1
|
Gao E, Xu J, Liu F, Wu Z, Zhu J, Wang W, Li J, Yao S, Wu Z. Highly efficient mineralization of phenol through catalytic ozonation using urchin-like Cu xCe 1O y-BTC catalysts derived from metal-organic frameworks. J Environ Sci (China) 2025; 154:575-589. [PMID: 40049898 DOI: 10.1016/j.jes.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 05/13/2025]
Abstract
The efficient mineralization of phenol and its derivatives in wastewater remains a great challenge. In this study, the bimetallic CuCeO2-BTC was screened from a series of MOFs-derived MCeO2-BTC (M = La, Cu, Co, Fe, and Mn) catalysts, and the influence of the Cu/Ce ratio on phenol removal by catalytic ozonation was carefully examined. The results indicate that Cu2Ce1Oy-BTC was the best among the CuxCe1Oy-BTC (x = 0, 1, 2, and 3) catalysts, with a phenol mineralization efficiency reaching close to 100 % within 200 min, approximately 30.1 % higher than CeO2-BTC/O3 and 70.3 % higher than O3 alone. The order of mineralization efficiency of phenol was Cu2Ce1Oy-BTC > Cu3Ce1Oy-BTC > Cu1Ce1Oy-BTC > CeO2-BTC. CeO2-BTC exhibited a broccoli-like morphology, and CuxCe1Oy-BTC (x = 1, 2, and 3) exhibited an urchin-like morphology. Compared with CuxCe1Oy-BTC (x = 0, 1, and 3), Cu2Ce1Oy-BTC exhibited a larger specific surface area and pore volume. This characteristic contributed to the availability of more active sites for phenol degradation. The redox ability was greatly enhanced as well. Besides, the surface of Cu2Ce1Oy-BTC exhibited a higher concentration of Ce3+ species and hydroxyl groups, which facilitated the dissociation of ozone and the generation of active radicals. Based on the results of radical quenching experiments and the intermediates detected by LC-MS, a potential mechanism for phenol degradation in the Cu2Ce1Oy-BTC/O3 system was postulated. This study offers novel perspectives on the advancement of MOFs-derived catalysts for achieving the complete mineralization of phenol in wastewater through catalytic ozonation.
Collapse
Affiliation(s)
- Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; School of Ceramics, Wuxi Vocational Institute of Arts & Technology, Yixing 214206, China
| | - Fangyi Liu
- Zhejiang Qiushi Environmental Monitoring Co., Ltd., Hangzhou 311121, China
| | - Zhenzhen Wu
- Zhejiang Qiushi Environmental Monitoring Co., Ltd., Hangzhou 311121, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Xing C, Yao X, Zheng K, Liu Y, Sun Y, Guan X. Simultaneous Cr(III)-EDTA decomplexation and Cr(III) sequestration by catalytic ozonation with sulfidated zero-valent iron: Kinetics and removal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138032. [PMID: 40154125 DOI: 10.1016/j.jhazmat.2025.138032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/20/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Efficient removal of recalcitrant Cr(III)-organic complexes is always challenged by slow decomplexation process and the possible accumulation of highly toxic Cr(VI). Herein, a sulfidated zero-valent iron coupled ozonation strategy (S-ZVI/O3) was proposed to achieve efficient decomplexation and simultaneous abatement of Cr(III)-EDTA without Cr(VI) accumulation. Results revealed that S-ZVI could catalyze O3 to enhance removal of Cr(III)-EDTA and total organic carbon. Moreover, 88.3 % of total Cr was sequestrated by S-ZVI/O3 and the corresponding kinetic constant was 3.1 times higher than that of ZVI/O3. Mechanistically, electron paramagnetic resonance and probing tests verified HO• was the dominant reactive oxidation species for decomplexation of Cr(III)-EDTA in both S-ZVI/O3 and ZVI/O3. More attractively, it was found that structural Fe(II) was the major O3 activator in S-ZVI/O3, whereas dissolved Fe2+ accounted for O3 catalyzation in ZVI/O3. The X-ray absorption spectroscopy analysis revealed that sulfidation treatment could enhance corrosion of ZVI with the formation of sufficient Fe(II) species. The in-situ formed Fe(II) could not only transform undesired Cr(VI) back to Cr(III) but also co-precipitate with Cr(III) to form solid Fe-Cr hydroxides. Besides Cr(III)-EDTA, S-ZVI/O3 is also applicable to other EDTA complexed heavy metals. This work would provide a new method for the heavy metal complexes removal from water.
Collapse
Affiliation(s)
- Cuili Xing
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Xinyi Yao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Kaiwei Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Yang Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China.
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Zhu B, Liu J, Shen Y, Liu L, Liu F. The bidirectional matter transfer in adsorption-promoted photocatalytic ozonation system derived by triazine nanosheets-heptazine nanotubes homojunction composite biochar. WATER RESEARCH 2025; 279:123444. [PMID: 40068287 DOI: 10.1016/j.watres.2025.123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/02/2025] [Accepted: 03/04/2025] [Indexed: 05/06/2025]
Abstract
Heterogeneous catalytic ozonation (HCO) process is an efficiency and eco-friendly solution to the growing challenge of water purification, yet is challenging by O3 utilization, pollutants selectivity, and matter transfer resistance. Herein, adsorption-promoted photocatalytic ozonation (HCO/POAP) system was constructed derived by triazine nanosheets-heptazine nanotubes homojunction carbon nitride composite Enteromorpha prolifera derived biochar (CNTh-St/EpC) to provide a targeted solution for the refractory organic pollutants treatment. In the HCO/POAP system, the adsorption sites predominantly reside on EpC, while the catalytic sites are primarily located on CN. The construction of efficient transport channels is facilitated by the induction of triazine structures from amorphous C, N compounds along the edges of heptazine. This leads to the independent yet closely interconnected process of inward transfer of pollutants and outward transfer of active species, confining reactions to a bidirectional transfer channel. This strategic confinement significantly amplifies the performance of HCO/POAP system. Specifically, the removal rates are 80 % for TC and 94 % for PNP in 30 min with almost entirely harmless or non-toxic degradation products, and mark a 56 % and 77 % enhancement over O3 system, respectively. Moreover, the HCO/POAP system demonstrates exceptional efficacy in treating dissolved organic matter, chemical oxygen demand (COD), and ultraviolet absorbance at 254 nm (UV254) in diverse actual wastewater. This study highlights the potential of HCO/POAP process in efficient water purification, and provides mechanistic insights into the bidirectional matter transfer during the contaminants remove.
Collapse
Affiliation(s)
- Benjie Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Jialiang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yuxiang Shen
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Lingyu Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China.
| |
Collapse
|
4
|
Sulemana H, Yi C, Yi R, Zhang B, Nawaz MI, Nkudede E, Okoye CO, Zeng J, Zhang J, Mochiwa ZO. Mechanistic investigation of ciprofloxacin degradation using NiFe 2O 4/CA-cellulose acetate composite films in a novel dielectric barrier discharge plasma system. ENVIRONMENTAL RESEARCH 2025; 274:121132. [PMID: 39971116 DOI: 10.1016/j.envres.2025.121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Conventional wastewater treatments often exhibit limited efficiency in removing antimicrobial residues, thus requiring innovative methods to tackle antimicrobial contamination in the environment. This study employed a dielectric barrier discharge (DBD) plasma reactor with NiFe2O4-cellulose acetate (CA) composite films for ciprofloxacin (CIP) degradation in water. The catalytic efficiency of NiFe2O4/CA films was tested across the degradation rate of CIP in synthesized wastewater, reaction kinetics, energy utilization, and reductions in total organic carbon (TOC) and chemical oxygen demand (COD), both with and without the films in the DBD system. Optimal degradation conditions of 10 mg/L CIP concentration, 195 V, 6.5 Hz, 9% catalyst loading, and 4.32 L/min flow rate achieved 89.63% CIP removal within 60 min, with alkaline pH further enhancing degradation. UV-Vis analysis confirmed that extending DBD treatment time improved degradation rates. Variations in solution conductivity, pH, and concentrations of H2O2 and O3 were tracked to verify the catalytic role of NiFe2O4/CA films. Moreover, radical scavengers such as tert-butanol (TBA), benzoquinone (BQ), and triethylenediamine (TEDA) were introduced to the system which identified that •OH, ·O2-, and 1O2 were the key reactive oxygen species responsible for CIP degradation. Liquid chromatography-mass spectrometry (LC-MS) was used to determine the intermediate and by-products of the CIP degradation and four potential degradation pathways were proposed. Pathway III was considered the prominent route involving hydroxylation and piperazine ring cleavage, producing fewer toxic intermediates supported by density functional theory (DFT) calculations. Toxicity assessment showed most intermediates had reduced developmental toxicity and bioaccumulation potential compared to CIP. This highlights the environmental safety of the DBD plasma and NiFe2O4/CA system, as a promising, eco-friendly alternative to traditional methods, with reduced toxicity, minimal bioaccumulation, and potential for sustainable, large-scale application.
Collapse
Affiliation(s)
- Husseini Sulemana
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chengwu Yi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Rongjie Yi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Bo Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Imran Nawaz
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Emmanuel Nkudede
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiangwei Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianan Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | | |
Collapse
|
5
|
He X, Marken F, Vertova A, Minguzzi A. Roles of oxygen vacancies in layered double hydroxides-based catalysts for wastewater remediation: fundamentals and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125583. [PMID: 40334417 DOI: 10.1016/j.jenvman.2025.125583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/15/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025]
Abstract
Wastewater globally is a significant concern for environmental health and for the sustainable management of water resources. Catalysed based advanced oxidation processes (AOP), as a relatively low operation cost and high removal efficiency of pollutants method, has a promising potential to treat the wastewater. Among the numerous catalysts, Layered Double Hydroxides (LDHs) stands out for lamellar structure, high charge density, and tuneable properties. Meanwhile, oxygen vacancies engineering could modulate the electronic properties of materials and create active centres to regulate the poor charge transfer capability of LDHs. In this regard, this review is focused on how to create and confirm the oxygen vacancies, as well as the applications of the wastewater treatment from different AOPs. It starts with the synthesized of oxygen vacancies via chemical reduction method, plasma etching method, hydrothermal treatment method, ion doping strategy. Followed by the description of characterization methods, including EPR, XPS, XAS, Raman. Finally, the role of oxygen vacancies in LDHs for contaminant removal across various systems, including photocatalysis, electrocatalysis, Fenton reactions, and sulfate radical-based processes, was thoroughly examined and analyzed.
Collapse
Affiliation(s)
- Xiufang He
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AYUK
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy; Istituto Nazionale di Scienza e Tecnologia dei Materiali, via Giusti 9, Firenze, Italy.
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy; Istituto Nazionale di Scienza e Tecnologia dei Materiali, via Giusti 9, Firenze, Italy; Dipartimento di Energia, Politecnico di Milano, Via Lambruschini, 4a, 20156, Milano, Italy
| |
Collapse
|
6
|
Liu J, Yuan X, Dong H, Sans C. Progress in MnO 2/MnO 2-based materials catalytic ozonation process for water and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125493. [PMID: 40279744 DOI: 10.1016/j.jenvman.2025.125493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Heterogeneous catalytic ozonation (HCO) utilizes catalysts to enhance the adsorption and decomposition of ozone (O3), promote the formation of reactive oxygen species (ROS), and improve the removal of organic compounds, thereby overcoming some disadvantages of ozonation. MnO2/MnO2-based materials are widely used as catalysts for HCO due to their multi-valent Mn species, environment friendliness, abundant resources, and high efficiency. This review aims to provide an overview of the advancements in HCO using MnO2/MnO2-based materials, focusing on their preparation, structural characteristics, catalytic performance, and proposed mechanisms. In particular, the effects of MnO2 synthesis methods on the crystalline structure and morphology of catalysts are discussed. Then, the catalytic performances of various catalysts involving different phases, morphologies, and facets are compared. Subsequently, the enhanced applications of MnO2-based catalysts in HCO for water treatment are described, including metals doping, metal oxides combination, and MnO2-carrier. Furthermore, approaches of ROS identification are clarified, and the mechanisms of strengthening catalytic ozonation efficiency by MnO2/MnO2-based catalysts are summarized, containing redox couple theory, oxygen vacancy theory, complexation theory, and surface hydroxyl theory. Finally, the potential applications and perspectives of MnO2/MnO2-based catalysts are proposed. This review plans to bridge the gap between research and practical applications, providing new insights into the application of HCO technologies in water treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Xiangjuan Yuan
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain; School of Resources and Environment, Wuhan Textile University, Wuhan, 430073, China.
| | - Huiyu Dong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Carmen Sans
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain.
| |
Collapse
|
7
|
Wang J, Huangfu X, Huang R, Liang Y, Wu S, Liu H, Witkowski B, Gierczak T, Li S. Evaluating degradation efficiency of pesticides by persulfate, Fenton, and ozonation oxidation processes with machine learning. ENVIRONMENTAL RESEARCH 2025; 277:121548. [PMID: 40194678 DOI: 10.1016/j.envres.2025.121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Quantifying organic properties is pivotal for enhancing the precision and interpretability of degradation predictive machine learning (ML) models. This study used Binary Morgan Fingerprints (B-MF) and Count-Based Morgan Fingerprints (C-MF) to quantify pesticide structure, and built the ML model to forecast degradation rates of pesticides by persulfate (PS), Fenton (FT) and ozone oxidation (OZ). The result demonstrated that the C-MF-XGBoost model excelled, achieving R2 of 0.914, 0.934, and 0.971 on test-sets for the above three processes, respectively. The model accurately linked molecular structural variations to degradation rates, demonstrating that impact of molecular structure on the degradation rate was observed to be 12.4 %, 15.2 %, and 21.6 % respectively, across a broader range of SHAP values. Additionally, optimal pH ranges were identified for PS (3.5-5.5) and FT (2.5-4.0), while OZ showed a positive correlation with pH. The model identified electron gain/loss groups' promoting/inhibiting effects on degradation rates and highlighted the significance of N atomic structures in PS. Then, Tanimoto coefficient was used to evaluate the applicability of the model. This study lays a groundwork for quantifying organic compound structures and predicting their degradation impacts, presenting a novel framework to assess future organic pollutants' degradation performance.
Collapse
Affiliation(s)
- Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Ruixing Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Youheng Liang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Bartłomiej Witkowski
- Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Tomasz Gierczak
- Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shuo Li
- School of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
8
|
Amparán MAA, Palacios A, Flores GM, Olivera PMC. Review and future outlook for the removal of microplastics by physical, biological and chemical methods in water bodies and wastewaters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:429. [PMID: 40106081 PMCID: PMC11923036 DOI: 10.1007/s10661-025-13883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) have become a major global environmental problem due to their accelerated distribution throughout different environments. Their widespread presence is a potential threat to the ecosystems because they alter the natural interaction among their constituent elements. MPs are considered as emergent pollutants due to the huge amount existing in the environment and by the toxic effects they can cause in living beings. The removal of MPs from water bodies and wastewaters is a control strategy that needs to be implemented from the present on and strictly constantly in the near future to control and mitigate their distribution into other environments. The present work shows a detailed comparison of the current potential technologies for the remediation of the MPs pollution. That is, physical, biological, and chemical methods for the removal of MPs from water bodies and wastewaters. Focusing mainly on the discussion of the perspective on the current innovative technologies for the removal or degradation of the MPs, rather than in a deep technical discussion of the methodologies. The selected novel physical methods discussed are adsorption, ultrafiltration, dynamic membranes and flotation. The physical methods are used to modify the physical properties of the MPs particles to facilitate their removal. The biological methods for the removal of MPs are based on the use of different bacterial strains, worms, mollusks or fungus to degrade MPs particles due to the hydrocarbon chain decrease of the particles, because these kinds of microorganisms feed on these organic chains. The degradation of MPs in water bodies and wastewaters by chemical methods is focusing on coagulation, electrocoagulation, photocatalysis, and ozonation. Chemical methods achieve the degradation of MPs by the modification of the chemical structure of the particles either by the change of the surface of the particles or by attacking radicals with a high oxidation capacity. Additionally, some interesting combinations of physical, chemical, and biological methods are discussed. Finally, this work includes a critical discussion and comparison of several novel methods for the removal or degradation of MPs from water bodies and wastewaters, emphasizing the areas of opportunity and challenges to be faced.
Collapse
Affiliation(s)
- Marco Antonio Alvarez Amparán
- Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México.
| | - Adriana Palacios
- Departamento de Ingeniería Química, Universidad de Las Américas Puebla, Alimentos y Ambiental. Santa Catarina Mártir, Puebla. C.P. 72810, San Andrés Cholula, México
| | - German Miranda Flores
- Departamento de Ingeniería Química, Universidad de Las Américas Puebla, Alimentos y Ambiental. Santa Catarina Mártir, Puebla. C.P. 72810, San Andrés Cholula, México
| | - Pedro Manuel Castro Olivera
- Departamento de Ingeniería Química, Universidad de Las Américas Puebla, Alimentos y Ambiental. Santa Catarina Mártir, Puebla. C.P. 72810, San Andrés Cholula, México
| |
Collapse
|
9
|
Yang Y, Zhou S, Mao Y, Zhou Y, Cheng X. Ce-modified NH 2-MIL-88B enhances catalytic ozonation for effective antibiotic degradation. ENVIRONMENTAL RESEARCH 2025; 275:121388. [PMID: 40113061 DOI: 10.1016/j.envres.2025.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
A Ce-doped NH2-MIL-88B(Fe) composite (Ce-NM8B) was synthesized via a hydrothermal method and used to catalyze ozone oxidation to degrade levofloxacin (LEF) in water. Moreover, comprehensive characterization of Ce-NM8B, including crystal structure, surface morphology, and electrochemical properties, was performed using XRD, SEM, BET, XPS, FT-IR, and ICP techniques. As a result, the Ce-NM8B/O3 system achieved an 84.2 % degradation of 10 mg/L LEF within 40 min under optimal conditions (0.20 g/L catalyst dosage, 0.20 L/min ozone flow, pH 7). Furthermore, EPR and radical quenching experiments confirmed the generation of ·OH, O2·-, and 1O2 species, in addition to direct ozone oxidation and catalytic adsorption. Additionally, HPLC-MS analysis identified key degradation pathways, including piperazine, quinolone, and morpholine ring cleavage, alongside decarboxylation, defluorination, and demethylation. In terms of toxicity, evaluation using T.E.S.T. revealed that intermediate products exhibited reduced toxicity. Moreover, Ce-NM8B demonstrated stable performance over three cycles. Finally, the system's applicability and practical potential were confirmed through the degradation of several antibiotics and testing in natural water substrates.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Shengwen Zhou
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Yaoru Mao
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Yuerong Zhou
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Xiuwen Cheng
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
10
|
Kumar L, Gupta B, Kumar Purkait M. Photo-induced degradation of toxic recalcitrant compounds from surface water: Insights into advanced nanomaterials, hybrid photocatalytic systems, and real applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124610. [PMID: 39999753 DOI: 10.1016/j.jenvman.2025.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in toxic recalcitrant organic compounds (ROCs) from various industrial, residential, and agricultural sources poses a significant public health concern and threatens environmental preservation. The presence of these toxic ROCs weakens the effectiveness of conventional water and wastewater treatment systems. As a result, numerous physicochemical and biological treatment processes have been explored, each demonstrating varying removal efficiencies depending on experimental conditions. Given the limitations of existing treatment methods, research has increasingly focused on advanced oxidation processes, particularly photocatalysis. Photocatalysis is a prominent treatment technique due to its low sludge production, non-toxic nature, reusable characteristics, and ability to harness visible light. This review comprehensively examines the ecotoxicological effects of ROCs, existing biological and physicochemical treatment methods, advancements in photocatalyst synthesis, the transition from conventional to advanced photocatalysts, and hybrid treatment systems. In the context of photocatalytic removal of ROCs, the review also addresses several influencing parameters, including initial pollutant concentration, solution pH, light intensity, catalyst dose, and catalyst type. Global case studies focusing on the mechanisms of photocatalytic degradation of ROCs are highlighted. The documented photocatalysts for removing ROCs from water and wastewater have shown promising results. Moreover, integrating photocatalysis with advanced physicochemical and biological processes has effectively removed various dissolved (e.g., ROCs) and suspended impurities, showcasing its practical applications. Thus, this study could serve as a valuable resource for researchers and engineers working on the treatment of various micropollutants, such as ROCs, in real wastewater.
Collapse
Affiliation(s)
- Lokesh Kumar
- Centre for Sustainable Water Research, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Bramha Gupta
- Centre for Sustainable Water Research, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
11
|
Mohammadzadeh M, Bello A, Lassen SB, Brandt KK, Risteelä S, Leiviskä T. Pilot-scale adsorption of pharmaceuticals from municipal wastewater effluent using low-cost magnetite-pine bark: Regeneration/enumeration of viable bacteria with a study on their biotoxicity. ENVIRONMENTAL RESEARCH 2025; 268:120774. [PMID: 39761781 DOI: 10.1016/j.envres.2025.120774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm3) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit. In the next stage, a four-month pilot-scale adsorption test was performed using a large column (bed volume: 21 L) filled with BC and MPB. A variety of compounds were removed after the pilot-scale column, including trimethoprim (99.7%), hydrochlorothiazide (81.8%), candesartan (26.0%), carbamazepine (86.1%), ketoprofen (89.4%), clindamycin (86.6%), oxazepam (91.3%), sulfadiazine (38.6%), sulfamethoxazole (58.3%), tramadol (88.9%), zopiclone (73.5%), venlafaxine (93.7%), furosemide (93.5%), fexofenadine (91.6%) and losartan (81.2%). The enumeration of viable bacteria in the pilot-scale column samples revealed that regenerating the BC-MPB bed with NaOH increased bacterial counts in the treated water due to the desorption of adsorbed bacteria from the bed. A biotoxicity study using the Nitrosomonas europaea bioreporter strain indicated that the wastewater was generally non-toxic to this nitrifying bacterium and regeneration of pilot-scale column samples caused short-time toxicity immediately after regeneration. The study confirms that MPB is efficient for the adsorption of pharmaceuticals and can be applied in column mode with a support material such as BC. Therefore, MPB is a viable alternative for AC for the remediation of pharmaceutical-contaminated wastewaters.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland.
| | - Adedayo Bello
- Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland
| | - Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Sofia Risteelä
- Oulu Waterworks, P.O. BOX 35, FI-90015, City of Oulu, Finland
| | - Tiina Leiviskä
- Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland
| |
Collapse
|
12
|
Huang H, Li W, Chen X, Yang Z, Chen M, Zhang A, He C, Tian S. Weakening the Mn-O-Si Interaction via Carbon Intercalation for the Enhanced Catalytic Ozonation of Refractory Pollutants in Environmental Matrices. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12177-12188. [PMID: 39957100 PMCID: PMC11874039 DOI: 10.1021/acsami.4c21068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
The strong metal-support interaction (MSI) has been widely attributed to enhanced catalytic activity. However, this attribution might be wrong in catalytic ozonation, since MSI that is too strong might impede the activation of electron-poor ozone molecules. Herein, we reported a strategy to subtly modulate the Mn-O-Si interaction by intercalating the carbon film between the silica support and active manganese oxide. When using MnOx/0.5C/SiO2 with the moderate MSI as a catalyst in the catalytic ozonation of refractory paracetamol (PCM), 91.1 ± 2.4% of PCM was removed within 30 min, about 30% higher than that using the catalyst of MnOx/SiO2 with a strong MSI. Moreover, the reaction rate reached 8.01 × 10-2 min-1, 2.2 and 1.3 times that with MnOx/SiO2 and MnOx/1C/SiO2, respectively. Importantly, further integration of MnOx/0.5C/SiO2 into membrane filtration achieved high rejections of PCM (>94.3%) under various realistic water scenarios during a continuous 12 h operation, demonstrating strong resistance to environmental matrices interference. Experimental and theoretical evidence revealed that the moderate MSI resulted in the high dispersion of active MnOx nanoclusters in the size of 2.3-4.4 nm and promoted the adsorption of ozone over MnOx and its dissociation into surface *O, •OH, •O2-, and 1O2 for decontamination. As a constructive work, this study revealed the significance of MSI in catalytic ozonation and offered a simple regulation method for constructing active interfaces of metal-supported catalysts.
Collapse
Affiliation(s)
- Huating Huang
- School
of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Weiqing Li
- School
of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xixi Chen
- Department
of Materials Science and Engineering, City
University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhiming Yang
- China
National Chemical Southern Construction Investment Co., Ltd., Guangzhou 516000, P. R. China
| | - Minggang Chen
- China
National Chemical Southern Construction Investment Co., Ltd., Guangzhou 516000, P. R. China
| | - Anhong Zhang
- China
National Chemical Southern Construction Investment Co., Ltd., Guangzhou 516000, P. R. China
| | - Chun He
- School
of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong
Provincial Key Laboratory of Environmental Pollution Control and Remediation, Guangzhou 510275, P. R. China
| | - Shuanghong Tian
- School
of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong
Provincial Key Laboratory of Environmental Pollution Control and Remediation, Guangzhou 510275, P. R. China
| |
Collapse
|
13
|
Regmi C, Kshetri YK, Wickramasinghe SR. Hybrid combination of advanced oxidation process with membrane technology for wastewater treatment: gains and problems. NANOTECHNOLOGY 2025; 36:132002. [PMID: 39883952 DOI: 10.1088/1361-6528/adb040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology. It utilizes the advantages of each technique, resulting in the enhancement of wastewater treatment. This pioneering idea is designed to significantly enhance water quality, addressing real-world implementation hurdles, and offer a promising solution to the worldwide issue of water scarcity. This review assesses the merits and drawbacks of the hybrid photocatalytic membrane technology employed in wastewater treatment. Notably, this hybrid process not only improves the membrane filtration capacity and permeates water quality but also enhances the antifouling performance of the membrane. However, it is crucial to acknowledge potential drawbacks, such as membrane structure degradation and photocatalytic activity loss in nanoparticles during the operation period. While improvements in wastewater treatment efficiency are evident, there remains ample room for further enhancements. The review summarizes the future directions and challenges of implementing such an integrated system.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Yuwaraj K Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Chungnam 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Chungnam 31460, Republic of Korea
| | - S Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, United States of America
| |
Collapse
|
14
|
Liang J, Fei Y, Yin Y, Han Q, Liu Y, Feng L, Zhang L. Advancements in wastewater treatment: A comprehensive review of ozone microbubbles technology. ENVIRONMENTAL RESEARCH 2025; 266:120469. [PMID: 39617155 DOI: 10.1016/j.envres.2024.120469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Microbubbles (MBs) possess unique characteristics, including exceptional stability, a high specific surface area, and increased internal pressure. When combined with ozone, these properties significantly enhance the mass transfer and utilization efficiency of ozone, resulting in improved removal of organic pollutants. In recent years, the innovative application of the ozone MBs process has garnered attention as an effective method for wastewater treatment. However, research on its application effects and oxidation mechanisms in this field remains relatively limited. This article provides a comprehensive review of the ozone MBs process, detailing the principles of various MB generation techniques, the oxidation mechanisms of ozone MBs, and the practical applications of this process. Additionally, we address existing controversies and highlight the unique features, efficacy, and limitations of this technology in wastewater treatment. Future research should urgently investigate the pollutant removal mechanisms of the ozone MBs process through device optimization and bubble dynamics, with the aim of enhancing processing efficiency and reducing operating costs. This study presents a viable direction for the advancement and exploration of ozone MB technology, providing scientific support and guidance for its future applications in wastewater treatment.
Collapse
Affiliation(s)
- Jiahao Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Fei
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuhan Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Alhuwaymil Z. Development, analysis, and effectiveness of an F-C-MgO/rGOP catalyst for the degradation of atrazine using ozonation process: Synergistic effect, mechanism, and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123990. [PMID: 39798323 DOI: 10.1016/j.jenvman.2024.123990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
This study considered the effects of fluoride, MgO, sucrose, and rGO on the characteristics of the fluoride-carbon-MgO/rGO predicted (F-C-MgO/rGOP) catalyst and its effectiveness in the catalytic ozonation process (COP) for atrazine elimination from aqueous solutions. Using a mixture design, the catalyst composition was optimized to 13.6% sucrose, 50% Mg (OH)2, 25% NaF, and 11.4% rGO, which demonstrated the highest catalytic activity for atrazine degradation. Analysis of the synthesized F-C-MgO/rGO revealed a mesoporous structure with a BET surface area of 145 m2/g. The optimized COP parameters were a pH of 8.5, contact time of 11 min, catalyst dose of 1.38 g/L, and atrazine concentration of 10 mg/L. Atrazine mineralization reached 62.8% after 15 min of contact time. The COP exhibited a synergistic effect of 82.5%, a mineralization capacity of 17.75 mg/g, and a kinetic rate constant of 0.25 min⁻1 for atrazine degradation. Intermediate analysis identified alkyl oxidation, dealkylation, and dechlorination-hydroxylation as the main pathways of degradation. Biodegradability index and toxicity assessments indicated a reduction in the toxicity of treated wastewater (both synthetic and real) after COP treatment. A BOD₅/COD ratio above 0.5 in both samples indicated the wastewater was suitably biodegradable.
Collapse
Affiliation(s)
- Zamzam Alhuwaymil
- Department of Chemistry, College of Science and Humanites at Al-Quway'iyahl, Shaqra University, Saudi Arabia.
| |
Collapse
|
16
|
Mahmoodi M, Pishbin E. Ozone-based advanced oxidation processes in water treatment: recent advances, challenges, and perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3531-3570. [PMID: 39827442 DOI: 10.1007/s11356-024-35835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Water pollution, driven by a variety of enduring contaminants, poses considerable threats to ecosystems, human health, and biodiversity, highlighting the urgent need for innovative and sustainable treatment approaches. Ozone-based advanced oxidation processes (AOPs) have demonstrated significant efficacy in breaking down stubborn pollutants, such as organic micropollutants and pathogens, that are not easily addressed by traditional treatment techniques. This review offers an in-depth analysis of ozonation mechanisms, covering both the direct oxidation by ozone and the indirect reactions facilitated by hydroxyl radicals, emphasizing their effectiveness and adaptability across various wastewater matrices. Significant progress in the combination of ozonation with additional technologies, including UV irradiation, hydrogen peroxide (H₂O₂), catalytic systems, and biological treatments, is examined, highlighting their effectiveness in enhancing pollutant breakdown, increasing biodegradability, and reducing secondary pollution. Hybrid methods, including catalytic ozonation and ozone-biological treatment, show significant enhancements in process efficiency and cost-effectiveness, while effectively tackling challenges associated with energy use and byproduct generation. Despite the promising possibilities, obstacles remain, such as scalability issues, high operational costs, and the risk of generating potentially harmful transformation products. Cutting-edge approaches, including the creation of sophisticated catalysts, integration of processes, and refinement of reactor designs, are suggested to address these challenges and improve the real-world implementation of ozone-based advanced oxidation processes. This review highlights the significant potential of ozone-based advanced oxidation processes as sustainable approaches for wastewater treatment, providing an essential route to environmental conservation and safeguarding public health.
Collapse
Affiliation(s)
- Mohammadreza Mahmoodi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 2515 Speedway, Austin, TX, 78712, USA
- Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.
| |
Collapse
|
17
|
Montero-Guadarrama I, Muro Urista C, Roa-Morales G, Gutiérrez Segura EE, Díaz-Blancas V, Dévora-Isiordia GE, Álvarez-Sánchez J. Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses. MEMBRANES 2025; 15:33. [PMID: 39852273 PMCID: PMC11767101 DOI: 10.3390/membranes15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m3/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m3 for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives. Other contributions of organic compounds and salts could be in minor content. According to the effluent conditions, a coupled process, integrated with ozonation and reverse osmosis, was indicated to be a treatment for water recovery. Scaling up the plant treatment design resulted in 130 m2 of area, producing 7.7 m3/h of clean water. The cost of the effluent treatment was 1.4 USD/m3, with an inversion return of 3.4 years and cost investment of USD 860,407. The treatment process resulted a viable project for water recovery.
Collapse
Affiliation(s)
- Ivette Montero-Guadarrama
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, Metepec C.P. 52149, Estado de México, Mexico; (I.M.-G.); (V.D.-B.)
| | - Claudia Muro Urista
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, Metepec C.P. 52149, Estado de México, Mexico; (I.M.-G.); (V.D.-B.)
| | - Gabriela Roa-Morales
- Centro Conjunto de Investigación en Química Sustentable CCIQS UAEM-UNAM, Facultad de Química, Universidad Autónoma del Estado de México (UAEMex), Carretera Toluca-Atlacomulco, Km 14.5, Toluca C.P. 50200, Estado de México, Mexico;
| | - Edith Erialia Gutiérrez Segura
- Centro Conjunto de Investigación en Química Sustentable CCIQS UAEM-UNAM, Facultad de Química, Universidad Autónoma del Estado de México (UAEMex), Carretera Toluca-Atlacomulco, Km 14.5, Toluca C.P. 50200, Estado de México, Mexico;
| | - Vianney Díaz-Blancas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, Metepec C.P. 52149, Estado de México, Mexico; (I.M.-G.); (V.D.-B.)
| | - Germán Eduardo Dévora-Isiordia
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur Col. Centro, Cd. Obregón C.P. 85000, Sonora, Mexico; (G.E.D.-I.); (J.Á.-S.)
| | - Jesús Álvarez-Sánchez
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur Col. Centro, Cd. Obregón C.P. 85000, Sonora, Mexico; (G.E.D.-I.); (J.Á.-S.)
| |
Collapse
|
18
|
Ikhlaq A, Kanwal M, Rizvi OS, Ramzan N, Akram A, Qazi UY, Qi F, Hassan SU, Javaid R. Decontamination of fish aquarium wastewater by ozonation catalyzed by multi-metal loaded activated carbons for sustainable aquaculture. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2025; 193:374-384. [DOI: 10.1016/j.psep.2024.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Yu Y, Li Y, Sun B, Cui J, Liu H, Sun Y, Xu Q, Boisse N, Voelker F, Matioszek D, Favero C, Kieffer J, Li Y, Lu J, Li H, Bao M. Characterization and degradation mechanism of a newly isolated hydrolyzed polyacrylamide-degrading bacterium Alcaligenes faecalis EPDB-5 from the oilfield sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125124. [PMID: 39414063 DOI: 10.1016/j.envpol.2024.125124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Hydrolyzed polyacrylamide (HPAM) is posing serious threats to ecosystems. However, biodegradation is an effective method to remove HPAM owing to its low cost and environmental friendliness. In this study, Alcaligenes faecalis EPDB-5 was isolated as a highly efficient HPAM degrading strain from sludge contaminated with polymerized produced water from Daqing oilfield. Under the optimal conditions, the strain EPDB-5 demonstrated an impressive HPAM degradation rate of 86.05%, the total nitrogen (TN) removal of 71.96% and chemical oxygen demand (COD) removal of 67.98%. Meanwhile, it can maintain a stable degradation rate higher than 75% under different pH and temperature conditions. 27 genes that play a key role in HPAM degradation were annotated by metagenomics sequencing. The key genes were involved in multiple KEGG pathways, including biofilm formation, biosynthesis secondary metabolites, and metabolic pathways. SEM, GPC, and FTIR analyses revealed that the structure of HPAM after biodegradation showed pores, a significant decrease in molecular weight, -NH2 detachment, and carbon chain breakage. Particularly, we propose a possible mechanism of biofilm formation - HPAM degradation - biofilm disappearance and reorganization. Moreover, the degradation rate of strain EPDB-5 on real wastewater containing HPAM was 29.97% in only three days. This work expands our knowledge boundary about the HPAM degradation mechanism at the functional gene level, and supports the potential of strain EPDB-5 as a novel auxiliary microbial resource for the practical application of HPAM.
Collapse
Affiliation(s)
- Yaqiu Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yanshuo Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Bingjian Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinbo Cui
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yuxiang Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qinglin Xu
- SNF (China) Flocculants Ltd, Taixing, 225400, China
| | | | | | | | | | | | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
20
|
Samatov MR, Mikhalev ES, Abramova IO, Bayazitov VM, Vasenko AS, Nikonov RV, Steblyanko AY, Kamler AV. Dielectric Barrier Corona Activation of Electrical Discharge in a Cavitating Liquid. J Phys Chem Lett 2024; 15:11939-11943. [PMID: 39575867 DOI: 10.1021/acs.jpclett.4c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Water treatment methods based on cold plasma discharge in cavitating liquid have been actively developing in recent years. However, some conditions, such as the conductivity of the medium, can limit the possibility of plasma ignition. The authors proposed a new method for activating an electric discharge in a cavitating liquid environment based on the use of an external corona discharge electrode in the plasma reactor. It has been experimentally shown that, in such a configuration, the breakdown voltage is significantly reduced. A theoretical analysis of the process was carried out, and a modified Paschen's curve was constructed on the basis of experimental data. The following graph shows the basic diagram of the setup and plasma reactor: 1, input water tank; 2, pump; 3, reactor; 4, generator; and 5, output tank. "Gap 0" expresses the gap between the two ring electrodes, and "gap" expresses the gap between the corona electrode and the lower ring electrode.
Collapse
Affiliation(s)
- Mikhail R Samatov
- HSE University, Pokrovsky Bulvar 11, 109028 Moscow, Russian Federation
| | - Egor S Mikhalev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academyof Sciences, Leninsky Prospekt 31, 119991 Moscow, Russian Federation
| | - Irina O Abramova
- Institute for African Studies (IAS), Spiridonovka Street 30/1, 123001 Moscow, Russian Federation
| | - Vadim M Bayazitov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academyof Sciences, Leninsky Prospekt 31, 119991 Moscow, Russian Federation
| | - Andrey S Vasenko
- HSE University, Pokrovsky Bulvar 11, 109028 Moscow, Russian Federation
| | - Roman V Nikonov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academyof Sciences, Leninsky Prospekt 31, 119991 Moscow, Russian Federation
| | - Alexander Yu Steblyanko
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Street 8-2, 119991 Moscow, Russian Federation
| | - Anna V Kamler
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academyof Sciences, Leninsky Prospekt 31, 119991 Moscow, Russian Federation
| |
Collapse
|
21
|
Tu M, Chen L, Gu J, Mao C, Ren Y, Wang H, Xu G. Decomplexation of Pb-EDTA by electron beam irradiation technology: efficiency and mechanism. RSC Adv 2024; 14:38815-38826. [PMID: 39654921 PMCID: PMC11626710 DOI: 10.1039/d4ra04993d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
As a common heavy metal complex in industrial wastewater, Pb-EDTA has garnered much attention due to its detrimental impact on both human health and the ecological environment. The degradation of heavy metal complexes by traditional methods requires subsequent treatment to recover heavy metals. This article attempts to find an effective method to simultaneously degrade both organic matter and heavy metal pollutants. Experimental results indicate that 1 mM Pb-EDTA can be effectively removed at 10 kGy with a degradation efficiency of 91.62%. Most lead ions were still in a stable complex state, with a removal rate of 24.42% (10 kGy). When the absorbed dose increased to 80 kGy, the degradation efficiency of Pb-EDTA was 95.24%. At this time, the removal rate of Pb2+ reached 68.82%. Through radical scavenging experiments and further mechanism analysis, it was demonstrated that electron beam irradiation primarily generates ·OH radicals, disrupting the structure of Pb-EDTA, gradually decarboxylating, and ultimately generating formic acid, acetic acid, and NO3 -. The released metal ions were reduced by eaq - and ·H to obtain lead monomers. Residual toxicity analysis indicates that the toxicity of degradation products generated by electron beam irradiation is significantly reduced. Experimental results showed that electron beam irradiation can effectively degrade Pb-EDTA and recover lead ions simultaneously.
Collapse
Affiliation(s)
- Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
| | - Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
- Shanghai, University, Shanghai Institute Applied Radiation 20 Chengzhong Road Shanghai 200444 PR China
| | - Jianzhong Gu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
- Shanghai, University, Shanghai Institute Applied Radiation 20 Chengzhong Road Shanghai 200444 PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
| | - Yingfei Ren
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 PR China +86 21 6998 2749 +86 21 66137787 +86 21 6998 2744 +86 21 66138250
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education Shanghai, 200444 PR China
- Shanghai, University, Shanghai Institute Applied Radiation 20 Chengzhong Road Shanghai 200444 PR China
| |
Collapse
|
22
|
Goswami D, Mukherjee J, Mondal C, Bhunia B. Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176426. [PMID: 39326754 DOI: 10.1016/j.scitotenv.2024.176426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The synthetic azo dyes are widely used in the textile industries for their excellent dyeing properties. They may be classified into many classes based on their structure and application, including direct, reactive, dispersive, acidic, basic, and others. The continuous discharge of wastewater from a large number of textile industries without prior treatment poses detrimental effects on the environment and human health. Azo dyes and their degradation products are extremely poisonous for their carcinogenic, teratogenic and mutagenic nature. Moreover, exposure to synthetic azo dyes can cause genetic changes, skin inflammation, hypersensitivity responses, and skin irritations in persons, which may ultimately result in other profound issues including the deterioration of water quality. This review discusses these dyes in details along with their detrimental effects on aquatic and terrestrial flora and fauna including human beings. Azo dyes degrade the water bodies by increasing biochemical and chemical oxygen demand. Therefore, dye-containing wastewater should be effectively treated using eco-friendly and cost-effective technologies to avoid negative impact on the environment. This article extensively reviews on physical, chemical and biological treatment with their benefits and challenges. Biological-based treatment with higher hydraulic retention time (HRT) is economical, consumes less energy, produces less sludge and environmentally friendly. Whereas the physical and chemical methods with less hydraulic retention time is costly, produces large sludge, requires high dissolved oxygen and ecologically inefficient. Since, biological treatment is more advantageous over physical and chemical methods, researchers are concentrating on bioremediation for eliminating harmful azo dye pollutants from nature. This article provides a thorough analysis of the state-of-the-art biological treatment technologies with their developments and effectiveness in the removal of azo dyes. The mechanism by which genes encoding azoreductase enzymes (azoG, and azoK) enable the natural degradation of azo dyes by bacteria and convert them into less harmful compounds is also extensively examined. Therefore, this review also focuses on the use of genetically modified microorganisms and nano-technological approaches for bioremediation of azo dyes.
Collapse
Affiliation(s)
- Deepa Goswami
- Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana 501401, India
| | - Chanchal Mondal
- Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
23
|
Amaku JF, Mtunzi FM. Functional ZnONPs-modified biochar derived from Funtumia elastica husk as an efficient adsorbent for the removal of sulfamethoxazole from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65496-65512. [PMID: 39585567 PMCID: PMC11632023 DOI: 10.1007/s11356-024-35594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Funtumia elastica husk was employed as an efficient and economically viable adsorbent to supplement traditional treatment methods in the removal of sulfamethoxazole from wastewater by converting it into usable material. The purpose of this study was to make biochar (FHB) from Funtumia elastica husk through the pyrolysis process and further modify the biochar using zinc oxide nanoparticles (ZnONPs) to a nanocomposite (FBZC). The antioxidant and antimicrobial characteristics as well as the potential of FBZC and FHB to sequester sulfamethoxazole from wastewater were investigated. Uptake capacities of 59.34 mg g-1 and 26.18 mg g-1 were attained for the monolayer adsorption of SMX onto FBZC and FHB, respectively. SEM and FTIR spectroscopic techniques were used to determine the surface morphology and chemical moieties of adsorbents, respectively. Brunauer-Emmett-teller (BET) surface analysis was used to assess the specific surface area of FHB (0.5643 m2 g-1) and FBZC (1.2267 m2 g-1). The Elovich and pseudo-first-order models are both well-fitted by the experimental data for FHB and FBZC, according to kinetic results. Nonetheless, the equilibrium data for FHB and FBZC were better explained by the Freundlich and Langmuir isotherm models, respectively. The pHPZC values of 6.83 and 5.57 were determined for FBZC and FHB respectively. Optimum solution pH, dosage, and contact time of 6, 0.05 g, and 120 min were estimated for FHB and FBZC. In conclusion, these findings demonstrate the strong potential of FBZC to simultaneously arrest the spread of pathogenic microbes and sequester sulfamethoxazole from wastewater.
Collapse
Affiliation(s)
- James Friday Amaku
- Wastewater Treatment Research Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark, 1911, Gauteng, South Africa.
- Department of Chemistry, Michael Okpara University of Agriculture Umudike, P.M.B 7267, Umuahia, Abia State, Nigeria.
| | - Fanyana M Mtunzi
- Wastewater Treatment Research Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark, 1911, Gauteng, South Africa
| |
Collapse
|
24
|
Lv J, Yang D, Shen Z, Lv Z, Shao Z, Liu G, Yao H, Li X. Strengthened ozone adsorption through positive electric field-induced charge migration on various TiO 2 crystal surfaces: A mechanistic and theoretical study. ENVIRONMENTAL RESEARCH 2024; 262:119913. [PMID: 39233030 DOI: 10.1016/j.envres.2024.119913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
This study investigates the enhancement of ozone adsorption on diverse TiO2 crystal interfaces through an innovative electrochemical modulation approach. The research focuses on the effects of applied electric field strength and reaction sites on ozone interfacial adsorption energies for Ti/Anatase TiO2 (0 0 1) and Ti/Rutile TiO2 (1 1 0) interfaces. The findings reveal that positive electric fields significantly enhance ozone adsorption on both interfaces, with adsorption energies increasing by up to 18% for Ti/Anatase TiO2 (0 0 1) and 15% for Ti/Rutile TiO2 (1 1 0). Notably, double water molecule sites (≡(H2O)2) play a crucial role in this enhancement process. The study demonstrates that the applied electric field alters the charge distribution at the TiO2 catalytic interface, thereby increasing interfacial charge density and promoting charge migration to ozone. Furthermore, this process leads to enhanced overlap and hybridization between ≡(H2O)2 sites and the s and p orbitals of ozone molecules, resulting in the formation of chemical bonds with lower Fermi levels. These comprehensive results demonstrate the broad applicability of the electrochemical interfacial ozone adsorption enhancement method across different crystal types and surfaces. Consequently, this study provides essential data to support the advancement of greener and more energy-efficient heterogeneous catalytic ozonation processes, potentially contributing to significant improvements in ozone-based water treatment technologies.
Collapse
Affiliation(s)
- Jingfei Lv
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Schol of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Daoxin Yang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Schol of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhen Shen
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Schol of Environment, Beijing Jiaotong University, Beijing, 100044, China; Information Center of the Ministry of Ecology and Environment, Beijing, 100029, China
| | - Zhangzengye Lv
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Schol of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Zehan Shao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Schol of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Guicheng Liu
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Schol of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Xinyang Li
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Schol of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
25
|
Mandal TK. Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1847. [PMID: 39591087 PMCID: PMC11597552 DOI: 10.3390/nano14221847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters-such as light intensity, catalyst dosage, and ultrasonication power-that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
26
|
Geetha T, Smitha JK, Sebastian M, Litty MI, Joseph B, Joseph J, Nisha T. Synthesis and characterization of nano iron oxide biochar composite for efficient removal of crystal violet from water. Heliyon 2024; 10:e39450. [PMID: 39553590 PMCID: PMC11565452 DOI: 10.1016/j.heliyon.2024.e39450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
In the present study, Coconut Husk Biochar (CHB) was synthesize from widely available, locally sourced agro waste, coconut husk and characterized using different techniques like scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). CHB was tested for its ability to adsorb crystal violet (CV), a commonly used cationic dye, from water. It was capable of adsorbing more than 98 % of CV from water and follows Freundlich isotherm model with pseudo second order kinetics though the overall process was unfavourable. Moreover, separation of CHB from water after adsorption is a cumbersome process. Thus, unmodified CHB is not suitable for use as an adsorbent for CV. Magnetic nano iron oxide Biochar Composite (MBC) was synthesized by deposition of nano iron oxide (Fe3O4) onto its surface by co-precipitation method and characterized using SEM, XRD and FTIR. SEM analysis provided visual evidence of this deposition which was further confirmed by XRD and FTIR analysis. MBC was also effective in adsorbing more than 90 % of CV from aqueous solution though a decrease in adsorption capacity was observed. Adsorption data followed Langmuir isotherm model and pseudo second order kinetics. MBC is superparamagnetic and is strongly attracted to a small bar magnet, facilitating easy removal from water after CV adsorption.
Collapse
Affiliation(s)
- T. Geetha
- Dept. of Chemistry, Vimala College (Autonomous), Thrissur, Kerala, 680009, India
| | - John K. Smitha
- Dept. of Soil Science and Agricultural Chemistry, Kerala Agriculture University, Thrissur, Kerala, 680656, India
| | - Manju Sebastian
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| | | | - Bincy Joseph
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| | - Jincy Joseph
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| | - T.S. Nisha
- Dept. of Chemistry, St. Mary's College, Thrissur, Kerala, 680020, India
| |
Collapse
|
27
|
Jiang JT, Guo Z, Deng SK, Jia X, Liu H, Xu J, Li H, Cheng LH. Origin of the Activity of Electrochemical Ozone Production Over Rutile PbO 2 Surfaces. CHEMSUSCHEM 2024; 17:e202400827. [PMID: 38785150 DOI: 10.1002/cssc.202400827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Ozonation water treatment technology has attracted increasing attention due to its environmental benign and high efficiency. Rutile PbO2 is a promising anode material for electrochemical ozone production (EOP). However, the reaction mechanism underlying ozone production catalyzed by PbO2 was rarely studied and not well-understood, which was in part due to the overlook of the electrochemistry-driven formation of oxygen vacancy (OV) of PbO2. Herein, we unrevealed the origin of the EOP activity of PbO2 starting from the electrochemical surface state analysis using density functional theory (DFT) calculations, activity analysis, and catalytic volcano modeling. Interestingly, we found that under experimental EOP potential (i. e., a potential around 2.2 V vs. reversible hydrogen electrode), OV can still be generated easily on PbO2 surfaces. Our subsequent kinetic and thermodynamic analyses show that these OV sites on PbO2 surfaces are highly active for the EOP reaction through an interesting atomic oxygen (O*)-O2 coupled mechanism. In particular, rutile PbO2(101) with the "in-situ" generated OV exhibited superior EOP activities, outperforming the (111) and (110) surfaces. Finally, by catalytic volcano modeling, we found that PbO2 is close to the theoretical optimum of the reaction, suggesting a superior EOP performance of rutile PbO2. All these analyses are in good agreement with previous experimental observations in terms of EOP overpotentials. This study provides the first volcano model to explain why rutile PbO2 is among the best metal oxide materials for EOP and provides new design guidelines for this rarely studied but industrially promising reaction.
Collapse
Affiliation(s)
- Jin-Tao Jiang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhongyuan Guo
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Shao-Kang Deng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xue Jia
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Jiang Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Li-Hua Cheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
- MOE Engineering Research Center of Membrane & Water Treatment Technology, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
28
|
Zhong J, Mao XF, Wang G, Li H, Li J, Qu S, Zhao J. Synthesis of Cu/Mn/Ce polymetallic oxide catalysts and catalytic ozone treatment of wastewater. RSC Adv 2024; 14:35993-36004. [PMID: 39529744 PMCID: PMC11551843 DOI: 10.1039/d4ra06052k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Non-homogeneous ozone-catalyzed oxidation technology is one of the effective ways of treating wastewater, the core of which lies in the development of efficient ozone oxidation catalysts. This work proposes the design and synthesis of an efficient Cu/Mn/Ce multi-metal composite oxide catalyst by metal salt precursor mixing-direct granulation. The effect of metal doping on the catalyst properties was compared using Density function theory (DFT) calculations, and the Cu/Mn/Ce co-doping showed significant charge accumulation effect with a low ozonolysis energy barrier, which is more favorable for the generation of reactive oxygen species. The successful loading of the main active metal components, such as Mn, Cu, and Ce, was clarified by systematic characterization by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Brunauer-Emmett-Teller's test (BET), and the chemical oxygen demand (COD) removal could reach more than 60% for the simulated wastewater. The electron paramagnetic resonance (EPR) characterization clarified that the degradation of organic pollutants was mainly dominated by the combination of single-linear oxygen and superoxide radicals in the catalytic process, and the possible catalytic oxidation mechanism was proposed. This work advances the development of non-homogeneous ozone oxidation technology.
Collapse
Affiliation(s)
- Jinlong Zhong
- China Coal Research Institute Beijing 100013 China +86-10-84262941
- China Coal Research Institute Corporation Ltd. Beijing 100013 China
- National Energy Technology & Equipment Laboratory of Coal Utilization and Emission Control Beijing 100013 China
- Beijing Key Laboratory of Coal Based Carbon Materials Beijing 100013 China
| | - Xue Feng Mao
- China Coal Research Institute Beijing 100013 China +86-10-84262941
- China Coal Research Institute Corporation Ltd. Beijing 100013 China
- National Energy Technology & Equipment Laboratory of Coal Utilization and Emission Control Beijing 100013 China
- Beijing Key Laboratory of Coal Based Carbon Materials Beijing 100013 China
| | - Guanyu Wang
- China Coal Research Institute Corporation Ltd. Beijing 100013 China
- National Energy Technology & Equipment Laboratory of Coal Utilization and Emission Control Beijing 100013 China
- Beijing Key Laboratory of Coal Based Carbon Materials Beijing 100013 China
| | - Heng Li
- China Coal Research Institute Corporation Ltd. Beijing 100013 China
- National Energy Technology & Equipment Laboratory of Coal Utilization and Emission Control Beijing 100013 China
- Beijing Key Laboratory of Coal Based Carbon Materials Beijing 100013 China
| | - Junfang Li
- China Coal Research Institute Corporation Ltd. Beijing 100013 China
- National Energy Technology & Equipment Laboratory of Coal Utilization and Emission Control Beijing 100013 China
- Beijing Key Laboratory of Coal Based Carbon Materials Beijing 100013 China
| | - Sijian Qu
- China Coal Research Institute Beijing 100013 China +86-10-84262941
- China Coal Research Institute Corporation Ltd. Beijing 100013 China
- National Energy Technology & Equipment Laboratory of Coal Utilization and Emission Control Beijing 100013 China
- Beijing Key Laboratory of Coal Based Carbon Materials Beijing 100013 China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co., Ltd Beijing 100013 China
| |
Collapse
|
29
|
Aseman-Bashiz E, Sayyaf H. Sonoelectrochemical degradation of aspirin in aquatic medium using ozone and peroxymonosulfate activated with FeS 2 nanoparticles. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104419. [PMID: 39270599 DOI: 10.1016/j.jconhyd.2024.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
The catalytic performance of nano-FeS2 in the sonoelectrochemical activation of peroxymonosulfate (PMS) and ozone to remove aspirin (ASP) was studied for the first time. The crystal structure and Fe bonds in the catalyst were confirmed through XRD and FTIR analysis. Within 30 min, ASP (TOC) was removed by 99.2 % (81.6 %) and 98.6 % (77.4 %) in nano-FeS2/PMS and nano-FeS2/O3 sonoelectrochemical systems, respectively. Water anions, especially (almost 50 %), had an inhibitory effect on ASP removal. The probes confirmed that SO4•-and HO• were the key to ASP degradation in nano-FeS2/PMS and nano-FeS2/O3 systems, respectively. The effective activation of oxidants due to the ideal distribution of Fe2+ by catalyst was the main mechanism of ASP removal, in which electric current (EC) and ultrasound (US) played a crucial role through the recycling of Fe ions, dissolution and cleaning of the catalyst. LC-MS analysis identified thirteen byproducts in the ASP degradation pathways. The energy consumption of the proposed sonoelectrochemical systems was lower than previous similar systems. This study presented economic and sustainable hybrid systems for pharmaceutical wastewater remediation.
Collapse
Affiliation(s)
- Elham Aseman-Bashiz
- Environmental Health Engineering Lecturer, Alifard (SANICH) Institute of Applied Nscience and Technology, Hashtgerd, Alborz, Iran; National Water and Wastewater Engineering Company, Department of Supervision of Wastewater Operation, Tehran, Iran
| | - Hossein Sayyaf
- Environmental Health Engineering Lecturer, Alifard (SANICH) Institute of Applied Nscience and Technology, Hashtgerd, Alborz, Iran; Department of Environmental Health Engineering, Tehran University of Medical Sciences, Health Assistant Department, South Tehran Health Center, Tehran, Iran.
| |
Collapse
|
30
|
Tang X, Steinman AD, Xu Y, Xue Q, Xie L. Simultaneous electrochemical removal of three microcystin congeners and sulfamethoxazole in natural water. CHEMOSPHERE 2024; 367:143558. [PMID: 39424156 DOI: 10.1016/j.chemosphere.2024.143558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Microcystins (MCs), frequently detected in freshwater ecosystems, have raised significant human health and ecological concerns. New approaches are being developed to control and remove MCs. In this study, we examined factors influencing the efficacy of electrochemical oxidation as a means of control. Anode material (Pt/Ti, Ta2O5-IrO2/Ti, SnO2-SbO2/Ti, boron-doped diamond (BDD/Si), anode surface area ratios and solution volumes, initial pollutant concentrations, and the co-existing antibiotic sulfamethoxazole (SMX) were investigated. MCs and SMX were dissolved in filtered Taihu Lake water to simulate the natural aquatic environment. The results showed that non-active anodes, lower initial concentration of MC, larger surface area ratio of cathode to anode, and smaller ratio of reaction solution volume to anode surface area could promote the degradation target pollutants. Under optimal conditions in this study, the degradation rates of MC-LR, MC-YR, MC-RR, and SMX each reached more than 90% within 6 h, and the removal efficiency of MC-YR was the highest among three congeners. The effect of SMX on the degradation of MC congeners depended mainly on their concentration differences, such that when the initial concentration of SMX was one to two orders of magnitude lower than microcystin, the presence of SMX would promote the degradation of MCs. In contrast, when the initial concentration of SMX was higher than that of microcystin by approximately an order of magnitude, sulfamethoxazole would inhibit the degradation of MCs by between 4.6% and 24.5%. Ultra-high-performance liquid chromatography tandem mass spectrometry analysis revealed that the three MC congeners were electrochemically degraded through aromatic ring oxidation, alkene oxidation, and bond cleavage on the ADDA (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid) side chain. Notably, the removal of MCs was accompanied by a decline in the hardness of the reaction water. This study provided insights into electrochemical degradation of microcystins and antibiotics in natural water, offering suggestions for its practical application.
Collapse
Affiliation(s)
- Xiaonan Tang
- Department of Civil and Environmental Engineering, The George Washington University, 800 22nd St NW Suite, Washington, DC, 20052, USA
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, 49441, USA
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Liqiang Xie
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.
| |
Collapse
|
31
|
Huang F, Liu Z, Luo D, Xu Z, Wei K, He N, Sun X. Microalgae-bacterial consortiums for enhanced degradation of nonylphenol: Biodegradability and kinetic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122400. [PMID: 39255579 DOI: 10.1016/j.jenvman.2024.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
The widespread use of non-ionic surfactant nonylphenol (NP) has led to significant water pollution, posing a threat to both ecological stability and human health. However, the efficient biodegradation method and system of NP-biodegradation remain complex scientific challenges. In this study, we isolated and characterized three Pseudomonas sp. strains SW-1 (Scenedesmus quadricauda-associated), ZL-2 (Ankistrodesmus acicularis-associated), XQ-3 (Chlorella vulgaris-associated), and one NP-degrading Cupriavidus sp. strain EB-4, which exhibited the ability to utilize NP as the sole carbon source. Furthermore, four consortiums of microalgae-bacterial, S. quadricauda and SW-1 (S-SW), A. acicularis and ZL-2 (A-ZL), C. vulgaris and XQ-3 (C-XQ), S. quadricauda and EB-4 (S-EB), were constructed to investigate their biodegradability and kinetic characteristics of NP degradation from water. The consortiums showed higher degradation efficiency compared to individual microalgae or bacteria. The C-XQ consortium exhibited the highest degradation rate, removing over 94% of NP within just seven days. The first-order model with the following order of degradation rate by consortiums was C-XQ (0.3960 d-1) > S-SW (0.3506 d-1) > A-ZL (0.1968 d-1) > S-EB (0.1776 d-1). Compared with the results of our previous study, the interaction between microalgae and bacteria is not a simple additive relationship. Our findings highlight the potential of an algal-bacterial consortium for the remediation of NP-contaminated environments.
Collapse
Affiliation(s)
- Fang Huang
- Yichun Key Laboratory of Functional Agriculture and Ecological Environment, Yichun University, Yichun, 336000, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dingyu Luo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Zhuo Xu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Kefan Wei
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Ning He
- Yichun Key Laboratory of Functional Agriculture and Ecological Environment, Yichun University, Yichun, 336000, China.
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
32
|
Xie X, Wang J, Guo X, Sun J, Wang X, Duo Wu W, Wu L, Wu Z. Comparative study on CeO 2 catalysts with different morphologies and exposed facets for catalytic ozonation: performance, key factor and mechanism insight. J Colloid Interface Sci 2024; 673:847-859. [PMID: 38908284 DOI: 10.1016/j.jcis.2024.06.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
Morphology and facet effects of metal oxides in heterogeneous catalytic ozonation (HCO) are attracting increasing interests. In this paper, the different HCO performances for degradation and mineralization of phenol of seven ceria (CeO2) catalysts, including four with different morphologies (nanorod, nanocube, nanooctahedron and nanopolyhedron) and three with the same nanorod morphology but different exposed facets, are comparatively studied. CeO2 nanorods with (110) and (100) facets exposed show the best performance, much better than that of single ozonation, while CeO2 nanocubes and nanooctahedra show performances close to single ozonation. The underlying reason for their different HCO performances is revealed using various experimental and density functional theory (DFT) calculation results and the possible catalytic reaction mechanism is proposed. The oxygen vacancy (OV) is found to be pivotal for the HCO performance of the different CeO2 catalysts regardless of their morphology or exposed facet. A linear correlation is discerned between the rate of catalytic decomposition of dissolved ozone (O3) and the density of Frenkel-type OV. DFT calculations and in-situ spectroscopic studies ascertain that the existence of OV can boost O3 activation on both the hydroxyl (OH) and Ce sites of CeO2. Conversely, various facets without OV exhibit similar O3 adsorption energies. The OH group plays an important role in activating O3 to produce hydroxyl radical (∙OH) for improved mineralization. This work may offer valuable insights for designing Facet- and OV-regulated catalysts in HCO for the abatement of refractory organic pollutants.
Collapse
Affiliation(s)
- Xianglin Xie
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiaren Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xingchen Guo
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jinqiang Sun
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xiaoning Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Winston Duo Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Lei Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, PR China.
| | - Zhangxiong Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
33
|
Limsakul S, Thanachayanont C, Siyasukh A, Jaideekard M, Yimklan S, Kijjanapanich P, Chimupala Y. High efficiency azo dye removal via a combination of adsorption and photocatalytic processes using heterojunction Titanium dioxide nanoparticles on hierarchical porous carbon. ENVIRONMENTAL RESEARCH 2024; 260:119627. [PMID: 39019139 DOI: 10.1016/j.envres.2024.119627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Amidst the rapid development of the textile industry, wastewater problems also arise. High-performance materials for reactive black 5 (RB5) dye treatment by adsorption and photocatalysis were evolved using Titanium dioxide (TiO2) nanoparticles on carbon media. Herein, the synthesis of spherical carbon via the water-in-oil emulsion method alongside a sol-gel process and the production of TiO2 nanoparticles using the precipitation procedure of Titanium isopropoxide and carbonization at 700-900 °C for 2 h are a novel approach in this work. The characterization of these materials indicates that different temperatures result in distinct properties, for instance, raised pores on the surface of the media and changes in the crystal structure of TiO2. The results show that the as-synthesized material carbonized at 900 °C had distinguished dye adsorption, up to 430 ppm in 1 h, due to their high surface area and pore volume. On the contrary, the calcined 700 °C condition had the prominent photocatalytic efficiency on account of the heterojunction band gap between anatase and rutile crystal structure. A mixed phase minimizes the charge recombination, subsequently increasing the photocatalytic capability.
Collapse
Affiliation(s)
- Saitharn Limsakul
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chanchana Thanachayanont
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Adisak Siyasukh
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Manunchaya Jaideekard
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saranphong Yimklan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pimluck Kijjanapanich
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yothin Chimupala
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
34
|
Wang Y, Wang J, Long Z, Sun Z, Lv L, Liang J, Zhang G, Wang P, Gao W. MnCe-based catalysts for removal of organic pollutants in urban wastewater by advanced oxidation processes - A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122773. [PMID: 39388818 DOI: 10.1016/j.jenvman.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
With Advanced oxidation processes (AOPs) widely promoted, MnCe-based catalysts have received extensive attention under the advantages of high efficiency, stability and economy for refractory organic pollutants present in urban wastewater. Driven by multiple factors such as environmental pollution, technological development, and policy promotion, a systematic review of MnCe-based catalysts is urgently needed in the current research situation. This research provides a critical review of MnCe-based catalysts for removal of organic pollutants in urban wastewater by AOPs. It is found that co-precipitation and sol-gel methods are more appropriate methods for catalyst preparation. Among a host of influence factors, catalyst composition and pH are crucial in the catalytic oxidation processes. The synergistic effect of the free radical pathway and surface catalysis results in better pollutants degradation. It is more valuable to utilize multiple systems for oxidation (e.g., photo-Fenton technology) to improve the catalytic efficiency. This review provides theoretical guidance for MnCe-based catalysts and offers a reference direction for future research in the AOPs of organic pollutants removal from urban wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiaqing Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
35
|
Tsiarta N, Gernjak W, Cajner H, Matijašić G, Ćurković L. Heterogeneous Catalytic Ozonation of Pharmaceuticals: Optimization of the Process by Response Surface Methodology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1747. [PMID: 39513827 PMCID: PMC11547524 DOI: 10.3390/nano14211747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Batch heterogeneous catalytic ozonation experiments were performed using commercial and synthesized nanoparticles as catalysts in aqueous ozone. The transferred ozone dose (TOD) ranged from 0 to 150 μM, and nanoparticles were added in concentrations between 0 and 1.5 g L-1, with all experiments conducted at 20 °C and a total volume of 240 mL. A Ce-doped TiO2 catalyst (1% molar ratio of Ce/Ti) was synthesized via the sol-gel method. Response surface methodology (RSM) was applied to identify the most significant factors affecting the removal of selected pharmaceuticals, with TOD emerging as the most critical variable. Higher TOD resulted in greater removal efficiencies. Furthermore, it was found that the commercially available metal oxides α-Al2O3, Mn2O3, TiO2, and CeO2, as well as the synthesized CeTiOx, did not increase the catalytic activity of ozone during the degradation of ibuprofen (IBF) and para-chlorobenzoic acid (pCBA). Carbamazepine (CBZ) and diclofenac (DCF) are compounds susceptible to ozone oxidation, thus their complete degradation at 150 μM transferred ozone dose was attained. The limited catalytic effect was attributed to the rapid consumption of ozone within the first minute of reaction, as well as the saturation of catalyst active sites by water molecules, which inhibited effective ozone adsorption and subsequent hydroxyl radical generation (●OH).
Collapse
Affiliation(s)
- Nikoletta Tsiarta
- Catalan Institute of Water Research (ICRA)-CERCA, Carrer Emili Grahit 101, 17003 Girona, Spain;
- Faculty of Sciences, University of Girona, Campus de Montilivi, 17003 Girona, Spain
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia;
| | - Wolfgang Gernjak
- Catalan Institute of Water Research (ICRA)-CERCA, Carrer Emili Grahit 101, 17003 Girona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Hrvoje Cajner
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia;
| | - Gordana Matijašić
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Lidija Ćurković
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia;
| |
Collapse
|
36
|
Guo Y, Zhao E, Long J, Yu G, Wang Y. Quantification of the Contribution of Heterogeneous Surface Processes to Pollutant Abatement during Heterogeneous Catalytic Ozonation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18992-19003. [PMID: 39380208 DOI: 10.1021/acs.est.4c06804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Heterogeneous surface processes such as adsorption and oxidation with surface-adsorbed reactive oxygen species (ROSad, e.g., adsorbed oxygen atom (*Oad) and hydroxyl radicals (•OHad)) have been suggested to play an important role in pollutant abatement during heterogeneous catalytic ozonation (HCO). However, to date, there is no reliable method to quantitatively evaluate the contribution of heterogeneous surface processes to pollutant abatement (fS) during HCO. In this study, we developed a method by combining probe compound-based experiments with kinetic modeling to distinguish heterogeneous surface processes from homogeneous bulk reactions with aqueous O3 and ROS (•OH and superoxide radicals (O2•-) in the abatement of various pollutants (e.g., atrazine, ibuprofen, tetrachloroethylene, and perfluorooctanoic acid) during HCO with reduced graphene oxide. The results show that the pollutants that have a low affinity for the rGO surface (e.g., ibuprofen and tetrachloroethylene) were essentially abated by homogeneous bulk reactions, while the contribution of heterogeneous surface processes was negligible (fS < 5%). In contrast, heterogeneous surface processes played an important or even dominant role in the abatement of pollutants that have a high surface affinity (e.g., fS = 32-82% for atrazine and perfluorooctanoic acid). This study is a critical first step in quantitatively evaluating the role of heterogeneous surface processes for pollutant abatement during HCO, which is crucial to understanding the mechanism of HCO and designing catalysts for effective pollutant abatement.
Collapse
Affiliation(s)
- Yang Guo
- School of Environment and Resource, Shanxi Key Laboratory for Yellow River, Shanxi University, Taiyuan, Shanxi 030006, China
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Erzhuo Zhao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Jingfei Long
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Sun W, Xie Y, Zhang M, Zhou J, Sun Y. Preparation of Co-Ce@RM catalysts for catalytic ozonation of tetracycline. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11146. [PMID: 39434465 DOI: 10.1002/wer.11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024]
Abstract
In this work, a Co-Ce@RM ozone catalyst was developed using red mud (RM), a by-product of alumina production, as a support material, and its preparation process, catalytic efficiency, and tetracycline (TCN) degradation mechanism were investigated. A comprehensive assessment was carried out using the 3E (environmental, economic, and energy) model. The optimal production conditions for Co-Ce@RM were as follows: The doping ratio of Co and Ce was 1:3, the calcination temperature was 400°C, and the calcination time was 5 h, achieving a maximum removal rate of 87.91% of TCN. The catalyst was characterized using different analytical techniques. Under the conditions of 0.4 L/min ozone aeration rate, with 9% catalyst loading and solution pH 9, the optimal removal rates and chemical oxygen demand by the Co-Ce catalytic ozonation at RM were 94.17% and 75.27%, respectively. Moreover, free radical quenching experiments showed that superoxide radicals (O2 -) and singlet oxygen (1O2) were the main active groups responsible for the degradation of TCN. When characterizing the water quality, it was assumed that TCN undergoes degradation pathways such as demethylation, dehydroxylation, double bond cleavage, and ring-opening reactions under the influence of various active substances. Finally, the 3E evaluation model was deployed to evaluate the Co-Ce@RM catalytic ozonation experiment of TCN wastewater. PRACTITIONER POINTS: The preparation of Co-Ce@RM provides new ideas for resource utilization of red mud. Catalytic ozonation by Co-Ce@RM can produce 1O2 active oxygen groups. The Co-Ce@RM catalyst can maintain a high catalytic activity after 20 cycles. The degradation pathway of the catalytic ozonation of tetracycline was fully analyzed. Catalytic ozone oxidation processes were evaluated by the "3E" (environmental, economic, and energy) model.
Collapse
Affiliation(s)
- Wenquan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Yiming Xie
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Ming Zhang
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Jun Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| |
Collapse
|
38
|
Zhang H, Li S, Zhang C, Ren X, Zhou M. A critical review of ozone-based electrochemical advanced oxidation processes for water treatment: Fundamentals, stability evaluation, and application. CHEMOSPHERE 2024; 365:143330. [PMID: 39277044 DOI: 10.1016/j.chemosphere.2024.143330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
In recent years, electrochemical advanced oxidation processes (EAOPs) combined with ozonation have been widely utilized in water/wastewater treatment due to their excellent synergistic effect, high treatment efficiency, and low energy consumption. A comprehensive summary of these ozone-based EAOPs is still insufficient, though some reviews have covered these topics but either focused on a specific integrated process or provided synopses of EAOPs or ozone-based AOPs. This review presents an overview of the fundamentals of several ozone-based EAOPs, focusing on process optimization, electrode selection, and typical reactor designs. Additionally, the service life of electrodes and improvement strategies for the stability of ozone-based EAOPs that are ignored by previous reviews are discussed. Furthermore, four main application fields are summarized, including disinfection, emerging contaminants treatment, industrial wastewater treatment, and resource recovery. Finally, the summary and perspective on ozone-based EAOPs are proposed. This review provides an overall summary that would help to gain insight into the ozone-based EAOPs to improve their environmental applications.
Collapse
Affiliation(s)
- Hanyue Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shasha Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chaohui Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xueying Ren
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
39
|
Ye G, Zhou Z, Zhao Z, Zong Y, Chen Z, Lei Z, Wu D. High-efficient M-NC single-atom catalysts for catalytic ozonation in water purification: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135289. [PMID: 39053061 DOI: 10.1016/j.jhazmat.2024.135289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Heterogeneous catalytic ozonation (HCO) holds promise in water purification but suffers from limited accessible metal sites, metal leaching, and unclear structure-activity relationships. This work reported M-NC (M=Co, Ni, Fe, and Mn) single-atom catalysts (SACs) with high atomic efficiency and minimal metal release. The new HCO systems, especially the Co-based system, exhibited impressive performance in various refractory contaminant removal, involving various reactive species generation, such as •OHads, •OHfree, *O, and 1O2. For sulfamethoxazole removal, the normalized kobs for Co-NC, Ni-NC, Fe-NC, and Mn-NC were determined as 13.53, 3.94, 3.55, and 4.13 min-1·mMmetal-1·g·m-2 correspondingly, attributed to the abundant acid sites, faster electron transfer, and lower energy required for O3 decomposition and conversion. The metal atoms and hydroxyl groups, individually serving as Lewis and Bronsted acid sites (LAS and BAS), were the primary centers for •OH generation and O3 adsorption. The relationships between active sites and both O3 utilization and •OH generation were found. LAS and BAS were responsible for O3 adsorption, while strong LAS facilitated O3 conversion into •OH. Theoretical calculations revealed the catalytic mechanisms involved O3→ *O→ *OO→ O3•-→ •OH. This work highlights the significance of SAC design for HCO and advances the understanding of atomic-level HCO behavior.
Collapse
Affiliation(s)
- Guojie Ye
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Zuofeng Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhendong Lei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
40
|
Zhang C, Li S, Sun H, Fu S, Jingjing J, Cui H, Zhou D. Feasibility of intimately coupled CaO-catalytic-ozonation and bio-contact oxidation reactor for heavy metal and color removal and deep mineralization of refractory organics in actual coking wastewater. BIORESOURCE TECHNOLOGY 2024; 408:131154. [PMID: 39053598 DOI: 10.1016/j.biortech.2024.131154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Considering the challenges for both single and traditional two-stage treatments, advanced oxidation and biodegradation, in the treatment of actual coking wastewater, an intimately coupled catalytic ozonation and biodegradation (ICOB) reactor was developed. In this study, ICOB treatment significantly enhanced the removal of Cu2+, Fe3+, and color by 39 %, 45 %, and 52 %, respectively, outperforming biodegradation. Catalytic ozonation effectively breaking down unsaturated organic substances and high-molecular-weight dissolved organic matter into smaller, more biodegradable molecules. Compared with biodegradation, the ICOB system significantly increased the abundances of Pseudomonas, Sphingopyxis, and Brevundimonas by ∼ 96 %, ∼67 %, and ∼ 85 %, respectively. These microorganisms, possessing genes for degrading phenol, aromatic compounds, polycyclic aromatics, and sulfur metabolism, further enhanced the mineralization of intermediates. Consequently, the ICOB system outperformed biodegradation and catalytic ozonation treatments, exhibiting chemical oxygen demand removal rate of ∼ 58 % and toxicity reduction of ∼ 47 %. Overall, the ICOB treatment showcases promise for practical engineering applications in coking wastewater treatment.
Collapse
Affiliation(s)
- Chongjun Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China.
| | - Shaoran Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China
| | - Haoran Sun
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China
| | - Shaozhu Fu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China
| | - Jiang Jingjing
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, Jilin, China
| | - Han Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, Jilin, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, Jilin, China
| |
Collapse
|
41
|
Fallah N, Bloise E, García-López EI, Mele G. Carbon-Based Materials in Combined Adsorption/Ozonation for Indigo Dye Decolorization in Constrain Contact Time. Molecules 2024; 29:4144. [PMID: 39274991 PMCID: PMC11397410 DOI: 10.3390/molecules29174144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
This study presents a comprehensive evaluation of catalytic ozonation as an effective strategy for indigo dye bleaching, particularly examining the performance of four carbon-based catalysts, activated carbon (AC), multi-walled carbon nanotubes (MWCNT), graphitic carbon nitride (g-C3N4), and thermally etched nanosheets (C3N4-TE). The study investigates the efficiency of catalytic ozonation in degrading Potassium indigotrisulfonate (ITS) dye within the constraints of short contact times, aiming to simulate real-world industrial wastewater treatment conditions. The results reveal that all catalysts demonstrated remarkable decolorization efficiency, with over 99% of indigo dye removed within just 120 s of mixing time. Besides, the study delves into the mechanisms underlying catalytic ozonation reactions, elucidating the intricate interactions between the catalysts, ozone, and indigo dye molecules with the processes being influenced by factors such as PZC, pKa, and pH. Furthermore, experiments were conducted to analyze the adsorption characteristics of indigo dye on the surfaces of the materials and its impact on the catalytic ozonation process. MWCNT demonstrated the highest adsorption efficiency, effectively removing 43.4% of the indigo dye color over 60 s. Although the efficiency achieved with C3N4-TE was 21.4%, which is approximately half of that achieved with MWCNT and less than half of that with AC, it is noteworthy given the significantly lower surface area of C3N4-TE.
Collapse
Affiliation(s)
- Naghmeh Fallah
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Ermelinda Bloise
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
| | - Elisa I García-López
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giuseppe Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
42
|
Koul S, Singhvi M, Kim BS. Green Synthesis of Cobalt-Doped CeFe 2O 5 Nanocomposites Using Waste Gossypium arboreum L. Stalks and Their Application in the Removal of Toxic Water Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1339. [PMID: 39195377 DOI: 10.3390/nano14161339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024]
Abstract
Currently, there is an increasing need to find new ways to purify water by eliminating bacterial biofilms, textile dyes, and toxic water pollutants. These contaminants pose significant risks to both human health and the environment. To address this issue, in this study, we have developed an eco-friendly approach that involves synthesizing a cobalt-doped cerium iron oxide (CCIO) nanocomposite (NC) using an aqueous extract of Gossypium arboreum L. stalks. The resulting nanoparticles can be used to effectively purify water and tackle the challenges associated with these harmful pollutants. Nanoparticles excel in water pollutant removal by providing a high surface area for efficient adsorption, versatile design for the simultaneous removal of multiple contaminants, catalytic properties for organic pollutant degradation, and magnetic features for easy separation, offering cost-effective and sustainable water treatment solutions. A CCIO nanocomposite was synthesized via a green co-precipitation method utilizing biomolecules and co-enzymes extracted from the aqueous solution of Gossypium arboreum L. stalk. This single-step synthesis process was accomplished within a 5-h reaction period. Furthermore, the synthesis of nanocomposites was confirmed by various characterization techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and energy dispersive X-ray (EDX) technology. CCIO NCs were discovered to have a spherical shape and an average size of 40 nm. Based on DLS zeta potential analysis, CCIO NCs were found to be anionic. CCIO NCs also showed significant antimicrobial and antioxidant activity. Overall, considering their physical and chemical properties, the application of CCIO NCs for the adsorption of various dyes (~91%) and water pollutants (chromium = ~60%) has been considered here since they exhibit great adsorption capacity owing to their microporous structure, and represent a step forward in water purification.
Collapse
Affiliation(s)
- Saloni Koul
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Mamata Singhvi
- Department of Biotechnology (with Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
43
|
Xu HY, Yang X, Yu R, Zuo T, Liu Q, Jia S, Jia LY. Adsorption properties of cellulose-derived hydrogel and magnetic hydrogels from Sophora flavescens on Cu 2+ and Congo red. Int J Biol Macromol 2024; 274:133209. [PMID: 38906348 DOI: 10.1016/j.ijbiomac.2024.133209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
This study synthesized a robust, magnetically responsive hydrogel from Sophora flavescens-modified cellulose and chitosan, employing Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA and DTG), and scanning electron microscopy (SEM) to confirm the preservation of cellulose's intrinsic properties and the hydrogel's remarkable elasticity, toughness, and porosity. These hydrogels integrate cellulose's structural backbone with functional moieties from chitosan, enhancing adsorption capabilities for Cu2+ ions and Congo red (CR) dye. Kinetic and thermodynamic analyses reveal that adsorption is spontaneous and endothermic, following a pseudo-second-order model and the Freundlich isotherm. Notably, Cu2+ adsorption capacity increases with pH, while CR adsorption initially decreases before rising, demonstrating the hydrogels' potential as effective, sustainable adsorbents for removing pollutants from water.
Collapse
Affiliation(s)
| | - XianWen Yang
- Third Institute of Oceanography, Ministry of Natural Resources, China
| | - RunPing Yu
- Shenyang Pharmaceutical University, China
| | - Ting Zuo
- Shenyang Pharmaceutical University, China
| | - QiuYue Liu
- Shenyang Pharmaceutical University, China
| | | | | |
Collapse
|
44
|
Yang Q, Wei J, Chen Y, Xu Z, Ma D, Zheng M, Li J. Continuous operation of nano-catalytic ozonation using membrane separation coupling system: Influence factors and mechanism. CHEMOSPHERE 2024; 362:142117. [PMID: 38670501 DOI: 10.1016/j.chemosphere.2024.142117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/06/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The application of nano-catalysts in improving the ozonation removal efficiency for refractory organic compounds has been extensively investigated. However, cost-effective nano-catalysts separation remains a challenge. In this study, membrane separation processes were employed to separate nano-MgO catalysts from an ozonation system. A continuous nano-catalytic ozonation membrane separation (nCOMS) coupling system was successfully constructed for treating quinoline. The results showed that long hydraulic retention time (HRT) and high nano-MgO dosage could improve the quinolone removal efficiency but shorten operation cycles. At the optimal operation conditions of HRT = 4 h and nano-MgO dosage = 0.2 g/L, the nCOMS system achieved a stable quinoline removal efficiency of 85.2% for 240 min running with a transmembrane pressure lower than 10 kPa. The quinoline removal efficiency contribution for ozonation, catalysis and membrane separation was 57.1%, 24.9% and 18.0%, respectively. Compared to ozonation membrane separation system, the fouling rate index of the nCOMS system increased by 60% under optimal conditions, but the irreversible fouling was reduced to 28%. In addition, the nCOMS system exhibited reduced adverse effects of coexisting natural organic matter (NOM) on quinoline removal and membrane fouling. In conclusion, the nCOMS system demonstrated higher quinoline removal efficiency, lower irreversible fouling, and reduced adverse effect of coexisting NOM, thereby signifying its potential for practical applications in advanced treatment of industrial wastewater.
Collapse
Affiliation(s)
- Qiong Yang
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Jianjian Wei
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; , Jiangsu Environmental Engineering Technology Co. Ltd, Jiangsu Environmental Protection Group Co. Ltd, Nanjing, 210036, Jiangsu Province, China
| | - Yili Chen
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Zhourui Xu
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Dehua Ma
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Min Zheng
- , Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Jiansheng Li
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| |
Collapse
|
45
|
Khourshidi A, Ajam F, Rabieian M, Taghavijeloudar M. Efficient degradation of p-nitrophenol from water by enhancing dielectric barrier discharge (DBD) plasma through ozone circulation: Optimization, kinetics and mechanism. CHEMOSPHERE 2024; 362:142749. [PMID: 38969213 DOI: 10.1016/j.chemosphere.2024.142749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Non-thermal dielectric barrier discharge (DBD) plasma has received great attention for degradation of persistent organic pollutants such as p-nitrophenol (PNP). However, the feasibility of the DBD implementation is not clear due to its high energy consumption and relatively low degradation efficiency. In this research, a novel strategy was suggested based on re-circulation of the generated O3 in the DBD system to enhance the PNP degradation efficiency and energy yield. The potential mechanism and possible pathway of PNP degradation were studied by EPR, ESR, DFT and GS-MS analytical tests. According to the results, the PNP degradation efficiency and energy yield increased from 57.4% to 94.4% and from 0.52 to 1.18 g kW-1h-1, respectively through ozone circulation into the DBD reactor. This was due to the more release of long-lived and short-lived reactive species (ROS) in the DBD-O3 system by the O3 circulation. The variations in pH (4-10), initial concentration (50-90 mg L-1), and the presence of co-existing substances in the water matrix had minimal impact on the DBD-O3 system, in comparison to the conventional system. The biological toxicity evaluation revealed that the hybrid DBD-O3 system transform PNP to less toxic intermediates. This study proposes a promising strategy to improve the utilization of DBD for the degradation of PNP.
Collapse
Affiliation(s)
- Amirhossein Khourshidi
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Fatemeh Ajam
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Masoud Rabieian
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744, Seoul, South Korea.
| |
Collapse
|
46
|
López-Francés A, Cabrero-Antonino M, Bernat-Quesada F, Ferrer B, Blanes M, García R, Almenar P, Álvaro M, Dhakshinamoorthy A, Baldoví HG, Navalón S. Valorization of Field-Spent Granular Activated Carbon as Heterogeneous Ozonation Catalyst for Water Treatment. CHEMSUSCHEM 2024; 17:e202400062. [PMID: 38427722 DOI: 10.1002/cssc.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Developing sustainable cost-effective strategies for valorization of field-spent granular activated carbon (s-GAC) from industrial water treatment has gained much interest. Here, we report a cost-effective strategy for the regeneration of s-GAC as an adsorbent in a large-scale drinking water treatment plant and used as an efficient and durable ozonation catalyst in water. To achieve this, a series of samples is prepared by subjecting s-GAC to thermally controlled combustion treatments with and without pyrolysis. The catalytic performance of the optimized sample is evaluated for oxalic acid degradation as the model pollutant under batch (>15 h) and continuous flow operations (>200 h). The partially deactivated catalyst upon reuse is restored by thermal treatment. Electron paramagnetic resonance and selective quenching experiments show the formation of singlet oxygen (1O2) during catalytic ozonation. The GAC-ozonation catalyst is efficient to minimize the formation of chlorinated disinfection by-products like trihalomethanes and haloacetic acids in an urban wastewater effluent.
Collapse
Affiliation(s)
- Antón López-Francés
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - María Cabrero-Antonino
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- Instituto de Tecnología Química (ITQ-CSIC), Universitat Politècnica de València, Av De los Naranjos, s/n, Valencia, 46022, Spain
| | | | - Belén Ferrer
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - María Blanes
- Textile Research Institute-, AITEX, Plaza Emilio Sala, 1, 03801, Alcoy, Alicante, Spain
| | - Rafael García
- Cadel Recycling, Calle Artesanos, 4, A, 03690, Sant Vicent del Raspeig, Alicante, Spain
| | - Pura Almenar
- Mixta Valenciana de Aguas S.A. (EMIVASA), Av. Del Regne de València, 28, 46005, Valencia, Spain
| | - Mercedes Álvaro
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- School of Chemistry, Madurai Kamaraj University, Tamil Nadu, 625021, India
| | - Herme G Baldoví
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| |
Collapse
|
47
|
Sahu I, Verma J, Bera AK, Pande S, Bhavsar A, Pati F, Chakraborty P. Synergistic Coassembly of Folic Acid-Based Supramolecular Polymer with a Covalent Polymer Toward Fabricating Functional Antibacterial Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34141-34155. [PMID: 38912611 DOI: 10.1021/acsami.4c06785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Supramolecular biomaterials can recapitulate the structural and functional facets of the native extracellular matrix and react to biochemical cues, leveraging the unique attributes of noncovalent interactions, including reversibility and tunability. However, the low mechanical properties of supramolecular biomaterials can restrict their utilization in specific applications. Combining the advantages of supramolecular polymers with covalent polymers can lead to the fabrication of tailor-made biomaterials with enhanced mechanical properties/degradability. Herein, we demonstrate a synergistic coassembled self-healing gel as a multifunctional supramolecular material. As the supramolecular polymer component, we chose folic acid (vitamin B9), an important biomolecule that forms a gel comprising one-dimensional (1D) supramolecular polymers. Integrating polyvinyl alcohol (PVA) into this supramolecular gel alters its ultrastructure and augments its mechanical properties. A drastic improvement of complex modulus (G*) (∼3674 times) was observed in the folic acid-PVA gel with 15% w/v PVA (33215 Pa) compared with the folic acid gel (9.04 Pa). The coassembled hydrogels possessed self-healing and injectable/thixotropic attributes and could be printed into specific three-dimensional (3D) shapes. Synergistically, the supramolecular polymers of folic acid also improve the toughness, durability, and ductility of the PVA films. A nanocomposite of the gels with silver nanoparticles exhibited excellent catalytic efficiency and antibacterial activity. The folic acid-PVA coassembled gels and films also possessed high cytocompatibility, substantiated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and live-dead assays. Taken together, the antibacterial and cell-adhesive attributes suggest potential applications of these coassembled biomaterials for tissue engineering and wound healing.
Collapse
Affiliation(s)
- Ipsita Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Kandi 502284, Telangana, India
| | - Jaya Verma
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Kandi 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi 502284, Telangana, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi 502284, Telangana, India
| | - Aashwini Bhavsar
- Cen.or Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Sangareddy, Kandi 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Kandi 502284, Telangana, India
| |
Collapse
|
48
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
49
|
Jamali GA, Devrajani SK, Memon SA, Qureshi SS, Anbuchezhiyan G, Mubarak NM, Shamshuddin SZM, Siddiqui MTH. Holistic insight mechanism of ozone-based oxidation process for wastewater treatment. CHEMOSPHERE 2024; 359:142303. [PMID: 38734250 DOI: 10.1016/j.chemosphere.2024.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
The world is facing water crises because freshwater scarcity has become a global issue due to rapid population growth, resulting in the need for more industries, agriculture, and domestic sectors. Therefore, it is challenging for scientists and environmental engineers to treat wastewater with cost-effective treatment techniques. As compared to conventional processes (physical, chemical, and biological), advanced oxidation processes (AOP) play an essential role in the removal of wastewater contaminants, with the help of a powerful hydroxyl (OH•) through oxidation reactions. This review study investigates the critical role of O3-based Advanced Oxidation Processes (AOPs) in tackling the complex difficulties of wastewater treatment. Effective treatment methods are critical, with wastewater originating from various sources, including industrial activity, pharmaceutical manufacturing, agriculture, and a wide range of toxins. O3-based AOPs appear to be powerful therapies capable of degrading a wide range of pollutants, including stubborn organics, medicines, and pesticides, reducing environmental and human health risks. This review sheds light on their efficacy in wastewater treatment by explaining the underlying reaction mechanisms and applications of several O3-based AOP processes, such as O3, O3/UV, and O3/H2O2. Ozone, a powerful oxidizing agent, stimulates the breakdown of complex chemical molecules by oxidation processes, which are aided further by synergistic combinations with ultraviolet (UV) radiation or hydrogen peroxide (H2O2). Notably, while ozonation alone may not always produce the best outcomes, it acts as an essential pretreatment step prior to traditional treatments, increasing total treatment efficiency. Furthermore, O3-based AOPs' transformational capacity to convert organic chemicals into simpler, more stable inorganic forms with little sludge creation emphasizes its sustainability and environmental benefits. This study sheds light on the processes, uses, and benefits of O3-based AOPs, presenting practical solutions for sustainable water management and environmental protection. It is a valuable resource for academics, engineers, and politicians looking for new ways to combat wastewater contamination and protect water resources.
Collapse
Affiliation(s)
- Ghazala Akber Jamali
- US-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan.
| | - Satesh Kumar Devrajani
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Sheeraz Ahmed Memon
- Institute of Environmental Engineering and Management, Mehran University of Engineering and Technology, Jamshoro, Pakistan
| | - Sundus Saeed Qureshi
- Australian Rivers Institute and *School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia
| | - Gnanasambandam Anbuchezhiyan
- Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India.
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka India
| | | |
Collapse
|
50
|
Wu H, Han X, Guo X, Wen Y, Zheng B, Liu B. MnFe 2O 4/MoS 2 catalyst used for ozonation: optimization and mechanism analysis of phenolic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45588-45601. [PMID: 38967847 DOI: 10.1007/s11356-024-33984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
The performance of catalytic ability of MFe2O4/MoS2 in the ozonation process was investigated in this work. The synthesized MnFe2O4/MoS2 was optimize prepared and then characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photo-electron spectroscopy, and magnetic saturation strength. The results showed that when Cphenol = 200 mg/L, initial pH = 9.0, Q = 0.10 L/min, and CMnFe2O4/MoS2 = 0.10 g/L, MnFe2O4/MoS2 addition improved the degradation efficiency of phenol by 20.0%. The effects of pH, catalyst dosage, and inorganic ions on the phenol removal by the MnFe2O4/MoS2 catalytic ozonation were investigated. Five cycle experiments proved that MnFe2O4/MoS2 had good recyclability and stability. MnFe2O4/MoS2 also showed good catalytic performance in the treatment of coal chemical wastewater pesticide wastewater. The MnFe2O4 doped with MoS2 could provide abundant surface active sites for ozone and promote the stable cycle of Mn2+/Mn3+and Fe2+/Fe3+, thus generating large amounts of •OH and improving the degradation of phenol by ozonation. The MnFe2O4/MoS2/ozonation treatment system provides a technical reference and theoretical basis for industrial wastewater treatment.
Collapse
Affiliation(s)
- Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Xiao Han
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Xinrui Guo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Yiyun Wen
- Jiangsu Hejiahai Environmental Design and Research Institute Co., Ltd, Nanjing, 210012, PR China
| | - Bin Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, PR China
| | - Biming Liu
- School of Energy and Environment, Anhui University of Technology, Ma Anshan, 243002, PR China.
| |
Collapse
|