1
|
Yin F, Li P, Liu C, Zheng Y, Yan G, Wang M, Wang Y, Chen X, Yan X, Han J, Sun H, Guan S, Wang X. Spatially resolved multi-omics reveals the renal cortex-metabolic reprogramming of Shenhua Tablet for intervention on IgA nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156742. [PMID: 40233505 DOI: 10.1016/j.phymed.2025.156742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Shenhua tablet (SHT) is a clinically used Chinese patent medicine, which has garnered attention for its effectiveness in treating IgA nephropathy (IgAN). Nevertheless, early researches lacked anatomical and metabolic data, hindering a comprehensive understanding of the therapeutic mechanisms of SHT in spatial contexts. PURPOSE We aimed to explore the molecular mechanism of SHT intervention in IgAN by utilizing spatial multi-omics strategies. STUDY DESIGN We injected Thy-1 into tail vein to induce IgAN rat model and administer SHT. Classical pharmacological parameters were used to evaluate the efficacy of SHT. The distribution of active components of SHT and their regulation for metabolites and upstream genes in the cortex were examined to determine the intervention mechanism of SHT. METHODS After establishing the animal models and administering SHT treatment, Kidney injury were assessed using biochemical indexes and histopathology. Classical and spatial metabolomics were employed to detect metabolites in serum and kidney. Spatial transcriptomics was used to detect mRNA levels in renal sections adjacent to the spatial metabolomics. In addition, mass-spectrometry-imaging and cell experiments were used to explore and verify the active components of SHT. RESULTS SHT reduced inflammation and mesangial cell proliferation, and reversed kidney damage. Mechanically, in renal tubules, SHT regulated glutathione metabolism by reversing the expression of Gclc and Gpx3. It was further found that Pck1 and G6pc1 were increased to inhibit glycolysis. In glomeruli, SHT downregulated Oat and Odc1 and reduced spermidine and l-proline levels to inhibit mesangial cell proliferation. Finally, formononetin, calycosin and curzerenone were identified as the main active components of SHT and showed their distribution in the cortex. CONCLUSIONS SHT ameliorated renal injury by regulating glutathione metabolism, glycolysis, and l-proline metabolism, providing a more comprehensive insight into the molecular mechanisms of SHT intervention in IgAN in a spatial context, and offering new perspectives for the treatment of IgAN.
Collapse
Affiliation(s)
- Fengting Yin
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ping Li
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| | - Chang Liu
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Zheng
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Mengmeng Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yuhang Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiangmei Chen
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China.
| | - Xiaotong Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Jinwei Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Shihan Guan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
2
|
Kong L, Hu X, Xia D, Wu J, Zhao Y, Guo H, Zhang S, Qin C, Wang Y, Li L, Su Z, Zhu C, Xu S. Janus PEGylated CuS-engineered Lactobacillus casei combats biofilm infections via metabolic interference and innate immunomodulation. Biomaterials 2025; 317:123060. [PMID: 39736219 DOI: 10.1016/j.biomaterials.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025]
Abstract
Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (H2O2) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L. casei) denoted as LC@CuPen, is proposed to interfere with bacterial metabolism and arouse macrophage antibiofilm function. Once LC@CuPen reached the BME, NIR irradiation-activated mild heat damages L. casei and biofilm structure. Meanwhile, the BME-responsive LC@CuPen can catalyze local H2O2 to produce toxic •OH, whereas in normal tissues, the effect of •OH production is greatly reduced due to the higher pH and lower H2O2 concentration. The released bacteriocin from damaged L. casei can destroy the bacterial membrane to enhance the penetration of •OH into damaged biofilm. Excessive •OH interferes with normal bacterial metabolism, resulting in reduced resistance of bacteria to heat stress. Finally, under the action of mild heat treatment, the bacterial biofilm lysed and died. Furthermore, the pathogen-associated molecular patterns (PAMPs) in LC@CuPen can induce M1 polarization of macrophages through NF-κB pathway and promote the release of inflammatory factors. Inflammatory factors enhance the migration of macrophages to the site of infection and phagocytose bacteria, thereby inhibiting the recurrence of infection. Generally, this engineered L. casei program presents a novel perspective for the treatment of bacterial implant-associated infections and serves as a valuable reference for future clinical applications of engineered probiotics.
Collapse
Affiliation(s)
- Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Demeng Xia
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Science, Department of Emergency, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yangpeng Zhao
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Song Zhang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Chun Qin
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Yanjun Wang
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Lei Li
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuogui Xu
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
3
|
Liu C, Cheng C, Cheng K, Gao AS, Li Q, Atala A, Zhang Y. Precision exosome engineering for enhanced wound healing and scar revision. J Transl Med 2025; 23:578. [PMID: 40410904 PMCID: PMC12103044 DOI: 10.1186/s12967-025-06578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
The dysfunction of wound-healing processes can result in chronic non-healing wounds and pathological scar formation. Current treatment options often fall short, necessitating innovative approaches. Exosomes, extracellular vesicles secreted by various cells, have emerged as promising therapeutic agents serving as an intercellular communication system. By engineering exosomes, their cargo and surface properties can be tailored to enhance therapeutic efficacy and specificity. Engineered exosomes (eExo) are emerging as a favorable tool for treating non-healing wounds and pathological scars. In this review, we delve into the underlying mechanisms of non-healing wounds and pathological scars, outline the current state of engineering strategies, and explore the clinical potential of eExo based on preclinical and clinical studies. In addition, we address the current challenges and future research directions, including standardization, safety and efficacy assessments, and potential immune responses. In conclusion, eExo hold great promise as a novel therapeutic approach for non-healing wounds and non-healing wounds and pathological scars. Further research and clinical trials are warranted to translate preclinical findings into effective clinical treatments.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108-2718, USA
| | - Allen S Gao
- Department of Urologic Surgery, School of Medicine, University of California, Davis Sacramento, CA, 95817, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27151, USA
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27151, USA.
| |
Collapse
|
4
|
Qian S, Dai S, Guo C, Wang W, Pang J, Shen Y, Xu M, Hu J, Cui W, Sun X, Xu J. Apoptotic Bodies Restore NAD and Mitochondrial Homeostasis in Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e15691. [PMID: 40387282 DOI: 10.1002/advs.202415691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 05/04/2025] [Indexed: 05/20/2025]
Abstract
Fibrotic skin diseases are characterized by excessive fibroblast proliferation and pathological extracellular matrix deposition. As a pivotal coenzyme in cellular energetics, NAD homeostasis perturbation is implicated in fibrosis. Multiple studies have demonstrated the therapeutic potential of mesenchymal stem cells (MSCs) against cutaneous fibrosis, while the specific mechanism remains elusive. Herein, this work finds that although almost all MSCs undergo in situ apoptosis within 24 h post-subcutaneous administration, MSC-derived apoptotic bodies (ABs) mediated potent anti-fibrotic effects. Mechanistically, ABs can restore NAD and mitochondrial homeostasis through NAMPT transfer, FOXO1 deacetylation enhancement, and PINK1/PARKIN-dependent mitophagy activation. To achieve penetration into the hard matrix of fibrotic skin, permeable apoptotic bodies (pABs) are constructed via metabolic glycoengineering and copper-free click chemistry techniques. In both keloid xenograft and scleroderma murine models, pABs can significantly penetrate collagen matrix and reduce skin fibrosis. In summary, this research establishes a highly promising strategy for reversing skin fibrosis with hard fibrotic matrix.
Collapse
Affiliation(s)
- Shutong Qian
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, P. R. China
| | - Siya Dai
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, P. R. China
| | - Chunyi Guo
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, P. R. China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, P. R. China
| | - Jiajia Pang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, P. R. China
| | - Yichen Shen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, P. R. China
| | - Mingyuan Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, P. R. China
| | - Jie Hu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, P. R. China
| |
Collapse
|
5
|
Li Q, Zhang B, Lu J, Li A, Wa Q. LncRNA SNHG1/miR-320b/CTNNB1 axis regulating the collective migration of fibroblasts in the formation of keloid. Cutan Ocul Toxicol 2025:1-8. [PMID: 40314441 DOI: 10.1080/15569527.2025.2496634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND To explore the regulatory molecular mechanism of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) expression on keloid formation. METHODS The expression differences of SNHG1, miR-320b, and Catenin Beta 1 (CTNNB1) in keloid tissue and normal skin tissue of patients with keloid were detected. Normal cultured human fibroblasts were used as the Blank group (Blank) and then transfected with si-SNHG1 to silence SNHG1 expression. MTT assay, Transwell chamber assay, RT-qPCR, and Western blot (WB) were used. SNHG1 and miR-320b, as well as miR-320b and CTNNB1, were found to be targeted using the dual luciferase reporter gene (DLRG) strategy. RESULTS As against normal skin tissue, SNHG1 and CTNNB1 were increased, while miR-320b was decreased in keloid tissue (P < 0.05). As against the Blank, there was a drop in the number of transferring and attacking cells, a decrease in the proliferative activity, an increase in the expression of miR-320b, a decrease in CTNNB1, and the relative expression (RE) of Pro-Collagen I, Cyclin D1, VEGF, α-smooth muscle actin (α-SMA), matrix metallopeptidase-2 (MMP-2), and MMP-9 was decreased in the si-SNHG1 group (AG) (P < 0.05). CONCLUSION SNHG1 could target and regulate miR-320b, and miR-320b could target and regulate CTNNB1. Fibroblast transfer, attack, and multiplication may all be prevented by reducing SNHG1 expression.
Collapse
Affiliation(s)
- Qiaoling Li
- Center of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Bowei Zhang
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| | - Jie Lu
- Center of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Anqi Li
- Center of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Qingbiao Wa
- Center of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
6
|
Li D, Li Z, Liu S, Chen X, Che X, Deng G, Chen J, Li H, Wang R, Chen X, Su W, Su J. Single-cell RNA sequencing highlights the role of proinflammatory fibroblasts, vascular endothelial cells, and immune cells in the keloid immune microenvironment. Int J Dermatol 2025; 64:890-900. [PMID: 39450923 DOI: 10.1111/ijd.17516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Keloids, characterized by an aberrant wound-healing process and a highly complex immune microenvironment, pose significant challenges for clinical management. Fibroblasts and vascular endothelial cells (VEC) were identified as the leading cells of keloid development. However, their roles in the keloid immune landscape have yet to be thoroughly elucidated. METHODS To explore the functional state of cells in the immune landscape of keloids, we conducted a single-cell RNA sequencing analysis on the tissue from three keloid lesions and two specimens of healthy skin. We simultaneously utilized available keloid data from the public database for external validation. RESULTS Specific subsets, such as proinflammatory fibroblasts (piF) and VEC, were markedly elevated in lesional skin compared to normal skin. Subsequent differential gene expression and Gene Ontology analyses indicated that these subsets may be involved in shaping the microenvironment. In keloids, there is an increased expression of immune-associated genes (P < 0.05), including TNFRSF6B, HGF, and TGFB3, alongside a decreased expression of inflammatory chemokines in the piF. Moreover, the significant upregulation of immune suppressive genes (P < 0.05), including CD39, CD73, and HIF1A, suggested the potential involvement of VEC as a conditional immune subpopulation in the keloid microenvironment. Immune cell communication analysis revealed preferential enrichment of macrophages and Tregs, highlighting intensified macrophage-centered interactions within the keloid microenvironment. CONCLUSION Our study highlighted the role of piF and VEC in the immune microenvironment of keloids for the first time, providing potential targets for therapeutic development.
Collapse
Affiliation(s)
- Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hu Nan Key Laboratory of Aging Biology, Changsha, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Sitao Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hu Nan Key Laboratory of Aging Biology, Changsha, China
| | - Xiaozhen Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hu Nan Key Laboratory of Aging Biology, Changsha, China
| | - Xuanlin Che
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hu Nan Key Laboratory of Aging Biology, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hu Nan Key Laboratory of Aging Biology, Changsha, China
| | - Jialing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Rong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hu Nan Key Laboratory of Aging Biology, Changsha, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hu Nan Key Laboratory of Aging Biology, Changsha, China
| |
Collapse
|
7
|
Wen J, Li Z, Tan Y, Tey HL, Yu N, Wang X. Endothelial Dysfunction in Keloid Formation and Therapeutic Insights. J Invest Dermatol 2025:S0022-202X(25)00295-7. [PMID: 40100176 DOI: 10.1016/j.jid.2025.02.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Keloids are benign fibroproliferative tumors that cause significant physical and mental morbidity owing to their disfiguring appearance, chronic symptoms, and resistance to treatment. Although fibroblast hyperproliferation and excessive extracellular matrix deposition have been extensively studied, less attention has been paid to the role of vascular dysregulation and endothelial dysfunction (ED) in keloid pathogenesis. Emerging evidence highlights abnormal angiogenesis, vascular irregularities, and endothelial injury as critical drivers of fibrosis in keloids. This review explores the direct and indirect mechanisms of ED in keloid progression, including endothelial-to-mesenchymal transition, inflammation, immune cell crosstalk, and hypoxia. In addition, various treatment strategies targeting angiogenesis and ED, such as drugs, radiotherapy, hyperbaric oxygen therapy, compression, and laser treatments, are comprehensively reviewed. This review explores keloids through the lens of vasculature and endothelium, emphasizing the critical roles of vascular dysregulation and ED. It aims to provide insights into the mechanisms of keloid formation and serve as a reference for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Junxian Wen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China; National Skin Centre, Singapore, Singapore
| | - Zhijin Li
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China
| | - Yingrou Tan
- National Skin Centre, Singapore, Singapore; Skin Research Institute of Singapore, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China; Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China.
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China.
| |
Collapse
|
8
|
Guo X, Li W, Ma W, Liu Y, Liu Z, Jiao R, Yang Z, Zhang T, Wu H, Ai X, Gu X, Wang W, Zhou H, Li X, Yang C. Daidzein alleviates skin fibrosis by suppressing TGF-β1 signaling pathway via targeting PKM2. Sci Rep 2025; 15:8649. [PMID: 40082519 PMCID: PMC11906606 DOI: 10.1038/s41598-025-93007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Skin fibrosis including keloids, which are characterized including excessive deposition, abnormal proliferation, aggressiveness, and migration of the extracellular matrix of dermal fibroblasts. TGF-β signaling is a classical pro-fibrotic pathway, and it plays a crucial part in the occurrence and progression of skin fibrosis. Daidzein (Dai), an isoflavone compound, has been proved to possess anti-fibrosis effect by TGF-β signaling in various inflammatory and fibrotic diseases. However, little is known about Dai on skin fibrosis. Therefore, we further explored the potential effects and mechanisms of daidzein on skin fibrosis. As expected, Dai suppressed proliferation, migration and activation mouse primary dermal fibroblasts and keloid fibroblasts. Meanwhile, Dai also ameliorated bleomycin-induced skin fibrosis and reduced fibrotic markers of keloid tissues. In addition, Dai could target PKM2 to inhibit TGF-β1/Smad signaling in skin fibrosis. Overall, our research demonstrated that Dai might become a potential therapeutic candidate drug for skin fibrosis.
Collapse
Affiliation(s)
- Xiaowei Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Wei Ma
- Department of Burn and Plastic Surgery, Tianjin Fourth Hospital, Tianjin, 300222, China
| | - Yuming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Zhigang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Ran Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Zhongyi Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Tiantian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Hongliang Wu
- Department of Anesthesiology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, China
| | - Xiaoyu Ai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Wendi Wang
- Department of Plastic and Burn Surgery, Tianjin First Central Hospital, No. 24 Kangfu Road, Nankai District, Tianjin, 300192, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| |
Collapse
|
9
|
Zhao Z, Shen G, Sun H, Gong J, Hu B. The impact of remnant lipids on keloid formation: a causal analysis using mendelian randomization. Arch Dermatol Res 2025; 317:520. [PMID: 40035851 DOI: 10.1007/s00403-025-03989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
Keloids are pathological scars that remain a significant clinical challenge due to their persistence and high recurrence rates. Lipid metabolism disturbances are believed to contribute to keloid formation. However, the causal effect of lipids on keloids has not been established. We employed two-sample Mendelian randomization (TSMR) analyses to explore the causality between 25 lipid parameters and keloid using genome-wide association study data. The inverse variance weighting method was the primary analytical approach for estimating causality. We also conducted sensitivity analyses to validate the stability of TSMR results. Our study provides evidence suggesting a genetic association between remnant lipids and keloid formation, with triglyceride-rich remnant lipoproteins, particularly triglycerides to total lipids ratio in very large VLDL(XL.VLDL.TG), potentially promoting keloid formation and cholesterol-rich remnant lipoproteins possibly offering a protective effect. These findings highlight the potential role of remnant lipid parameters, especially XL.VLDL.TG, in modulating keloid development through inflammatory processes. While these findings provide valuable new insights into lipid metabolism and keloid pathogenesis, further experimental studies are required to clarify the mechanisms and confirm the relevance of these lipid parameters in keloid formation. The identification of remnant lipid parameters as potential biomarkers for keloid risk opens new avenues for diagnostic and therapeutic strategies, but further research is required to apply these findings in clinical practice.
Collapse
Affiliation(s)
- Zhimin Zhao
- Department of Laboratory Medicine, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, Guangdong, China
| | - Gang Shen
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, Guangdong, China
| | - Hengchang Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, Guangdong, China
| | - Jiao Gong
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, Guangdong, China.
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
10
|
Li W, Li X, Zhang Y, Zhu B, Xu X, Xiao H, Zhang S. Altered Arginine Metabolism Affects Proliferation and Radiosensitivity of Keloids. Exp Dermatol 2025; 34:e70077. [PMID: 40095415 DOI: 10.1111/exd.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Keloid is characterised by the reprogramming of cellular metabolism, wherein keloid cells adapt their metabolic pathways to meet the demands for energy and biosynthetic precursors. Investigating the intricate relationship between cellular metabolism and the biological behaviour of keloid holds the potential to yield novel therapeutic strategies for keloid. To elucidate the molecular alterations and potential underlying regulatory mechanisms in keloids, we created comprehensive metabolic profiling at the pathway level by analysing metabolomic, transcriptomic and single-cell RNA-sequencing data from keloids and adjacent skin. Viability assay and clonogenic assay were performed to validate the function of the metabolic pathway(s) in primary keloid fibroblast cells. Integrated analysis revealed an upregulation of arginine and proline metabolism in keloids. According to single-cell RNA-seq data, elevated expression of genes related to arginine and proline metabolism, such as P4HA3, P4HA2, P4HA1, PYCR1, OAT and ASS1, was predominately highly expressed in fibroblast-2. Fibroblast-2 displayed more obvious phenotypes of mesenchymal fibroblast. Critical genes from integrated analysis including P4HA3, P4HA2, P4HA1, PYCR1 and AZIN2, and metabolites including fumaric acid and 2-oxo-5-amino-pentanoic acid showed prognostic relevance with disease-free survival of keloid. Additionally, an In vitro study showed that arginine deprivation therapy (ADT) inhibited and radiosensitised the proliferation of keloid-derived fibroblasts. In conclusion, our thorough multiomics study deepens our understanding of the link between arginine and proline metabolism and keloid proliferation and radiosensitivity. Elevated activity of arginine and proline metabolism in mesenchymal fibroblasts may be a potential therapeutic pathway for keloid.
Collapse
Affiliation(s)
- Wei Li
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqian Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, China
| | - Yange Zhang
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Baochen Zhu
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haitao Xiao
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, China
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
11
|
Liu Y, Yang Z, Lin N, Liu Y, Chen H. Highly expressed VGLL3 in keloid fibroblasts promotes glycolysis and collagen production via the activation of Wnt/β-catenin signaling. Cell Signal 2025; 127:111604. [PMID: 39826675 DOI: 10.1016/j.cellsig.2025.111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE This study investigated the effects and related mechanisms of Vestigial-like family member 3 (VGLL3) on keloid fibroblast (KF) proliferation, apoptosis, collagen production, and glycolysis. METHODS Western blot, qRT-PCR, and immunohistochemistry were used for determining VGLL3 expression. KF viability, proliferation, and apoptosis were assessed using CCK-8 assay, EdU assay, and flow cytometry. Changes in the protein expression levels of α-SMA, fibronectin, collagen I, and collagen III were examined utilizing western blotting. The pathways related to VGLL3 were analyzed using Gene Set Enrichment Analysis. Changes in glycolysis were assessed by measuring oxygen consumption rate (OCR), extracellular acidification rate (ECAR), glucose uptake, and lactate production. WNT2 and β-catenin protein levels were measured using western blotting. RESULTS VGLL3 was upregulated in human keloid tissues. In KFs, overexpression of VGLL3 inhibited cell apoptosis, promoted cell proliferation and protein expression of α-SMA, fibronectin, collagen I, and collagen III. Moreover, it reduced OCR level, and increased the levels of ECAR, glucose uptake, and lactate production. On the other hand, the knockdown of VGLL3 had the opposite effect. WNT2 and β-catenin protein levels were enhanced by overexpression of VGLL3 and reduced by VGLL3 knockdown. Silencing of WNT2 reversed the effects of VGLL3 on apoptosis, proliferation, collagen production, and glycolysis in KFs. CONCLUSIONS VGLL3 promoted glycolysis in KFs and keloid progression, which was achieved through the activation of Wnt signaling pathway. Therefore, targeting VGLL3 may be a promising therapeutic strategy for the treatment of keloids.
Collapse
Affiliation(s)
- Yining Liu
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, PR China; Medical College, Qingdao University, Qingdao 266003, Shandong, PR China
| | - Zelei Yang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Nan Lin
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Yanxin Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Huaxia Chen
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China.
| |
Collapse
|
12
|
Mineda K, Sato K, Nakahara T, Minami K, Ikushima K, Mizuguchi M, Mima S, Yamasaki H, Nagasaka S, Yamashita Y, Abe Y, Hashimoto I. Specific Calcium Signal Responses in Human Keloid-Derived Fibroblasts During Cyclical Stretching: Basic Research. Health Sci Rep 2025; 8:e70461. [PMID: 40041787 PMCID: PMC11872593 DOI: 10.1002/hsr2.70461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/21/2024] [Accepted: 01/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background Keloids most commonly develop in the regions where the skin is constantly stretched. Although some keloid-derived fibroblasts exhibit higher single calcium spikes than normal dermal fibroblasts during short-time cyclical stretching, the calcium signal responses to long-time stretching remain unclear. Methods This study compared the intracellular Ca2+ dynamics induced by cyclical stretching stimuli between the control group (normal dermal fibroblasts) and the keloid group (keloid-derived fibroblasts). Each group was cyclically exposed to a two-dimensional stretch (10% strain). A confocal laser microscope was used to examine intracellular Ca2+ for 30 min fluorescently. The fluorescence intensity ratio (Fluo-8H/calcein red-orange) was used to evaluate intracellular Ca2+ concentration every 0.5 s. A calcium spike was a transient ratio increase of ≥ 20%. Receiver operating characteristic analysis was performed to determine the cutoff value of a normal calcium spike. Results No significant difference was observed between the keloid and control groups in the calcium signal response-positive rates (26.9% vs. 25.0%; p = 0.9). However, the calcium spike amplitudes were significantly higher in the keloid group than in the control group (1.66 vs. 1.41; p = 0.02). The cutoff value was 2.12, and 9.6% of keloid-derived fibroblasts exhibited multiple hypercalcium spikes. Discussion We are conducting further research based on the hypothesis that this keloid-specific subpopulation triggers the pathogenesis of keloid formation, that is, collagen overproduction, accelerated angiogenesis, and chronic inflammation.
Collapse
Affiliation(s)
- Kazuhide Mineda
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Katsuya Sato
- Graduate School of Technology, Industrial and Social SciencesTokushima UniversityTokushima CityJapan
| | - Tasuku Nakahara
- Graduate School of Sciences and Technology for InnovationYamaguchi UniversityUbe CityJapan
| | - Kazuyuki Minami
- Graduate School of Sciences and Technology for InnovationYamaguchi UniversityUbe CityJapan
| | - Kenta Ikushima
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Makoto Mizuguchi
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Shunsuke Mima
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Hiroyuki Yamasaki
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Shinji Nagasaka
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Yutaro Yamashita
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Yoshiro Abe
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Ichiro Hashimoto
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| |
Collapse
|
13
|
Wang Q, Shi Y, Qin Z, Xu M, Wang J, Lu Y, Zhao Z, Bi H. A375 melanoma-derived lactate controls A375 melanoma phenotypes by inducing macrophage M2 polarization via TCA cycle and TGF-β signaling. PeerJ 2025; 13:e18887. [PMID: 39995996 PMCID: PMC11849511 DOI: 10.7717/peerj.18887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/31/2024] [Indexed: 02/26/2025] Open
Abstract
Introduction Macrophage phenotypes have been linked to progression and prognosis of cutaneous melanoma. However, the association between Warburg effect in A375 melanoma and macrophages polarization, as well as the underlying mechanisms, remains less well documented. Objective The present study aimed to investigate the effect of lactate derived from A375 melanoma on macrophage polarization, melanoma phenotype responses and the underlying mechanisms. Methods Flow cytometry was performed to evaluate the expression of M1 and M2 markers, cell cycle and apoptosis. Levels of transforming growth factor β (TGF-β) and tumor necrosis factor α (TNF-α) were determined with enzyme-linked immunosorbent assay (ELISA) kit. Proliferation and invasion were assessed by CCK8 and transwell assays, respectively. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were analyzed using an XF96 extracellular flux analyzer. Protein expressions were determined by Western blotting. Results Our results revealed that melanoma A375 conditioned medium (A375-CM) induced peripheral blood mononuclear cells (PBMCs) to polarize toward anti-inflammatory M2 macrophages. M2 markers CD206 and ARG1 expression increased, as did TGF-β secretion. Conversely, M1 marker CD68 expression decreased. Furthermore, hypoxia promoted macrophage M2 polarization induced by A375-CM. Elevated lactate level in PIG1-conditioned medium (PIG1-CM) induced M2 polarization, whereas the lactate transport inhibitor AZD3965 suppressed this effect in PBMCs cultured with A375-CM. Additionally, lactate derived from melanoma regulated M1/M2 polarization by the tricarboxylic acid (TCA) cycle instead of glycolysis. Significantly, polarized macrophages altered melanoma phenotypes including proliferation, clone formation, cell cycle, apoptosis, migration and invasion via TCA cycle and TGF-β. Conclusion Our data collectively demonstrate that lactate derived from melanoma facilitates polarization of M2 macrophages, which subsequently leads to modifications in melanoma phenotypes via TCA cycle and TGF-β signaling.
Collapse
Affiliation(s)
- Qifei Wang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Yurui Shi
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Zelian Qin
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Mengli Xu
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Jingyi Wang
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Yuhao Lu
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Haidian District, Beijing, China
| |
Collapse
|
14
|
Ruan D, Hu T, Yang X, Mo X, Ju Q. Lactate in skin homeostasis: metabolism, skin barrier, and immunomodulation. Front Immunol 2025; 16:1510559. [PMID: 40046050 PMCID: PMC11879785 DOI: 10.3389/fimmu.2025.1510559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/27/2025] [Indexed: 05/13/2025] Open
Abstract
Lactate, once considered merely a byproduct of glycolysis, is now increasingly recognized as a multifunctional signaling molecule with roles beyond energy metabolism. It functions as an enzyme cofactor and binds to specific receptors to modulate cellular functions. In the skin, lactate is produced by various cell types. It is then transferred between cells or to the extracellular space, helping to balance cellular pH and to provide signals that regulate skin barrier and skin immunity. Additionally, lactate/lactate-related genes hold promising therapeutic potential for the treatment of skin tumors, inflammatory skin diseases, hair loss, and in cosmetic dermatology. This article highlights the latest advances in our understanding of lactate's biological effects on the skin and explores its therapeutic potential, offering insights into future research directions.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Mo
- Department of Dermatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Liu Y, Ren L, Li M, Zheng B, Liu Y. The Effects of Hypoxia-Preconditioned Dental Stem Cell-Derived Secretome on Tissue Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:44-60. [PMID: 38613806 DOI: 10.1089/ten.teb.2024.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Mesenchymal stroma cells derived from oral tissues are known as dental stem cells (DSCs). Owing to their unique therapeutic niche and clinical accessibility, DSCs serve as a promising treatment option for bone defects and oral tissue regeneration. DSCs exist in a hypoxic microenvironment in vivo, which is far lower than the current 20% oxygen concentration used in in vitro culture. It has been widely reported that the application of an oxygen concentration less than 5% in the culture of DSCs is beneficial for preserving stemness and promoting proliferation, migration, and paracrine activity. The paracrine function of DSCs involves the secretome, which includes conditioned media (CM) and soluble bioactive molecules, as well as extracellular vesicles extracted from CM. Hypoxia can play a role in immunomodulation and angiogenesis by altering the protein or nucleic acid components in the secretory group, which enhances the therapeutic potential of DSCs. This review summarizes the biological characteristics of DSCs, the influence of hypoxia on DSCs, the impact of hypoxia on the secretory group of DSCs, and the latest progress on the use of DSCs secretory group in tissue regeneration based on hypoxia pretreatment. We highlighted the multifunctional biological effect of hypoxia culture on tissue regeneration and provided a summary of the current mechanism of hypoxia in the pretreatment of DSCs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| | - Ling Ren
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| | - Mengyao Li
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| | - Bowen Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shenyang Clinical Medical Research Center of Orthodontic Disease, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Wang Y, Xia Z, Wang W, Zhang J, Hu C, Wang F, Zhu F, Fang LS, Wang J, Li X. FoxC1 activates Notch3 signaling to promote the inflammatory phenotype of keloid fibroblasts and aggravates keloid. Exp Cell Res 2025; 444:114402. [PMID: 39753198 DOI: 10.1016/j.yexcr.2024.114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Keloids are disfiguring proliferative scars, and their pathological mechanisms are still unclear. We have previously established that FoxC1 plays a significant role in rheumatoid arthritis and osteoarthritis, but its molecular mechanisms in pathological scar formation remain elusive. In this study, we analyzed keloid tissue characteristics using HE staining and immunohistochemistry, revealing abnormal expression of FoxC1 and Notch3 in keloids. Lentiviral modulation of FoxC1 and Notch3 demonstrated that they promote the expression of α-SMA, fibronectin, collagen I, and Hes-1, enhancing the proliferation, migration, invasion, and cytokine production of keloid fibroblasts (KFs) while inhibiting apoptosis. Co-immunoprecipitation (CO-IP), dual-luciferase reporter assays, and chromatin immunoprecipitation (ChIP) confirmed that FoxC1 can directly bind to the Notch3 promoter and enhance its transcription. Additionally, in vivo, overexpression of FoxC1 and Notch3 promoted keloid formation. In summary, our research highlights the critical regulatory role of FoxC1 in keloid formation through Notch3 activation, potentially offering new therapeutic targets for preventing scar formation.
Collapse
Affiliation(s)
- Yin Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Zhengguo Xia
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Wengting Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Jingsong Zhang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Chao Hu
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Fan Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China
| | - Fei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China
| | - Lin Sen Fang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China; Anhui Public Health Clinical Center, Anhui, 230032, China.
| | - Jun Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China.
| | - Xiaojing Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China.
| |
Collapse
|
17
|
Cheng X, Gao Z, Zhang J, Zheng H, Shan S, Zhou J. TAGLN-RhoA/ROCK2-SLC2A3-mediated Mechano-metabolic Axis Promotes Skin Fibrosis. Int J Biol Sci 2025; 21:658-670. [PMID: 39781462 PMCID: PMC11705643 DOI: 10.7150/ijbs.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Skin fibrotic diseases are characterized by abnormal fibroblast function and excessive deposition of extracellular matrix. Our previous single-cell sequencing results identified an enriched fibroblast subcluster in skin fibrotic tissues that highly expresses the actin cross-linking cytoskeletal protein Transgelin (TAGLN), which bridges the mechanical environment of tissues and cellular metabolism. Therefore, we aimed to investigate the role of TAGLN in the pathogenesis of skin fibrosis. Transwell, wound healing, collagen gel contraction assay, immunofluorescence and RNA-seq analyses were used to validate and explore the potential mechanisms of the TAGLN-RhoA/ROCK2-SLC2A3-mediated mechano-metabolic axis in dermal fibrosis. The therapeutic efficacy of targeting TAGLN was validated using a bleomycin-induced mouse model of skin fibrosis. Functional assays revealed that downregulation of TAGLN inhibited motility and secretory function of fibroblasts, including invasion, migration, contraction, and collagen secretion. The glucose carrier SLC2A3 was identified as one of the downstream targets of TAGLN by RNA-sequencing analysis and further validation. We further demonstrated that TAGLN regulates the expression of SLC2A3 through the RhoA/ROCK2 pathway, a key pathway of mechanotransduction, thereby affecting glycolysis and motility of fibroblasts. This study reveals the existence of the TAGLN-RhoA/ROCK2-SLC2A3 mechano-metabolic axis in skin fibrotic diseases and provides a promising target for its clinical treatment.
Collapse
Affiliation(s)
| | | | | | | | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China
| |
Collapse
|
18
|
Zhong C, Shi K, Li P, Qiu X, Wu X, Chen S, Liu Y, Li F, Zhao Z, Zhou J, Liang G, Xu D. Single-cell sequencing analysis and bulk-seq identify IGFBP6 and TNFAIP6 as novel differential diagnosis markers for postburn pathological scarring. Burns 2024; 50:107255. [PMID: 39317554 DOI: 10.1016/j.burns.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND If not accurately diagnosed and treated, postburn pathological scars, such as keloids and hypertrophic scars, can lead to negative clinical outcomes. However, differential diagnosis at the molecular level for postburn pathological scars remains limited. Using single-cell sequencing analysis, we investigated the genetic nuances of pathological scars at the cellular level. This study aimed to identify molecular diagnostic biomarkers to distinguish between postburn keloids and hypertrophic scars. METHODS Single-cell sequencing, differential expression, and weighted co-expression network analyses were performed to identify potential key genes for discriminating between keloids and hypertrophic scars. Postburn clinical samples were collected from our centre to validate the expression levels of the identified key genes. RESULTS Single-cell sequencing analysis unveiled 29 and 30 cell clusters in keloids and hypertrophic scars, respectively, predominantly composed of fibroblasts. Bulk differential gene analysis showed 96 highly expressed genes and 69 lowly expressed genes in keloids compared to hypertrophic scars. By incorporating previous research, Gene Set Enrichment Analysis was conducted to select fibroblasts as the focus of research. According to the single-cell data, 301 genes were stably expressed in fibroblasts from both types of pathological scars. Consistently, Weighted Gene Co-expression Network Analysis revealed that the blue module genes were mostly hub genes associated with fibroblasts. After intersecting fibroblast-related genes in single-cell data, Weighted Gene Co-expression Network Analysis-hub module genes, and bulk differential expression genes, insulin-like growth factor binding protein 6 and tumour necrosis factor alpha-induced protein 6 were identified as key genes to distinguish keloids from hypertrophic scars, resulting in diagnostic accuracies of 1.0 and 0.75, respectively. Immunohistochemical Staining and Quantitative Reverse Transcription PCR revealed that the expression levels of tumour necrosis factor alpha induced protein 6 and insulin-like growth factor binding protein 6 were significantly lower in postburn keloids than in hypertrophic scars- CONCLUSIONS: Tumour necrosis factor alpha induced protein 6 and insulin-like growth factor binding protein 6, exhibiting high diagnostic accuracy, provide valuable guidance for the differential diagnosis and treatment of postburn pathological scars.
Collapse
Affiliation(s)
- Chi Zhong
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| | - Ke Shi
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Peiting Li
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Xiaohui Qiu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Xianrui Wu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Shuyue Chen
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Yang Liu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Fuying Li
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Zitong Zhao
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Jianda Zhou
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Geao Liang
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| | - Dan Xu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| |
Collapse
|
19
|
Xie R, Yun J, Li C, Zhang S, Zhong A, Wu J, Cen Y, Li Z, Chen J. Identification of potential therapeutic target SPP1 and related RNA regulatory pathway in keloid based on bioinformatics analysis. Ann Med 2024; 56:2382949. [PMID: 39041063 PMCID: PMC11268233 DOI: 10.1080/07853890.2024.2382949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE To explore the complex mechanisms of keloid, new approaches have been developed by different strategies. However, conventional treatment did not significantly reduce the recurrence rate. This study aimed to identify new biomarkers and mechanisms for keloid progression through bioinformatics analyses. METHODS In our study, microarray datasets for keloid were downloaded from the GEO database. Differentially expressed genes (DEGs) were identified by R software. Multiple bioinformatics tools were used to identify hub genes, and reverse predict upstream miRNAs and lncRNA molecules of target hub genes. Finally, the total RNA-sequencing technique and miRNA microarray were combined to validate the identified genes. RESULTS Thirty-one DEGs were screened out and the upregulated hub gene SPP1 was finally identified, which was consistent with our RNA-sequencing analysis results and validation dataset. In addition, a ceRNA network of mRNA (SPP1)-miRNA (miR-181a-5p)-lncRNA (NEAT1, MALAT1, LINC00667, NORAD, XIST and MIR4458HG) was identified by the bioinformatics databases. The results of our miRNA microarray showed that miR-181a-5p was upregulated in keloid, also we found that the lncRNA NEAT1 could affect keloid progression by retrieving the relevant literature. CONCLUSIONS We speculate that SPP1 is a potential candidate biomarker and therapeutic target for patients with keloid, and NEAT1/miR-181a-5p/SPP1 might be the RNA regulatory pathway that regulates keloid formation.
Collapse
Affiliation(s)
- Ruxin Xie
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiao Yun
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chenyu Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiwei Zhang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ai Zhong
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junliang Wu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Zhao X, Fan Z, Zhou J, Li Y, Zhu W, Su S, Xia J. An alternative way to break the matrix barrier: an experimental study of a LIFU-mediated, visualizable targeted nanoparticle synergistic amplification for the treatment of malignant fibroblasts. Front Bioeng Biotechnol 2024; 12:1486369. [PMID: 39564102 PMCID: PMC11574418 DOI: 10.3389/fbioe.2024.1486369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Malignant fibroblasts (MFs) are widely present in various diseases and are characterized by connective tissue proliferation; these cells act as a physical barrier that severely limits drug delivery and affects disease outcomes. Based on this, we constructed the smart, integrated, theranostic, targeted lipid nanoprobe HMME-RG3@PFH to overcome the bottleneck in the early diagnosis and treatment of MF-related diseases. The protein glucose transporter protein 1 (GLUT-1) is overexpressed on MFs, and its ideal substrate, ginsenoside RG3 (RG3), significantly enhances the targeted uptake of HMME-RG3@PFH by MFs in a hypoxic environment and endows the nanomaterial with stealthiness to prolong its circulation. Perfluorohexane (PFH), a substance that can undergo phase change, was encapsulated in the lipid core and vaporized for ultrasound-enhanced imaging under low-intensity focused ultrasound (LIFU) irradiation. Moreover, hematoporphyrin monomethyl ether (HMME) was loaded into the lipid bilayer for photoacoustic molecular imaging and sonodynamic therapy (SDT) of MFs under the combined effects of LIFU. Additionally, HMME-RG3@PFH instantaneously burst during visualization to promote targeted drug delivery. In addition, the increased number of exposed RG3 fragments can regulate the MFs to enter a quiescent state. Overall, this nanoplatform ultimately achieves dual-modal imaging with targeted and precise drug release for visualization and synergistic amplification therapy, providing a new possibility for the early diagnosis and precise treatment of MF-related diseases.
Collapse
Affiliation(s)
- Xiangzhi Zhao
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengchao Fan
- Department of Ultrasound, Sichuan Provincial Second Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junan Zhou
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Weiwei Zhu
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Song Su
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jizhu Xia
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Latoni DI, McDaniel DC, Tsao H, Tsao SS. Update on the Pathogenesis of Keloid Formation. JID INNOVATIONS 2024; 4:100299. [PMID: 39247523 PMCID: PMC11378114 DOI: 10.1016/j.xjidi.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 09/10/2024] Open
Abstract
Keloids are abnormal skin growths occurring in a significant portion of the global population. Despite their pervasiveness, the underlying pathophysiology of this scarring process is yet to be fully understood. In this review article, we delve into the current literature on the pathophysiological mechanisms of keloids. We take a top-down approach, first looking at host factors such as genetics and endocrine factors and then taking a more granular approach describing specific control factors such as germline keloid predisposition variants, epigenetics and transcriptomics, inflammatory and immune dysregulation, and the role of profibrotic and angiogenic cell signaling pathways. We then discuss current knowledge gaps, propose further research avenues, and explore potential future treatment options considering our increased understanding of keloid pathogenesis.
Collapse
Affiliation(s)
- David I Latoni
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Danica C McDaniel
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sandy S Tsao
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Jin J, Wang K, Lu C, Yao C, Xie F. NEDD4L Inhibits the Proliferation and Migration of Keloid Fibroblasts by Regulating YY1 Ubiquitination-Mediated Glycolytic Metabolic Reprogramming. Exp Dermatol 2024; 33:e70008. [PMID: 39494931 DOI: 10.1111/exd.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Keloid scarring is a complex fibroproliferative disorder characterised by excessive fibroblast proliferation. Inhibition of cellular glycolysis effectively suppresses the proliferation of keloid fibroblasts (KFs). Neural precursor cell-expressed developmentally downregulated gene 4-like (NEDD4L), a ubiquitin ligase, regulates cell proliferation in different diseases. This study investigated the effects of NEDD4L on glucose metabolism, proliferation and migration in KFs. Primary KFs were isolated from keloid skin tissues obtained from patients with active-stage keloids. Cell transfection was used to upregulate or downregulate NEDD4L and Yin Yang 1 (YY1) in KFs. Protein expression was assessed by immunohistochemistry and western blotting. The viability, proliferative capacity and migration ability of KFs were evaluated using the MTT method and the EdU and wound healing assays, respectively. The regulatory effect of NEDD4L on YY1 ubiquitination was examined by coimmunoprecipitation. The interaction between YY1 and hexokinase 2 (HK2) was confirmed by a dual-luciferase reporter assay. NEDD4L was downregulated, whereas YY1 and HK2 were highly expressed in keloid tissues compared with normal skin. Overexpression of NEDD4L inhibited the proliferation and migration of KFs. NEDD4L promoted YY1 degradation in KFs by inducing its ubiquitination. Upregulation of YY1 induced glucose consumption and lactate production in KFs via the transcriptional regulation of HK2. Increased expression of YY1 reversed the reduced viability, proliferation, and migration of KFs overexpressing NEDD4L. YY1 also reversed the NEDD4L-induced inhibition of glucose consumption and lactate production in KFs. Additionally, an in vivo study confirmed the inhibitory roles of NEDD4L overexpression and YY1 knockdown in keloid formation. NEDD4L suppressed the viability, proliferation and migration of KFs by regulating YY1 ubiquitination-mediated glycolysis through HK2. These findings suggest a novel regulatory axis, NEDD4L/YY1/HK2, that mediates glucose metabolism in keloid formation.
Collapse
Affiliation(s)
- Jun Jin
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Kai Wang
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Chenxi Lu
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Chenghao Yao
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| | - Feng Xie
- Department of Plastic Surgery, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China
| |
Collapse
|
23
|
Sun Y, Li ZZ, Yang J, Sha YR, Hou XY, Fu H, Li JY, Bai SC, Xie YF, Wang GH. Molecular mechanism of hypoxia and alpha-ketoglutaric acid on collagen expression in scleral fibroblasts. Int J Ophthalmol 2024; 17:1780-1790. [PMID: 39430015 PMCID: PMC11422372 DOI: 10.18240/ijo.2024.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
AIM To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid (α-KG) on scleral collagen expression. METHODS Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness (ChT) during myopia. The establishment of a hypoxic myopia model (HYP) for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia and α-KG on collagen expression were demonstrated by Sirius red staining. Transcriptome analysis was used to verify the genes and pathways that hypoxia and α-KG affect collagen expression. Finally, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used for reverse verification. RESULTS Meta-analysis results aligned with clinical statistics, revealing a thinning of ChT, leading to scleral hypoxia. Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group, showed that hypoxia reduced collagen expression in scleral fibroblasts, while α-KG can elevated collagen expression under HYP conditions. Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia and α-KG affect scleral collagen expression and the results were verified by RT-qPCR. CONCLUSION The potential molecular mechanisms through which hypoxia and α-KG influencing myopia is unraveled and three novel genes TLCD4, TBC1D4, and EPHX3 are identified. These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.
Collapse
Affiliation(s)
- Yun Sun
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhuo-Zheng Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Yang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Ya-Ru Sha
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Yu Hou
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Hong Fu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jia-Yin Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Shu-Chang Bai
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Yong-Fang Xie
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Guo-Hui Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
24
|
Yang F, Jiang N, Li XY, Qi XS, Tian ZB, Guo YJ. Construction and validation of a pancreatic cancer prognostic model based on genes related to the hypoxic tumor microenvironment. World J Gastroenterol 2024; 30:4057-4070. [PMID: 39351249 PMCID: PMC11439118 DOI: 10.3748/wjg.v30.i36.4057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies, characterized by poor prognosis and low survival rates. Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy, often failing to capture the complexity of the disease. The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment. This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer. AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules. METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2, PLAU, and CCNA2. The results were validated in an independent dataset. This study also examined the correlations between the model risk score and various clinical features, components of the immune microenvironment, chemotherapeutic drug sensitivity, and metabolism-related pathways. Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines. RESULTS The prognostic model demonstrated significant predictive value, with the risk score showing a strong correlation with clinical features: It was significantly associated with tumor grade (G) (b P < 0.01), moderately associated with tumor stage (T) (a P < 0.05), and significantly correlated with residual tumor (R) status (b P < 0.01). There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs. Furthermore, the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer. CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Na Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xiao-Yu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xing-Si Qi
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Ying-Jie Guo
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
25
|
Huang W, Zhang Z, Li X, Zheng Q, Wu C, Liu L, Chen Y, Zhang J, Jiang X. CD9 promotes TβR2-TβR1 association driving the transition of human dermal fibroblasts to myofibroblast under hypoxia. Mol Med 2024; 30:162. [PMID: 39333849 PMCID: PMC11428569 DOI: 10.1186/s10020-024-00925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND During wound healing, fibroblast to myofibroblast transition is required for wound contraction and remodeling. While hypoxia is an important biophysical factor in wound microenvironment, the exact regulatory mechanism underlying hypoxia and fibroblast-to-myofibroblast transition remains unclear. We previously found that tetraspanin CD9 plays an important role in oxygen sensing and wound healing. Herein, we investigated the effects of physiological hypoxia on fibroblast-to-myofibroblast transition and the biological function and mechanism of CD9 in it. METHODS Human skin fibroblasts (HSF) and mouse dermis wounds model were established under physiological hypoxia (2% O2). The cell viability and contractility of HSF under hypoxia were evaluated by CCK8 and collagen gel retraction, respectively. The expression and distribution of fibroblast-to-myofibroblast transition markers and CD9 in HSF were detected by Western blotting and immunofluorescence. CD9 slicing and overexpressing HSFs were constructed to determine the role of CD9 by small interfering RNA and recombinant adenovirus vector. The association of TβR2 and TβR1 was measured by immunoprecipitation to explore the regulatory mechanism. Additionally, further validation was conducted on mouse dermis wounds model through histological analysis. RESULTS Enhanced fibroblast-to-myofibroblast transition and upregulated CD9 expression was observed under hypoxia in vitro and in vivo. Besides, reversal of fibroblast-to-myofibroblast transition under hypoxia was observed when silencing CD9, suggesting that CD9 played a key role in this hypoxia-induced transition. Moreover, hypoxia increased fibroblast-to-myofibroblast transition by activating TGF-β1/Smad2/3 signaling, especially increased interaction of TβR2 and TβR1. Ultimately, CD9 was determined to directly affect TβR1-TβR2 association in hypoxic fibroblast. CONCLUSION Collectively, these findings suggest that CD9 promotes TβR2-TβR1 association, thus driving the transition of human dermal fibroblasts to myofibroblast under hypoxia.
Collapse
Affiliation(s)
- Wanqi Huang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qingqing Zheng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
26
|
Liu C, Khairullina L, Qin Y, Zhang Y, Xiao Z. Adipose stem cell exosomes promote mitochondrial autophagy through the PI3K/AKT/mTOR pathway to alleviate keloids. Stem Cell Res Ther 2024; 15:305. [PMID: 39278919 PMCID: PMC11403874 DOI: 10.1186/s13287-024-03928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Fibrosis with unrelieved chronic inflammation is an important pathological change in keloids. Mitochondrial autophagy plays a crucial role in reducing inflammation and inhibiting fibrosis. Adipose stem cell-derived exosomes, a product of adipose stem cell paracrine secretion, have pharmacological effects, such as anti-inflammatory and antiapoptotic effects, and mediate autophagy. Therefore, this study aims to investigate the function and mechanism of adipose stem cell exosomes in the treatment of keloids. METHOD We isolated adipose stem cell exosomes under normoxic and hypoxic condition to detect their effects on keloid fibroblast proliferation, migration, and collagen synthesis. Meanwhile, 740YPDGFR (PI3K/AKT activator) was applied to detect the changes in autophagic flow levels and mitochondrial morphology and function in keloid fibroblasts. We constructed a human keloid mouse model by transplanting human keloid tissues into six-week-old (20-22 g; female) BALB/c nude mice, meanwhile, we applied adipose stem cell exosomes to treat the mouse model and observed the retention and effect of ADSC exosomes in vivo. RESULTS ADSC exosomes can inhibit the PI3K/AKT/mTOR signaling pathway. The exosomes of ADSCs decreased the inflammatory level of KFs, enhanced the interaction between P62 and LC3, and restored the mitochondrial membrane potential. In the human keloid mouse model, ADSC exosomes can exist stably, promote mitochondrial autophagy in keloid tissue, improve mitochondrial morphology, reduce inflammatory reaction and fibrosis. Meanwhile, At the same time, the exosomes derived from hypoxic adipose stem cells have played a more effective role in both in vitro and in vivo experiments. CONCLUSIONS Adipose stem cell exosomes inhibited the PI3K/AKT/mTOR pathway, activated mitochondrial autophagy, and alleviated keloid scars.
Collapse
Affiliation(s)
- Chang Liu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Liliia Khairullina
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Youyou Qin
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yingbo Zhang
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhibo Xiao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
27
|
Yang R, Yang F, Wei Y, Huang B, Cao T, Tan H, Liu D, Zou Q, Wen J, Wen L, Lu X, Yu C, Cai H, Xie X, Jiang S, Yao S, Liang Y. Hypoxia-induced Semaphorin 3A promotes the development of endometriosis through regulating macrophage polarization. Int Immunopharmacol 2024; 138:112559. [PMID: 38955028 DOI: 10.1016/j.intimp.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.
Collapse
Affiliation(s)
- Ruyu Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Yajing Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Biqi Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Tiefeng Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Hao Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Duo Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Qiuyu Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China
| | - Jinjuan Wen
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Lei Wen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xi Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Changyang Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Heng Cai
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Xiaofei Xie
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Shaoru Jiang
- Department of Obstetrics and Gynecology, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522081, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China.
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, Guangdong, China; Department of Obstetrics and Gynecology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530022, Guangxi, China.
| |
Collapse
|
28
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
29
|
Chettouh-Hammas N, Grillon C. Physiological skin oxygen levels: An important criterion for skin cell functionality and therapeutic approaches. Free Radic Biol Med 2024; 222:259-274. [PMID: 38908804 DOI: 10.1016/j.freeradbiomed.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The skin is made up of different layers with various gradients, which maintain a complex microenvironment, particularly in terms of oxygen levels. However, all types of skin cells are cultured in conventional incubators that do not reproduce physiological oxygen levels. Instead, they are cultured at atmospheric oxygen levels, a condition that is far removed from physiology and may lead to the generation of free radicals known to induce skin ageing. This review aims to summarize the current literature on the effect of physiological oxygen levels on skin cells, highlight the shortcomings of current in vitro models, and demonstrate the importance of respecting skin oxygen levels. We begin by clarifying the terminology used about oxygen levels and describe the specific distribution of oxygen in the skin. We review and discuss how skin cells adapt their oxygen consumption and metabolism to oxygen levels environment, as well as the changes that are induced, particularly, their redox state, life cycle and functions. We examine the effects of oxygen on both simple culture models and more complex reconstructed skin models. Finally, we present the implications of oxygen modulation for a more therapeutic approach.
Collapse
Affiliation(s)
- Nadira Chettouh-Hammas
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| | - Catherine Grillon
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| |
Collapse
|
30
|
Chen XY, Cheng MR, Tang CC, Xu CQ, Zhong YL, Gao Y, Cheng XX, Chen J. Integrative transcriptome-proteome approach reveals key hypoxia-related features involved in the neuroprotective effects of Yang Xue oral liquid on Alzheimer's and Parkinson's disease. Front Pharmacol 2024; 15:1411273. [PMID: 39045051 PMCID: PMC11263039 DOI: 10.3389/fphar.2024.1411273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction: This study investigates the role of hypoxia-related genes in the neuroprotective efficacy of Yang Xue oral liquid (YXKFY) in Alzheimer's disease (AD) and Parkinson's disease (PD). Methods and results: Using differential expression and weighted gene co-expression network analysis (WGCNA), we identified 106 and 9 hypoxia-associated genes in AD and PD, respectively, that are implicated in the transcriptomic and proteomic profiles. An artificial intelligence-driven hypoxia signature (AIDHS), comprising 17 and 3 genes for AD and PD, was developed and validated across nine independent cohorts (n = 1713), integrating 10 machine learning algorithms and 113 algorithmic combinations. Significant associations were observed between AIDHS markers and immune cells in AD and PD, including naive CD4+ T cells, macrophages, and neutrophils. Interactions with miRNAs (hsa-miR-1, hsa-miR-124) and transcription factors (USF1) were also identified. Single-cell RNA sequencing (scRNA-seq) data highlighted distinct expression patterns of AIDHS genes in various cell types, such as high expression of TGM2 in endothelial cells, PDGFRB in endothelial and mesenchymal cells, and SYK in microglia. YXKFY treatment was shown to repair cellular damage and decrease reactive oxygen species (ROS) levels. Notably, genes with previously dysfunctional expression, including FKBPL, TGM2, PPIL1, BLVRB, and PDGFRB, exhibited significant recovery after YXKFY treatment, associated with riboflavin and lysicamine. Conclusion: The above genes are suggested to be central to hypoxia and neuroinflammation responses in AD and PD, and are potential key mediators of YXKFY's neuroprotective action.
Collapse
Affiliation(s)
- Xiang-Yang Chen
- College of Life and Environment Science, Huangshan University, Huangshan, Anhui, China
| | | | - Chen-Chen Tang
- Department of Experimental Management, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen-Qin Xu
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Lang Zhong
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Gao
- Traditional Chinese Recovery and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xue-Xiang Cheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jian Chen
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| |
Collapse
|
31
|
Bhowmick T, Biswas S, Mukherjee A. Cellular response during cellular starvation: A battle for cellular survivability. Cell Biochem Funct 2024; 42:e4101. [PMID: 39049191 DOI: 10.1002/cbf.4101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Cellular starvation occurs when a cell is deprived of nutrition and oxygen availability. The genesis of this state of deprivation is exclusively contingent upon the inadequacy in the supply of essential components, namely amino acids, glucose, and oxygen. Consequently, the impact of this altered condition manifests in the regulation of cellular respiratory, metabolic, and stress responses. Subsequently, as a reactive outcome, cell death may transpire through mechanisms such as autophagy or apoptosis, particularly under prolonged circumstances. However, the cell combats such situations by evolving altered activity in their metabolic and protein level. Modulated signaling cascades help them to conquer starvation. But as in a prolonged condition, the battle that a cell has to evolve will come into and result in the form of cellular death. Therefore, in cancer therapy, cellular starvation may also act as a possible way out so that the cancer cell can undergo its death pathway in an induced starved condition. This review has collectively depicted the mechanism of cellular starvation. Besides this, the cellular response in this starved condition has also been summarized. Gaining such knowledge of the causation of cell starvation and cellular response during starvation not only generates new insight into the mechanism of cell survivability but also may act as a beneficial role in combating cellular diseases like cancer.
Collapse
Affiliation(s)
- Tithi Bhowmick
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India
| | | | - Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India
| |
Collapse
|
32
|
Qiao J, Liu S, Huang Y, Zhu X, Xue C, Wang Y, Xiong H, Yao J. Glycolysis-non-canonical glutamine dual-metabolism regulation nanodrug enhanced the phototherapy effect for pancreatic ductal adenocarcinoma treatment. J Colloid Interface Sci 2024; 665:477-490. [PMID: 38429120 DOI: 10.1016/j.jcis.2024.02.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Clinical pancreatic ductal adenocarcinoma (PDAC) treatment is severely limited by lack of effective KRAS suppression strategies. To address this dilemma, a reactive oxygen species (ROS)-responsive and PDAC-targeted nanodrug named Z/B-PLS was constructed to confront KRAS through dual-blockade of its downstream PI3K/AKT/mTOR and RAF/MEK/ERK for enhanced PDAC treatment. Specifically, photosensitizer zinc phthalocyanine (ZnPc) and PI3K/mTOR inhibitor BEZ235 (BEZ) were co-loaded into PLS which was constructed by click chemistry conjugating MEK inhibitor selumetinib (SEL) to low molecular weight heparin with ROS-responsive oxalate bond. The BEZ and SEL blocked PI3K/AKT/mTOR and RAF/MEK/ERK respectively to remodel glycolysis and non-canonical glutamine metabolism. ZnPc mediated photodynamic therapy (PDT) could enhance drug release through ROS generation, further facilitating KRAS downstream dual-blockade to create treatment-promoting drug delivery-therapeutic positive feedback. Benefiting from this broad metabolic modulation cascade, the metabolic symbiosis between normoxic and hypoxic tumor cells was also cut off simultaneously and effective tumor vascular normalization effects could be achieved. As a result, PDT was dramatically promoted through glycolysis-non-canonical glutamine dual-metabolism regulation, achieving complete elimination of tumors in vivo. Above all, this study achieved effective multidimensional metabolic modulation based on integrated smart nanodrug delivery, helping overcome the therapeutic challenges posed by KRAS mutations of PDAC.
Collapse
Affiliation(s)
- Jianan Qiao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shuhui Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yanfeng Huang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Xiang Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Chenyang Xue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yan Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Hui Xiong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Jing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
33
|
Chalwa T, Lebeko M, Matobole R, P Khumalo N, Bayat A. Enhanced bioenergetic cellular activity with metabolic switch to aerobic glycolysis in Keloid and Folliculitis Keloidalis Nuchae. Arch Dermatol Res 2024; 316:412. [PMID: 38878082 PMCID: PMC11180017 DOI: 10.1007/s00403-024-03038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/19/2024]
Abstract
Keloid scars and folliculitis keloidalis nuchae (FKN) are benign fibroproliferative dermal lesions of unknown aetiology and ill-defined treatment, which typically present in genetically susceptible individuals. Their pathognomonic hallmarks include local aggressive invasive behaviour plus high recurrence post-therapy. In view of this, we investigated proliferative and key parameters of bioenergetic cellular characteristics of site-specific keloid-derived fibroblasts (intra(centre)- and peri(margin)-lesional) and FKN compared to normal skin and normal flat non-hypertrophic scar fibroblasts as negative controls.The results showed statistically significant (P < 0.01) and variable growth dynamics with increased proliferation and migration in keloid fibroblasts, while FKN fibroblasts showed a significant (P < 0.001) increase in proliferation but similar migration profile to controls. A statistically significant metabolic switch towards aerobic glycolysis in the fibroblasts from the disease conditions was noted. Furthermore, an increase in basal glycolysis with a concomitant increase in the cellular maximum glycolytic capacity was also demonstrated in perilesional keloid and FKN fibroblasts (P < 0.05). Mitochondrial function parameters showed increased oxidative phosphorylation in the disease conditions (P < 0.05) indicating functional mitochondria. These findings further suggest that Keloids and FKN demonstrate a switch to a metabolic phenotype of aerobic glycolysis. Increased glycolytic flux inhibition is a potential mechanistic basis for future therapy.
Collapse
Affiliation(s)
- Temwani Chalwa
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Maribanyana Lebeko
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Relebohile Matobole
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- MRC-SA Wound Healing and Keloid Research Unit, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
34
|
Lu B, Zhao Q, Cai Z, Qian S, Mao J, Zhang L, Mao X, Sun X, Cui W, Zhang Y. Regulation of Glucose Metabolism for Cell Energy Supply In Situ via High-Energy Intermediate Fructose Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309060. [PMID: 38063818 DOI: 10.1002/smll.202309060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Indexed: 05/12/2024]
Abstract
The cellular functions, such as tissue-rebuilding ability, can be directly affected by the metabolism of cells. Moreover, the glucose metabolism is one of the most important processes of the metabolism. However, glucose cannot be efficiently converted into energy in cells under ischemia hypoxia conditions. In this study, a high-energy intermediate fructose hydrogel (HIFH) is developed by the dynamic coordination between sulfhydryl-functionalized bovine serum albumin (BSA-SH), the high-energy intermediate in glucose metabolism (fructose-1,6-bisphosphate, FBP), and copper ion (Cu2+). This hydrogel system is injectable, self-healing, and biocompatible, which can intracellularly convert energy with high efficacy by regulating the glucose metabolism in situ. Additionally, the HIFH can greatly boost cell antioxidant capacity and increase adenosine triphosphate (ATP) in the ischemia anoxic milieu by roughly 1.3 times, improving cell survival, proliferation and physiological functions in vitro. Furthermore, the ischemic skin tissue model is established in rats. The HIFH can speed up the healing of damaged tissue by promoting angiogenesis, lowering reactive oxygen species (ROS), and eventually expanding the healing area of the damaged tissue by roughly 1.4 times in vivo. Therefore, the HIFH can provide an impressive perspective on efficient in situ cell energy supply of damaged tissue.
Collapse
Affiliation(s)
- Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Shutong Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
35
|
Zhang LX, Hu DH. [Research advances on the role of aerobic glycolysis in skin fibrosis diseases]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2024; 40:389-394. [PMID: 38664034 DOI: 10.3760/cma.j.cn501225-20230712-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Skin fibrosis diseases mainly include hypertrophic scar, keloid, and systemic sclerosis, etc. The main pathological features are excessive activation of fibroblasts and abnormal deposition of extracellular matrix. In recent years, studies have shown that aerobic glycolysis is closely related to the occurrence and development of skin fibrosis diseases. Drugs targeting aerobic glycolysis has provided new ideas for skin anti-fibrosis treatment. This article reviews the role of enzymes and products related to aerobic glycolysis in the occurrence and development of skin fibrosis diseases and the drugs targeting aerobic glycolysis for the treatment of skin fibrosis diseases.
Collapse
Affiliation(s)
- L X Zhang
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - D H Hu
- Department of Burns and Cutaneous Surgery, Burn Center of PLA, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
36
|
Li X, Wang X, Shen T, Xiong J, Ma Q, Guo G, Zhu F. Advances in photodynamic therapy of pathologic scar. Photodiagnosis Photodyn Ther 2024; 46:104040. [PMID: 38462122 DOI: 10.1016/j.pdpdt.2024.104040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Pathologic scars include keloids and hypertrophic scars due to abnormal wound healing. Both cause symptoms of itching and pain; they also affect one's appearance and may even constrain movement. Such scars place a heavy burden on the individual's physical and mental health; moreover, treatment with surgery alone is highly likely to leave more scarring. Therefore, there is an urgent need for a treatment that is both minimally invasive and convenient. Photodynamic therapy (PDT) is an emerging safe and noninvasive technology wherein photosensitizers and specific light sources are used to treat malignant tumors and skin diseases. Research on PDT from both the laboratory and clinic has been reported. These findings on the treatment of pathologic scars using photosensitizers, light sources, and other mechanisms are reviewed in the present article.
Collapse
Affiliation(s)
- Xing Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xin Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tuo Shen
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jianxiang Xiong
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qimin Ma
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
37
|
Liu F, Chen Y, Qin D, Qian C. Interleukin-22 inhibits cardiac fibrosis by regulating fibroblast metabolic reprogramming in myocardial infarction. Pathol Res Pract 2024; 256:155256. [PMID: 38492359 DOI: 10.1016/j.prp.2024.155256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Cardiac fibrosis, a significant characteristic of cardiovascular diseases, leads to ventricular remodeling and impaired cardiac function. In this study, we aimed to investigate the role of Interleukin-22 (IL-22) in myocardial fibrosis following myocardial infarction (MI) and to explore the underlying metabolic mechanisms. Here we analyzed the single-cell sequencing data and found that the level of aerobic glycolysis was significantly higher in cardiac fibrosis in MI patient, which we validated through in vivo experiments. Utilizing MI mouse model, these experiments revealed decreased serum IL-22 levels and increased levels of AngII and TGF-β1. However, treatment with exogenous IL-22 reversed these changes, reduced infarct size, and fibrosis. In vitro experiments demonstrated that IL-22 inhibited AngII-induced fibroblast-to-myofibroblast transition (FMT) by suppressing the expression of α-SMA, Cola1, and Cola3. Metabolic analysis indicated that IL-22 decreased the expression of glycolytic enzymes and reduced lactate production in cardiac fibroblasts. Further in vivo experiments confirmed the inhibitory effect of IL-22 on Pyruvate kinase isoform M2 (PKM2) levels in heart tissue. Additionally, IL-22 activated the c-Jun N-terminal kinase (JNK) pathway, while inhibition of JNK partially reversed IL-22's effect on PKM2 activity. These findings suggest that IL-22 mitigates cardiac fibrosis and FMT by inhibiting aerobic glycolysis by activating the JNK/PKM2 pathway. Our study highlights IL-22 as a potential therapeutic target for myocardial fibrosis and cardiovascular diseases, providing insights into its role in regulating fibrosis and glycolysis. These findings pave the way for developing targeted therapies and investigating additional metabolic pathways for improved treatment outcomes in the field of cardiovascular diseases.
Collapse
Affiliation(s)
- Fang Liu
- Department of Vascular Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| | - Yueqi Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Demeng Qin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Cheng Qian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
38
|
Rajadurai A, Tsao H. Identification of Collagen-Suppressive Agents in Keloidal Fibroblasts Using a High-Content, Phenotype-Based Drug Screen. JID INNOVATIONS 2024; 4:100248. [PMID: 38303762 PMCID: PMC10831310 DOI: 10.1016/j.xjidi.2023.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 02/03/2024] Open
Abstract
Keloids are characterized by excessive extracellular collagen and exaggerated scarring. Large-volume lesions can be functionally debilitating, therapeutically intractable, and psychologically devastating. A key barrier to translational momentum for novel antikeloid agents is the lack of a faithful high-content screen. We devised, to our knowledge, a previously unreported phenotype-based assay that measures secreted collagen by keloidal fibroblasts in tissue hypoxic conditions (1% oxygen). Four keloidal fibroblasts and 1 normal dermal fibroblast line were exposed to 199 kinase inhibitors. Of 199 kinase inhibitors, 41 (21%) and 71 (36%) increased and decreased the CI ¯ norm (mean collagen inhibition normalized to viability) by more than 10%, respectively. The most collagen suppressive agents were CGP60474 (CI ¯ norm = 0.36), KIN001-244 (CI ¯ norm = 0.55), and RAF265 (CI ¯ norm = 0.58). The top candidate, CGP60474, consistently abolished collagens I and VII production, exhibited minimal global toxicity, and induced a fivefold increase in phosphorylated extracellular signal-regulated kinase. This proof-of-concept high-content screen can identify drugs that appear to target critical keloidal pathophysiology-collagen secretion.
Collapse
Affiliation(s)
- Anpuchchelvi Rajadurai
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hensin Tsao
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Dai S, Xu M, Pang Q, Sun J, Lin X, Chu X, Guo C, Xu J. Hypoxia macrophage-derived exosomal miR-26b-5p targeting PTEN promotes the development of keloids. BURNS & TRAUMA 2024; 12:tkad036. [PMID: 38434721 PMCID: PMC10905499 DOI: 10.1093/burnst/tkad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 03/05/2024]
Abstract
Background Hypoxia is the typical characteristic of keloids. The development of keloids is closely related to the abnormal phenotypic transition of macrophages. However, the role of exosomal microRNAs (miRNAs) derived from hypoxic macrophages in keloids remains unclear. This study aimed to explore the role of hypoxic macrophage-derived exosomes (HMDE) in the occurrence and development of keloids and identify the critical miRNA. Methods The expression of CD206+ M2 macrophage in keloids and normal skin tissues was examined through immunofluorescence. The polarization of macrophages under a hypoxia environment was detected through flow cytometry. The internalization of macrophage-derived exosomes in human keloid fibroblasts (HKFs) was detected using a confocal microscope. miRNA sequencing was used to explore the differentially expressed miRNAs in exosomes derived from the normoxic and hypoxic macrophage. Subsequently, the dual-luciferase reporter assay verified that phosphatase and tension homolog (PTEN) was miR-26b-5p's target. The biological function of macrophage-derived exosomes, miR-26b-5p and PTEN were detected using the CCK-8, wound-healing and Transwell assays. Western blot assay was used to confirm the miR-26b-5p's underlying mechanisms and PTEN-PI3K/AKT pathway. Results We demonstrated that M2-type macrophages were enriched in keloids and that hypoxia treatment could polarize macrophages toward M2-type. Compared with normoxic macrophages-derived exosomes (NMDE), HMDE promote the proliferation, migration and invasion of HKFs. A total of 38 differential miRNAs (18 upregulated and 20 downregulated) were found between the NMDE and HMDE. miR-26b-5p was enriched in HMDE, which could be transmitted to HKFs. According to the results of the functional assay, exosomal miR-26b-5p produced by macrophages facilitated HKFs' migration, invasion and proliferation via the PTEN-PI3K/AKT pathway. Conclusions The highly expressed miR-26b-5p in HMDE promotes the development of keloids via the PTEN-PI3K/AKT pathway.
Collapse
Affiliation(s)
- Siya Dai
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Mingyuan Xu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Qianqian Pang
- Department of Plastic Surgery, Ningbo Second Hospital, 41 Xibei Street, Ningbo, China
| | - Jiaqi Sun
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Xiaohu Lin
- Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Gongshu District, Hangzhou, China
| | - Xi Chu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Chunyi Guo
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Jinghong Xu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| |
Collapse
|
40
|
Du Y, Liu J, Hao Q, Wang S, Zhang A, Li Y, Feng N. Effects of miR-214 on adenosine A2A receptor and carboxymethyl chitosan nanoparticles on the function of keloid fibroblasts and their mechanisms. Sci Rep 2024; 14:4896. [PMID: 38418830 PMCID: PMC10901826 DOI: 10.1038/s41598-024-54125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
This work prepared and investigated the impact of carboxymethyl chitosan nanoparticles (MC-NPs) on the proliferative capability of keloid fibroblasts (KFBs) while analyzing the mechanistic roles of miR-214 and adenosine A2A receptor (A2AR) in fibroblasts within hypertrophic scars. MC-NPs were synthesized through ion cross-linking, were characterized using transmission electron microscopy (TEM) and laser particle size scattering. The influence of MC-NPs on the proliferation capacity of KFBs was assessed using the MTT method. Changes in the expression levels of miR-214 and A2AR in KFBs, normal skin fibroblasts (NFBs), hypertrophic scar tissue, and normal skin tissue were analyzed. KFBs were categorized into anti-miR-214, anti-miR-NC, miR-214 mimics, miR-NC, si-A2AR, si-con, anti-miR-214+ si-con, and anti-miR-214+ si-A2AR groups. Bioinformatics target prediction was conducted to explore the interaction between miR-214 and A2AR. Real-time quantitative PCR and immunoblotting (WB) were employed to detect the expression levels of miR-214, A2AR, apoptotic protein Bax, and TGF-β in different cells. Cell counting kit-8 (CCK8) and flow cytometry were employed to assess cell proliferation activity and apoptosis. The results indicated that MC-NPs exhibited spherical particles with an average diameter of 236.47 ± 4.98 nm. The cell OD value in the MC-NPs group was lower than that in KFBs (P < 0.05). The mRNA levels of miR-214 in KFBs and hypertrophic scar tissue were lower than those in NFBs and normal tissue (P < 0.001), while the mRNA and protein levels of A2AR were significantly elevated (P < 0.05). Compared to the control group and anti-miR-NC, the anti-miR-214 group showed significantly increased cell OD values and Bcl-2 protein expression (P < 0.001), decreased levels of apoptotic gene Bax protein, TGF-β gene mRNA, and protein expression (P < 0.001). Continuous complementary binding sites were identified between miR-214 and A2AR. Compared to the control group, the si-A2AR group exhibited a significant decrease in A2AR gene mRNA and protein expression levels (P < 0.001), reduced cell viability (P < 0.001), increased apoptosis rate (P < 0.001), and a significant elevation in TGF-β protein expression (P < 0.001). miR-214 targetedly regulated the expression of A2AR, inducing changes in TGF-β content, promoting the proliferation of keloid fibroblasts, and inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Yong Du
- Department of Plastic Surgery, Jiangnan University Medical Center, Wuxi City, 214000, China
- Department of Plastic Surgery, NO.2 Wuxi People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214000, China
| | - Jing Liu
- Department of Plastic Surgery, Jiangnan University Medical Center, Wuxi City, 214000, China
| | - Qing Hao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221000, China
| | - Shun Wang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221000, China
| | - Aijun Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, 221000, China
| | - Yongzhong Li
- Department of Plastic Surgery, Jiangnan University Medical Center, Wuxi City, 214000, China
| | - Ninghan Feng
- Department of Urology, Jiangnan University Medical Center, Wuxi City, 214000, China.
| |
Collapse
|
41
|
Yan R, Cai H, Zhou X, Bao G, Bai Z, Ge RL. Hypoxia-inducible factor-2α promotes fibrosis in non-alcoholic fatty liver disease by enhancing glutamine catabolism and inhibiting yes-associated protein phosphorylation in hepatic stellate cells. Front Endocrinol (Lausanne) 2024; 15:1344971. [PMID: 38501098 PMCID: PMC10946064 DOI: 10.3389/fendo.2024.1344971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.
Collapse
Affiliation(s)
- Ranran Yan
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| | - Hao Cai
- Oncology Department, The Fifth People’s Hospital of Qinghai Provincial, Xining, China
| | - Xiaofeng Zhou
- Affiliated Hospital of Qinghai University, Xining, China
| | - Guodan Bao
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Affiliated Hospital of Qinghai University, Xining, China
| | - Zhenzhong Bai
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| | - Ri-li Ge
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| |
Collapse
|
42
|
Wang Z, Zhang Y, Liao Z, Huang M, Shui X. The potential of aryl hydrocarbon receptor as receptors for metabolic changes in tumors. Front Oncol 2024; 14:1328606. [PMID: 38434684 PMCID: PMC10904539 DOI: 10.3389/fonc.2024.1328606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Cancer cells can alter their metabolism to meet energy and molecular requirements due to unfavorable environments with oxygen and nutritional deficiencies. Therefore, metabolic reprogramming is common in a tumor microenvironment (TME). Aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear transcription factor, which can be activated by many exogenous and endogenous ligands. Multiple AhR ligands can be produced by both TME and tumor cells. By attaching to various ligands, AhR regulates cancer metabolic reprogramming by dysregulating various metabolic pathways, including glycolysis, lipid metabolism, and nucleotide metabolism. These regulated pathways greatly contribute to cancer cell growth, metastasis, and evading cancer therapies; however, the underlying mechanisms remain unclear. Herein, we review the relationship between TME and metabolism and describe the important role of AhR in cancer regulation. We also focus on recent findings to discuss the idea that AhR acts as a receptor for metabolic changes in tumors, which may provide new perspectives on the direction of AhR research in tumor metabolic reprogramming and future therapeutic interventions.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
43
|
Li C, Xie R, Zhang S, Yun J, Zhong A, Cen Y, Chen J. Metabolism, fibrosis, and apoptosis: The effect of lipids and their derivatives on keloid formation. Int Wound J 2024; 21:e14733. [PMID: 38339798 PMCID: PMC10858330 DOI: 10.1111/iwj.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Keloids, pathological scars resulting from skin trauma, have traditionally posed significant clinical management challenges due to their persistence and high recurrence rates. Our research elucidates the pivotal roles of lipids and their derivatives in keloid development, driven by underlying mechanisms of abnormal cell proliferation, apoptosis, and extracellular matrix deposition. Key findings suggest that abnormalities in arachidonic acid (AA) synthesis and non-essential fatty acid synthesis are integral to keloid formation. Further, a complex interplay exists between lipid derivatives, notably butyric acid (BA), prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and the regulation of hyperfibrosis. Additionally, combinations of docosahexaenoic acid (DHA) with BA and 15-deoxy-Δ12,14-Prostaglandin J2 have exhibited pronounced cytotoxic effects. Among sphingolipids, ceramide (Cer) displayed limited pro-apoptotic effects in keloid fibroblasts (KFBs), whereas sphingosine 1-phosphate (S1P) was found to promote keloid hyperfibrosis, with its analogue, FTY720, demonstrating contrasting benefits. Both Vitamin D and hexadecylphosphorylcholine (HePC) showed potential antifibrotic and antiproliferative properties, suggesting their utility in keloid management. While keloids remain a prevalent concern in clinical practice, this study underscores the promising potential of targeting specific lipid molecules for the advancement of keloid therapeutic strategies.
Collapse
Affiliation(s)
- Chen‐yu Li
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ru‐xin Xie
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Shi‐wei Zhang
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jiao Yun
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ai Zhong
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ying Cen
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jun‐jie Chen
- Department of Burn and Plastic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
44
|
Zhong Y, Zhang Y, Lu B, Deng Z, Zhang Z, Wang Q, Zhang J. Hydrogel Loaded with Components for Therapeutic Applications in Hypertrophic Scars and Keloids. Int J Nanomedicine 2024; 19:883-899. [PMID: 38293605 PMCID: PMC10824614 DOI: 10.2147/ijn.s448667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Hypertrophic scars and keloids are common fibroproliferative diseases following injury. Patients with pathologic scars suffer from impaired quality of life and psychological health due to appearance disfiguration, itch, pain, and movement disorders. Recently, the advancement of hydrogels in biomedical fields has brought a variety of novel materials, methods and therapeutic targets for treating hypertrophic scars and keloids, which exhibit broad prospects. This review has summarized current research on hydrogels and loaded components used in preventing and treating hypertrophic scars and keloids. These hydrogels attenuate keloid and hypertrophic scar formation and progression by loading organic chemicals, drugs, or bioactive molecules (such as growth factors, genes, proteins/peptides, and stem cells/exosomes). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favoured by researchers. In addition, combining hydrogels and current therapy (such as laser or radiation therapy, etc.) could improve the treatment of hypertrophic scars and keloids. Then, the difficulties and limitations of the current research and possible suggestions for improvement are listed. Moreover, we also propose novel strategies for facilitating the construction of target multifunctional hydrogels in the future.
Collapse
Affiliation(s)
- Yixiu Zhong
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Youfan Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Beibei Lu
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhenjun Deng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhiwen Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
45
|
Huang F, Zhang E, Lei Y, Yan Q, Xue C. Tripterine Inhibits Proliferation and Promotes Apoptosis of Keloid Fibroblasts by Targeting ROS/JNK Signaling. J Burn Care Res 2024; 45:104-111. [PMID: 37436955 PMCID: PMC11023317 DOI: 10.1093/jbcr/irad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 07/14/2023]
Abstract
Keloids are benign skin tumors characterized by excessive fibroblast proliferation and collagen deposition. The current treatment of keloids with hormone drug injection, surgical excision, radiotherapy, physical compression, laser therapy, cryotherapy often have unsatisfactory outcomes. The phytochemical compounds have shown great potential in treating keloids. Tripterine, a natural triterpene derived from the traditional Chinese medicine Thunder God Vine (Tripterygium wilfordii), was previously reported to exhibit an anti-scarring bioactivity in mouse embryonic fibroblast NIH/3T3 cells. Accordingly, our study was dedicated to explore its role in regulating the pathological phenotypes of keloid fibroblasts. Human keloid fibroblasts were treated with tripterine (0-10 μM) for 24 hours. Cell viability, proliferation, migration, apoptosis, and extracellular matrix (ECM) deposition were determined by CCK-8, EdU, wound healing, Transwell, flow cytometry, western blotting, and RT-qPCR assays. The effects of tripterine treatment on reactive oxygen species (ROS) generation and JNK activation in keloid fibroblasts were assessed by DCFH-DA staining and western blotting analysis. Tripterine at the concentrations higher than 4 μM attenuated the viability of human keloid fibroblasts in a dose-dependent manner. Treatment with tripterine (4, 6, and 8 μM) dose-dependently inhibited cell proliferation and migration, promoted cell apoptosis, reduced α-SMA, Col1, and Fn expression, induced ROS production, and enhanced JNK phosphorylation in keloid fibroblasts. Collectively, tripterine ameliorates the pathological characteristics of keloid fibroblasts that are associated with keloidformation and growth by inducing ROS generation and activating JNK signalingpathway.
Collapse
Affiliation(s)
- Fang Huang
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Enjing Zhang
- Department of Pharmacy, Third Municipal Hospital, Wuhan, China
| | - Yan Lei
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Yan
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chengbin Xue
- Department of Pharmacy, Hospital of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
47
|
Zhao S, Liu H, Wang H, He X, Tang J, Qi S, Yang R, Xie J. Inhibition of phosphatidylinositol 3-kinase catalytic subunit alpha by miR-203a-3p reduces hypertrophic scar formation via phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway. BURNS & TRAUMA 2024; 12:tkad048. [PMID: 38179473 PMCID: PMC10762504 DOI: 10.1093/burnst/tkad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 01/06/2024]
Abstract
Background Hypertrophic scar (HS) is a common fibroproliferative skin disease that currently has no truly effective therapy. Given the importance of phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in hypertrophic scar formation, the development of therapeutic strategies for endogenous inhibitors against PIK3CA is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of miR-203a-3p (PIK3CA inhibitor) against excessive scar. Methods Bioinformatic analysis, immunohistochemistry, immunofluorescence, miRNA screening and fluorescence in situ hybridization assays were used to identify the possible pathways and target molecules mediating HS formation. A series of in vitro and in vivo experiments were used to clarify the role of PIK3CA and miR-203a-3p in HS. Mechanistically, transcriptomic sequencing, immunoblotting, dual-luciferase assay and rescue experiments were executed. Results Herein, we found that PIK3CA and the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway were upregulated in scar tissues and positively correlated with fibrosis. We then identified miR-203a-3p as the most suitable endogenous inhibitor of PIK3CA. miR-203a-3p suppressed the proliferation, migration, collagen synthesis and contractility as well as the transdifferentiation of fibroblasts into myofibroblasts in vitro, and improved the morphology and histology of scars in vivo. Mechanistically, miR-203a-3p attenuated fibrosis by inactivating the PI3K/AKT/mTOR pathway by directly targeting PIK3CA. Conclusions PIK3CA and the PI3K/AKT/mTOR pathway are actively involved in scar fibrosis and miR-203a-3p might serve as a potential strategy for hypertrophic scar therapy through targeting PIK3CA and inactivating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Hengdeng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Hanwen Wang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Xuefeng He
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Jinming Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| |
Collapse
|
48
|
Wu Y, Zhou J, Kou Q, Sun L, Ma Y, Yang T, Hu X. Establishment of a Prognostic Model for Pancreatic Cancer Based on Hypoxia-Related Genes. Technol Cancer Res Treat 2024; 23:15330338241288687. [PMID: 39431298 PMCID: PMC11504279 DOI: 10.1177/15330338241288687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/17/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVES Pancreatic cancer presents a formidable challenge with its aggressive nature and dismal prognosis, often hampered by elusive early symptoms. The tumor microenvironment (TME) emerges as a pivotal player in pancreatic cancer progression and treatment responses, characterized notably by hypoxia and immunosuppression. In this study, we aimed to identify hypoxia-related genes and develop a prognostic model for pancreatic cancer leveraging these genes. METHODS Through analysis of gene expression data from The Cancer Genome Atlas (TCGA) and subsequent GO/KEGG enrichment analysis, hypoxia-related pathways were identified. We constructed a prognostic model using lasso regression and validated it using an independent dataset. RESULTS Our results showed that expression levels of PLAU, SLC2A1, and CA9 exhibited significant associations with prognosis in pancreatic cancer. The prognostic model, built upon these genes, displayed robust predictive accuracy and was validated in an independent dataset. Furthermore, we found a correlation between the risk score of the prognostic model and clinical parameters of pancreatic cancer patients. At the same time, we also explored the relationship between the established hypoxia-related prognostic model and the immune microenvironment at the single-cell level. RT-qPCR results showed notable differences in the expression of hypoxia pathway-related genes between normal PANC-1 and hypoxic-treated PANC-1 cells. CONCLUSION Our study provides insights into the role of the hypoxic microenvironment in pancreatic cancer and offers a promising prognostic tool for clinical application.
Collapse
Affiliation(s)
- Yangdong Wu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianrui Zhou
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingyan Kou
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Sun
- Department of ICU, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Ma
- Department of ICU, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingting Yang
- Department of ICU, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
49
|
Wu X, Gao H, Li F. hsa_circ_0037722 Drives Keloid Formation by Interacting with miR-140-3p and NR2F2. Crit Rev Immunol 2024; 44:17-29. [PMID: 37947069 DOI: 10.1615/critrevimmunol.2023050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Keloids can invade normal skin tissues to lead to itching, pain, hemorrhaging and suppuration, thereby affecting the mental health of patients. circRNAs can participate in keloids formation, but the role of hsa_circ_0037722 in keloids is still unknown. The goal of our study was to reveal the role of hsa_circ_0037722 in keloids. The levels of hsa_circ_0037722, miR-140-3p and NR2F2 in keloids was confirmed by qRT-PCR. Cell experiments were applied to assess the effect of hsa_circ_0037722/miR-140-3p/NR2F2 axis on keloids formation. In addition, the correlation among hsa_circ_0037722, miR-140-3p and NR2F2 was confirmed by luciferase assay. hsa_circ_0037722 and NR2F2 were upregulated in keloids tissues and keloids fibroblasts, whereas miR-140-3p was downregulated in keloids tissues and keloids fibroblasts. The abilities of proliferation and metastasis of keloids fibroblasts were impaired by silencing hsa_circ_0037722. However, miR-140-3p inhibitor or NR2F2 overexpression could restore the inhibitory function of hsa_circ_0037722 knockdown in keloid fibroblasts due to their targeting relationship. Taken together, hsa_circ_0037722 can facilitate keloids formation by interacting with miR-140-3p to relieve the suppression of miR-140-3p for NR2F2. The findings of this study may provide a novel idea for developing molecular targeted therapies for keloid.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Plastic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430000, Hubei, China
| | - Hu Gao
- Wound Repair & Rehabilitation Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430000, Hubei, China
| | - Fan Li
- Department of Plastic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430000, Hubei, China
| |
Collapse
|
50
|
Lv D, Xu Z, Cheng P, Hu Z, Dong Y, Rong Y, Xu H, Wang Z, Cao X, Deng W, Tang B. S-Nitrosylation-mediated coupling of DJ-1 with PTEN induces PI3K/AKT/mTOR pathway-dependent keloid formation. BURNS & TRAUMA 2023; 11:tkad024. [PMID: 38116467 PMCID: PMC10729783 DOI: 10.1093/burnst/tkad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/15/2023] [Accepted: 04/03/2023] [Indexed: 12/21/2023]
Abstract
Background Keloids are aberrant dermal wound healing characterized by invasive growth, extracellular matrix deposition, cytokine overexpression and easy recurrence. Many factors have been implicated as pathological causes of keloids, particularly hyperactive inflammation, tension alignment and genetic predisposition. S-Nitrosylation (SNO), a unique form of protein modification, is associated with the local inflammatory response but its function in excessive fibrosis and keloid formation remains unknown. We aimed to discover the association between protein SNO and keloid formation. Methods Normal and keloid fibroblasts were isolated from collected normal skin and keloid tissues. The obtained fibroblasts were cultured in DMEM supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The effects of DJ-1 on cell proliferation, apoptosis, migration and invasion, and on the expression of proteins were assayed. TurboID-based proximity labelling and liquid chromatography-mass spectrometry were conducted to explore the potential targets of DJ-1. Biotin-switch assays and transnitrosylation reactions were used to detect protein SNO. Quantitative data were compared by two-tailed Student's t test. Results We found that DJ-1 served as an essential positive modulator to facilitate keloid cell proliferation, migration and invasion. A higher S-nitrosylated DJ-1 (SNO-DJ-1) level was observed in keloids, and the effect of DJ-1 on keloids was dependent on SNO of the Cys106 residue of the DJ-1 protein. SNO-DJ-1 was found to increase the level of phosphatase and tensin homolog (PTEN) S-nitrosylated at its Cys136 residue via transnitrosylation in keloids, thus diminishing the phosphatase activity of PTEN and activating the PI3K/AKT/mTOR pathway. Furthermore, Cys106-mutant DJ-1 is refractory to SNO and abrogates DJ-1-PTEN coupling and the SNO of the PTEN protein, thus repressing the PI3K/AKT/mTOR pathway and alleviating keloid formation. Importantly, the biological effect of DJ-1 in keloids is dependent on the SNO-DJ-1/SNO-PTEN/PI3K/AKT/mTOR axis. Conclusions For the first time, this study demonstrated the effect of transnitrosylation from DJ-1 to PTEN on promoting keloid formation via the PI3K/AKT/mTOR signaling pathway, suggesting that SNO of DJ-1 may be a novel therapeutic target for keloid treatment.
Collapse
Affiliation(s)
- Dongming Lv
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Pu Cheng
- Department of General Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Yunxian Dong
- Department of Plastic Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, 466 Xingang Middle Road, Guangzhou, China
| | - Yanchao Rong
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Hailin Xu
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Zhiyong Wang
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Xiaoling Cao
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| |
Collapse
|