1
|
Tanneberger AE, Blomberg R, Bilousova G, Ryan AL, Magin CM. Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L379-L388. [PMID: 39884665 DOI: 10.1152/ajplung.00419.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Lung progenitor (LP) cells identified by the expression of transcription factor NK2 homeobox 1 (NKX2.1) are essential for the development of all lung epithelial cell types and hold tremendous potential for pulmonary research and translational regenerative medicine applications. Here, we present engineered hydrogels as a promising alternative to the naturally derived materials that are often used to differentiate human-induced pluripotent stem cells (iPSCs) into LP cells. Poly(ethylene glycol) norbornene (PEGNB) hydrogels with defined composition were used to systematically investigate the role of microenvironmental stiffness, cell origin, and splitting during the differentiation process. Results demonstrated that each factor impacted LP differentiation efficiency and that the soft hydrogels replicating healthy lung stiffness [elastic modulus (E) = 4.00 ± 0.25 kPa] produced the highest proportion of LP cells based on flow cytometric analysis results (54%) relative to the stiff hydrogels (48%) and Matrigel controls (32%) at the end of the nonsplit differentiation protocol. Collectively, these results showed that engineered hydrogels provide a well-defined microenvironment for iPSC-to-LP differentiation and perform as effectively as the current gold standard Matrigel-coated tissue culture plastic. Adopting engineered biomaterials in cell culture protocols may enable greater control over differentiation parameters and has the potential to enhance the clinical translation of iPSC-derived LP cells.NEW & NOTEWORTHY Standard iPSC differentiation protocols rely on Matrigel, a basement membrane extract from mouse sarcoma cells that is poorly defined and exhibits significant batch-to-batch variation. Due to these limitations, Matrigel-derived products have never been approved by the Food and Drug Administration. This study introduces a novel method for differentiating iPSCs into lung progenitor cells using well-defined hydrogel substrates. These biomaterials not only enhance differentiation efficiency but also streamline the regulatory pathway, facilitating their potential therapeutic application.
Collapse
Affiliation(s)
- Alicia E Tanneberger
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ganna Bilousova
- Department of Dermatology, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
2
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
3
|
Ma J, Wu C, Xu J. The Development of Lung Tissue Engineering: From Biomaterials to Multicellular Systems. Adv Healthc Mater 2024; 13:e2401025. [PMID: 39206615 DOI: 10.1002/adhm.202401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The challenge of the treatment of end-stage lung disease poses an urgent clinical demand for lung tissue engineering. Over the past few years, various lung tissue-engineered constructs are developed for lung tissue regeneration and respiratory pathology study. In this review, an overview of recent achievements in the field of lung tissue engineering is proposed. The introduction of lung structure and lung injury are stated briefly at first. After that, the lung tissue-engineered constructs are categorized into three types: acellular, monocellular, and multicellular systems. The different bioengineered constructs included in each system that can be applied to the reconstruction of the trachea, airway epithelium, alveoli, and even whole lung are described in detail, followed by the highlight of relevant representative research. Finally, the challenges and future directions of biomaterials, manufacturing technologies, and cells involved in lung tissue engineering are discussed. Overall, this review can provide referable ideas for the realization of functional lung regeneration and permanent lung substitution.
Collapse
Affiliation(s)
- Jingge Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Joe YA, Lee MJ, Choi HS. Experimental Mouse Models and Human Lung Organoid Models for Studying Chronic Obstructive Pulmonary Disease. Biomol Ther (Seoul) 2024; 32:685-696. [PMID: 39410708 PMCID: PMC11535291 DOI: 10.4062/biomolther.2024.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality throughout the world, is a highly complicated disease that includes chronic airway inflammation, airway remodeling, emphysema, and mucus hypersecretion. For respiratory function, an intact lung structure is required for efficient air flow through conducting airways and gas exchange in alveoli. Structural changes in small airways and inflammation are major features of COPD. At present, mechanisms involved in the genesis and development of COPD are poorly understood. Currently, there are no effective treatments for COPD. To develop better treatment strategies, it is necessary to study mechanisms of COPD using proper experimental models that can recapitulate distinctive features of human COPD. Therefore, this review will discuss representative established mouse models to investigate inflammatory processes and basic mechanisms of COPD. In addition, human COPD-mimicking human lung organoid models are introduced to help researchers overcome limits of mouse COPD models.
Collapse
Affiliation(s)
- Young Ae Joe
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min Ju Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hong Seok Choi
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
5
|
Goltsis O, Bilodeau C, Wang J, Luo D, Asgari M, Bozec L, Pettersson A, Leibel SL, Post M. Influence of mesenchymal and biophysical components on distal lung organoid differentiation. Stem Cell Res Ther 2024; 15:273. [PMID: 39218985 PMCID: PMC11367854 DOI: 10.1186/s13287-024-03890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Chronic lung disease of prematurity, called bronchopulmonary dysplasia (BPD), lacks effective therapies, stressing the need for preclinical testing systems that reflect human pathology for identifying causal pathways and testing novel compounds. Alveolar organoids derived from human pluripotent stem cells (hPSC) are promising test platforms for studying distal airway diseases like BPD, but current protocols do not accurately replicate the distal niche environment of the native lung. Herein, we investigated the contributions of cellular constituents of the alveolus and fetal respiratory movements on hPSC-derived alveolar organoid formation. METHODS Human PSCs were differentiated in 2D culture into lung progenitor cells (LPC) which were then further differentiated into alveolar organoids before and after removal of co-developing mesodermal cells. LPCs were also differentiated in Transwell® co-cultures with and without human fetal lung fibroblast. Forming organoids were subjected to phasic mechanical strain using a Flexcell® system. Differentiation within organoids and Transwell® cultures was assessed by flow cytometry, immunofluorescence, and qPCR for lung epithelial and alveolar markers of differentiation including GATA binding protein 6 (GATA 6), E-cadherin (CDH1), NK2 Homeobox 1 (NKX2-1), HT2-280, surfactant proteins B (SFTPB) and C (SFTPC). RESULTS We observed that co-developing mesenchymal progenitors promote alveolar epithelial type 2 cell (AEC2) differentiation within hPSC-derived lung organoids. This mesenchymal effect on AEC2 differentiation was corroborated by co-culturing hPSC-NKX2-1+ lung progenitors with human embryonic lung fibroblasts. The stimulatory effect did not require direct contact between fibroblasts and NKX2-1+ lung progenitors. Additionally, we demonstrate that episodic mechanical deformation of hPSC-derived lung organoids, mimicking in situ fetal respiratory movements, increased AEC2 differentiation without affecting proximal epithelial differentiation. CONCLUSION Our data suggest that biophysical and mesenchymal components promote AEC2 differentiation within hPSC-derived distal organoids in vitro.
Collapse
Affiliation(s)
- Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jinxia Wang
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Daochun Luo
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Meisam Asgari
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Laurent Bozec
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Ante Pettersson
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sandra L Leibel
- Department of Pediatrics, Rady Children's Hospital, San Diego, University of California, San Diego, La Jolla, CA, USA
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Li R, Sone N, Gotoh S, Sun X, Hagood JS. Contemporary and emerging technologies for research in children's rare and interstitial lung disease. Pediatr Pulmonol 2024; 59:2349-2359. [PMID: 37204232 DOI: 10.1002/ppul.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although recent decades have seen the identification, classification and discovery of the genetic basis of many children's interstitial and rare lung disease (chILD) disorders, detailed understanding of pathogenesis and specific therapies are still lacking for most of them. Fortunately, a revolution of technological advancements has created new opportunities to address these critical knowledge gaps. High-throughput sequencing has facilitated analysis of transcription of thousands of genes in thousands of single cells, creating tremendous breakthroughs in understanding normal and diseased cellular biology. Spatial techniques allow analysis of transcriptomes and proteomes at the subcellular level in the context of tissue architecture, in many cases even in formalin-fixed, paraffin-embedded specimens. Gene editing techniques allow creation of "humanized" animal models in a shorter time frame, for improved knowledge and preclinical therapeutic testing. Regenerative medicine approaches and bioengineering advancements facilitate the creation of patient-derived induced pluripotent stem cells and their differentiation into tissue-specific cell types which can be studied in multicellular "organoids" or "organ-on-a-chip" approaches. These technologies, singly and in combination, are already being applied to gain new biological insights into chILD disorders. The time is ripe to systematically apply these technologies to chILD, together with sophisticated data science approaches, to improve both biological understanding and disease-specific therapy.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - Naoyuki Sone
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Xin Sun
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - James S Hagood
- Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Le NT, Dunleavy MW, Kumar RD, Zhou W, Bhatia SS, El-Hashash AH. Cellular therapies for idiopathic pulmonary fibrosis: current progress and future prospects. AMERICAN JOURNAL OF STEM CELLS 2024; 13:191-211. [PMID: 39308764 PMCID: PMC11411253 DOI: 10.62347/daks5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial, fibrotic lung disease characterized by progressive damage. Lung tissues with IPF are replaced by fibrotic tissues with increased collagen deposition, modified extracellular matrix, all which overall damages the alveoli. These changes eventually impede the gas exchange function of the alveoli, and eventually leads to fatal respiratory failure of the lung. Investigations have been conducted to further understand IPF's pathogenesis, and significant progress in understanding its development has been made. Additionally, two therapeutic treatments, Nintedanib and Pirfenidone, have been approved and are currently used in medical applications. Moreover, cell-based treatments have recently come to the forefront of developing disease therapeutics and are the focus of many current studies. Furthermore, a sizable body of research encompassing basic, pre-clinical, and even clinical trials have all been amassed in recent years and hold a great potential for more widespread applications in patient care. Herein, this article reviews the progress in understanding the pathogenesis and pathophysiology of IPF. Additionally, different cell types used in IPF therapy were reviewed, including alveolar epithelial cells (AECs), circulating endothelial progenitors (EPCs), mixed lung epithelial cells, different types of stem cells, and endogenous lung tissue-specific stem cells. Finally, we discussed the contemporary trials that employ or explore cell-based therapy for IPF.
Collapse
Affiliation(s)
- Nicholas T Le
- Biology Department, Texas A&M University College Station, TX, USA
| | | | - Rebecca D Kumar
- Biology Department, Texas A&M University College Station, TX, USA
| | - William Zhou
- The University of Texas at Austin Austin, TX, USA
| | | | | |
Collapse
|
8
|
Hurley K, Ozaki M, Philippot Q, Galvin L, Crosby D, Kirwan M, Gill DR, Alysandratos KD, Jenkins G, Griese M, Nathan N, Borie R. A roadmap to precision treatments for familial pulmonary fibrosis. EBioMedicine 2024; 104:105135. [PMID: 38718684 PMCID: PMC11096859 DOI: 10.1016/j.ebiom.2024.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Interstitial lung diseases (ILDs) in adults and children (chILD) are a heterogeneous group of lung disorders leading to inflammation, abnormal tissue repair and scarring of the lung parenchyma often resulting in respiratory failure and death. Inherited factors directly cause, or contribute significantly to the risk of developing ILD, so called familial pulmonary fibrosis (FPF), and monogenic forms may have a poor prognosis and respond poorly to current treatments. Specific, variant-targeted or precision treatments are lacking. Clinical trials of repurposed drugs, anti-fibrotic medications and specific treatments are emerging but for many patients no interventions exist. We convened an expert working group to develop an overarching framework to address the existing research gaps in basic, translational, and clinical research and identified areas for future development of preclinical models, candidate medications and innovative clinical trials. In this Position Paper, we summarise working group discussions, recommendations, and unresolved questions concerning precision treatments for FPF.
Collapse
Affiliation(s)
- Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Mari Ozaki
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Quentin Philippot
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France; Physiopathology and Epidemiology of Respiratory Diseases, Inserm U1152, UFR de Médecine, Université Paris Cité, 75018, Paris, France
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Overijse, Belgium
| | | | - Mary Kirwan
- Department of General Practice, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Deborah R Gill
- UK Respiratory Gene Therapy Consortium, London, United Kingdom; Gene Medicine Research Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Gisli Jenkins
- Imperial College London, 4615, National Heart & Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Matthias Griese
- Department of Pediatric Pneumology, German Center for Lung Research (DZL), Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Nadia Nathan
- Sorbonne Université, Pediatric Pulmonology and Reference Center for Rare Lung Diseases RespiRare, Inserm U933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, APHP, Paris, France
| | - Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| |
Collapse
|
9
|
Candeli N, Dayton T. Investigating pulmonary neuroendocrine cells in human respiratory diseases with airway models. Dis Model Mech 2024; 17:dmm050620. [PMID: 38813849 DOI: 10.1242/dmm.050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Despite accounting for only ∼0.5% of the lung epithelium, pulmonary neuroendocrine cells (PNECs) appear to play an outsized role in respiratory health and disease. Increased PNEC numbers have been reported in a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma. Moreover, PNECs are the primary cell of origin for lung neuroendocrine cancers, which account for 25% of aggressive lung cancers. Recent research has highlighted the crucial roles of PNECs in lung physiology, including in chemosensing, regeneration and immune regulation. Yet, little is known about the direct impact of PNECs on respiratory diseases. In this Review, we summarise the current associations of PNECs with lung pathologies, focusing on how new experimental disease models, such as organoids derived from human pluripotent stem cells or tissue stem cells, can help us to better understand the contribution of PNECs to respiratory diseases.
Collapse
Affiliation(s)
- Noah Candeli
- European Molecular Biology Laboratory (EMBL) Barcelona, Tissue Biology and Disease Modelling, 08003, Barcelona, Spain
| | - Talya Dayton
- European Molecular Biology Laboratory (EMBL) Barcelona, Tissue Biology and Disease Modelling, 08003, Barcelona, Spain
| |
Collapse
|
10
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Lee RE, Mascenik TM, Major SC, Galiger JR, Bulik-Sullivan E, Siesser PF, Lewis CA, Bear JE, Le Suer JA, Hawkins FJ, Pickles RJ, Randell SH. Viral airway injury promotes cell engraftment in an in vitro model of cystic fibrosis cell therapy. Am J Physiol Lung Cell Mol Physiol 2024; 326:L226-L238. [PMID: 38150545 PMCID: PMC11280688 DOI: 10.1152/ajplung.00421.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Cell therapy is a potential treatment for cystic fibrosis (CF). However, cell engraftment into the airway epithelium is challenging. Here, we model cell engraftment in vitro using the air-liquid interface (ALI) culture system by injuring well-differentiated CF ALI cultures and delivering non-CF cells at the time of peak injury. Engraftment efficiency was quantified by measuring chimerism by droplet digital PCR and functional ion transport in Ussing chambers. Using this model, we found that human bronchial epithelial cells (HBECs) engraft more efficiently when they are cultured by conditionally reprogrammed cell (CRC) culture methods. Cell engraftment into the airway epithelium requires airway injury, but the extent of injury needed is unknown. We compared three injury models and determined that severe injury with partial epithelial denudation facilitates long-term cell engraftment and functional CFTR recovery up to 20% of wildtype function. The airway epithelium promptly regenerates in response to injury, creating competition for space and posing a barrier to effective engraftment. We examined competition dynamics by time-lapse confocal imaging and found that delivered cells accelerate airway regeneration by incorporating into the epithelium. Irradiating the repairing epithelium granted engrafting cells a competitive advantage by diminishing resident stem cell proliferation. Intentionally, causing severe injury to the lungs of people with CF would be dangerous. However, naturally occurring events like viral infection can induce similar epithelial damage with patches of denuded epithelium. We found that viral preconditioning promoted effective engraftment of cells primed for viral resistance.NEW & NOTEWORTHY Cell therapy is a potential treatment for cystic fibrosis (CF). Here, we model cell engraftment by injuring CF air-liquid interface cultures and delivering non-CF cells. Successful engraftment required severe epithelial injury. Intentionally injuring the lungs to this extent would be dangerous. However, naturally occurring events like viral infection induce similar epithelial damage. We found that viral preconditioning promoted the engraftment of cells primed for viral resistance leading to CFTR functional recovery to 20% of the wildtype.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Teresa M Mascenik
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Sidra C Major
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jacob R Galiger
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Emily Bulik-Sullivan
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Priscila F Siesser
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jake A Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, United States
- Department of Medicine, The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, United States
- Department of Medicine, The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Raymond J Pickles
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
12
|
Takeuchi C, Sato J, Yamamichi N, Kageyama-Yahara N, Sasaki A, Akahane T, Aoki R, Nakajima S, Ito M, Yamamichi M, Liu YY, Sakuma N, Takahashi Y, Sakaguchi Y, Tsuji Y, Sakurai K, Tomida S, Niimi K, Ushijima T, Fujishiro M. Marked intestinal trans-differentiation by autoimmune gastritis along with ectopic pancreatic and pulmonary trans-differentiation. J Gastroenterol 2024; 59:95-108. [PMID: 37962678 PMCID: PMC10810929 DOI: 10.1007/s00535-023-02055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Autoimmune gastritis (AIG) is a prevalent chronic inflammatory disease with oncogenic potential that causes destruction of parietal cells and severe mucosal atrophy. We aimed to explore the distinctive gene expression profiles, activated signaling pathways, and their underlying mechanisms. METHODS A comprehensive gene expression analysis was conducted using biopsy specimens from AIG, Helicobacter pylori-associated gastritis (HPG), and non-inflammatory normal stomachs. Gastric cancer cell lines were cultured under acidic (pH 6.5) conditions to evaluate changes in gene expression. RESULTS Gastric mucosa with AIG had a unique gene expression profile compared with that with HPG and normal mucosa, such as extensively low expression of ATP4A and high expression of GAST and PAPPA2, which are involved in neuroendocrine tumorigenesis. Additionally, the mucosa with AIG and HPG showed the downregulation of stomach-specific genes and upregulation of small intestine-specific genes; however, intestinal trans-differentiation was much more prominent in AIG samples, likely in a CDX-dependent manner. Furthermore, AIG induced ectopic expression of pancreatic digestion-related genes, PNLIP, CEL, CTRB1, and CTRC; and a master regulator gene of the lung, NKX2-1/TTF1 with alveolar fluid secretion-related genes, SFTPB and SFTPC. Mechanistically, acidic conditions led to the downregulation of master regulator and stemness control genes of small intestine, suggesting that increased environmental pH may cause abnormal intestinal differentiation in the stomach. CONCLUSIONS AIG induces diverse trans-differentiation in the gastric mucosa, characterized by the transactivation of genes specific to the small intestine, pancreas, and lung. Increased environmental pH owing to AIG may cause abnormal differentiation of the gastric mucosa.
Collapse
Affiliation(s)
- Chihiro Takeuchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Junichi Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan.
| | - Natsuko Kageyama-Yahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Akiko Sasaki
- Department of Gastroenterology, Medicine Center, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Rika Aoki
- Tokushima Health Screening Center, Tokushima, Japan
| | - Shigemi Nakajima
- Department of General Medicine, Japan Community Healthcare Organization Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Masayoshi Ito
- Department of Gastroenterology, Yotsuya Medical Cube, Tokyo, Japan
| | - Mitsue Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yu-Yu Liu
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Nobuyuki Sakuma
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yu Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoshiki Sakaguchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yosuke Tsuji
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kouhei Sakurai
- Department of Pathology, Fujita Health University School of Medicine, Aichi, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Keiko Niimi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
13
|
Li C, Liu Z, Anderson J, Liu Z, Tang L, Li Y, Peng N, Chen J, Liu X, Fu L, Townes TM, Rowe SM, Bedwell DM, Guimbellot J, Zhao R. Prime editing-mediated correction of the CFTR W1282X mutation in iPSCs and derived airway epithelial cells. PLoS One 2023; 18:e0295009. [PMID: 38019847 PMCID: PMC10686454 DOI: 10.1371/journal.pone.0295009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
A major unmet need in the cystic fibrosis (CF) therapeutic landscape is the lack of effective treatments for nonsense CFTR mutations, which affect approximately 10% of CF patients. Correction of nonsense CFTR mutations via genomic editing represents a promising therapeutic approach. In this study, we tested whether prime editing, a novel CRISPR-based genomic editing method, can be a potential therapeutic modality to correct nonsense CFTR mutations. We generated iPSCs from a CF patient homozygous for the CFTR W1282X mutation. We demonstrated that prime editing corrected one mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. We further demonstrated that prime editing may directly repair mutations in iPSC-derived airway epithelial cells when the prime editing machinery is efficiently delivered by helper-dependent adenovirus (HDAd). Together, our data demonstrated that prime editing may potentially be applied to correct CFTR mutations such as W1282X.
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhong Liu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Justin Anderson
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Liping Tang
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yao Li
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ning Peng
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jianguo Chen
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xueming Liu
- Key Laboratory of Imaging Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lianwu Fu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tim M. Townes
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David M. Bedwell
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jennifer Guimbellot
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
14
|
Kearns NA, Lobo M, Genga RMJ, Abramowitz RG, Parsi KM, Min J, Kernfeld EM, Huey JD, Kady J, Hennessy E, Brehm MA, Ziller MJ, Maehr R. Generation and molecular characterization of human pluripotent stem cell-derived pharyngeal foregut endoderm. Dev Cell 2023; 58:1801-1818.e15. [PMID: 37751684 PMCID: PMC10637111 DOI: 10.1016/j.devcel.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Approaches to study human pharyngeal foregut endoderm-a developmental intermediate that is linked to various human syndromes involving pharynx development and organogenesis of tissues such as thymus, parathyroid, and thyroid-have been hampered by scarcity of tissue access and cellular models. We present an efficient stepwise differentiation method to generate human pharyngeal foregut endoderm from pluripotent stem cells. We determine dose and temporal requirements of signaling pathway engagement for optimized differentiation and characterize the differentiation products on cellular and integrated molecular level. We present a computational classification tool, "CellMatch," and transcriptomic classification of differentiation products on an integrated mouse scRNA-seq developmental roadmap confirms cellular maturation. Integrated transcriptomic and chromatin analyses infer differentiation stage-specific gene regulatory networks. Our work provides the method and integrated multiomic resource for the investigation of disease-relevant loci and gene regulatory networks and their role in developmental defects affecting the pharyngeal endoderm and its derivatives.
Collapse
Affiliation(s)
- Nicola A Kearns
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Macrina Lobo
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan M J Genga
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan G Abramowitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Krishna M Parsi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiang Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Eric M Kernfeld
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jack D Huey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jamie Kady
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erica Hennessy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael J Ziller
- Department of Psychiatry, University of Münster, Münster, Germany
| | - René Maehr
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
16
|
Deguchi K, Zambaiti E, De Coppi P. Regenerative medicine: current research and perspective in pediatric surgery. Pediatr Surg Int 2023; 39:167. [PMID: 37014468 PMCID: PMC10073065 DOI: 10.1007/s00383-023-05438-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
The field of regenerative medicine, encompassing several disciplines including stem cell biology and tissue engineering, continues to advance with the accumulating research on cell manipulation technologies, gene therapy and new materials. Recent progress in preclinical and clinical studies may transcend the boundaries of regenerative medicine from laboratory research towards clinical reality. However, for the ultimate goal to construct bioengineered transplantable organs, a number of issues still need to be addressed. In particular, engineering of elaborate tissues and organs requires a fine combination of different relevant aspects; not only the repopulation of multiple cell phenotypes in an appropriate distribution but also the adjustment of the host environmental factors such as vascularisation, innervation and immunomodulation. The aim of this review article is to provide an overview of the recent discoveries and development in stem cells and tissue engineering, which are inseparably interconnected. The current status of research on tissue stem cells and bioengineering, and the possibilities for application in specific organs relevant to paediatric surgery have been specifically focused and outlined.
Collapse
Affiliation(s)
- Koichi Deguchi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elisa Zambaiti
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- UOC Chirurgia Pediatrica, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK.
- NIHR BRC SNAPS Great Ormond Street Hospitals, London, UK.
- Stem Cells and Regenerative Medicine Section, Faculty of Population Health Sciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
17
|
Derman ID, Singh YP, Saini S, Nagamine M, Banerjee D, Ozbolat IT. Bioengineering and Clinical Translation of Human Lung and its Components. Adv Biol (Weinh) 2023; 7:e2200267. [PMID: 36658734 PMCID: PMC10121779 DOI: 10.1002/adbi.202200267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Indexed: 01/21/2023]
Abstract
Clinical lung transplantation has rapidly established itself as the gold standard of treatment for end-stage lung diseases in a restricted group of patients since the first successful lung transplant occurred. Although significant progress has been made in lung transplantation, there are still numerous obstacles on the path to clinical success. The development of bioartificial lung grafts using patient-derived cells may serve as an alternative treatment modality; however, challenges include developing appropriate scaffold materials, advanced culture strategies for lung-specific multiple cell populations, and fully matured constructs to ensure increased transplant lifetime following implantation. This review highlights the development of tissue-engineered tracheal and lung equivalents over the past two decades, key problems in lung transplantation in a clinical environment, the advancements made in scaffolds, bioprinting technologies, bioreactors, organoids, and organ-on-a-chip technologies. The review aims to fill the lacuna in existing literature toward a holistic bioartificial lung tissue, including trachea, capillaries, airways, bifurcating bronchioles, lung disease models, and their clinical translation. Herein, the efforts are on bridging the application of lung tissue engineering methods in a clinical environment as it is thought that tissue engineering holds enormous promise for overcoming the challenges associated with the clinical translation of bioengineered human lung and its components.
Collapse
Affiliation(s)
- I. Deniz Derman
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Shweta Saini
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Momoka Nagamine
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Chemistry, Penn State University; University Park, PA,16802, USA
| | - Dishary Banerjee
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University; University Park, PA, 16802, USA
- Materials Research Institute, Penn State University; University Park, PA, 16802, USA
- Cancer Institute, Penn State University; University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University; University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
18
|
Zhou KX, Aoki FG, Marin A, Karoubi G, Haykal S, Waddell TK. De-Epithelialization Protocol with Tapered Sodium Dodecyl Sulfate Concentrations Enhances Short-Term Chondrocyte Survival in Porcine Chimeric Tracheal Allografts. INTERNATIONAL JOURNAL OF MEDICAL STUDENTS 2023. [DOI: 10.5195/ijms.2023.1437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background: Tracheal transplantation is indicated in cases where injury exceeds 50% of the organ in adults and 30% in children. However, transplantation is not yet considered a viable treatment option partly due to high morbidity and mortality associated with graft rejection. Recently, decellularization (decell) has been explored as a technique for creating bioengineered tracheal grafts. However, risk of post-operative stenosis increases due to the death of chondrocytes, which are critical to maintain the biochemical and mechanical integrity of tracheal cartilage. In this project, we propose a new de-epithelialization protocol that adequately removes epithelial, mucosal, and submucosal cells while maintaining a greater proportion of viable chondrocytes.
Methods: The trachea of adult male outbred Yorkshire pigs were extracted, decontaminated, and decellularized according to the original and new protocols before incubation at 37 °C in DMEM for 10 days. Chondrocyte viability was quantified immediately following post-decellularization and on days 1, 4, 7, and 10. Histology was performed pre-decellularization, post-decellularization, and post-incubation.
Results: The new protocol showed a significant (p < 0.05) increase in chondrocyte viability up to four days after de-ep when compared to the original protocol. We also found that the new protocol preserves ECM composition to a similar degree as the original protocol. When scaffolds created using the new protocol were re-epithelialized, cell growth curves were near identical to published data from the original protocol.
Conclusion: While not without limitations, our new protocol may be used to engineer chimeric tracheal allografts without the need for cartilage regeneration.
Collapse
|
19
|
Yang W, Li Y, Shi F, Liu H. Human lung organoid: Models for respiratory biology and diseases. Dev Biol 2023; 494:26-34. [PMID: 36470449 DOI: 10.1016/j.ydbio.2022.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The human respiratory system, consisting of the airway and alveoli, is one of the most complex organs directly interfaced with the external environment. The diverse epithelial cells lining the surface are usually the first cell barrier that comes into contact with pathogens that could lead to deadly pulmonary disease. There is an urgent need to understand the mechanisms of self-renewal and protection of these epithelial cells against harmful pathogens, such as SARS-CoV-2. Traditional models, including cell lines and mouse models, have extremely limited native phenotypic features. Therefore, in recent years, to mimic the complexity of the lung, airway and alveoli organoid technology has been developed and widely applied. TGF-β/BMP/SMAD, FGF and Wnt/β-catenin signaling have been proven to play a key role in lung organoid expansion and differentiation. Thus, we summarize the current novel lung organoid culture strategies and discuss their application for understanding the lung biological features and pathophysiology of pulmonary diseases, especially COVID-19. Lung organoids provide an excellent in vitro model and research platform.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingna Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Yu F, Liu F, Liang X, Duan L, Li Q, Pan G, Ma C, Liu M, Li M, Wang P, Zhao X. iPSC-Derived Airway Epithelial Cells: Progress, Promise, and Challenges. Stem Cells 2023; 41:1-10. [PMID: 36190736 DOI: 10.1093/stmcls/sxac074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
Induced pluripotent stem cells (iPSCs) generated from somatic cell sources are pluripotent and capable of indefinite expansion in vitro. They provide an unlimited source of cells that can be differentiated into lung progenitor cells for potential clinical use in pulmonary regenerative medicine. This review gives a comprehensive overview of recent progress toward the use of iPSCs to generate proximal and distal airway epithelial cells and mix lung organoids. Furthermore, their potential applications and future challenges for the field are discussed, with a focus on the technological hurdles that must be cleared before stem cell therapeutics can be used for clinical treatment.
Collapse
Affiliation(s)
- Fenggang Yu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Fei Liu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Xiaohua Liang
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Linwei Duan
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Qiongqiong Li
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Ge Pan
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Chengyao Ma
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Minmin Liu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Mingyue Li
- Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Peng Wang
- Guangxi Yinfeng Stem Cell Engineering Technology Co., Ltd., Yufeng, Liuzhou, Guangxi Province, People's Republic of China
| | - Xuening Zhao
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| |
Collapse
|
21
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
22
|
Ikonomou L, Yampolskaya M, Mehta P. Multipotent Embryonic Lung Progenitors: Foundational Units of In Vitro and In Vivo Lung Organogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:49-70. [PMID: 37195526 PMCID: PMC10351616 DOI: 10.1007/978-3-031-26625-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transient, tissue-specific, embryonic progenitors are important cell populations in vertebrate development. In the course of respiratory system development, multipotent mesenchymal and epithelial progenitors drive the diversification of fates that results to the plethora of cell types that compose the airways and alveolar space of the adult lungs. Use of mouse genetic models, including lineage tracing and loss-of-function studies, has elucidated signaling pathways that guide proliferation and differentiation of embryonic lung progenitors as well as transcription factors that underlie lung progenitor identity. Furthermore, pluripotent stem cell-derived and ex vivo expanded respiratory progenitors offer novel, tractable, high-fidelity systems that allow for mechanistic studies of cell fate decisions and developmental processes. As our understanding of embryonic progenitor biology deepens, we move closer to the goal of in vitro lung organogenesis and resulting applications in developmental biology and medicine.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering Center, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | | | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
23
|
Chernokal B, Gonyea CR, Gleghorn JP. Lung Development in a Dish: Models to Interrogate the Cellular Niche and the Role of Mechanical Forces in Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:29-48. [PMID: 37195525 DOI: 10.1007/978-3-031-26625-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past decade, emphasis has been placed on recapitulating in vitro the architecture and multicellular interactions found in organs in vivo [1, 2]. Whereas traditional reductionist approaches to in vitro models enable teasing apart the precise signaling pathways, cellular interactions, and response to biochemical and biophysical cues, model systems that incorporate higher complexity are needed to ask questions about physiology and morphogenesis at the tissue scale. Significant advancements have been made in establishing in vitro models of lung development to understand cell-fate specification, gene regulatory networks, sexual dimorphism, three-dimensional organization, and how mechanical forces interact to drive lung organogenesis [3-5]. In this chapter, we highlight recent advances in the rapid development of various lung organoids, organ-on-a-chip models, and whole lung ex vivo explant models currently used to dissect the roles of these cellular signals and mechanical cues in lung development and potential avenues for future investigation (Fig. 3.1).
Collapse
Affiliation(s)
- Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Cailin R Gonyea
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
24
|
Aslan A, Yuka SA. Stem Cell-Based Therapeutic Approaches in Genetic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:19-53. [PMID: 36735185 DOI: 10.1007/5584_2023_761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells, which can self-renew and differentiate into different cell types, have become the keystone of regenerative medicine due to these properties. With the achievement of superior clinical results in the therapeutic approaches of different diseases, the applications of these cells in the treatment of genetic diseases have also come to the fore. Foremost, conventional approaches of stem cells to genetic diseases are the first approaches in this manner, and they have brought safety issues due to immune reactions caused by allogeneic transplantation. To eliminate these safety issues and phenotypic abnormalities caused by genetic defects, firstly, basic genetic engineering practices such as vectors or RNA modulators were combined with stem cell-based therapeutic approaches. However, due to challenges such as immune reactions and inability to target cells effectively in these applications, advanced molecular methods have been adopted in ZFN, TALEN, and CRISPR/Cas genome editing nucleases, which allow modular designs in stem cell-based genetic diseases' therapeutic approaches. Current studies in genetic diseases are in the direction of creating permanent treatment regimens by genomic manipulation of stem cells with differentiation potential through genome editing tools. In this chapter, the stem cell-based therapeutic approaches of various vital genetic diseases were addressed wide range from conventional applications to genome editing tools.
Collapse
Affiliation(s)
- Ayça Aslan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Selcen Arı Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey.
| |
Collapse
|
25
|
Humbert MV, Spalluto CM, Bell J, Blume C, Conforti F, Davies ER, Dean LSN, Elkington P, Haitchi HM, Jackson C, Jones MG, Loxham M, Lucas JS, Morgan H, Polak M, Staples KJ, Swindle EJ, Tezera L, Watson A, Wilkinson TMA. Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding. Eur Respir J 2022; 60:2200455. [PMID: 35777774 DOI: 10.1183/13993003.00455-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cosma Mirella Spalluto
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- M.V. Humbert and C.M. Spalluto are co-first authors and contributed equally to this work
| | - Joseph Bell
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Cornelia Blume
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Elizabeth R Davies
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Paul Elkington
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Claire Jackson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jane S Lucas
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Hywel Morgan
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Marta Polak
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Karl J Staples
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Emily J Swindle
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Liku Tezera
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Infection and Immunity, Faculty of Medicine, University College London, London, UK
| | - Alastair Watson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tom M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
26
|
Medina-Cano D, Corrigan EK, Glenn RA, Islam MT, Lin Y, Kim J, Cho H, Vierbuchen T. Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids. Development 2022; 149:dev200561. [PMID: 35899604 PMCID: PMC10655922 DOI: 10.1242/dev.200561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generates target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof of concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Mohammed T. Islam
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Yuan Lin
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Juliet Kim
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Hyunwoo Cho
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| |
Collapse
|
27
|
Childs CJ, Eiken MK, Spence JR. Approaches to benchmark and characterize in vitro human model systems. Development 2022; 149:dev200641. [PMID: 36214410 PMCID: PMC10906492 DOI: 10.1242/dev.200641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
In vitro human models, such as gastruloids and organoids, are complex three-dimensional (3D) structures often consist of cells from multiple germ layers that possess some attributes of a developing embryo or organ. To use these models to interrogate human development and organogenesis, these 3D models must accurately recapitulate aspects of their in vivo counterparts. Recent advances in single-cell technologies, including sequencing and spatial approaches, have enabled efforts to better understand and directly compare organoids with native tissues. For example, single-cell genomic efforts have created cell and organ atlases that enable benchmarking of in vitro models and can also be leveraged to gain novel biological insights that can be used to further improve in vitro models. This Spotlight discusses the state of current in vitro model systems, the efforts to create large publicly available atlases of the developing human and how these data are being used to improve organoids. Limitations and perspectives on future efforts are also discussed.
Collapse
Affiliation(s)
- Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Hein RFC, Conchola AS, Fine AS, Xiao Z, Frum T, Brastrom LK, Akinwale MA, Childs CJ, Tsai YH, Holloway EM, Huang S, Mahoney J, Heemskerk I, Spence JR. Stable iPSC-derived NKX2-1+ lung bud tip progenitor organoids give rise to airway and alveolar cell types. Development 2022; 149:dev200693. [PMID: 36039869 PMCID: PMC9534489 DOI: 10.1242/dev.200693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022]
Abstract
Bud tip progenitors (BTPs) in the developing lung give rise to all epithelial cell types found in the airways and alveoli. This work aimed to develop an iPSC organoid model enriched with NKX2-1+ BTP-like cells. Building on previous studies, we optimized a directed differentiation paradigm to generate spheroids with more robust NKX2-1 expression. Spheroids were expanded into organoids that possessed NKX2-1+/CPM+ BTP-like cells, which increased in number over time. Single cell RNA-sequencing analysis revealed a high degree of transcriptional similarity between induced BTPs (iBTPs) and in vivo BTPs. Using FACS, iBTPs were purified and expanded as induced bud tip progenitor organoids (iBTOs), which maintained an enriched population of bud tip progenitors. When iBTOs were directed to differentiate into airway or alveolar cell types using well-established methods, they gave rise to organoids composed of organized airway or alveolar epithelium, respectively. Collectively, iBTOs are transcriptionally and functionally similar to in vivo BTPs, providing an important model for studying human lung development and differentiation.
Collapse
Affiliation(s)
- Renee F. C. Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S. Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S. Fine
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhiwei Xiao
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lindy K. Brastrom
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mayowa A. Akinwale
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M. Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Mahoney
- Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Kotasová H, Capandová M, Pelková V, Dumková J, Koledová Z, Remšík J, Souček K, Garlíková Z, Sedláková V, Rabata A, Vaňhara P, Moráň L, Pečinka L, Porokh V, Kučírek M, Streit L, Havel J, Hampl A. Expandable Lung Epithelium Differentiated from Human Embryonic Stem Cells. Tissue Eng Regen Med 2022; 19:1033-1050. [PMID: 35670910 PMCID: PMC9478014 DOI: 10.1007/s13770-022-00458-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The progenitors to lung airway epithelium that are capable of long-term propagation may represent an attractive source of cells for cell-based therapies, disease modeling, toxicity testing, and others. Principally, there are two main options for obtaining lung epithelial progenitors: (i) direct isolation of endogenous progenitors from human lungs and (ii) in vitro differentiation from some other cell type. The prime candidates for the second approach are pluripotent stem cells, which may provide autologous and/or allogeneic cell resource in clinically relevant quality and quantity. METHODS By exploiting the differentiation potential of human embryonic stem cells (hESC), here we derived expandable lung epithelium (ELEP) and established culture conditions for their long-term propagation (more than 6 months) in a monolayer culture without a need of 3D culture conditions and/or cell sorting steps, which minimizes potential variability of the outcome. RESULTS These hESC-derived ELEP express NK2 Homeobox 1 (NKX2.1), a marker of early lung epithelial lineage, display properties of cells in early stages of surfactant production and are able to differentiate to cells exhibitting molecular and morphological characteristics of both respiratory epithelium of airway and alveolar regions. CONCLUSION Expandable lung epithelium thus offer a stable, convenient, easily scalable and high-yielding cell source for applications in biomedicine.
Collapse
Affiliation(s)
- Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Capandová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Zuzana Koledová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ján Remšík
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Current Address: Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Karel Souček
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Garlíková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Anas Rabata
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukáš Pečinka
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Volodymyr Porokh
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Martin Kučírek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Libor Streit
- Department of Plastic and Cosmetic Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Plastic and Cosmetic Surgery, St. Anne's Faculty Hospital, Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
30
|
Fetal Lung Cells Transfer Improves Emphysematous Change in a Mouse Model of Neutrophil Elastase-Induced Lung Emphysema. Curr Issues Mol Biol 2022; 44:3923-3929. [PMID: 36135181 PMCID: PMC9497467 DOI: 10.3390/cimb44090269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, several studies for lung regeneration have been reported. However, regenerating the lung tissue by the transfer of any cells directly to the lung has been hardly successful. The aim of this study was to evaluate the effect of fetal lung cells (FLCs) in a mouse model of lung emphysema. C57BL/6 mice were stimulated with neutrophil elastase (NE) intra-tracheally (i.t.) to generate lung emphysema. To collect fetal lung cells, C57BL/6-Tg (CAG-EGFP) mice were bred for 14 days. Before delivery, the bred mice were euthanized, and fetal lungs were harvested from the fetal mice and the cells were collected. The FLCs were transferred i.t. 24 h after the NE instillation. Four weeks after the NE instillation, mice were euthanized, and the samples were collected. The mean linear intercept (MLI) was significantly prolonged in the NE instillation group compared to the control group. However, in the FLCs transfer group stimulated with NE, the MLI became shorter than the NE-stimulated group without an FLCs transfer. This result shows that an FLCs transfer inhibited the progression of lung emphysema. Additionally, motility of the mice was also improved by the FLCs transfer. These results indicate that transfer of the FLCs, which were presumed to be progenitor cells for lung tissue, may improve the emphysematous change.
Collapse
|
31
|
Differentiation of Human Induced Pluripotent Stem Cells from Patients with Severe COPD into Functional Airway Epithelium. Cells 2022; 11:cells11152422. [PMID: 35954266 PMCID: PMC9368529 DOI: 10.3390/cells11152422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Chronic Obstructive Pulmonary Disease (COPD), a major cause of mortality and disability, is a complex disease with heterogeneous and ill-understood biological mechanisms. Human induced pluripotent stem cells (hiPSCs) are a promising tool to model human disease, including the impact of genetic susceptibility. Methods: We developed a simple and reliable method for reprogramming peripheral blood mononuclear cells into hiPSCs and to differentiate them into air−liquid interface bronchial epithelium within 45 days. Importantly, this method does not involve any cell sorting step. We reprogrammed blood cells from one healthy control and three patients with very severe COPD. Results: The mean cell purity at the definitive endoderm and ventral anterior foregut endoderm (vAFE) stages was >80%, assessed by quantifying C-X-C Motif Chemokine Receptor 4/SRY-Box Transcription Factor 17 (CXCR4/SOX17) and NK2 Homeobox 1 (NKX2.1) expression, respectively. vAFE cells from all four hiPSC lines differentiated into bronchial epithelium in air−liquid interface conditions, with large zones covered by beating ciliated, basal, goblets, club cells and neuroendocrine cells, as found in vivo. The hiPSC-derived airway epithelium (iALI) from patients with very severe COPD and from the healthy control were undistinguishable. Conclusions: iALI bronchial epithelium is ready for better understanding lung disease pathogenesis and accelerating drug discovery.
Collapse
|
32
|
Varankar SS, Cardoso EC, Lee JH. Ex situ-armus: experimental models for combating respiratory dysfunction. Curr Opin Genet Dev 2022; 75:101946. [PMID: 35810725 DOI: 10.1016/j.gde.2022.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
Ex situ experimental models have become a main stay in pulmonary research. Organoids and explant systems have uncovered novel stem cell subsets, served as disease models, delineated cell fate transitions, and aided high throughput pre-clinical drug screening. Integration of gene-editing and bioengineering approaches have further generated novel avenues for regenerative medicine and transplantation strategies. In this article, we highlight recent studies, aided by ex situ systems, which have contributed to significant advances in our understanding of the human lower respiratory tract. We present key observations from these studies to gain improved insights into human disease. We conclude this article with a summary of existing challenges and potential technological advances to successfully mirror human tissue physiology.
Collapse
Affiliation(s)
- Sagar S Varankar
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Erik C Cardoso
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Joo-Hyeon Lee
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK.
| |
Collapse
|
33
|
Berical A, Lee RE, Lu J, Beermann ML, Le Suer JA, Mithal A, Thomas D, Ranallo N, Peasley M, Stuffer A, Bukis K, Seymour R, Harrington J, Coote K, Valley H, Hurley K, McNally P, Mostoslavsky G, Mahoney J, Randell SH, Hawkins FJ. A multimodal iPSC platform for cystic fibrosis drug testing. Nat Commun 2022; 13:4270. [PMID: 35906215 PMCID: PMC9338271 DOI: 10.1038/s41467-022-31854-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Cystic fibrosis is a monogenic lung disease caused by dysfunction of the cystic fibrosis transmembrane conductance regulator anion channel, resulting in significant morbidity and mortality. The progress in elucidating the role of CFTR using established animal and cell-based models led to the recent discovery of effective modulators for most individuals with CF. However, a subset of individuals with CF do not respond to these modulators and there is an urgent need to develop novel therapeutic strategies. In this study, we generate a panel of airway epithelial cells using induced pluripotent stem cells from individuals with common or rare CFTR variants representative of three distinct classes of CFTR dysfunction. To measure CFTR function we adapt two established in vitro assays for use in induced pluripotent stem cell-derived airway cells. In both a 3-D spheroid assay using forskolin-induced swelling as well as planar cultures composed of polarized mucociliary airway epithelial cells, we detect genotype-specific differences in CFTR baseline function and response to CFTR modulators. These results demonstrate the potential of the human induced pluripotent stem cell platform as a research tool to study CF and in particular accelerate therapeutic development for CF caused by rare variants.
Collapse
Affiliation(s)
- Andrew Berical
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Junjie Lu
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Jake A Le Suer
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Aditya Mithal
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Dylan Thomas
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Nicole Ranallo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - Megan Peasley
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | - Alex Stuffer
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | | | | | | | - Kevin Coote
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | | | - Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul McNally
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Children's Health Ireland, Dublin, Ireland
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
| | - John Mahoney
- Cystic Fibrosis Foundation, Lexington, MA, 02421, USA
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA.
- The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA.
| |
Collapse
|
34
|
Lin Y, Wang D, Zeng Y. A Maverick Review of Common Stem/Progenitor Markers in Lung Development. Stem Cell Rev Rep 2022; 18:2629-2645. [DOI: 10.1007/s12015-022-10422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 10/16/2022]
|
35
|
Bosáková V, De Zuani M, Sládková L, Garlíková Z, Jose SS, Zelante T, Hortová Kohoutková M, Frič J. Lung Organoids—The Ultimate Tool to Dissect Pulmonary Diseases? Front Cell Dev Biol 2022; 10:899368. [PMID: 35912110 PMCID: PMC9326165 DOI: 10.3389/fcell.2022.899368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Organoids are complex multicellular three-dimensional (3D) in vitro models that are designed to allow accurate studies of the molecular processes and pathologies of human organs. Organoids can be derived from a variety of cell types, such as human primary progenitor cells, pluripotent stem cells, or tumor-derived cells and can be co-cultured with immune or microbial cells to further mimic the tissue niche. Here, we focus on the development of 3D lung organoids and their use as disease models and drug screening tools. We introduce the various experimental approaches used to model complex human diseases and analyze their advantages and disadvantages. We also discuss validation of the organoids and their physiological relevance to the study of lung diseases. Furthermore, we summarize the current use of lung organoids as models of host-pathogen interactions and human lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or SARS-CoV-2 infection. Moreover, we discuss the use of lung organoids derived from tumor cells as lung cancer models and their application in personalized cancer medicine research. Finally, we outline the future of research in the field of human induced pluripotent stem cell-derived organoids.
Collapse
Affiliation(s)
- Veronika Bosáková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Lucie Sládková
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Garlíková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Shyam Sushama Jose
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- *Correspondence: Jan Frič,
| |
Collapse
|
36
|
Wu T, Rabi SA, Michaud WA, Becerra D, Gilpin SE, Mino-Kenudson M, Ott HC. Protease inhibitor Camostat Mesyalte blocks wild type SARS-CoV-2 and D614G viral entry in human engineered miniature lungs. Biomaterials 2022; 285:121509. [PMID: 35533440 PMCID: PMC8999341 DOI: 10.1016/j.biomaterials.2022.121509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
The catastrophic global effects of the SARS-CoV-2 pandemic highlight the need to develop novel therapeutics strategies to prevent and treat viral infections of the respiratory tract. To enable this work, we need scalable, affordable, and physiologically relevant models of the human lung, the primary organ involved in the pathogenesis of COVID-19. To date, most COVID-19 in vitro models rely on platforms such as cell lines and organoids. While 2D and 3D models have provided important insights, human distal lung models that can model epithelial viral uptake have yet to be established. We hypothesized that by leveraging techniques of whole organ engineering and directed differentiation of induced pluripotent stem cells (iPSC) we could model human distal lung epithelium, examine viral infection at the tissue level in real time, and establish a platform for COVID-19 related research ex vivo. In the present study, we used type 2 alveolar epithelial cells (AT2) derived from human iPSCs to repopulate whole rat lung acellular scaffolds and maintained them in extended biomimetic organ culture for 30 days to induce the maturation of distal lung epithelium. We observed emergence of a mixed type 1 and type 2 alveolar epithelial phenotype during tissue formation. When exposing our system to a pseudotyped lentivirus containing the spike of wildtype SARS-CoV-2 and the more virulent D614G, we observed progression of the infection in real time. We then found that the protease inhibitor Camostat Mesyalte significantly reduced viral transfection in distal lung epithelium. In summary, our data show that a mature human distal lung epithelium can serve as a novel moderate throughput research platform to examine viral infection and to evaluate novel therapeutics ex vivo.
Collapse
Affiliation(s)
- Tong Wu
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Seyed A. Rabi
- Massachusetts General Hospital, Department of Surgery, Boston, MA, USA,Massachusetts General Hospital, Division of Cardiovascular Surgery, Boston, MA, USA
| | - William A. Michaud
- Massachusetts General Hospital, Department of Surgery, Boston, MA, USA,Massachusetts General Hospital, Division of Surgical Oncology, Boston, MA, USA
| | - David Becerra
- Duke University Medical Center, Department of General Surgery, USA
| | - Sarah E. Gilpin
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Massachusetts General Hospital, Department of Pathology, Boston, MA, USA
| | - Harald C. Ott
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Massachusetts General Hospital, Department of Surgery, Boston, MA, USA,Corresponding author. Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA
| |
Collapse
|
37
|
Wu M, Zhang X, Lin Y, Zeng Y. Roles of airway basal stem cells in lung homeostasis and regenerative medicine. Respir Res 2022; 23:122. [PMID: 35562719 PMCID: PMC9102684 DOI: 10.1186/s12931-022-02042-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
Airway basal stem cells (BSCs) in the proximal airways are recognized as resident stem cells capable of self-renewing and differentiating to virtually every pseudostratified epithelium cell type under steady-state and after acute injury. In homeostasis, BSCs typically maintain a quiescent state. However, when exposed to acute injuries by either physical insults, chemical damage, or pathogen infection, the remaining BSCs increase their proliferation rate apace within the first 24 h and differentiate to restore lung homeostasis. Given the progenitor property of airway BSCs, it is attractive to research their biological characteristics and how they maintain homeostatic airway structure and respond to injury. In this review, we focus on the roles of BSCs in lung homeostasis and regeneration, detail the research progress in the characteristics of airway BSCs, the cellular and molecular signaling communications involved in BSCs-related airway repair and regeneration, and further discuss the in vitro models for airway BSC propagation and their applications in lung regenerative medicine therapy.
Collapse
Affiliation(s)
- Meirong Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Xiaojing Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yijian Lin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yiming Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
38
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
39
|
Lian Q, Zhang K, Zhang Z, Duan F, Guo L, Luo W, Mok BWY, Thakur A, Ke X, Motallebnejad P, Nicolaescu V, Chen J, Ma CY, Zhou X, Han S, Han T, Zhang W, Tan AY, Zhang T, Wang X, Xu D, Xiang J, Xu A, Liao C, Huang FP, Chen YW, Na J, Randall G, Tse HF, Chen Z, Chen Y, Chen HJ. Differential effects of macrophage subtypes on SARS-CoV-2 infection in a human pluripotent stem cell-derived model. Nat Commun 2022; 13:2028. [PMID: 35440562 PMCID: PMC9018716 DOI: 10.1038/s41467-022-29731-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2022] [Indexed: 01/08/2023] Open
Abstract
Dysfunctional immune responses contribute critically to the progression of Coronavirus Disease-2019 (COVID-19), with macrophages as one of the main cell types involved. It is urgent to understand the interactions among permissive cells, macrophages, and the SARS-CoV-2 virus, thereby offering important insights into effective therapeutic strategies. Here, we establish a lung and macrophage co-culture system derived from human pluripotent stem cells (hPSCs), modeling the host-pathogen interaction in SARS-CoV-2 infection. We find that both classically polarized macrophages (M1) and alternatively polarized macrophages (M2) have inhibitory effects on SARS-CoV-2 infection. However, M1 and non-activated (M0) macrophages, but not M2 macrophages, significantly up-regulate inflammatory factors upon viral infection. Moreover, M1 macrophages suppress the growth and enhance apoptosis of lung cells. Inhibition of viral entry using an ACE2 blocking antibody substantially enhances the activity of M2 macrophages. Our studies indicate differential immune response patterns in distinct macrophage phenotypes, which could lead to a range of COVID-19 disease severity.
Collapse
Affiliation(s)
- Qizhou Lian
- Cord Blood Bank Center, Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
- HKUMed Laboratory of Cellular Therapeutics, and Department of Medicine, the University of Hong Kong, Hong Kong SAR, China.
| | - Kui Zhang
- The Pritzker School of Molecular Engineering, the University of Chicago, Chicago, IL, 60637, USA
- The Ben May Department for Cancer Research, the University of Chicago, Chicago, IL, 60637, USA
| | - Zhao Zhang
- HKUMed Laboratory of Cellular Therapeutics, and Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Fuyu Duan
- Cord Blood Bank Center, Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liyan Guo
- Cord Blood Bank Center, Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weiren Luo
- Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Diseases, Shenzhen, China
| | - Bobo Wing-Yee Mok
- Department of Microbiology and State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Abhimanyu Thakur
- The Pritzker School of Molecular Engineering, the University of Chicago, Chicago, IL, 60637, USA
- The Ben May Department for Cancer Research, the University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoshan Ke
- The Pritzker School of Molecular Engineering, the University of Chicago, Chicago, IL, 60637, USA
- The Ben May Department for Cancer Research, the University of Chicago, Chicago, IL, 60637, USA
| | - Pedram Motallebnejad
- The Pritzker School of Molecular Engineering, the University of Chicago, Chicago, IL, 60637, USA
- The Ben May Department for Cancer Research, the University of Chicago, Chicago, IL, 60637, USA
| | - Vlad Nicolaescu
- Microbiology, Biosciences Division, the University of Chicago, Chicago, IL, 60637, USA
| | - Jonathan Chen
- McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Chui Yan Ma
- Cord Blood Bank Center, Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoya Zhou
- HKUMed Laboratory of Cellular Therapeutics, and Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Shuo Han
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Teng Han
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wei Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Adrian Y Tan
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xing Wang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Dong Xu
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jenny Xiang
- Genomic Resource Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Can Liao
- Cord Blood Bank Center, Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fang-Ping Huang
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jie Na
- School of Medicine, Tsinghua University, Beijing, China
| | - Glenn Randall
- Microbiology, Biosciences Division, the University of Chicago, Chicago, IL, 60637, USA
| | - Hung-Fat Tse
- HKUMed Laboratory of Cellular Therapeutics, and Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emergent Infectious Disease, The University of Hong Kong, Hong Kong, China
| | - Yin Chen
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, the University of Chicago, Chicago, IL, 60637, USA.
- The Ben May Department for Cancer Research, the University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
40
|
Three-dimensional models of the lung: past, present and future: a mini review. Biochem Soc Trans 2022; 50:1045-1056. [PMID: 35411381 DOI: 10.1042/bst20190569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 01/09/2023]
Abstract
Respiratory diseases are a major reason for death in both men and women worldwide. The development of therapies for these diseases has been slow and the lack of relevant human models to understand lung biology inhibits therapeutic discovery. The lungs are structurally and functionally complex with many different cell types which makes designing relevant lung models particularly challenging. The traditional two-dimensional (2D) cell line cultures are, therefore, not a very accurate representation of the in vivo lung tissue. The recent development of three-dimensional (3D) co-culture systems, popularly known as organoids/spheroids, aims to bridge the gap between 'in-dish' and 'in-tissue' cell behavior. These 3D cultures are modeling systems that are widely divergent in terms of culturing techniques (bottom-up/top-down) that can be developed from stem cells (adult/embryonic/pluripotent stem cells), primary cells or from two or more types of cells, to build a co-culture system. Lung 3D models have diverse applications including the understanding of lung development, lung regeneration, disease modeling, compound screening, and personalized medicine. In this review, we discuss the different techniques currently being used to generate 3D models and their associated cellular and biological materials. We further detail the potential applications of lung 3D cultures for disease modeling and advances in throughput for drug screening.
Collapse
|
41
|
Abstract
Cystic fibrosis (CF), the most common genetic disease among the Caucasian population, is caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR), a chloride epithelial channel whose dysfunction results in severe airway obstruction and inflammation, eventually leading to respiratory failure. The discovery of the CFTR gene in 1989 provided new insights into the basic genetic defect of CF and allowed the study of potential therapies targeting the aberrant protein. In recent years, the approval of “CFTR modulators”, the first molecules designed to selectively target the underlying molecular defects caused by specific CF-causing mutations, marked the beginning of a new era in CF treatment. These drugs have been demonstrated to significantly improve lung function and ameliorate the quality of life of many patients, especially those bearing the most common CFTR mutatant F508del. However, a substantial portion of CF subjects, accounting for ~20% of the European CF population, carry rare CFTR mutations and are still not eligible for CFTR modulator therapy, partly due to our limited understanding of the molecular defects associated with these genetic alterations. Thus, the implementation of models to study the phenotype of these rare CFTR mutations and their response to currently approved drugs, as well as to compounds under research and clinical development, is of key importance. The purpose of this review is to summarize the current knowledge on the potential of CFTR modulators in rescuing the function of rare CF-causing CFTR variants, focusing on both investigational and clinically approved molecules.
Collapse
|
42
|
Kastenhuber ER, Mercadante M, Nilsson-Payant B, Johnson JL, Jaimes JA, Muecksch F, Weisblum Y, Bram Y, Whittaker GR, tenOever BR, Schwartz RE, Chandar V, Cantley L. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. eLife 2022; 11:77444. [PMID: 35294338 PMCID: PMC8942469 DOI: 10.7554/elife.77444] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases and coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
| | - Marisa Mercadante
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Benjamin Nilsson-Payant
- Institute of Experimental Virology, TWINCORE Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Hannover, Germany
| | - Jared L Johnson
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Yaron Bram
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, United States
| | - Benjamin R tenOever
- Department of Microbiology, New York University Langone Medical Center, New York, United States
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Vasuretha Chandar
- Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Lewis Cantley
- Department of Medicine, Weill Cornell Medical College, New York, United States
| |
Collapse
|
43
|
Ng WH, Johnston EK, Tan JJ, Bliley JM, Feinberg AW, Stolz DB, Sun M, Wijesekara P, Hawkins F, Kotton DN, Ren X. Recapitulating human cardio-pulmonary co-development using simultaneous multilineage differentiation of pluripotent stem cells. eLife 2022; 11:67872. [PMID: 35018887 PMCID: PMC8846595 DOI: 10.7554/elife.67872] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The extensive crosstalk between the developing heart and lung is critical to their proper morphogenesis and maturation. However, there remains a lack of models that investigate the critical cardio-pulmonary mutual interaction during human embryogenesis. Here, we reported a novel stepwise strategy for directing the simultaneous induction of both mesoderm-derived cardiac and endoderm-derived lung epithelial lineages within a single differentiation of human-induced pluripotent stem cells (hiPSCs) via temporal specific tuning of WNT and nodal signaling in the absence of exogenous growth factors. Using 3D suspension culture, we established concentric cardio-pulmonary micro-Tissues (μTs), and expedited alveolar maturation in the presence of cardiac accompaniment. Upon withdrawal of WNT agonist, the cardiac and pulmonary components within each dual-lineage μT effectively segregated from each other with concurrent initiation of cardiac contraction. We expect that our multilineage differentiation model will offer an experimentally tractable system for investigating human cardio-pulmonary interaction and tissue boundary formation during embryogenesis. Organs begin developing during the first few months of pregnancy, while the baby is still an embryo. These early stages of development are known as embryogenesis – a tightly organized process, during which the embryo forms different layers of stem cells. These cells can be activated to turn into a particular type of cell, such as a heart or a lung cell. The heart and lungs develop from different layers within the embryo, which must communicate with each other for the organs to form correctly. For example, chemical signals can be released from and travel between layers of the embryo, activating processes inside cells located in the different areas. In mouse models, chemical signals and cells travel between developing heart and lung, which helps both organs to form into the correct structure. But it is unclear how well the observations from mouse models translate to heart and lung development in humans. To find out more, Ng et al. developed a human model of heart and lung co-development during embryogenesis using human pluripotent stem cells. The laboratory-grown stem cells were treated with chemical signals, causing them to form different layers that developed into early forms of heart and lung cells. The cells were then transferred into a specific growing condition, where they arranged into three-dimensional structures termed microtissues. Ng et al. found that lung cells developed faster when grown in microtissues with accompanying developing heart cells compared to microtissues containing only developing lung cells. In addition, Ng et al. revealed that the co-developing heart and lung tissues automatically separate from each other during later stage, without the need for chemical signals. This human cell-based model of early forms of co-developing heart and lung cells may help provide researchers with new strategies to probe the underlying mechanisms of human heart and lung interaction during embryogenesis.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Elizabeth K Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Jacqueline M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, United States
| | - Ming Sun
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, United States
| | - Piyumi Wijesekara
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Finn Hawkins
- Center for Regenerative Medicine, Boston University, Boston, United States
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University, Boston, MA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|
44
|
Wang Z, Xiang L, Lin F, Cai Z, Ruan H, Wang J, Liang J, Wang F, Lu M, Cui W. Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. MATTER 2022; 5:336-362. [PMID: 34693277 PMCID: PMC8524658 DOI: 10.1016/j.matt.2021.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 05/03/2023]
Abstract
The SARS-CoV-2 pandemic spread worldwide unabated. However, achieving protection from the virus in the whole respiratory tract, avoiding blood dissemination, and calming the subsequent cytokine storm remains a major challenge. Here, we develop an inhaled microfluidic microsphere using dual camouflaged methacrylate hyaluronic acid hydrogel microspheres with a genetically engineered membrane from angiotensin-converting enzyme II (ACE2) receptor-overexpressing cells and macrophages. By timely competing with the virus for ACE2 binding, the inhaled microspheres significantly reduce SARS-CoV-2 infective effectiveness over the whole course of the respiratory system in vitro and in vivo. Moreover, the inhaled microspheres efficiently neutralize proinflammatory cytokines, cause an alternative landscape of lung-infiltrated immune cells, and alleviate hyperinflammation of lymph nodes and spleen. In an acute pneumonia model, the inhaled microspheres show significant therapeutic efficacy by regulation of the multisystem inflammatory syndrome and reduce acute mortality, suggesting a powerful synergic strategy for the treatment of patients with severe COVID-19 via non-invasive administration.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Liang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
45
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
46
|
Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. Preclinical Models for the Study of Lung Cancer Pathogenesis and Therapy Development. Cold Spring Harb Perspect Med 2021; 11:a037820. [PMID: 34518338 PMCID: PMC8634791 DOI: 10.1101/cshperspect.a037820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimental preclinical models have been a cornerstone of lung cancer translational research. Work in these model systems has provided insights into the biology of lung cancer subtypes and their origins, contributed to our understanding of the mechanisms that underlie tumor progression, and revealed new therapeutic vulnerabilities. Initially patient-derived lung cancer cell lines were the main preclinical models available. The landscape is very different now with numerous preclinical models for research each with unique characteristics. These include genetically engineered mouse models (GEMMs), patient-derived xenografts (PDXs) and three-dimensional culture systems ("organoid" cultures). Here we review the development and applications of these models and describe their contributions to lung cancer research.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | - Don X Nguyen
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Katerina Politi
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
47
|
Duan X, Tang X, Nair MS, Zhang T, Qiu Y, Zhang W, Wang P, Huang Y, Xiang J, Wang H, Schwartz RE, Ho DD, Evans T, Chen S. An airway organoid-based screen identifies a role for the HIF1α-glycolysis axis in SARS-CoV-2 infection. Cell Rep 2021; 37:109920. [PMID: 34731648 PMCID: PMC8516798 DOI: 10.1016/j.celrep.2021.109920] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/01/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
It is urgent to develop disease models to dissect mechanisms regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we derive airway organoids from human pluripotent stem cells (hPSC-AOs). The hPSC-AOs, particularly ciliated-like cells, are permissive to SARS-CoV-2 infection. Using this platform, we perform a high content screen and identify GW6471, which blocks SARS-CoV-2 infection. GW6471 can also block infection of the B.1.351 SARS-CoV-2 variant. RNA sequencing (RNA-seq) analysis suggests that GW6471 blocks SARS-CoV-2 infection at least in part by inhibiting hypoxia inducible factor 1 subunit alpha (HIF1α), which is further validated by chemical inhibitor and genetic perturbation targeting HIF1α. Metabolic profiling identifies decreased rates of glycolysis upon GW6471 treatment, consistent with transcriptome profiling. Finally, xanthohumol, 5-(tetradecyloxy)-2-furoic acid, and ND-646, three compounds that suppress fatty acid biosynthesis, also block SARS-CoV-2 infection. Together, a high content screen coupled with transcriptome and metabolic profiling reveals a key role of the HIF1α-glycolysis axis in mediating SARS-CoV-2 infection of human airway epithelium.
Collapse
Affiliation(s)
- Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuming Tang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yunping Qiu
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| |
Collapse
|
48
|
Varma R, Marin‐Araujo AE, Rostami S, Waddell TK, Karoubi G, Haykal S. Short-Term Preclinical Application of Functional Human Induced Pluripotent Stem Cell-Derived Airway Epithelial Patches. Adv Healthc Mater 2021; 10:e2100957. [PMID: 34569180 DOI: 10.1002/adhm.202100957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Airway pathologies including cancer, trauma, and stenosis lack effective treatments, meanwhile airway transplantation and available tissue engineering approaches fail due to epithelial dysfunction. Autologous progenitors do not meet the clinical need for regeneration due to their insufficient expansion and differentiation, for which human induced pluripotent stem cells (hiPSCs) are promising alternatives. Airway epithelial patches are engineered by differentiating hiPSC-derived airway progenitors into physiological proportions of ciliated (73.9 ± 5.5%) and goblet (2.1 ± 1.4%) cells on a silk fibroin-collagen vitrigel membrane (SF-CVM) composite biomaterial for transplantation in porcine tracheal defects ex vivo and in vivo. Evaluation of ex vivo tracheal repair using hiPSC-derived SF-CVM patches demonstrate native-like tracheal epithelial metabolism and maintenance of mucociliary epithelium to day 3. In vivo studies demonstrate SF-CVM integration and maintenance of airway patency, showing 80.8 ± 3.6% graft coverage with an hiPSC-derived pseudostratified epithelium and 70.7 ± 2.3% coverage with viable cells, 3 days postoperatively. The utility of bioengineered, hiPSC-derived epithelial patches for airway repair is demonstrated in a short-term preclinical survival model, providing a significant leap for airway reconstruction approaches.
Collapse
Affiliation(s)
- Ratna Varma
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
| | - Alba E. Marin‐Araujo
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Sara Rostami
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Department of Mechanical and Industrial Engineering University of Toronto 5 King's College Circle Toronto ON M5S 3G8 Canada
- Department of Laboratory Medicine and Pathobiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8 Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
- Division of Plastic and Reconstructive Surgery Department of Surgery University of Toronto 200 Elizabeth Street 8N‐869 Toronto ON M5G2P7 Canada
| |
Collapse
|
49
|
Three-Dimensional Airway Spheroids and Organoids for Cystic Fibrosis Research. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive multi-organ disease caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, with morbidity and mortality primacy related to the lung disease. The CFTR protein, a chloride/bicarbonate channel, is expressed at the apical side of airway epithelial cells and is mainly involved in appropriate ion and fluid transport across the epithelium. Although many animal and cellular models have been developed to study the pathophysiological consequences of the lack/dysfunction of CFTR, only the three-dimensional (3D) structures termed “spheroids” and “organoids” can enable the reconstruction of airway mucosa to model organ development, disease pathophysiology, and drug screening. Airway spheroids and organoids can be derived from different sources, including adult lungs and induced pluripotent stem cells (iPSCs), each with its advantages and limits. Here, we review the major features of airway spheroids and organoids, anticipating that their potential in the CF field has not been fully shown. Further work is mandatory to understand whether they can accomplish better outcomes than other culture conditions of airway epithelial cells for CF personalized therapies and tissue engineering aims.
Collapse
|
50
|
Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced Pluripotent Stem Cells (iPSCs)-Roles in Regenerative Therapies, Disease Modelling and Drug Screening. Cells 2021; 10:cells10092319. [PMID: 34571968 PMCID: PMC8467501 DOI: 10.3390/cells10092319] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) has made an invaluable contribution to the field of regenerative medicine, paving way for identifying the true potential of human embryonic stem cells (ESCs). Since the controversy around ethicality of ESCs continue to be debated, iPSCs have been used to circumvent the process around destruction of the human embryo. The use of iPSCs have transformed biological research, wherein increasing number of studies are documenting nuclear reprogramming strategies to make them beneficial models for drug screening as well as disease modelling. The flexibility around the use of iPSCs include compatibility to non-invasive harvesting, and ability to source from patients with rare diseases. iPSCs have been widely used in cardiac disease modelling, studying inherited arrhythmias, neural disorders including Alzheimer’s disease, liver disease, and spinal cord injury. Extensive research around identifying factors that are involved in maintaining the identity of ESCs during induction of pluripotency in somatic cells is undertaken. The focus of the current review is to detail all the clinical translation research around iPSCs and the strength of its ever-growing potential in the clinical space.
Collapse
Affiliation(s)
- Mourad A. M. Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Correspondence:
| | - Alhusain J. Alzahrani
- Department of Clinical Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Amer Mahmoud
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| |
Collapse
|