1
|
Farag TK, Abou-Zeina HAA, Abdel-Shafy S, Allam AM, Ghazy AA. Progress in diagnostic methods and vaccines for lumpy skin disease virus: a path towards understanding the disease. Vet Res Commun 2025; 49:134. [PMID: 40056298 DOI: 10.1007/s11259-025-10667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/01/2025] [Indexed: 03/10/2025]
Abstract
Lumpy skin disease (LSD) is caused by Lumpy Skin disease virus (LSDV) belonging to the genus Capripoxvirus (CaPV). The disease is widespread in Africa, the Middle East and Asia and has been present in Egypt since 1988. LSD is mainly transmitted by blood-sucking insects. LSD is clinically distinguished by a high fever, skin nodules, and swollen Lymph nodes. Detecting sub-clinical disease can be challenging however, prompt laboratory investigations are vital. Skin lesions are the main source of infection, although the virus is shed through many excretions and discharges including semen. Disease confirmation in clinical laboratories includes detection of viral nucleic acid, antigen and antibody levels. Simple, adaptable, and quick assays for detecting LSDV are required for control measures. Vaccination, together with controlled quarantine and vector control measures, may be beneficial for preventing disease spread. Presently, a range of live attenuated vaccines, have been used in the field with different levels of protection and side effects. With high levels of vaccination coverage, attenuated Neethling vaccines have successfully eradicated of LSDV in Europe. Inactivated LSDV vaccines have also been demonstrated effective in experimental infections. Furthermore, due to its large genome, LSDV is being exploited as a vaccine delivery element, generating an innovative composite with additional viral genes by DNA recombination. Vaccines developed on this basis have the potential to prevent a wide range of diseases and have been demonstrated to be effective in experimental settings. In this review, we emphasizethe advances in diagnostic methods and vaccines developed last decade, thereby providing a basis for future research into various aspects of LSDV and providing information for possibility of disease elimination.
Collapse
Affiliation(s)
- Tarek Korany Farag
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Hala A A Abou-Zeina
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Ahmad M Allam
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt.
| | - Alaa A Ghazy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Williamson AL. Approaches to Next-Generation Capripoxvirus and Monkeypox Virus Vaccines. Viruses 2025; 17:186. [PMID: 40006941 PMCID: PMC11861168 DOI: 10.3390/v17020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Globally, there are two major poxvirus outbreaks: mpox, caused by the monkeypox virus, and lumpy skin disease, caused by the lumpy skin disease virus. While vaccines for both diseases exist, there is a need for improved vaccines. The original vaccines used to eradicate smallpox, which also protect from the disease now known as mpox, are no longer acceptable. This is mainly due to the risk of serious adverse events, particularly in HIV-positive people. The next-generation vaccine for mpox prevention is modified vaccinia Ankara, which does not complete the viral replication cycle in humans and, therefore, has a better safety profile. However, two modified vaccinia Ankara immunizations are needed to give good but often incomplete protection, and there are indications that the immune response will wane over time. A better vaccine that induces a long-lived response with only one immunization is desirable. Another recently available smallpox vaccine is LC16m8. While LC16m8 contains replicating vaccinia virus, it is a more attenuated vaccine than the original vaccines and has limited side effects. The commonly used lumpy skin disease vaccines are based on attenuated lumpy skin disease virus. However, an inactivated or non-infectious vaccine is desirable as the disease spreads into new territories. This article reviews novel vaccine approaches, including mRNA and subunit vaccines, to protect from poxvirus infection.
Collapse
Affiliation(s)
- Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa;
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
3
|
Gleser D, Cohen M, Kenigswald G, Kedmi M, Sharir B, Klement E. Optimizing protocols for the 919 strain-based bovine ephemeral fever virus vaccine (Ultravac®, Zoetis™): Evaluation of dose-dependent effectiveness and long-term immunity. Vaccine 2025; 43:126531. [PMID: 39579670 DOI: 10.1016/j.vaccine.2024.126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Bovine Ephemeral Fever (BEF) is an arthropod-borne virus (arbovirus) that presents a significant challenge to the cattle industry due to its economic impact, primarily through the loss of milk production in dairy cows. Vaccination is the predominant strategy for managing the disease. We recently showed a vaccine effectiveness (VE) of 60 % of a vaccine based on the Australian 919 BEFV isolate, with a natural challenge occurring shortly after the administration of the second dose of the vaccine. Still, there is a lack of data regarding the duration of protective immunity after vaccination and its potential enhancement after the administration of three and four vaccine doses. To answer these questions we conducted a retrospective cohort study of 850 cows (7 herds), analyzing the influence of different vaccination regimens on VE and a serosurvey of 71 cows to test the longevity of BEFV-specific serum-neutralizing antibodies (SNAb). We adopted a quantitative methodology for BEF diagnosis with the use of commercially validated precision dairy monitoring technologies for milk reduction identification. Survival analysis was used to analyze the vaccine dose effectiveness. A Cox regression mixed-effect model (COXME) was fitted to the data. The analysis demonstrated the following VE compared to zero vaccine doses: 82 % (p-value<0.001) for four doses, 66 % (p-value<0.026) for three doses and 39 % (p-value = 0.3) for two doses. Corroborating with the VE results, the four-dose regimen exhibited the highest geometric mean titer (GMT) value (4.45, CI95% = 3.99, 4.91), followed by the three-dose regimen (3.53, CI95% = 3.08,3.98), and the two-dose regimen (2.17, CI95% = 1.77,2.57). In light of these findings, we recommend vaccinating calves as early as four to six months old with two doses spaced one month apart, followed by a third and even fourth dose administered between six to 12 months later, ideally close to the onset of the high-risk season.
Collapse
Affiliation(s)
- Dan Gleser
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, POB 12, 76100, Israel.
| | - Michal Cohen
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, POB 12, 76100, Israel
| | | | - Maor Kedmi
- Hachaklait veterinary services, Caesarea 3088900, Israel.
| | - Benny Sharir
- Hachaklait veterinary services, Caesarea 3088900, Israel
| | - Eyal Klement
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, POB 12, 76100, Israel.
| |
Collapse
|
4
|
Haider A, Abbas Z, Taqveem A, Ali A, Khurshid M, Naggar RFE, Rohaim MA, Munir M. Lumpy Skin Disease: Insights into Molecular Pathogenesis and Control Strategies. Vet Sci 2024; 11:561. [PMID: 39591335 PMCID: PMC11598853 DOI: 10.3390/vetsci11110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Lumpy skin disease (LSD) is a viral infection that affects buffaloes and cattle across various regions, including both tropical and temperate climates. Intriguingly, the virus-carrying skin sores remain the primary source of infection for extended periods, exacerbated by the abundance of vectors in disease-endemic countries. Recent scientific advances have revealed the molecular aspects of LSD and offered improved vaccines and valuable antiviral targets. This review summarizes the molecular features of LSD and its effect on various livestock species. We then provide an extensive discussion on the transmission dynamics of LSD and the roles of vectors in its continued spread among livestock populations. Additionally, this review critically analyses the rationales behind, as well as the affordability and effectiveness, of current control strategies worldwide.
Collapse
Affiliation(s)
- Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Zaheer Abbas
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan; (A.H.); (Z.A.)
| | - Ahsen Taqveem
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Abid Ali
- Department of Allied Health Sciences, The University of Chenab, Gujrat 50700, Pakistan;
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.T.); (M.K.)
| | - Rania F. El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Mohammed A. Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| |
Collapse
|
5
|
Morgenstern M, Sok J, Klement E. Would you bet on the vet? Influences on dairy farmers' vaccination choices, with a spotlight on the Veterinarian impact. Prev Vet Med 2024; 230:106262. [PMID: 38991428 DOI: 10.1016/j.prevetmed.2024.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Ensuring effective vaccination is crucial for epidemic control, particularly in voluntary vaccination scenarios. Though highly important for planning voluntary vaccination programs, we lack insights into the effectiveness of veterinarian communication and the impact of disease-specific traits on farmer vaccination intentions. To fill this void, our study compared five diseases affecting Israeli dairy cattle (Botulism, Bovine Ephemeral Fever (BEF), Brucellosis, Lumpy Skin Disease (LSD), and Rabies). Using questionnaires grounded in the theory of planned behavior, we surveyed 340 Israeli dairy farmers to understand their vaccination intentions for each disease.Simultaneously, veterinarians overseeing these farms provided insights into their opinions and perceived influence on vaccination decisions. Results revealed varying levels of farmer vaccination intention, with Botulism showing the highest and BEF the lowest. Social pressure significantly influenced farmers' vaccination intentions, with distinct patterns across diseases. Veterinarian opinions had the highest influence only for LSD, while other factors played crucial roles in different diseases. Intriguingly, there was no correlation between veterinarians' recommendations and farmers' perceptions of these recommendations. In conclusion, the optimization of voluntary vaccination programs necessitates tailoring interventions to the unique characteristics of each disease. Additionally, improving communication between veterinarians and farmers is essential, with an emphasis on effective risk communication training.
Collapse
Affiliation(s)
- Michal Morgenstern
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Jaap Sok
- Business Economics, Wageningen University and Research (WUR), Wageningen, the Netherlands.
| | - Eyal Klement
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
6
|
Zia S, Sumon MM, Ashik MA, Basar A, Lim S, Oh Y, Park Y, Rahman MM. Potential Inhibitors of Lumpy Skin Disease's Viral Protein (DNA Polymerase): A Combination of Bioinformatics Approaches. Animals (Basel) 2024; 14:1283. [PMID: 38731287 PMCID: PMC11083254 DOI: 10.3390/ani14091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
Lumpy skin disease (LSD), caused by a virus within the Poxviridae family and Capripoxvirus genus, induces nodular skin lesions in cattle. This spreads through direct contact and insect vectors, significantly affecting global cattle farming. Despite the availability of vaccines, their efficacy is limited by poor prophylaxis and adverse effects. Our study aimed to identify the potential inhibitors targeting the LSDV-encoded DNA polymerase protein (gene LSDV039) for further investigation through comprehensive analysis and computational methods. Virtual screening revealed rhein and taxifolin as being potent binders among 380 phytocompounds, with respective affinities of -8.97 and -7.20 kcal/mol. Canagliflozin and tepotinib exhibited strong affinities (-9.86 and -8.86 kcal/mol) among 718 FDA-approved antiviral drugs. Simulating the molecular dynamics of canagliflozin, tepotinib, rhein, and taxifolin highlighted taxifolin's superior stability and binding energy. Rhein displayed compactness in RMSD and RMSF, but fluctuated in Rg and SASA, while canagliflozin demonstrated stability compared to tepotinib. This study highlights the promising potential of using repurposed drugs and phytocompounds as potential LSD therapeutics. However, extensive validation through in vitro and in vivo testing and clinical trials is crucial for their practical application.
Collapse
Affiliation(s)
- Sabbir Zia
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Mehedi Sumon
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Ashiqur Ashik
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Abul Basar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Sangjin Lim
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yungchul Park
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Md-Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| |
Collapse
|
7
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gortázar C, Herskin MS, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Bortolami A, Guinat C, Harder T, Stegeman A, Terregino C, Lanfranchi B, Preite L, Aznar I, Broglia A, Baldinelli F, Gonzales Rojas JL. Vaccination of poultry against highly pathogenic avian influenza - Part 2. Surveillance and mitigation measures. EFSA J 2024; 22:e8755. [PMID: 38638555 PMCID: PMC11024799 DOI: 10.2903/j.efsa.2024.8755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Selecting appropriate diagnostic methods that take account of the type of vaccine used is important when implementing a vaccination programme against highly pathogenic avian influenza (HPAI). If vaccination is effective, a decreased viral load is expected in the samples used for diagnosis, making molecular methods with high sensitivity the best choice. Although serological methods can be reasonably sensitive, they may produce results that are difficult to interpret. In addition to routine molecular monitoring, it is recommended to conduct viral isolation, genetic sequencing and phenotypic characterisation of any HPAI virus detected in vaccinated flocks to detect escape mutants early. Following emergency vaccination, various surveillance options based on virological testing of dead birds ('bucket sampling') at defined intervals were assessed to be effective for early detection of HPAIV and prove disease freedom in vaccinated populations. For ducks, virological or serological testing of live birds was assessed as an effective strategy. This surveillance could be also applied in the peri-vaccination zone on vaccinated establishments, while maintaining passive surveillance in unvaccinated chicken layers and turkeys, and weekly bucket sampling in unvaccinated ducks. To demonstrate disease freedom with > 99% confidence and to detect HPAI virus sufficiently early following preventive vaccination, monthly virological testing of all dead birds up to 15 per flock, coupled with passive surveillance in both vaccinated and unvaccinated flocks, is recommended. Reducing the sampling intervals increases the sensitivity of early detection up to 100%. To enable the safe movement of vaccinated poultry during emergency vaccination, laboratory examinations in the 72 h prior to the movement can be considered as a risk mitigation measure, in addition to clinical inspection; sampling results from existing surveillance activities carried out in these 72 h could be used. In this Opinion, several schemes are recommended to enable the safe movement of vaccinated poultry following preventive vaccination.
Collapse
|
8
|
Mahony TJ, Briody TE, Ommeh SC. Can the Revolution in mRNA-Based Vaccine Technologies Solve the Intractable Health Issues of Current Ruminant Production Systems? Vaccines (Basel) 2024; 12:152. [PMID: 38400135 PMCID: PMC10893269 DOI: 10.3390/vaccines12020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
To achieve the World Health Organization's global Sustainable Development Goals, increased production of high-quality protein for human consumption is required while minimizing, ideally reducing, environmental impacts. One way to achieve these goals is to address losses within current livestock production systems. Infectious diseases are key limiters of edible protein production, affecting both quantity and quality. In addition, some of these diseases are zoonotic threats and potential contributors to the emergence of antimicrobial resistance. Vaccination has proven to be highly successful in controlling and even eliminating several livestock diseases of economic importance. However, many livestock diseases, both existing and emerging, have proven to be recalcitrant targets for conventional vaccination technologies. The threat posed by the COVID-19 pandemic resulted in unprecedented global investment in vaccine technologies to accelerate the development of safe and efficacious vaccines. While several vaccination platforms emerged as front runners to meet this challenge, the clear winner is mRNA-based vaccination. The challenge now is for livestock industries and relevant stakeholders to harness these rapid advances in vaccination to address key diseases affecting livestock production. This review examines the key features of mRNA vaccines, as this technology has the potential to control infectious diseases of importance to livestock production that have proven otherwise difficult to control using conventional approaches. This review focuses on the challenging diseases of ruminants due to their importance in global protein production. Overall, the current literature suggests that, while mRNA vaccines have the potential to address challenges in veterinary medicine, further developments are likely to be required for this promise to be realized for ruminant and other livestock species.
Collapse
Affiliation(s)
- Timothy J. Mahony
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia; (T.E.B.); (S.C.O.)
| | | | | |
Collapse
|
9
|
Punyapornwithaya V, Arjkumpa O, Buamithup N, Jainonthee C, Salvador R, Jampachaisri K. The impact of mass vaccination policy and control measures on lumpy skin disease cases in Thailand: insights from a Bayesian structural time series analysis. Front Vet Sci 2024; 10:1301546. [PMID: 38249552 PMCID: PMC10797105 DOI: 10.3389/fvets.2023.1301546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction In 2021, Thailand reported the highest incidence of lumpy skin disease (LSD) outbreaks in Asia. In response to the widespread outbreaks in cattle herds, the government's livestock authorities initiated comprehensive intervention measures, encompassing control strategies and a national vaccination program. Yet, the efficacy of these interventions remained unevaluated. This research sought to assess the nationwide intervention's impact on the incidence of new LSD cases through causal impact analysis. Methods Data on weekly new LSD cases in Thailand from March to September 2021 was analyzed. The Bayesian structural time series (BSTS) analysis was employed to evaluate the causal relationship between new LSD cases in the pre-intervention phase (prior to the vaccination campaign) and the post-intervention phase (following the vaccination campaign). The assessment involved two distinct scenarios, each determined by the estimated effective intervention dates. In both scenarios, a consistent decline in new LSD cases was observed after the mass vaccination initiative, while other control measures such as the restriction of animal movement, insect control, and the enhancement of the active surveillance approach remained operational throughout the pre-intervention and the post-intervention phases. Results and discussion According to the relative effect results obtained from scenario A and B, it was observed that the incidence of LSD cases exhibited reductions of 119% (95% Credible interval [CrI]: -121%, -38%) and 78% (95% CrI: -126, -41%), respectively. The BSTS results underscored the significant influence of these interventions, with a Bayesian one-sided tail-area probability of p < 0.05. This model-based study provides insight into the application of BSTS in evaluating the impact of nationwide LSD vaccination based on the national-level data. The present study is groundbreaking in two respects: it is the first study to quantify the causal effects of a mass vaccination intervention on the LSD outbreak in Thailand, and it stands as the only endeavor of its kind in the Asian context. The insights collected from this study hold potential value for policymakers in Thailand and other countries at risk of LSD outbreaks.
Collapse
Affiliation(s)
- Veerasak Punyapornwithaya
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Orapun Arjkumpa
- The 4 Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | | | - Chalita Jainonthee
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Roderick Salvador
- College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Katechan Jampachaisri
- Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
10
|
Kumar N, Barua S, Kumar R, Khandelwal N, Kumar A, Verma A, Singh L, Godara B, Chander Y, Kumar G, Riyesh T, Sharma DK, Pathak A, Kumar S, Dedar RK, Mehta V, Gaur M, Bhardwaj B, Vyas V, Chaudhary S, Yadav V, Bhati A, Kaul R, Bashir A, Andrabi A, Yousuf RW, Koul A, Kachhawaha S, Gurav A, Gautam S, Tiwari HA, Munjal VK, Gupta MK, Kumar R, Gulati BR, Misri J, Kumar A, Mohanty AK, Nandi S, Singh KP, Pal Y, Dutt T, Tripathi BN. Evaluation of the safety, immunogenicity and efficacy of a new live-attenuated lumpy skin disease vaccine in India. Virulence 2023; 14:2190647. [PMID: 36919498 PMCID: PMC10038050 DOI: 10.1080/21505594.2023.2190647] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Lumpy skin disease (LSD) was reported for the first time in India in 2019 and since then, it has become endemic. Since a homologous (LSD-virus based) vaccine was not available in the country, goatpox virus (GPV)-based heterologous vaccine was authorized for mass immunization to induce protection against LSD in cattle. This study describes the evaluation of safety, immunogenicity and efficacy of a new live-attenuated LSD vaccine developed by using an Indian field strain, isolated in 2019 from cattle. The virus was attenuated by continuous passage (P = 50) in Vero cells. The vaccine (50th LSDV passage in Vero cells, named as Lumpi-ProVacInd) did not induce any local or systemic reaction upon its experimental inoculation in calves (n = 10). At day 30 post-vaccination (pv), the vaccinated animals were shown to develop antibody- and cell-mediated immune responses and exhibited complete protection upon virulent LSDV challenge. A minimum Neethling response (0.018% animals; 5 out of 26,940 animals) of the vaccine was observed in the field trials conducted in 26,940 animals. There was no significant reduction in the milk yield in lactating animals (n = 10108), besides there was no abortion or any other reproductive disorder in the pregnant animals (n = 2889). Sero-conversion was observed in 85.18% animals in the field by day 30 pv.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Amit Kumar
- Indian Veterinary Research Institute, Mukteswar, India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Lokender Singh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhagraj Godara
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Garvit Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Deepak Kumar Sharma
- Department of Veterinary Microbiology, College of Veterinary and Animal Science, Udaipur, India
| | - Anubha Pathak
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ramesh Kumar Dedar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Vishal Mehta
- Department of Animal Husbandry, Banswara, Rajasthan, India
| | - Mitesh Gaur
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Science, Udaipur, India
| | | | - Vithilesh Vyas
- Department of Animal Husbandry, Jodhpur, Rajasthan, India
| | | | | | - Adrish Bhati
- Livestock Research station, Nohar, Rajasthan, India
| | - Rakesh Kaul
- Animal Husbandry Department, Jammu and Kashmir, India
| | - Arif Bashir
- Animal Husbandry Department, Jammu and Kashmir, India
| | - Anjum Andrabi
- Animal Husbandry Department, Jammu and Kashmir, India
| | | | | | - Subhash Kachhawaha
- Krishi Vigyan Kendra, ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | - Amol Gurav
- Indian Veterinary Research Institute, Mukteswar, India
| | | | | | | | - Madhurendu K Gupta
- Department of Veterinary Pathology, Birsa Agricultural University, Ranchi, India
| | - Rajender Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Baldev R Gulati
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, India
| | - Ashok Kumar
- Animal Science Division, Indian Council of Agricultural Research, India
| | | | - Sukdeb Nandi
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Karam Pal Singh
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Yash Pal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Triveni Dutt
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
- Animal Science Division, Indian Council of Agricultural Research, India
| |
Collapse
|
11
|
Van Borm S, Dellicour S, Martin DP, Lemey P, Agianniotaki EI, Chondrokouki ED, Vidanovic D, Vaskovic N, Petroviċ T, Laziċ S, Koleci X, Vodica A, Djadjovski I, Krstevski K, Vandenbussche F, Haegeman A, De Clercq K, Mathijs E. Complete genome reconstruction of the global and European regional dispersal history of the lumpy skin disease virus. J Virol 2023; 97:e0139423. [PMID: 37905838 PMCID: PMC10688313 DOI: 10.1128/jvi.01394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Lumpy skin disease virus (LSDV) has a complex epidemiology involving multiple strains, recombination, and vaccination. Its DNA genome provides limited genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole genomes has also been patchy at global and regional scales. Here, we provide the first fine-grained whole genome sequence sampling of a constrained LSDV outbreak (southeastern Europe, 2015-2017), which we analyze along with global publicly available genomes. We formally evaluate the past occurrence of recombination events as well as the temporal signal that is required for calibrating molecular clock models and subsequently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our study further illustrates the importance of accounting for recombination events before reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes from endemic areas are needed to obtain a comprehensive understanding of global LSDV dispersal dynamics.
Collapse
Affiliation(s)
- Steven Van Borm
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Darren P. Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Philippe Lemey
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eirini I. Agianniotaki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Eleni D. Chondrokouki
- National Reference Laboratory for Capripoxviruses, Department of Molecular Diagnostics, FMD, Virological, Rickettsial and Exotic Diseases, Directorate of Athens Veterinary Center, Ministry of Rural Development and Food, Athens, Greece
| | - Dejan Vidanovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Nikola Vaskovic
- Department for laboratory diagnostics, Veterinary Specialized Institute, Kraljevo, Serbia
| | - Tamaš Petroviċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Sava Laziċ
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Xhelil Koleci
- Faculty of Veterinary Medicine, The Agricultural University of Tirana, Tirana, Albania
| | - Ani Vodica
- Animal Health Department, Food Safety and Veterinary Institute, Tirana, Albania
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Kiril Krstevski
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Frank Vandenbussche
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Andy Haegeman
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Kris De Clercq
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Elisabeth Mathijs
- Scientific Directorate Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
12
|
Manzoor S, Abubakar M, Ul-Rahman A, Syed Z, Ahmad K, Afzal M. Molecular characterization of lumpy skin disease virus from recent outbreaks in Pakistan. Arch Virol 2023; 168:297. [PMID: 38007412 DOI: 10.1007/s00705-023-05925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/20/2023] [Indexed: 11/27/2023]
Abstract
Lumpy skin disease (LSD) is a contagious viral transboundary disease listed as a notifiable disease by the World Organization of Animal Health (WOAH). The first case of this disease was reported in Pakistan in late 2021. Since then, numerous outbreaks have been documented in various regions and provinces across the country. The current study primarily aimed to analyze samples collected during LSD outbreaks in cattle populations in the Sindh and Punjab provinces of Pakistan. Phylogenetic analysis was conducted using partial sequences of the GPCR, p32, and RP030 genes. Collectively, the LSDV strains originating from outbreaks in Pakistan exhibited a noticeable clustering pattern with LSDV strains reported in African, Middle Eastern, and Asian countries, including Egypt, the Kingdom of Saudi Arabia, India, China, and Thailand. The precise reasons behind the origin of the virus strain and its subsequent spread to Pakistan remain unknown. This underscores the need for further investigations into outbreaks across the country. The findings of the current study can contribute to the establishment of effective disease control strategies, including the implementation of a mass vaccination campaign in disease-endemic countries such as Pakistan.
Collapse
Affiliation(s)
- Shumaila Manzoor
- National Veterinary Laboratory, Ministry of National Food Security and Research, Park Road, Islamabad, Pakistan.
| | - Muhammad Abubakar
- National Veterinary Laboratory, Ministry of National Food Security and Research, Park Road, Islamabad, Pakistan
| | - Aziz Ul-Rahman
- Department of Pathobiology & Biomedical Sciences, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan, Pakistan.
| | - Zainab Syed
- FAO Project, National Agriculture Research Centre premises, Islamabad, Pakistan
| | - Khurshid Ahmad
- National Veterinary Laboratory, Ministry of National Food Security and Research, Park Road, Islamabad, Pakistan
| | - Muhammad Afzal
- FAO Project, National Agriculture Research Centre premises, Islamabad, Pakistan
| |
Collapse
|
13
|
Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. Sign of APOBEC editing, purifying selection, frameshift, and in-frame nonsense mutations in the microevolution of lumpy skin disease virus. Front Microbiol 2023; 14:1214414. [PMID: 38033577 PMCID: PMC10682384 DOI: 10.3389/fmicb.2023.1214414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The lumpy skin disease virus (LSDV), which mostly affects ruminants and causes huge-economic loss, was endemic in Africa, caused outbreaks in the Middle East, and was recently detected in Russia, Serbia, Greece, Bulgaria, Kazakhstan, China, Taiwan, Vietnam, Thailand, and India. However, the role of evolutionary drivers such as codon selection, negative/purifying selection, APOBEC editing, and genetic variations such as frameshift and in-frame nonsense mutations in the LSDVs, which cause outbreaks in cattle in various countries, are still largely unknown. In the present study, a frameshift mutation in LSDV035, LSDV019, LSDV134, and LSDV144 genes and in-frame non-sense mutations in LSDV026, LSDV086, LSDV087, LSDV114, LSDV130, LSDV131, LSDV145, LSDV154, LSDV155, LSDV057, and LSDV081 genes were revealed among different clusters. Based on the available complete genome sequences, the prototype wild-type cluster-1.2.1 virus has been found in other than Africa only in India, the wild-type cluster-1.2.2 virus found in Africa were spread outside Africa, and the recombinant viruses spreading only in Asia and Russia. Although LSD viruses circulating in different countries form a specific cluster, the viruses detected in each specific country are distinguished by frameshift and in-frame nonsense mutations. Furthermore, the present study has brought to light that the selection pressure for codons usage bias is mostly exerted by purifying selection, and this process is possibly caused by APOBEC editing. Overall, the present study sheds light on microevolutions in LSDV, expected to help in future studies towards disturbed ORFs, epidemiological diagnostics, attenuation/vaccine reverts, and predicting the evolutionary direction of LSDVs.
Collapse
Affiliation(s)
| | - T. P. Rubeni
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - K. Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, India
- Veterinary and Animal Sciences University (TANUVAS), Chennai, India
| | | |
Collapse
|
14
|
Gleser D, Spinner K, Klement E. Effectiveness of the strain 919 bovine ephemeral fever virus vaccine in the face of a real-world outbreak: A field study in Israeli dairy herds. Vaccine 2023; 41:5126-5133. [PMID: 37451879 DOI: 10.1016/j.vaccine.2023.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Bovine ephemeral fever virus (BEFV) is a globally spread arthropod-borne RNA virus that has significant economic impacts on the cattle industry. A live attenuated commercial BEF vaccine, based on the Australian BEFV strain 919, is widely used in Israel and other countries. A previous study has suggested the high effectiveness of this vaccine (ULTRAVAC BEF VACCINE™ from Zoetis®), but anecdotal reports of high BEF morbidity among vaccinated dairy herds in Israel casted doubt on these findings. To resolve this uncertainty, a randomized controlled field vaccine effectiveness study was conducted in Israel during a BEF outbreak which occurred in 2021. Eleven dairy herds were enrolled and monitored for BEF-associated morbidity and rumination alteration patterns using electronic monitoring tags (HR Tags, SCR® Dairy, Netanya, Israel). Four of the herds were naturally infected with BEFV during the outbreak, resulting in a total of 120 vaccinated and 311 unvaccinated subjects that were included in the effectiveness study. A mixed-effect Cox proportional hazard regression model was used to calculate the overall hazard ratio between vaccinated and unvaccinated cattle. This analysis demonstrated an average vaccine effectiveness of 60 % (95 % CI = 38 %-77 %) for preventing clinical disease. In addition, a non-statistically significant trend (p = 0.1) towards protection from mortality was observed, with no observation of mortality among the vaccinated groups compared to 2.61 % mortality (7/311) among the unvaccinated subjects. One hundred and thirty vaccinated and unvaccinated calves from affected and non-affected herds and with different status of morbidity were sampled and analysed by serum-neutralization test. The highest titers of BEFV-neutralizing antibodies were found in subjects that were both vaccinated and clinically affected, indicating a booster effect after vaccination. The results of the study provide evidence for the moderate effectiveness of the ULTRAVAC BEF VACCINE™ for the prevention of BEF.
Collapse
Affiliation(s)
- Dan Gleser
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Karen Spinner
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Klement
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Breman FC, Haegeman A, Krešić N, Philips W, De Regge N. Lumpy Skin Disease Virus Genome Sequence Analysis: Putative Spatio-Temporal Epidemiology, Single Gene versus Whole Genome Phylogeny and Genomic Evolution. Viruses 2023; 15:1471. [PMID: 37515159 PMCID: PMC10385495 DOI: 10.3390/v15071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Lumpy Skin Disease virus is a poxvirus from the genus Capripox that mainly affects bovines and it causes severe economic losses to livestock holders. The Lumpy Skin Disease virus is currently dispersing in Asia, but little is known about detailed phylogenetic relations between the strains and genome evolution. We reconstructed a whole-genome-sequence (WGS)-based phylogeny and compared it with single-gene-based phylogenies. To study population and spatiotemporal patterns in greater detail, we reconstructed networks. We determined that there are strains from multiple clades within the previously defined cluster 1.2 that correspond with recorded outbreaks across Eurasia and South Asia (Indian subcontinent), while strains from cluster 2.5 spread in Southeast Asia. We concluded that using only a single gene (cheap, fast and easy to routinely use) for sequencing lacks phylogenetic and spatiotemporal resolution and we recommend to create at least one WGS whenever possible. We also found that there are three gene regions, highly variable, across the genome of LSDV. These gene regions are located in the 5' and 3' flanking regions of the LSDV genome and they encode genes that are involved in immune evasion strategies of the virus. These may provide a starting point to further investigate the evolution of the virus.
Collapse
Affiliation(s)
- Floris C Breman
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Andy Haegeman
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Nina Krešić
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Wannes Philips
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| | - Nick De Regge
- Sciensano, Unit Exotic and Vector Borne Diseases (ExoVec), Groesselenberg 99, B-2800 Ukkel, Belgium
| |
Collapse
|
16
|
Putty K, Rao PL, Ganji VK, Dutta D, Mondal S, Hegde NR, Srivastava A, Subbiah M. First complete genome sequence of lumpy skin disease virus directly from a clinical sample in South India. Virus Genes 2023; 59:317-322. [PMID: 36689139 DOI: 10.1007/s11262-023-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Lumpy skin disease (LSD), a notifiable disease listed by the World Organization for Animal Health and a fast fast-moving transboundary viral disease infecting cattle and buffaloes, was reported in India in 2019 and has since rapidly spread across the country. This study reports the first complete genome sequence and analysis of a pathogenic LSD virus (LSDV) from India (LSDV/208/PVNRTVU/2020) obtained by direct sequencing of a suspected clinical sample using Illumina and Nanopore sequencing technologies. The complete genome sequence of LSDV/208/PVNRTVU/2020 is 150445 bp long, codes for 156 putative genes and carries identical 2254 bp inverted terminal repeats at either ends. The unique features reported in the LSDV isolates from the recent outbreaks in Asia, namely, the insertions of 12 nucleotides in the viral G-protein coupled receptor (GPCR) and 27 nucleotides leading to duplication of 9 aminoacids in the extracellular enveloped virus-specific (EEV) genes were also conserved in LSDV/208/PVNRTVU/2020. Phylogenetic analysis of the complete genome sequence of LSDV/208/PVNRTVU/2020 revealed its close relation with Kenyan strains and clustered away from vaccine strains. Further analysis showed evidence of strong purifying selection without any recombination events. The data presented in this study could be useful for designing effective strategies such as developing rapid diagnostics and vaccines to control LSD.
Collapse
Affiliation(s)
- Kalyani Putty
- Department of Veterinary Biotechnology, PVNR Telangana Veterinary University, Hyderabad, Telangana, 500030, India
| | - Pachineella Lakshmana Rao
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, Telangana, 500032, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, 121001, India
| | - Vishweshwar Kumar Ganji
- Department of Veterinary Biotechnology, PVNR Telangana Veterinary University, Hyderabad, Telangana, 500030, India
| | - Devasmita Dutta
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Subhajit Mondal
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Nagendra R Hegde
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Anand Srivastava
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Madhuri Subbiah
- National Institute of Animal Biotechnology, Gachibowli, Hyderabad, Telangana, 500032, India.
| |
Collapse
|
17
|
Haegeman A, De Leeuw I, Philips W, De Regge N. Development and Validation of a New DIVA Real-Time PCR Allowing to Differentiate Wild-Type Lumpy Skin Disease Virus Strains, Including the Asian Recombinant Strains, from Neethling-Based Vaccine Strains. Viruses 2023; 15:v15040870. [PMID: 37112850 PMCID: PMC10146157 DOI: 10.3390/v15040870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The current epidemic in Asia, driven by LSDV recombinants, poses difficulties to existing DIVA PCR tests, as these do not differentiate between homologous vaccine strains and the recombinant strains. We, therefore, developed and validated a new duplex real-time PCR capable of differentiating Neethling-based vaccine strains from classical and recombinant wild-type strains that are currently circulating in Asia. The DIVA potential of this new assay, seen in the in silico evaluation, was confirmed on samples from LSDV infected and vaccinated animals and on isolates of LSDV recombinants (n = 12), vaccine (n = 5), and classic wild-type strains (n = 6). No cross-reactivity or a-specificity with other capripox viruses was observed under field conditions in non-capripox viral stocks and negative animals. The high analytical sensitivity is translated into a high diagnostic specificity as more than 70 samples were all correctly detected with Ct values very similar to those of a published first-line pan capripox real-time PCR. Finally, the low inter- and intra-run variability observed shows that the new DIVA PCR is very robust which facilitates its implementation in the lab. All validation parameters that are mentioned above indicate the potential of the newly developed test as a promising diagnostic tool which could help to control the current LSDV epidemic in Asia.
Collapse
Affiliation(s)
- Andy Haegeman
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
- Correspondence:
| | - Ilse De Leeuw
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Wannes Philips
- Sciensano, EURL for Diseases Caused by Capripox Viruses, Groeselenberg 99, B-1180 Brussels, Belgium
| | - Nick De Regge
- Sciensano, Infectious Diseases in Animals, Exotic and Vector-Borne Diseases, Groeselenberg 99, B-1180 Brussels, Belgium
| |
Collapse
|
18
|
Lumpy Skin Disease—An Emerging Cattle Disease in Europe and Asia. Vaccines (Basel) 2023; 11:vaccines11030578. [PMID: 36992162 DOI: 10.3390/vaccines11030578] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Lumpy skin disease virus (LSDV) is a member of the Capripoxvirus genus, mainly infecting cattle and buffalo, which until relatively recently was only endemic in parts of Africa and then spread to the Middle East and lately Europe and Asia. Lumpy skin disease (LSD) is a notifiable disease with a serious impact on the beef industry as it causes mortality of up to 10% and has impacts on milk and meat production, as well as fertility. The close serological relationship between LSDV, goat poxvirus (GTPV) and sheep poxvirus (SPPV) has led to live attenuated GTPV and SPPV vaccines being used to protect against LSD in some countries. There is evidence that the SPPV vaccine does not protect from LSD as well as the GTPV and LSDV vaccines. One of the LSD vaccines used in Eastern Europe was found to be a combination of different Capripoxviruses, and a series of recombination events in the manufacturing process resulted in cattle being vaccinated with a range of recombinant LSDVs resulting in virulent LSDV which spread throughout Asia. It is likely that LSD will become endemic throughout Asia as it will be very challenging to control the spread of the virus without widespread vaccination.
Collapse
|
19
|
Duration of Immunity Induced after Vaccination of Cattle with a Live Attenuated or Inactivated Lumpy Skin Disease Virus Vaccine. Microorganisms 2023; 11:microorganisms11010210. [PMID: 36677502 PMCID: PMC9864976 DOI: 10.3390/microorganisms11010210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Vaccines have proven themselves as an efficient way to control and eradicate lumpy skin disease (LSD). In addition to the safety and efficacy aspects, it is important to know the duration for which the vaccines confer protective immunity, as this impacts the design of an efficient control and eradication program. We evaluated the duration of immunity induced by a live attenuated vaccine (LSDV LAV) and an inactivated vaccine (LSDV Inac), both based on LSDV. Cattle were vaccinated and challenged after 6, 12 and 18 months for LSDV LAV or after 6 and 12 months for the LSDV Inac. The LSDV LAV elicited a strong immune response and protection for up to 18 months, as no clinical signs or viremia could be observed after a viral LSDV challenge in any of the vaccinated animals. A good immune response and protection were similarly seen for the LSDV Inac after 6 months. However, two animals developed clinical signs and viremia when challenged after 12 months. In conclusion, our data support the annual booster vaccination when using the live attenuated vaccine, as recommended by the manufacturer, which could potentially even be prolonged. In contrast, a bi-annual vaccination seems necessary when using the inactivated vaccine.
Collapse
|
20
|
Genetic analysis of genome sequence characteristics of two lumpy skin disease viruses isolated from China. BMC Vet Res 2022; 18:426. [PMID: 36476204 PMCID: PMC9727994 DOI: 10.1186/s12917-022-03525-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lumpy skin disease (LSD) is an acute or subacute infectious disease caused by lumpy skin disease virus (LSDV) of genus Capripoxvirus. The outbreaks of LSD were confirmed in the Yili area of the Xinjiang autonomous region in August 2019 and the Fujian province in June 2020. We detected LSDV in our daily monitoring work, then isolated, identified and sequenced the virus, and analyzed the whole genome characteristics of the isolated strain. RESULTS Whole genome sequencing revealed that the strains isolated were all LSDV and were named as LSDV XJ201901 and LSDV FJ2019. The results showed that the identity based on whole genome sequences between LSDV XJ201901 and LSDV FJ2019 was 100% and the identity based on whole genome sequences between the two isolated strains and the global LSDV strains was 97.28%-99.99%, with the strain LSDV72/PrachuapKhiriKhan/Thailand/2021 (99.99%) having the highest sequence identity. Analysis of potential recombination events revealed that a total of 18 potential recombination events were identified in strains LSDV XJ201901 and LSDV FJ2019. The two strains are a recombination of Neethling vaccine LW 1959 (GeneBank: AF409138.1) with KSGP 0240 (GeneBank: KX683219.1). It was observed that Neethling vaccine LW 1959 (11/18) and KSGP 0240 (10/18) are involved in most of the potential recombination events. CONCLUSIONS The virus isolate in this study was LSDV and was identified as a vaccine recombinant strain. The most likely potential parent strains of the two strains in this study are Neethling vaccine LW 1959 and KSGP 0240. The strains in this study are very similar to those isolated in East and Southeast Asia since 2019.
Collapse
|
21
|
Bazid AH, Wasfy M, Fawzy M, Nayel M, Abdelmegeid M, Thabet RY, Yong HS, El-Sayed MM, Magouz A, Badr Y. Emergency vaccination of cattle against lumpy skin disease: Evaluation of safety, efficacy, and potency of MEVAC ® LSD vaccine containing Neethling strain. Vet Res Commun 2022; 47:767-777. [PMID: 36460903 PMCID: PMC9734455 DOI: 10.1007/s11259-022-10037-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Lumpy skin disease (LSD) is an emerging disease of cattle causing significantly high economic losses. Control of LSD depends on the use of homologous attenuated LSD virus strains isolated originally from South Africa (the Neethling strain). The virus belongs to the genus Capripoxvirus, which includes sheep pox virus and goat pox virus. The present study was conducted to evaluate the safety and efficacy of a new live attenuated LSD vaccine produced by Middle East for Vaccines (MEVAC®) based on the Neethling strain. Tests were performed both in Egypt and Vietnam. Safety was evaluated by inoculation of five cattle with 10 times the recommended dose and observation of the animals for 14 days. Immunogenicity was tested at different periods post-vaccination (PV) in animals receiving the recommended doses of the vaccine using ELISA and virus neutralization test. Five cows were used to determine the protection index (PI) and non-vaccinated control cattle were included. Three calves were challenged by intradermal inoculation of the wild virus (5 × 105 TCID50) 28 days PV. Field or mass vaccination experiments were conducted in Vietnam during national campaigns in the summer of 2021 with 4301 vaccinated animals closely monitored after vaccination. In the field, around 2% (80/4301) of the animals showed hyper-reactivity, and 0.6% (24/4301) showed small skin swellings that disappeared within few hours PV. Abortion was recorded in three animals (0.3% 3/867). Challenged animals were resistant to clinical disease and PI value was 3.5 log10. Meanwhile, antibody levels determined by the ELISA were inconsistent among animals and laboratories during the study period. Overall, the findings point to a new safe and effective LSD vaccine.
Collapse
Affiliation(s)
- Abdel-Hamid Bazid
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, 32958 Menoufiya, Egypt
| | - Momtaz Wasfy
- Middle East for Vaccines (MEVAC®), 44813 Sharquia, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Mohamed Nayel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Menoufiya, Egypt
| | - Mohamed Abdelmegeid
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh, University, Kafr El Sheikh, Egypt
| | | | - Hui Sian Yong
- Senior Regional Business Manager, Asia Kemin Biologics®, 12 Senoko Drive, 758200 Singapore, Singapore
| | | | - Asmaa Magouz
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Yassien Badr
- Department of Animal Medicine (Branch of Infectious Diseases), Faculty of Veterinary Medicine, Damanhour University, 22511 El‑Beheira, Egypt
| |
Collapse
|
22
|
Liang Z, Yao K, Wang S, Yin J, Ma X, Yin X, Wang X, Sun Y. Understanding the research advances on lumpy skin disease: A comprehensive literature review of experimental evidence. Front Microbiol 2022; 13:1065894. [PMID: 36519172 PMCID: PMC9742232 DOI: 10.3389/fmicb.2022.1065894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
Lumpy skin disease is caused by lumpy skin disease virus (LSDV), which can induce cattle with high fever and extensive nodules on the mucosa or the scarfskin, seriously influencing the cattle industry development and international import and export trade. Since 2013, the disease has spread rapidly and widely throughout the Russia and Asia. In the past few decades, progress has been made in the study of LSDV. It is mainly transmitted by blood-sucking insects, and various modes of transmission with distinct seasonality. Figuring out how the virus spreads will help eradicate LSDV at its source. In the event of an outbreak, selecting the most effective vaccine to block and eliminate the threat posed by LSDV in a timely manner is the main choice for farmers and authorities. At present, a variety of vaccines for LSDV have been developed. The available vaccine products vary in quality, protection rate, safety and side effects. Early detection of LSDV can help reduce the cost of disease. In addition, because LSDV has a huge genome, it is currently also used as a vaccine carrier, forming a new complex with other viral genes through homologous recombination. The vaccine prepared based on this can have a certain preventive effect on many kinds of diseases. Clinical detection of disease including nucleic acid and antigen level. Each method varies in convenience, accuracy, cost, time and complexity of equipment. This article reviews our current understanding of the mode of transmission of LSDV and advances in vaccine types and detection methods, providing a background for further research into various aspects of LSDV in the future.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanbin Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
23
|
Morgenstern M, Sok J, Klement E. Perception of low social pressure and lack of capacity reduces vaccination compliance - The case of lumpy skin disease. Transbound Emerg Dis 2022; 69:e2779-e2788. [PMID: 35694725 PMCID: PMC9796477 DOI: 10.1111/tbed.14629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/28/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Successful prevention of epidemics depends on implementation of control measures, including vaccine compliance and maintenance of high vaccination coverage for long periods. However, to the best of our knowledge, a study of the temporal dynamics of compliance in voluntary vaccination campaigns and of the factors which influence them was never published. In this study, we investigated the factors influencing the dynamics of vaccination compliance against lumpy skin disease (LSD) after the occurrence of LSD epidemics in Israel in 2012-2013 and 2019. From 2016 to 2019, we followed voluntary LSD annual vaccination among a cohort of 566 farmers and used questionnaires based on the theory of planned behaviour to investigate the incentives influencing vaccine compliance among 90 farmers. The results showed a reduction in vaccination against LSD from 61% in 2016 to 27% in 2019 and a very strong association between prior vaccination and vaccination compliance. The actual vaccination by farmers who stated a positive intention to vaccinate was 4.5 times higher than farmers who did not (p-value = .007). However, half of the highly intended farmers eventually did not vaccinate their herd. These farmers were significantly more concerned by manpower and vaccine price compared to their vaccinating counterparts, pointing to vaccination effort perceptions as a major factor influencing compliance. In addition, we found that farmers who answered the questionnaires before the LSD epidemic of 2019 perceived significantly less pressure to vaccinate imposed by veterinary organizations (private and governmental) than farmers answering them during or after the epidemic. We conclude that the veterinarian-associated social pressure is a major compliance-enhancing factor, influenced by the occurrence of an epidemic. Our findings suggest that the deterioration of vaccination compliance after an epidemic can be mitigated by maintenance of pressure to vaccinate by veterinarians. Manpower support and vaccine discounts may be advocated to promote vaccine compliance.
Collapse
Affiliation(s)
- Michal Morgenstern
- Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - Jaap Sok
- Business EconomicsWageningen University and Research (WUR)Wageningenthe Netherlands
| | - Eyal Klement
- Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| |
Collapse
|
24
|
Dubie T, Hussen Abegaz F, Dereje B, Negash W, Hamid M. Seroprevalence and Associated Risk Factors of Lumpy Skin Disease of Cattle in Selected Districts of Afar Region, Ethiopia. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2022; 13:191-199. [PMID: 35996612 PMCID: PMC9392487 DOI: 10.2147/vmrr.s375273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Background Lumpy skin disease (LSD) is one of Ethiopia's most economically significant transboundary livestock illnesses. The disease has a significant economic impact on pastoral household livestock owners, who rely significantly on their cattle as a source of income. Methods A cross-sectional study was undertaken in selected districts of Afar region from November 2018 to May 2019 primarily intended to estimate the prevalence of lumpy skin disease serologically in local Afar cattle as well as identify potential associated factors. A multistage sampling method was employed to select study districts, peasant association, herd size and study units. A total of 384 sera were processed using serum neutralization test (SNT) method to detect antibodies against lumpy skin disease virus. Relevant data were refined and further analyzed using stata version 14. Results In the study districts, the overall animal level seroprevalence was found to be 7.6% (N = 29/384; 95% confidence interval: 4.90-10.20) and the overall herd level prevalence was found to be 20.8% (n = 15/72; 95% confidence interval: 11.42-30.18). Only district was shown to be statistically significant (P = 0.004) in terms of LSD occurrence among the relevant factors studied. Cattle in Chifra district were 20.18 times more likely to contract LSD infection than cattle in Dubti district, when Asayita district was used as the reference group. Conclusion The present study finding confirmed the presence of the disease in the study districts of afar region and coordinated intervention set to be in place.
Collapse
Affiliation(s)
- Teshager Dubie
- Department of Veterinary Medicine, College of Veterinary Medicine, Samara University, Semera, Afar, Ethiopia
| | - Fentaw Hussen Abegaz
- Department of Veterinary Medicine, College of Veterinary Medicine, Samara University, Semera, Afar, Ethiopia
| | - Beyene Dereje
- Department of Veterinary Medicine, College of Veterinary Medicine, Samara University, Semera, Afar, Ethiopia
| | - Wossene Negash
- Department of Veterinary Medicine, College of Veterinary Medicine, Samara University, Semera, Afar, Ethiopia
| | - Muhammed Hamid
- Department of Veterinary Medicine, College of Veterinary Medicine, Samara University, Semera, Afar, Ethiopia
| |
Collapse
|
25
|
Sudhakar SB, Mishra N, Kalaiyarasu S, Jhade SK, Singh VP. Genetic and phylogenetic analysis of lumpy skin disease viruses (LSDV) isolated from the first and subsequent field outbreaks in India during 2019 reveals close proximity with unique signatures of historical Kenyan NI-2490/Kenya/KSGP-like field strains. Transbound Emerg Dis 2022; 69:e451-e462. [PMID: 34529889 DOI: 10.1111/tbed.14322] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/16/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Lumpy skin disease (LSD), an economically important viral disease of cattle caused by lumpy skin disease virus (LSDV) has recently spread into South and East Asia. LSD emerged in India in August 2019, first in Odisha State and spread to other areas, but there is scanty data on source and molecular epidemiology of LSDV involved in the initial outbreaks. Here we report genetic relationships and molecular features of LSDV, causing outbreaks in cattle spanning seven districts in Odisha and West Bengal States during August-December, 2019. Twelve LSDV isolates obtained using lamb testis cells were sequenced and analysed in four complete genes, GPCR, RPO30, P32 and EEV. The phylogenetic analysis revealed that all the Indian LSDV isolates from 2019 outbreaks are very closely related (99.7%-100%) to the historical Kenyan NI-2490/Kenya/KSGP-like field strains. Importantly, our results demonstrated that LSDV strains involved in 2019 outbreaks in India and Bangladesh are very similar in GPCR (99.7%), RPO30 (100%) and partial EEV (100%) sequences, indicating a common exotic source of LSDV introduction. Additionally, a 12-nucleotide insertion was found in GPCR gene of LSDV strains from 2019 outbreaks in India and Bangladesh. The findings of this study highlight the importance of continuous monitoring and molecular characterization of LSDV strains. These data should be useful while developing diagnostic and control strategies against LSD in India.
Collapse
Affiliation(s)
- Shashi Bhushan Sudhakar
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Niranjan Mishra
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Semmannan Kalaiyarasu
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Sandeep Kumar Jhade
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| | - Vijendra Pal Singh
- ICAR-National Institute of High Security Animal Diseases, Anand Nagar, Bhopal, Madhya Pradesh, India
| |
Collapse
|
26
|
Wang Y, Zhao L, Yang J, Shi M, Nie F, Liu S, Wang Z, Huang D, Wu H, Li D, Lin H, Li Y. Analysis of vaccine-like lumpy skin disease virus from flies near the western border of China. Transbound Emerg Dis 2022; 69:1813-1823. [PMID: 34033246 DOI: 10.1111/tbed.14159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/16/2021] [Indexed: 12/24/2022]
Abstract
Lumpy skin disease (LSD) is a devastating viral disease that occurs in cattle. In China, it was first detected in the Xin-Jiang autonomous region, near the border with Kazakhstan, in August 2019. As there were no new occurrences of LSD in either country following the first detection, the initial introduction of the virus remains unknown. Arthropod vectors were considered as potential vectors. Consequently, to identify the arthropod vectors involved in transmitting LSD virus (LSDV), an insect surveillance campaign was launched at four different sites scattered along the border, and samples from 22 flying insect species were collected and subjected to PCR assays. Following the Agianniotaki LSDV vaccine and Sprygin's general LSDV assays, two kinds of non-biting flies, namely, Musca domestica L and Muscina stabulans, were positive for LSDV. However, all the other insects tested negative. Viral DNA was only detected in wash fluid, implying body surface contamination of the virus. The negative test results suggest that non-biting flies are the dominant insects involved in the observed local epidemic. Three genomic regions encoding RPO30, GPCR, and LW126 were successfully sequenced and subjected to phylogenetic analysis. The sequences shared high homology with LSDV/Russia/Saratov/2017, a recombinant vaccine-like strain formerly identified in Russia, and clustered with LSDV vaccine strains in phylogenetic trees of RPO30 and LW126. However, the GPCR gene was seen to be solely clustered with LSDV field strains, implying differences in host affinity between these closely related vaccine-like strains. Despite this, there is no direct evidence to support cross-border transmission of the vaccine-like LSDV. To our knowledge, this is the first report of vaccine-like LSDV DNA detection in non-biting flies in China.
Collapse
Affiliation(s)
- Yu Wang
- Department of Animal Center, Chongqing Key Laboratory of Pediatrics, and Ministry of Education Key Lab of Child Development and Disorders, and National Clinical Research Center for Child Health and Disorders, and China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Li Zhao
- Department of Animal Center, Chongqing Key Laboratory of Pediatrics, and Ministry of Education Key Lab of Child Development and Disorders, and National Clinical Research Center for Child Health and Disorders, and China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Meimei Shi
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Fuping Nie
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Shengfen Liu
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Zhengbao Wang
- Animal Quarantine Laboratory, Technical Center of Yi-Ning Custom, Yining, China
| | - Daochao Huang
- Department of Animal Center, Chongqing Key Laboratory of Pediatrics, and Ministry of Education Key Lab of Child Development and Disorders, and National Clinical Research Center for Child Health and Disorders, and China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dandan Li
- Animal Quarantine Laboratory, Technical Center of Haikou Custom, Haikou, China
| | - Hua Lin
- Animal Quarantine Laboratory, Technical Center of Chengdu Custom, Chengdu, China
| | - Yingguo Li
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| |
Collapse
|
27
|
Flannery J, Shih B, Haga IR, Ashby M, Corla A, King S, Freimanis G, Polo N, Tse ACN, Brackman CJ, Chan J, Pun P, Ferguson AD, Law A, Lycett S, Batten C, Beard PM. A novel strain of lumpy skin disease virus causes clinical disease in cattle in Hong Kong. Transbound Emerg Dis 2022; 69:e336-e343. [PMID: 34448540 DOI: 10.1111/tbed.14304] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Lumpy skin disease virus (LSDV) is an emerging poxviral pathogen of cattle that is currently spreading throughout Asia. The disease situation is of high importance for farmers and policy makers in Asia. In October 2020, feral cattle in Hong Kong developed multi-focal cutaneous nodules consistent with lumpy skin disease (LSD). Gross and histological pathology further supported the diagnosis and samples were sent to the OIE Reference Laboratory at The Pirbright Institute for confirmatory testing. LSDV was detected using quantitative polymerase chain reaction (qPCR) and additional molecular analyses. This is the first report of LSD in Hong Kong. Whole genome sequencing (WGS) of the strain LSDV/Hong Kong/2020 and phylogenetic analysis were carried out in order to identify connections to previous outbreaks of LSD, and better understand the drivers of LSDV emergence. Analysis of the 90 core poxvirus genes revealed LSDV/Hong Kong/2020 was a novel strain most closely related to the live-attenuated Neethling vaccine strains of LSDV and more distantly related to wildtype LSDV isolates from Africa, the Middle East and Europe. Analysis of the more variable regions located towards the termini of the poxvirus genome revealed genes in LSDV/Hong Kong/2020 with different patterns of grouping when compared to previously published wildtype and vaccine strains of LSDV. This work reveals that the LSD outbreak in Hong Kong in 2020 was caused by a different strain of LSDV than the LSD epidemic in the Middle East and Europe in 2015-2018. The use of WGS is highly recommended when investigating LSDV disease outbreaks.
Collapse
Affiliation(s)
| | - Barbara Shih
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | | | | | - Simon King
- The Pirbright Institute, Woking, Surrey, UK
| | | | - Noemi Polo
- The Pirbright Institute, Woking, Surrey, UK
| | - Anne Ching-Nga Tse
- Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Christopher J Brackman
- Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Jason Chan
- Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Patrick Pun
- Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Andrew D Ferguson
- Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China.,CityU Veterinary Diagnostic Laboratory, City University of Hong Kong, Hong Kong, China
| | - Andy Law
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Philippa M Beard
- The Pirbright Institute, Woking, Surrey, UK.,The Roslin Institute, University of Edinburgh, Midlothian, UK
| |
Collapse
|
28
|
Vandenbussche F, Mathijs E, Philips W, Saduakassova M, De Leeuw I, Sultanov A, Haegeman A, De Clercq K. Recombinant LSDV Strains in Asia: Vaccine Spillover or Natural Emergence? Viruses 2022; 14:v14071429. [PMID: 35891412 PMCID: PMC9318037 DOI: 10.3390/v14071429] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
From 2017 to 2019, several vaccine-like recombinant strains of lumpy skin disease virus (LSDV) were discovered in Kazakhstan and neighbouring regions of Russia and China. Shortly before their emergence, the authorities in Kazakhstan launched a mass vaccination campaign with the Neethling-based Lumpivax vaccine. Since none of the other countries in the affected region had used a homologous LSDV vaccine, it was soon suspected that the Lumpivax vaccine was the cause of these unusual LSDV strains. In this study, we performed a genome-wide molecular analysis to investigate the composition of two Lumpivax vaccine batches and to establish a possible link between the vaccine and the recent outbreaks. Although labelled as a pure Neethling-based LSDV vaccine, the Lumpivax vaccine appears to be a complex mixture of multiple CaPVs. Using an iterative enrichment/assembly strategy, we obtained the complete genomes of a Neethling-like LSDV vaccine strain, a KSGP-like LSDV vaccine strain and a Sudan-like GTPV strain. The same analysis also revealed the presence of several recombinant LSDV strains that were (almost) identical to the recently described vaccine-like LSDV strains. Based on their InDel/SNP signatures, the vaccine-like recombinant strains can be divided into four groups. Each group has a distinct breakpoint pattern resulting from multiple recombination events, with the number of genetic exchanges ranging from 126 to 146. The enormous divergence of the recombinant strains suggests that they arose during seed production. The recent emergence of vaccine-like LSDV strains in large parts of Asia is, therefore, most likely the result of a spillover from animals vaccinated with the Lumpivax vaccine.
Collapse
Affiliation(s)
- Frank Vandenbussche
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Elisabeth Mathijs
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Wannes Philips
- EURL for Diseases Caused by Capripoxviruses, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (F.V.); (E.M.); (W.P.)
| | - Meruyert Saduakassova
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Ilse De Leeuw
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Akhmetzhan Sultanov
- Kazakh Scientific Research Veterinary Institute (KazSRVI/KazNIVI), Raiymbek ave. 223, Almaty 050016, Kazakhstan; (M.S.); (A.S.)
| | - Andy Haegeman
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
| | - Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (A.H.)
- Correspondence:
| |
Collapse
|
29
|
Konstantinidis K, Bampali M, de Courcy Williams M, Dovrolis N, Gatzidou E, Papazilakis P, Nearchou A, Veletza S, Karakasiliotis I. Dissecting the Species-Specific Virome in Culicoides of Thrace. Front Microbiol 2022; 13:802577. [PMID: 35330767 PMCID: PMC8940260 DOI: 10.3389/fmicb.2022.802577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Biting midges (Culicoides) are vectors of arboviruses of both veterinary and medical importance. The surge of emerging and reemerging vector-borne diseases and their expansion in geographical areas affected by climate change has increased the importance of understanding their capacity to contribute to novel and emerging infectious diseases. The study of Culicoides virome is the first step in the assessment of this potential. In this study, we analyzed the RNA virome of 10 Culicoides species within the geographical area of Thrace in the southeastern part of Europe, a crossing point between Asia and Europe and important path of various arboviruses, utilizing the Ion Torrent next-generation sequencing (NGS) platform and a custom bioinformatics pipeline based on TRINITY assembler and alignment algorithms. The analysis of the RNA virome of 10 Culicoides species resulted in the identification of the genomic signatures of 14 novel RNA viruses, including three fully assembled viruses and four segmented viruses with at least one segment fully assembled, most of which were significantly divergent from previously identified related viruses from the Solemoviridae, Phasmaviridae, Phenuiviridae, Reoviridae, Chuviridae, Partitiviridae, Orthomyxoviridae, Rhabdoviridae, and Flaviviridae families. Each Culicoides species carried a species-specific set of viruses, some of which are related to viruses from other insect vectors in the same area, contributing to the idea of a virus-carrier web within the ecosystem. The identified viruses not only expand our current knowledge on the virome of Culicoides but also set the basis of the genetic diversity of such viruses in the area of southeastern Europe. Furthermore, our study highlights that such metagenomic approaches should include as many species as possible of the local virus-carrier web that interact and share the virome of a geographical area.
Collapse
Affiliation(s)
| | - Maria Bampali
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nikolas Dovrolis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Gatzidou
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Stavroula Veletza
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
30
|
Arjkumpa O, Suwannaboon M, Boonrod M, Punyawan I, Liangchaisiri S, Laobannue P, Lapchareonwong C, Sansri C, Kuatako N, Panyasomboonying P, Uttarak P, Buamithup N, Sansamur C, Punyapornwithaya V. The First Lumpy Skin Disease Outbreak in Thailand (2021): Epidemiological Features and Spatio-Temporal Analysis. Front Vet Sci 2022; 8:799065. [PMID: 35071388 PMCID: PMC8782428 DOI: 10.3389/fvets.2021.799065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
The first outbreak of lumpy skin disease (LSD) in Thailand was reported in March 2021, but information on the epidemiological characteristics of the outbreak is very limited. The objectives of this study were to describe the epidemiological features of LSD outbreaks and to identify the outbreak spatio-temporal clusters. The LSD-affected farms located in Roi Et province were investigated by veterinary authorities under the outbreak response program. A designed questionnaire was used to obtain the data. Space-time permutation (STP) and Poisson space-time (Poisson ST) models were used to detect areas of high LSD incidence. The authorities identified 293 LSD outbreak farms located in four different districts during the period of March and the first week of April 2021. The overall morbidity and mortality of the affected cattle were 40.5 and 1.2%, respectively. The STP defined seven statistically significant clusters whereas only one cluster was identified by the Poisson ST model. Most of the clusters (n = 6) from the STP had a radius <7 km, and the number of LSD cases in those clusters varied in range of 3-51. On the other hand, the most likely cluster from the Poisson ST included LSD cases (n = 361) from 198 cattle farms with a radius of 17.07 km. This is the first report to provide an epidemiological overview and determine spatio-temporal clusters of the first LSD outbreak in cattle farms in Thailand. The findings from this study may serve as a baseline information for future epidemiological studies and support authorities to establish effective control programs for LSD in Thailand.
Collapse
Affiliation(s)
- Orapun Arjkumpa
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Minta Suwannaboon
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Manoch Boonrod
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Issara Punyawan
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Supawadee Liangchaisiri
- Animal Health Section, The 4th Regional Livestock Office, Department of Livestock Development, Khon Kaen, Thailand
| | - Patchariya Laobannue
- Animal Health Section, Roi Et Provincial Livestock Office, Department of Livestock Development, Bangkok, Thailand
| | - Chayanun Lapchareonwong
- Animal Health Section, Roi Et Provincial Livestock Office, Department of Livestock Development, Bangkok, Thailand
| | - Chaiwat Sansri
- Animal Health Section, Roi Et Provincial Livestock Office, Department of Livestock Development, Bangkok, Thailand
| | - Noppasorn Kuatako
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
| | - Pawares Panyasomboonying
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
| | - Ponkrit Uttarak
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
| | - Noppawan Buamithup
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
| | - Chalutwan Sansamur
- Akkhararatchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Veerasak Punyapornwithaya
- Veterinary Public Health and Food Safety Centre for Asia Pacific (VPHCAP), Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
31
|
Douglass N, Omar R, Munyanduki H, Suzuki A, de Moor W, Mutowembwa P, Pretorius A, Nefefe T, van Schalkwyk A, Kara P, Heath L, Williamson AL. The Development of Dual Vaccines against Lumpy Skin Disease (LSD) and Bovine Ephemeral Fever (BEF). Vaccines (Basel) 2021; 9:vaccines9111215. [PMID: 34835146 PMCID: PMC8621795 DOI: 10.3390/vaccines9111215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Dual vaccines (n = 6) against both lumpy skin disease (LSD) and bovine ephemeral fever (BEF) were constructed, based on the BEFV glycoprotein (G) gene, with or without the BEFV matrix (M) protein gene, inserted into one of two different LSDV backbones, nLSDV∆SOD-UCT or nLSDVSODis-UCT. The inserted gene cassettes were confirmed by PCR; and BEFV protein was shown to be expressed by immunofluorescence. The candidate dual vaccines were initially tested in a rabbit model; neutralization assays using the South African BEFV vaccine (B-Phemeral) strain showed an African consensus G protein gene (Gb) to give superior neutralization compared to the Australian (Ga) gene. The two LSDV backbones expressing both Gb and M BEFV genes were tested in cattle and shown to elicit neutralizing responses to LSDV as well as BEFV after two inoculations 4 weeks apart. The vaccines were safe in cattle and all vaccinated animals were protected against virulent LSDV challenge, unlike a group of control naïve animals, which developed clinical LSD. Both neutralizing and T cell responses to LSDV were stimulated upon challenge. After two inoculations, all vaccinated animals produced BEFV neutralizing antibodies ≥ 1/20, which is considered protective for BEF.
Collapse
Affiliation(s)
- Nicola Douglass
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: ; Tel.: +27-832-310-553
| | - Ruzaiq Omar
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Henry Munyanduki
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Akiko Suzuki
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Warren de Moor
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Paidamwoyo Mutowembwa
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Alri Pretorius
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Tshifhiwa Nefefe
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Antoinette van Schalkwyk
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Pravesh Kara
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Livio Heath
- Onderstepoort Veterinary Institute, ARC, Pretoria 0110, South Africa; (P.M.); (A.P.); (T.N.); (A.v.S.); (P.K.); (L.H.)
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (R.O.); (H.M.); (A.S.); (W.d.M.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
32
|
The Importance of Quality Control of LSDV Live Attenuated Vaccines for Its Safe Application in the Field. Vaccines (Basel) 2021; 9:vaccines9091019. [PMID: 34579256 PMCID: PMC8472990 DOI: 10.3390/vaccines9091019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/25/2023] Open
Abstract
Vaccination is an effective approach to prevent, control and eradicate diseases, including lumpy skin disease (LSD). One of the measures to address farmer hesitation to vaccinate is guaranteeing the quality of vaccine batches. The purpose of this study was to demonstrate the importance of a quality procedure via the evaluation of the LSD vaccine, Lumpivax (Kevevapi). The initial PCR screening revealed the presence of wild type LSD virus (LSDV) and goatpox virus (GTPV), in addition to vaccine LSDV. New phylogenetic PCRs were developed to characterize in detail the genomic content and a vaccination/challenge trial was conducted to evaluate the impact on efficacy and diagnostics. The characterization confirmed the presence of LSDV wild-, vaccine- and GTPV-like sequences in the vaccine vial and also in samples taken from the vaccinated animals. The analysis was also suggestive for the presence of GTPV-LSDV (vaccine/wild) recombinants. In addition, the LSDV status of some of the animal samples was greatly influenced by the differentiating real-PCR used and could result in misinterpretation. Although the vaccine was clinically protective, the viral genomic content of the vaccine (being it multiple Capripox viruses and/or recombinants) and the impact on the diagnostics casts serious doubts of its use in the field.
Collapse
|
33
|
Bamouh Z, Hamdi J, Fellahi S, Khayi S, Jazouli M, Tadlaoui KO, Fihri OF, Tuppurainen E, Elharrak M. Investigation of Post Vaccination Reactions of Two Live Attenuated Vaccines against Lumpy Skin Disease of Cattle. Vaccines (Basel) 2021; 9:vaccines9060621. [PMID: 34201339 PMCID: PMC8226854 DOI: 10.3390/vaccines9060621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/03/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes an economically important disease in cattle. The only method for successful control is early diagnosis and efficient vaccination. Adverse effects of vaccination such as local inflammation at the injection site and localized or generalized skin lesions in some vaccinated animals have been reported with live vaccines. The aim of this work was to compare the safety of two lumpy skin disease (LSD) vaccine strains, Kenyan (Kn) Sheep and Goat Pox (KSGP O-240) and LSDV Neethling (Nt) strain, and to determine the etiology of the post-vaccination (pv) reactions observed in cattle. Experimental cattle were vaccinated under controlled conditions with Nt- and KSGP O-240-based vaccines, using two different doses, and animals were observed for 3 months for any adverse reactions. Three out of 45 cattle vaccinated with LSDV Nt strain (6.7%) and three out of 24 cattle vaccinated with Kn strain (12.5%) presented LSD-like skin nodules, providing evidence that the post-vaccination lesions may not be strain-dependent. Lesions appeared 1–3 weeks after vaccination and were localized in the neck or covering the whole body. Animals recovered after 3 weeks. There is a positive correlation between the vaccine dose and the appearance of skin lesions in vaccinated animals; at the 105 dose, 12% of the animals reacted versus 3.7% at the 104 dose. Both strains induced solid immunity when protection was measured by neutralizing antibody seroconversion.
Collapse
Affiliation(s)
- Zahra Bamouh
- MCI Santé Animale, Mohammedia 28810, Morocco; (J.H.); (M.J.); (K.O.T.); (M.E.)
- Institut Agronomique et Vétérinaire Hassan II, B.P 6202, Rabat 10112, Morocco; (S.F.); (O.F.F.)
- Correspondence: ; Tel.: +212-6621-989-42
| | - Jihane Hamdi
- MCI Santé Animale, Mohammedia 28810, Morocco; (J.H.); (M.J.); (K.O.T.); (M.E.)
- Institut Agronomique et Vétérinaire Hassan II, B.P 6202, Rabat 10112, Morocco; (S.F.); (O.F.F.)
| | - Siham Fellahi
- Institut Agronomique et Vétérinaire Hassan II, B.P 6202, Rabat 10112, Morocco; (S.F.); (O.F.F.)
| | - Slimane Khayi
- CRRA-Rabat, National Institute for Agricultural Research (INRA), Rabat 10101, Morocco;
| | - Mohammed Jazouli
- MCI Santé Animale, Mohammedia 28810, Morocco; (J.H.); (M.J.); (K.O.T.); (M.E.)
| | | | - Ouafaa Fassi Fihri
- Institut Agronomique et Vétérinaire Hassan II, B.P 6202, Rabat 10112, Morocco; (S.F.); (O.F.F.)
| | - Eeva Tuppurainen
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut Federal Research Institute for Animal Health, 10 17493 Greifswald-Insel Riems, Germany;
| | - Mehdi Elharrak
- MCI Santé Animale, Mohammedia 28810, Morocco; (J.H.); (M.J.); (K.O.T.); (M.E.)
| |
Collapse
|
34
|
Hasib FMY, Islam MS, Das T, Rana EA, Uddin MH, Bayzid M, Nath C, Hossain MA, Masuduzzaman M, Das S, Alim MA. Lumpy skin disease outbreak in cattle population of Chattogram, Bangladesh. Vet Med Sci 2021; 7:1616-1624. [PMID: 33993641 PMCID: PMC8464269 DOI: 10.1002/vms3.524] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/08/2022] Open
Abstract
Background Lumpy skin disease (LSD) is an important viral disease causing significant economic losses in commercial livestock production. In mid‐2019, an outbreak of LSD has been reported in cattle population from different parts of Bangladesh including Chattogram division. A cross‐sectional surveillance study was undertaken from August 2019 to December 2019 to investigate the prevalence and associated risk factors of LSD in cattle in Chattogram district. Methods A total of 3,327 cattle from 19 commercial farms were examined for the LSD specific skin lesions and associated risk factors. A total of 120 skin biopsies were collected from the suspected animal for the confirmation of the disease using molecular detection and histopathological examination. Partial genome sequencing and phylogenetic analyses were performed on selected viral isolates. Results The overall clinical prevalence of LSD in the study population was 10% (95% confidence interval [CI]: 9.4%–11%) where the highest farm level outbreak frequency was 63.33% (95% CI: 45.51%–78.13%) and the lowest 4.22% (95% CI: 3.39%–5.25%). Crossbred and female cattle showed a significantly higher prevalence of the disease compared to their counterparts. Introduction of new animals in farms was found to be one of the most significant risk factors in the transmission of the disease. All suspected skin biopsies were positive for LSD virus (LSDV) infection with granulomatous and pyogranulomatous dermatitis was revealed on histopathology. Phylogenetic analysis based on the inverted terminal repeat region of the LSDV gene suggested that the locally circulating strain was closely related to the strains isolated from the Middle East and North African countries. Conclusions The data generated in this study would be beneficial to the field veterinarians and animal health decision makers in the country as well as it will aid in taking appropriate measures to prevent further relapse or outbreak of this disease in future.
Collapse
Affiliation(s)
- Farazi Muhammad Yasir Hasib
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mohammad Sirazul Islam
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Tridip Das
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Eaftekhar Ahmed Rana
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mohammad Helal Uddin
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences, Chattogram, Bangladesh
| | - Mohammad Bayzid
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Chandan Nath
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mohammad Alamgir Hossain
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mohammad Masuduzzaman
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Mohammad Abdul Alim
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
35
|
Haegeman A, De Leeuw I, Mostin L, Campe WV, Aerts L, Venter E, Tuppurainen E, Saegerman C, De Clercq K. Comparative Evaluation of Lumpy Skin Disease Virus-Based Live Attenuated Vaccines. Vaccines (Basel) 2021; 9:vaccines9050473. [PMID: 34066658 PMCID: PMC8151199 DOI: 10.3390/vaccines9050473] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Vaccines form the cornerstone of any control, eradication and preventative strategy and this is no different for lumpy skin disease. However, the usefulness of a vaccine is determined by a multiplicity of factors which include stability, efficiency, safety and ease of use, to name a few. Although the vaccination campaign in the Balkans against lumpy skin disease virus (LSDV) was successful and has been implemented with success in the past in other countries, data of vaccine failure have also been reported. It was therefore the purpose of this study to compare five homologous live attenuated LSDV vaccines (LSDV LAV) in a standardized setting. All five LSDV LAVs studied were able to protect against a challenge with virulent LSDV. Aside from small differences in serological responses, important differences were seen in side effects such as a local reaction and a Neethling response upon vaccination between the analyzed vaccines. These observations can have important implications in the applicability in the field for some of these LSDV LAVs.
Collapse
Affiliation(s)
- Andy Haegeman
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (K.D.C.)
- Correspondence:
| | - Ilse De Leeuw
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (K.D.C.)
| | - Laurent Mostin
- Experimental Center Machelen, Sciensano, Kerklaan 68, B-1830 Machelen, Belgium; (L.M.); (W.V.C.)
| | - Willem Van Campe
- Experimental Center Machelen, Sciensano, Kerklaan 68, B-1830 Machelen, Belgium; (L.M.); (W.V.C.)
| | - Laetitia Aerts
- EURL for Diseases Caused by Capripox Viruses, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium;
| | - Estelle Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
- College of Public Health, Medical and Veterinary Sciences, Discipline: Veterinary Science, James Cook University, Townsville, QLD 4811, Australia
| | - Eeva Tuppurainen
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut Federal Research Institute for Animal Health, 17489 Greifswald-Insel Riems, Germany;
| | - Claude Saegerman
- Fundamental and Applied Research for Animals & Health (FARAH) Center, Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium;
| | - Kris De Clercq
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Groeselenberg 99, B-1180 Brussels, Belgium; (I.D.L.); (K.D.C.)
| |
Collapse
|
36
|
Wolff J, Moritz T, Schlottau K, Hoffmann D, Beer M, Hoffmann B. Development of a Safe and Highly Efficient Inactivated Vaccine Candidate against Lumpy Skin Disease Virus. Vaccines (Basel) 2020; 9:vaccines9010004. [PMID: 33374808 PMCID: PMC7823700 DOI: 10.3390/vaccines9010004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Capripox virus (CaPV)-induced diseases (lumpy skin disease, sheeppox, goatpox) are described as the most serious pox diseases of livestock animals, and therefore are listed as notifiable diseases under guidelines of the World Organisation for Animal Health (OIE). Until now, only live-attenuated vaccines are commercially available for the control of CaPV. Due to numerous potential problems after vaccination (e.g., loss of the disease-free status of the respective country, the possibility of vaccine virus shedding and transmission as well as the risk of recombination with field strains during natural outbreaks), the use of these vaccines must be considered carefully and is not recommended in CaPV-free countries. Therefore, innocuous and efficacious inactivated vaccines against CaPV would provide a great tool for control of these diseases. Unfortunately, most inactivated Capripox vaccines were reported as insufficient and protection seemed to be only short-lived. Nevertheless, a few studies dealing with inactivated vaccines against CaPV are published, giving evidence for good clinical protection against CaPV-infections. In our studies, a low molecular weight copolymer-adjuvanted vaccine formulation was able to induce sterile immunity in the respective animals after severe challenge infection. Our findings strongly support the possibility of useful inactivated vaccines against CaPV-infections, and indicate a marked impact of the chosen adjuvant for the level of protection.
Collapse
|
37
|
Gubbins S, Stegeman A, Klement E, Pite L, Broglia A, Cortiñas Abrahantes J. Inferences about the transmission of lumpy skin disease virus between herds from outbreaks in Albania in 2016. Prev Vet Med 2020; 181:104602. [PMID: 30581093 PMCID: PMC7456782 DOI: 10.1016/j.prevetmed.2018.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022]
Abstract
Lumpy skin disease has recently emerged as a major threat to cattle populations outside of Africa, where it is endemic. In 2015 the first ever European outbreaks occurred in Greece, which were followed by spread across much of the Balkans in 2016. Here we use a simple mathematical model for the transmission of lumpy skin disease virus (LSDV) between herds to explore factors influencing its spread by fitting it to data on outbreaks in Albania in 2016. We show that most transmission occurs over short distances (<5 km), but with an appreciable probability of transmission at longer distances. We also show that there is evidence for seasonal variation in the force of infection associated with temperature, possibly through its influence on the relative abundance of the stable fly, Stomoxys calcitrans. These two results together are consistent with LSDV being transmitted by the bites of blood-feeding insects, though further work is required to incriminate specific species as vectors. Finally, we show that vaccination has a significant impact on spread and estimate the vaccine effectiveness to be 76%.
Collapse
Affiliation(s)
- Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
| | - Arjan Stegeman
- Utrecht University, Department of Farm Animal Health, Utrecht, the Netherlands
| | - Eyal Klement
- Koret School of Veterinary Medicine, The Hebrew University, Jerusalem, Israel
| | - Ledi Pite
- Ministry of Agriculture and Rural Development, Sector of Epidemiology and Identification and Registration, Tirana, Albania
| | | | | |
Collapse
|
38
|
Morgenstern M, Klement E. The Effect of Vaccination with Live Attenuated Neethling Lumpy Skin Disease Vaccine on Milk Production and Mortality-An Analysis of 77 Dairy Farms in Israel. Vaccines (Basel) 2020; 8:E324. [PMID: 32575395 PMCID: PMC7350216 DOI: 10.3390/vaccines8020324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Lumpy skin disease (LSD) is an economically important, arthropod borne viral disease of cattle. Vaccination by the live attenuated homologous Neethling vaccine was shown as the most efficient measure for controlling LSD. However, adverse effects due to vaccination were never quantified in a controlled field study. The aim of this study was to quantify the milk production loss and mortality due to vaccination against LSD. Daily milk production, as well as culling and mortality, were retrieved for 21,844 cows accommodated in 77 dairy cattle farms in Israel. Adjusted milk production was calculated for each day during the 30 days post vaccination. This was compared to the preceding month by fitting mixed effects linear models. Culling and mortality rates were compared between the 60 days periods prior and post vaccination, by survival analysis. The results of the models indicate no significant change in milk production during the 30 days post vaccination period. No difference was observed between the pre- and post-vaccination periods in routine culling, as well as in immediate culling and in-farm mortality. We conclude that adverse effects due to Neethling vaccination are negligible.
Collapse
Affiliation(s)
| | - Eyal Klement
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel;
| |
Collapse
|
39
|
Hamdi J, Bamouh Z, Jazouli M, Boumart Z, Tadlaoui KO, Fihri OF, El Harrak M. Experimental evaluation of the cross-protection between Sheeppox and bovine Lumpy skin vaccines. Sci Rep 2020; 10:8888. [PMID: 32483247 PMCID: PMC7264126 DOI: 10.1038/s41598-020-65856-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The Capripoxvirus genus includes three agents: Sheeppox virus, Goatpox virus and Lumpy skin disease virus. Related diseases are of economic importance and present a major constraint to animals and animal products trade in addition to mortality and morbidity. Attenuated vaccines against these diseases are available, but afforded cross-protection is controversial in each specie. In this study, groups of sheep, goats and cattle were vaccinated with Romania SPPV vaccine and challenged with corresponding virulent strains. Sheep and cattle were also vaccinated with Neethling LSDV vaccine and challenged with both virulent SPPV and LSDV strains. Animals were monitored by clinical observation, rectal temperature as well as serological response. The study showed that sheep and goats vaccinated with Romania SPPV vaccine were fully protected against challenge with virulent SPPV and GTPV strains, respectively. However, small ruminants vaccinated with LSDV Neethling vaccine showed only partial protection against challenge with virulent SPPV strain. Cattle showed also only partial protection when vaccinated with Romania SPPV and were fully protected with Neethling LSDV vaccine. This study showed that SPPV and GTPV vaccines are closely related with cross-protection, while LSDV protects only cattle against the corresponding disease, which suggests that vaccination against LSDV should be carried out with homologous strain.
Collapse
Affiliation(s)
- Jihane Hamdi
- Research and Development Virology, Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia, 28810, Morocco.
| | - Zahra Bamouh
- Research and Development Virology, Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia, 28810, Morocco
| | - Mohammed Jazouli
- Research and Development Virology, Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia, 28810, Morocco
| | - Zineb Boumart
- Research and Development Virology, Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia, 28810, Morocco
| | - Khalid Omari Tadlaoui
- Research and Development Virology, Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia, 28810, Morocco
| | | | - Mehdi El Harrak
- Research and Development Virology, Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia, 28810, Morocco
| |
Collapse
|
40
|
Zhugunissov K, Bulatov Y, Orynbayev M, Kutumbetov L, Abduraimov Y, Shayakhmetov Y, Taranov D, Amanova Z, Mambetaliyev M, Absatova Z, Azanbekova M, Khairullin B, Zakarya K, Tuppurainen E. Goatpox virus (G20-LKV) vaccine strain elicits a protective response in cattle against lumpy skin disease at challenge with lumpy skin disease virulent field strain in a comparative study. Vet Microbiol 2020; 245:108695. [PMID: 32456811 DOI: 10.1016/j.vetmic.2020.108695] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
In this comparative study, we examine the safety of the sheeppox (SPP) and goatpox (GTP) vaccines and the protective response of these vaccines in cattle against a virulent lumpy skin disease (LSD) field strain. The vaccine safety was tested in rabbits, mice and cattle using ten times recommended dose. In the safety trial, none of the vaccinated animals showed any deviation from physiological norms or fever, inappetence or local/ generalized skin reactions. In the challenge trial, both SPP and GTP vaccine groups developed virus-neutralizing antibodies with an average titre of 2.1 log2 at 21 days post-vaccination. No significant difference in seroconversion was found in cattle vaccinated with SPP and GTP vaccines (P ≥ 0.05). When challenged with a virulent LSD field strain, one animal vaccinated with the SPP Niskhi vaccine strain showed typical LSD skin lesions at the injection sites of different dilutions of the challenge virus. All animals vaccinated with GTP G20-LKV vaccine strain showed full protection. After infection with the challenge virus, unvaccinated fully susceptible control cattle showed characteristic clinical signs of LSD. The average protective index for SPP and GTP vaccine groups was 5.3 ± 1.42 and 5.9 ± 0.00, respectively.
Collapse
Affiliation(s)
- K Zhugunissov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan.
| | - Ye Bulatov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - M Orynbayev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - L Kutumbetov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Ye Abduraimov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Ye Shayakhmetov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - D Taranov
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Zh Amanova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - M Mambetaliyev
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Zh Absatova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - M Azanbekova
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - B Khairullin
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - K Zakarya
- Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - E Tuppurainen
- Institut für Internationale Tiergesundheit / One Health, Friedrich-Loeffler Institut, Südufer 10, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
41
|
Ochwo S, VanderWaal K, Ndekezi C, Nkamwesiga J, Munsey A, Witto SG, Nantima N, Mayanja F, Okurut ARA, Atuhaire DK, Mwiine FN. Molecular detection and phylogenetic analysis of lumpy skin disease virus from outbreaks in Uganda 2017-2018. BMC Vet Res 2020; 16:66. [PMID: 32085763 PMCID: PMC7035724 DOI: 10.1186/s12917-020-02288-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/14/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Lumpy skin disease (LSD) is an infectious viral disease of cattle caused by a Capripoxvirus. LSD has substantial economic implications, with infection resulting in permanent damage to the skin of affected animals which lowers their commercial value. In Uganda, LSD is endemic and cases of the disease are frequently reported to government authorities. This study was undertaken to molecularly characterize lumpy skin disease virus (LSDV) strains that have been circulating in Uganda between 2017 and 2018. Secondly, the study aimed to determine the phylogenetic relatedness of Ugandan LSDV sequences with published sequences, available in GenBank. RESULTS A total of 7 blood samples and 16 skin nodule biopsies were screened for LSDV using PCR to confirm presence of LSDV nucleic acids. PCR positive samples were then characterised by amplifying the GPCR gene. These amplified genes were sequenced and phylogenetic trees were constructed. Out of the 23 samples analysed, 15 were positive for LSDV by PCR (65.2%). The LSDV GPCR sequences analysed contained the unique signatures of LSDV (A11, T12, T34, S99, and P199) which further confirmed their identity. Sequence comparison with vaccine strains revealed a 12 bp deletion unique to Ugandan outbreak strains. Phylogenetic analysis indicated that the LSDV sequences from this study clustered closely with sequences from neighboring East African countries and with LSDV strains from recent outbreaks in Europe. It was noted that the sequence diversity amongst LSDV strains from Africa was higher than diversity from Eurasia. CONCLUSION The LSDV strains circulating in Uganda were closely related with sequences from neighboring African countries and from Eurasia. Comparison of the GPCR gene showed that outbreak strains differed from vaccine strains. This information is necessary to understand LSDV molecular epidemiology and to contribute knowledge towards the development of control strategies by the Government of Uganda.
Collapse
Affiliation(s)
- Sylvester Ochwo
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062 Kampala, Uganda
| | - Kimberly VanderWaal
- College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue St. Paul, MN, Minneapolis, MN 55108 USA
| | - Christian Ndekezi
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062 Kampala, Uganda
| | - Joseph Nkamwesiga
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062 Kampala, Uganda
| | - Anna Munsey
- College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue St. Paul, MN, Minneapolis, MN 55108 USA
| | - Sarah Gift Witto
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062 Kampala, Uganda
| | - Noelina Nantima
- Ministry of Agriculture Animal Industry & Fisheries, Berkley Ln, Entebbe, Uganda
| | - Franklin Mayanja
- Ministry of Agriculture Animal Industry & Fisheries, Berkley Ln, Entebbe, Uganda
| | | | - David Kalenzi Atuhaire
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062 Kampala, Uganda
| | - Frank Norbert Mwiine
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062 Kampala, Uganda
| |
Collapse
|
42
|
Limon G, Gamawa AA, Ahmed AI, Lyons NA, Beard PM. Epidemiological Characteristics and Economic Impact of Lumpy Skin Disease, Sheeppox and Goatpox Among Subsistence Farmers in Northeast Nigeria. Front Vet Sci 2020; 7:8. [PMID: 32083098 PMCID: PMC7001645 DOI: 10.3389/fvets.2020.00008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
Lumpy skin disease (LSD), sheeppox (SP), and goatpox (GP) are contagious viral infections, affecting cattle (LSD), sheep and goats (SP and GP) with highly characteristic clinical signs affecting multiple body systems. All three diseases are widely reported to reduce meat, milk, wool and cashmere production although few studies have formally evaluated their economic impact on affected farms. This study aimed to estimate the economic impact and epidemiological parameters of LSD, SP, and GP among backyard and transhumance farmers in northeast Nigeria. A retrospective study was conducted on herds and flocks affected between August 2017 and January 2018 in Bauchi, Nigeria. Herds and flocks were diagnosed based on clinical signs and information was collected once the outbreak concluded using a standardized questionnaire. Data were collected from 99 farmers (87 backyard and 12 transhumance). The median incidence risk and fatality rate were 33 and 0% in cattle, 53 and 34 % in sheep; 50 and 33% in goats, respectively, with young stock having higher incidence risk and fatality rates than adults. Almost all farmers (94%) treated affected animals with antibiotics, spending a median of US$1.96 (min US$0.19–max US$27.5) per herd per day. Slaughtering or selling affected animals at low prices were common coping strategies. Farmers sold live cattle for 47% less than would have been sold if the animal was healthy, while sheep and goats were sold for 58 and 57% less, respectively. Milk production dropped 65% when cows were clinically affected and 35% after they recovered. Cattle lost a median of 10% of their live weight and sheep and goats lost 15%. Overall economic losses at farm level range from US$9.6 to US$6,340 depending on species affected and production system. Most of the farmers (72%) had not replaced all affected animals at the time of the study. Livestock markets were the most common place to sell affected animals and buy replacements, suggesting these are likely hubs for spreading infections. This study confirms the immediate and long-lasting impact of these diseases on subsistence farmers' livelihoods in North-East Nigeria and suggests potential mechanisms for targeted control.
Collapse
Affiliation(s)
| | | | - Ahmed I Ahmed
- Bauchi State College of Agriculture, Bauchi, Nigeria
| | - Nicholas A Lyons
- The Pirbright Institute, Woking, United Kingdom.,European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organisation of the United Nations, Rome, Italy
| | - Philippa M Beard
- The Pirbright Institute, Woking, United Kingdom.,Infection and Immunity, The Roslin Institute, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Experimental evidence of mechanical lumpy skin disease virus transmission by Stomoxys calcitrans biting flies and Haematopota spp. horseflies. Sci Rep 2019; 9:20076. [PMID: 31882819 PMCID: PMC6934832 DOI: 10.1038/s41598-019-56605-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/11/2019] [Indexed: 11/15/2022] Open
Abstract
Lumpy skin disease (LSD) is a devastating disease of cattle characterized by fever, nodules on the skin, lymphadenopathy and milk drop. Several haematophagous arthropod species like dipterans and ticks are suspected to play a role in the transmission of LSDV. Few conclusive data are however available on the importance of biting flies and horseflies as potential vectors in LSDV transmission. Therefore an in vivo transmission study was carried out to investigate possible LSDV transmission by Stomoxys calcitrans biting flies and Haematopota spp. horseflies from experimentally infected viraemic donor bulls to acceptor bulls. LSDV transmission by Stomoxys calcitrans was evidenced in 3 independent experiments, LSDV transmission by Haematopota spp. was shown in one experiment. Evidence of LSD was supported by induction of nodules and virus detection in the blood of acceptor animals. Our results are supportive for a mechanical transmission of the virus by these vectors.
Collapse
|
44
|
Ochwo S, VanderWaal K, Munsey A, Nkamwesiga J, Ndekezi C, Auma E, Mwiine FN. Seroprevalence and risk factors for lumpy skin disease virus seropositivity in cattle in Uganda. BMC Vet Res 2019; 15:236. [PMID: 31286926 PMCID: PMC6615106 DOI: 10.1186/s12917-019-1983-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lumpy skin disease (LSD) is a transboundary cattle disease caused by a Capripoxvirus of the family Poxviridae. In Uganda, documented information on the epidemiology of the disease is rare and there is no nationwide control plan, yet LSD is endemic. This study set out to investigate the seroprevalence of lumpy skin disease and determine the risk factors for LSD seropositivity, by carrying out a cross-sectional study in 21 districts of Uganda. RESULTS A total of 2,263 sera samples were collected from 65 cattle herds and an indirect ELISA was used to screen for lumpy skin disease virus (LSDV) antibodies. We used univariable and multivariable mixed effect logistic regression models to identify risk factors for LSD seropositivity. The overall animal and herd-level seroprevalences were 8.7% (95% CI: 7.0-9.3) and 72.3% (95% CI: 70.0-80.3), respectively. Animal-level seroprevalence in Central region (OR = 2.13, p = 0.05, 95% CI: 1.10-4.64) was significantly different from the Northern region (Reference) and Western region (OR = 0.84, p = 0.66, 95% CI: 0.39-1.81). Management type, sex, age, mean annual precipitation > 1000 mm, and drinking from communal water sources were statistically significant risk factors for occurrence of anti-LSDV antibodies in cattle. Breed, region, herd size, contact with buffalo and other wildlife and introduction of new cattle did not have a statistically significant association with being positive for LSDV. CONCLUSION We report a high herd-level LSDV seroprevalence in Uganda with a moderate animal-level seroprevalence. Cattle with the highest risk of LSD infection in Uganda are those in fenced farms, females > 25 months old, in an area with a mean annual rainfall > 1000 mm, and drinking from a communal water source.
Collapse
Affiliation(s)
- Sylvester Ochwo
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062, Kampala, Uganda
| | - Kimberly VanderWaal
- College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN MN 55108 USA
| | - Anna Munsey
- College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN MN 55108 USA
| | - Joseph Nkamwesiga
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062, Kampala, Uganda
| | - Christian Ndekezi
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062, Kampala, Uganda
| | - Elda Auma
- College of Natural Sciences, Makerere University, P.O.BOX 7062, Kampala, Uganda
| | - Frank N. Mwiine
- College of Veterinary Medicine, Animal resources and Biosecurity, Makerere University, P.O.BOX 7062, Kampala, Uganda
| |
Collapse
|
45
|
Kononov A, Byadovskaya O, Kononova S, Yashin R, Zinyakov N, Mischenko V, Perevozchikova N, Sprygin A. Detection of vaccine-like strains of lumpy skin disease virus in outbreaks in Russia in 2017. Arch Virol 2019; 164:1575-1585. [PMID: 30949814 DOI: 10.1007/s00705-019-04229-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/05/2019] [Indexed: 11/24/2022]
Abstract
Lumpy skin disease (LSD) has affected many regions of Russia since its first occurrence in 2015. The most devastating year for Russia was 2016, when the virus resurged following a modified stamping-out campaign, causing 313 outbreaks in 16 regions. To avoid unwanted adverse reactions following the use of live attenuated vaccines against LSD virus (LSDV), sheeppox-based vaccines were administered during vaccination campaigns. As a result, LSD was successfully contained in all Russian regions in 2017. In the same year, however, LSD emerged anew in a few regions of the Privolzhsky Federal District of Russia along the northern border of Kazakhstan, which then necessitated vaccinating cattle with a live attenuated LSDV vaccine. Although live attenuated LSDV vaccines are prohibited in Russia, several vaccine-like LSDV strains were identified in the 2017 outbreaks, including commercial farms and backyard animals exhibiting clinical signs consistent with those of field LSDV strains. Sequence alignments of three vaccine-like LSDV strains showed clear similarity to the corresponding RPO30 and GPCR gene sequences of commercial attenuated viruses. How vaccine-like strains spread into Russian cattle remains to be clarified.
Collapse
Affiliation(s)
| | | | | | - Roman Yashin
- Federal Center for Animal Health, Vladimir, Russia
| | | | | | | | | |
Collapse
|
46
|
Calistri P, DeClercq K, Gubbins S, Klement E, Stegeman A, Cortiñas Abrahantes J, Antoniou SE, Broglia A, Gogin A. Lumpy skin disease: III. Data collection and analysis. EFSA J 2019; 17:e05638. [PMID: 32626261 PMCID: PMC7009259 DOI: 10.2903/j.efsa.2019.5638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In 2018, no lumpy skin disease (LSD) outbreaks were reported in the Balkan region, after the decline reported in 2017 (385) compared to 2016 (7,483). This confirms the effectiveness of the vaccination campaign based on the LSD homologous vaccine strain which continued throughout 2018 with over 2.5 million animals vaccinated, keeping the mean vaccination coverage above 70%. In 2018, LSD outbreaks were reported in Russia, Turkey and Georgia. In Russia, the LSD epidemics expanded northward and eastward, while in Turkey, the most affected region was in the east. LSD is spreading in Turkey since 2013, despite large vaccination campaigns with heterologous vaccine performed since 2014. This might support the hypothesis that the use of heterologous vaccines results in insufficient protection, and therefore, the use of homologous LSD vaccine in Turkey should be considered to prevent further spread. As the LSD epidemic in Turkey is a risk for reintroduction into the EU, it is recommended to continue the vaccination campaigns in 2019 in the high‐risk areas of Balkan region. Spread rates of LSD within a village were estimated from outbreak data for Albania, which can be used to inform the level of vaccination required to control an outbreak in a village. In terms of vaccine safety, the reports from the field suggest that, compared to the large number of animals vaccinated in the Balkan region since 2015, a very limited number of side effects have been recorded so far, although from published literature, local or even systemic side effects in some animals may occur after vaccination. However, due to inadequate study design in the reviewed studies, there is no consensus on the magnitude of such effects and on their real consequences on production.
Collapse
|