was examined in the amphetamine-sensitized mice. Schizophrenia-relevant behaviors were assessed by open field test, light/dark box, social interaction test, latent inhibition, prepulse inhibition, tail suspension test, and forced swimming test. Our results indicated that neuroinflammation along with peripheral TNF-α elevation is associated with schizophrenia-relevant behaviors in amphetamine-sensitized mice. In addition, hUC-MSC inhibited schizophrenia-relevant and the neuroinflammatory changes. The main mechanism of hUC-MSC was associated with the induction of Treg and production of the anti-inflammatory cytokine, IL-10 in periphery. In vitro study revealed that amphetamine did not directly induce a neuroinflammatory reaction, while recombinant TNF-α (rTNF-α) increased mRNA expression of TNF-α, KMO, and IL-1β in several microglial cell lines. Moreover, recombinant IL-10 (rIL-10) and MSC conditioned media inhibited the inflammatory response in rTNF-α-treated microglial cells. Assuming that hUC-MSCs rarely reach the CNS and do not remain in the body for an extended time, these findings suggest that a single hUC-MSC infusion have long-term beneficial effect via regulatory T cell induction and secretion of IL-10 in amphetamine-sensitized mice.
Collapse
Affiliation(s)
- Min-Jung You
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Minji Bang
- grid.410886.30000 0004 0647 3511Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 13496 Republic of Korea
| | - Hyun-Sun Park
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Bohyun Yang
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Kyu Beom Jang
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Jongman Yoo
- grid.410886.30000 0004 0647 3511Department of Microbiology, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Dong-Youn Hwang
- grid.410886.30000 0004 0647 3511Department of Microbiology, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - MinYoung Kim
- grid.410886.30000 0004 0647 3511Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, 13497 Republic of Korea
| | - Borah Kim
- grid.410886.30000 0004 0647 3511Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 13496 Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
46
|
V. Giridharan V, Scaini G, Colpo GD, Doifode T, F. Pinjari O, Teixeira AL, Petronilho F, Macêdo D, Quevedo J, Barichello T. Clozapine Prevents Poly (I:C) Induced Inflammation by Modulating NLRP3 Pathway in Microglial Cells. Cells 2020; 9:E577. [PMID: 32121312 PMCID: PMC7140445 DOI: 10.3390/cells9030577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a complex psychiatric disorder that exhibits an interconnection between the immune system and the brain. Experimental and clinical studies have suggested the presence of neuroinflammation in schizophrenia. In the present study, the effect of antipsychotic drugs, including clozapine, risperidone, and haloperidol (10, 20 and 20 μM, respectively), on the production of IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, IL-18, INF-γ, and TNF-α was investigated in the unstimulated and polyriboinosinic-polyribocytidilic acid [poly (I:C)]-stimulated primary microglial cell cultures. In the unstimulated cultures, clozapine, risperidone, and haloperidol did not influence the cytokine levels. Nevertheless, in cell cultures under strong inflammatory activation by poly (I:C), clozapine reduced the levels of IL-1α, IL-1β, IL-2, and IL-17. Risperidone and haloperidol both reduced the levels of IL-1α, IL-1β, IL-2, and IL-17, and increased the levels of IL-6, IL-10, INF-γ, and TNF-α. Based on the results that were obtained with the antipsychotic drugs and observing that clozapine presented with a more significant anti-inflammatory effect, clozapine was selected for the subsequent experiments. We compared the profile of cytokine suppression obtained with the use of NLRP3 inflammasome inhibitor, CRID3 to that obtained with clozapine, to test our hypothesis that clozapine inhibits the NLRP3 inflammasome. Clozapine and CRID3 both reduced the IL-1α, IL-1β, IL-2, and IL-17 levels. Clozapine reduced the level of poly (I:C)-activated NLRP3 expression by 57%, which was higher than the reduction thay was seen with CRID3 treatment (45%). These results suggest that clozapine might exhibit anti-inflammatory effects by inhibiting NLRP3 inflammasome and this activity is not typical with the use of other antipsychotic drugs under the conditions of strong microglial activation.
Collapse
Affiliation(s)
- Vijayasree V. Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Gabriela D. Colpo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Tejaswini Doifode
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Omar F. Pinjari
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Antônio L. Teixeira
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC 88700-000, Brazil;
| | - Danielle Macêdo
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP 14000-000, Brazil;
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC 88800-000, Brazil
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC 88800-000, Brazil
| |
Collapse
|
47
|
Gupta P, Mohanty B. Atypical antipsychotic drug modulates early life infection induced impairment of hypothalamic-pituitary-adrenal axis: An age related study in mice. Eur J Pharmacol 2020; 872:172978. [PMID: 32014487 DOI: 10.1016/j.ejphar.2020.172978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/13/2023]
Abstract
Evidences from human and animal studies indicate that exposure to infection during early life act as a stressor to impair the hypothalamic-pituitary-adrenal (HPA) axis and may be one of the contributing factors of mental illness of later life. Several atypical antipsychotic drugs (AAPDs) proved to be effective in alleviating psychiatric illness through normalization of HPA axis. However, AAPD are least tried to evaluate their efficacy in modulation of HPA axis impaired under infection. The present study elucidated that the treatment with AAPD paliperidone (PAL: 0.025 mg/kg/bw and 0.05 mg/kg/bw) during periadolescence period (postnatal day 35- postnatal day 56) dose-dependently normalized the HPA axis of the female mice who were gestationally (gestational day 15 and 17) exposed to bacterial endotoxin lipopolysaccharide (LPS: 800 μg/kg/bw; intraperitoneally). The effectiveness of PAL treatment in counteracting the LPS induced hyperactivity of HPA axis was age-related, better observed at postnatal day 120 than at postnatal day 200. The PAL modulation of HPA axis reflected at different levels: inhibition of hypothalamic CRF expression and reduction in plasma levels of adrenocorticotropin and corticosterone. Histopathological alterations such as hypertrophy and/or hyperplasia in cortical zona fasciculata as well as medullary chromaffin cells of adrenal also normalized on PAL treatment. The comparatively long wash out period after drug treatment (postnatal day 57- postnatal day 200) along with age related hormonal imbalance could be correlated to less effectiveness of PAL on HPA axis at postnatal day 200. PAL modulation of HPA axis might be through maintenance of cytokines and reproductive axis homeostasis.
Collapse
Affiliation(s)
- Preeti Gupta
- Department of Zoology, University of Allahabad, Allahabad, 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
48
|
Rantala MJ, Luoto S, Krama T, Krams I. Eating Disorders: An Evolutionary Psychoneuroimmunological Approach. Front Psychol 2019; 10:2200. [PMID: 31749720 PMCID: PMC6842941 DOI: 10.3389/fpsyg.2019.02200] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Eating disorders are evolutionarily novel conditions. They lead to some of the highest mortality rates of all psychiatric disorders. Several evolutionary hypotheses have been proposed for eating disorders, but only the intrasexual competition hypothesis is extensively supported by evidence. We present the mismatch hypothesis as a necessary extension to the current theoretical framework of eating disorders. This hypothesis explains the evolutionarily novel adaptive metaproblem that has arisen when mating motives conflict with the large-scale and easy availability of hyper-rewarding but obesogenic foods. This situation is exacerbated particularly in those contemporary environments that are characterized by sedentary lifestyles, ever-present junk foods, caloric surplus and the ubiquity of social comparisons that take place via social media. Our psychoneuroimmunological model connects ultimate-level causation with proximate mechanisms by showing how the adaptive metaproblem between mating motives and food rewards leads to chronic stress and, further, to disordered eating. Chronic stress causes neuroinflammation, which increases susceptibility to OCD-like behaviors that typically co-occur with eating disorders. Chronic stress upregulates the serotonergic system and causes dysphoric mood in anorexia nervosa patients. Dieting, however, reduces serotonin levels and dysphoric mood, leading to a vicious serotonergic-homeostatic stress/starvation cycle whereby cortisol and neuroinflammation increase through stringent dieting. Our psychoneuroimmunological model indicates that between-individual and within-individual variation in eating disorders partially arises from (co)variation in gut microbiota and stress responsivity, which influence neuroinflammation and the serotonergic system. We review the advances that have been made in recent years in understanding how to best treat eating disorders, outlining directions for future clinical research. Current evidence indicates that eating disorder treatments should aim to reduce the chronic stress, neuroinflammation, stress responsivity and gut dysbiosis that fuel the disorders. Connecting ultimate causes with proximate mechanisms and treating biopsychosocial causes rather than manifest symptoms is expected to bring more effective and sophisticated long-term interventions for the millions of people who suffer from eating disorders.
Collapse
Affiliation(s)
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Tatjana Krama
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
49
|
Casquero-Veiga M, García-García D, MacDowell KS, Pérez-Caballero L, Torres-Sánchez S, Fraguas D, Berrocoso E, Leza JC, Arango C, Desco M, Soto-Montenegro ML. Risperidone administered during adolescence induced metabolic, anatomical and inflammatory/oxidative changes in adult brain: A PET and MRI study in the maternal immune stimulation animal model. Eur Neuropsychopharmacol 2019; 29:880-896. [PMID: 31229322 DOI: 10.1016/j.euroneuro.2019.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Inflammation and oxidative stress (IOS) are considered key pathophysiological elements in the development of mental disorders. Recent studies demonstrated that the antipsychotic risperidone elicits an antiinflammatory effect in the brain. We administered risperidone for 2-weeks at adolescence to assess its role in preventing brain-related IOS changes in the maternal immune stimulation (MIS) model at adulthood. We also investigated the development of volumetric and neurotrophic abnormalities in areas related to the HPA-axis. Poly I:C (MIS) or saline (Sal) were injected into pregnant Wistar rats on GD15. Male offspring received risperidone or vehicle daily from PND35-PND49. We studied 4 groups (8-15 animals/group): Sal-vehicle, MIS-vehicle, Sal-risperidone and MIS-risperidone. [18F]FDG-PET and MRI studies were performed at adulthood and analyzed using SPM12 software. IOS and neurotrophic markers were measured using WB and ELISA assays in brain tissue. Risperidone elicited a protective function of schizophrenia-related IOS deficits. In particular, risperidone elicited the following effects: reduced volume in the ventricles and the pituitary gland; reduced glucose metabolism in the cerebellum, periaqueductal gray matter, and parietal cortex; higher FDG uptake in the cingulate cortex, hippocampus, thalamus, and brainstem; reduced NFκB activity and iNOS expression; and increased enzymatic activity of CAT and SOD in some brain areas. Our study suggests that some schizophrenia-related IOS changes can be prevented in the MIS model. It also stresses the need to search for novel strategies based on anti-inflammatory compounds in risk populations at early stages in order to alter the course of the disease.
Collapse
Affiliation(s)
- Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - David García-García
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain; Facultad de Ciencia y Tecnología, Universidad Isabel I, Burgos, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Laura Pérez-Caballero
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology & Psychobiology Research Group, Universidad de Cádiz, Cádiz, Spain
| | - David Fraguas
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense (UCM), Madrid, Spain
| | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Celso Arango
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense (UCM), Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
50
|
Noto MN, Maes M, Nunes SOV, Ota VK, Rossaneis AC, Verri WA, Cordeiro Q, Belangero SI, Gadelha A, Bressan RA, Noto C. Activation of the immune-inflammatory response system and the compensatory immune-regulatory system in antipsychotic naive first episode psychosis. Eur Neuropsychopharmacol 2019; 29:416-431. [PMID: 30594344 DOI: 10.1016/j.euroneuro.2018.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/23/2018] [Accepted: 12/16/2018] [Indexed: 01/07/2023]
Abstract
Psychotic disorders are accompanied by activation of the immune inflammatory response system (IRS). The compensatory immune-regulatory system (CIRS) is a regulatory immune response that is induced by the IRS but exerts negative feedback through increased levels of anti-inflammatory cytokines such as interleukin (IL)-4, IL-13 and IL-10. This study aims to examine the IRS and CIRS components, including macrophagic M1, T-helper (Th)-1, Th-2, Th-17 and T-regulatory (Treg) phenotypes, in antipsychotic-naïve first episode psychosis (AN-FEP) before and after risperidone treatment. We included 31 AN-FEP and 22 healthy controls. AN-FEP showed increments in M1, Th-1, Th-2, Th-17 and Treg phenotypes and a relatively greater IRS response (especially granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6 and IL-12) as compared with the CIRS response. Inflammatory markers, especially IL-6 and IL-8, were significantly correlated with negative, psychotic, affective and excitation symptom dimensions. Treatment with risperidone significantly suppressed the IRS and CIRS. Baseline levels of CIRS biomarkers, especially higher soluble tumor necrosis factor receptor-1 and IL-10 predicted clinical improvement after treatment. Our findings indicate that AN-FEP is characterized by robust IRS (M1 + Th-1 + Th-17) and CIRS responses, suggesting that monocytes, macrophages, Th-1, Th-2, Th-17 and Treg cells are activated. The findings indicate that (a) FEP patients are prone to the detrimental effects of M1, Th-1, Th-17 and Th-2 cells, which may contribute to long-lasting abnormalities in brain circuitry; and (b) in FEP, the CIRS may contribute to recovery from the acute phase of illness. Enhancing the CIRS might be a new drug target to treat FEP.
Collapse
Affiliation(s)
- Mariane Nunes Noto
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3(o) Andar, CEP 04039-032, São Paulo, SP, Brazil
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana C Rossaneis
- Department of Pathology, Biological Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Quirino Cordeiro
- Department of Psychiatry, Faculdade de Ciências Médica da Santa Casa de São Paulo (FCMSCSP), São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ary Gadelha
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3(o) Andar, CEP 04039-032, São Paulo, SP, Brazil; Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Cristiano Noto
- GAPi (Early Psychosis Group), Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, 669, 3(o) Andar, CEP 04039-032, São Paulo, SP, Brazil; Schizophrenia Program (PROESQ), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|