1
|
Lim MJ, Kim SJ, Jo A, Kim SW. Enhanced application potential of alveolar organoids through epithelial and niche cell interactions. Sci Rep 2025; 15:17538. [PMID: 40394147 DOI: 10.1038/s41598-025-01853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
Recent studies have focused on understand lung repair mechanisms, which are critical for treating respiratory diseases. In this study, we develop alveolar organoids to investigate the complex interactions between alveolar epithelial cells, niche fibroblasts and macrophages, which are essential for lung development, maintenance and repair, especially under physiological injury. Our results suggest that alveolar organoids may be a model for epithelial cell regeneration and the inflammatory response in lung tissue. Alveolar organoid studies can also serve as models for various lung injuries and demonstrate mechanisms in the injured human lung.
Collapse
Affiliation(s)
- Min Jae Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Postech-Catholic Biomedical Engineering Institute, Collage of Medicine, The Catholic University of Korea, Songeui Multiplex Hall, Seoul, Korea
| | - Ayoung Jo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Department of Medical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Postech-Catholic Biomedical Engineering Institute, Collage of Medicine, The Catholic University of Korea, Songeui Multiplex Hall, Seoul, Korea.
| |
Collapse
|
2
|
Ribó-Molina P, van Nieuwkoop S, Funk M, Verstrepen BE, van Kampen JJA, Fouchier RAM, van den Hoogen BG. Isolation of Human Metapneumovirus from clinical specimen in human organoid-derived bronchial cell cultures is superior to isolation in monolayer cell line cultures. J Clin Virol 2025; 178:105805. [PMID: 40383019 DOI: 10.1016/j.jcv.2025.105805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Human Metapneumovirus (HMPV) is a causative agent of respiratory tract infections (RTI) in children and adults. HMPV is a member of the Pneumoviridae family for which circulation of two serotypes, A and B, has been reported. HMPV isolation in standard monolayer cell lines is not always successful. Recently, it was shown that upon inoculation of human organoid-derived bronchial (ODB) cultures, HMPV primarily targeted the ciliated cells, similar as observed in experimentally infected animals. These observations lead to the hypothesis that isolation of virus from clinical specimen in this ODB model could be more successful than in standard monolayer cultures. METHODS This study compared the efficiency of isolation of HMPV from 36 clinical samples in human ODB cultures with that in monolayers of Vero-118 cells. RESULTS A total of 27 isolates (8 HMPV A and 19 HMPV B) were obtained in the ODB cultures, after one passage, whereas 21 isolates (9 HMPV A and 12 HMPV B) were obtained after one or two passages in Vero-118 cells. CONCLUSIONS Overall, the isolation efficiency of serotype A HMPV was comparable in both models, while isolation of serotype B viruses was profoundly more efficient in the ODB cultures than in Vero-118 cells, suggesting that primary cultures expressing ciliated cells should be considered as a superior isolation method for HMPV from clinical specimens.
Collapse
Affiliation(s)
- Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Babs E Verstrepen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
3
|
Huo Y, He S, Chen Y. Lung organoids in COPD: recent advances and future prospects. Respir Res 2025; 26:76. [PMID: 40022099 PMCID: PMC11871743 DOI: 10.1186/s12931-025-03138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease that is characterized by progressive airflow limitation, a high prevalence, and a high mortality rate. However, the specific mechanisms remain unclear, partly due to the lack of robust data from in vitro experimental models and animal models that do not adequately represent the structure and pathophysiology of the human lung. The recent advancement of lung organoid culture systems has facilitated new avenues for the investigation of COPD. Lung organoids are in vitro models derived from adult stem cells, human pluripotent stem cells, or embryonic stem cells, established through three-dimensional culture. They exhibit a high degree of homology and genetic consistency with human tissues and can better mimic human lungs in terms of function and structure compared to other traditional models. This review will summarise the generation process of lung organoids from different cell sources and their application in COPD research, and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Yajie Huo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shengyang He
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China.
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China.
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China.
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
4
|
Lim K, Rutherford EN, Delpiano L, He P, Lin W, Sun D, Van den Boomen DJH, Edgar JR, Bang JH, Predeus A, Teichmann SA, Marioni JC, Matesic LE, Lee JH, Lehner PJ, Marciniak SJ, Rawlins EL, Dickens JA. A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. EMBO J 2025; 44:639-664. [PMID: 39815007 PMCID: PMC11790967 DOI: 10.1038/s44318-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases, including interstitial lung disease (ILD), in which some inherited forms result from the mislocalization of surfactant protein C (SFTPC) variants. Lung disease modeling and dissection of the underlying mechanisms remain challenging due to complexities in deriving and maintaining human AT2 cells ex vivo. Here, we describe the development of mature, expandable AT2 organoids derived from human fetal lungs which are phenotypically stable, can differentiate into AT1-like cells, and are genetically manipulable. We use these organoids to test key effectors of SFTPC maturation identified in a forward genetic screen including the E3 ligase ITCH, demonstrating that their depletion phenocopies the pathological SFTPC redistribution seen for the SFTPC-I73T variant. In summary, we demonstrate the development of a novel alveolar organoid model and use it to identify effectors of SFTPC maturation necessary for AT2 health.
Collapse
Affiliation(s)
- Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Department of Life Sciences, Korea University, 145 Anam-Ro, Seoungbuk-Gu, Seoul, 02841, South Korea
| | | | - Livia Delpiano
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Weimin Lin
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Dick J H Van den Boomen
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Harvard Medical School, Department of Cell Biology, Harvard University, LHRRB building, 45 Shattuck Street, Boston, MA, 02115, USA
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Jae Hak Bang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexander Predeus
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Genentech, South San Francisco, CA, USA
| | - Lydia E Matesic
- Department of Biological Sciences, University of South Carolina,, 715 Sumter St., Columbia, SC, 29208, USA
| | - Joo-Hyeon Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK.
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY, UK.
| |
Collapse
|
5
|
Flagg M, Williamson BN, Ortiz-Morales JA, Lutterman TR, de Wit E. Comparison of Contemporary and Historic Highly Pathogenic Avian Influenza A(H5N1) Virus Replication in Human Lung Organoids. Emerg Infect Dis 2025; 31:318-322. [PMID: 39778080 PMCID: PMC11845140 DOI: 10.3201/eid3102.241147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
We compared virus replication and host responses in human alveolar epithelium infected with highly pathogenic avian influenza (HPAI) A(H5N1) viruses. A/Vietnam/1203/2004 replicated most efficiently, followed by A/Texas/37/2024, then A/bovine/Ohio/B24OSU-342/2024. Induction of interferon-stimulated genes was lower with A/Texas/37/2024 and A/bovine/Ohio/B24OSU-342/2024, which may indicate a reduced disease severity of those viruses.
Collapse
|
6
|
Deguchi S, Yokoi F, Takayama K. Organoids and microphysiological systems for pharmaceutical research of viral respiratory infections. Drug Metab Pharmacokinet 2025; 60:101041. [PMID: 39847975 DOI: 10.1016/j.dmpk.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/25/2025]
Abstract
In the pharmaceutical research of viral respiratory infections, cell culture models have traditionally been used to evaluate the therapeutic effects of candidate compounds. Although cell lines are easy to handle and cost-effective, they do not fully replicate the characteristics of human respiratory organs. Recently, organoids and microphysiological systems (MPS) have been employed to overcome this limitation for in vitro testing of drugs against viral respiratory infections. Advanced disease modeling using organoids, self-organized three-dimensional (3D) cell culture models derived from stem cells, or MPS, models for culturing multiple cell types in a microfluidic device and capable of recapitulating a physiological 3D dynamic environment, can accurately replicate the complex functions of respiratory organs, thus making them valuable tools for elucidating the organ damages caused by viral respiratory infections and evaluating the efficacy of candidate drugs against them. Recently, a wide range of organoids and MPS have been developed to model the complex pathophysiology caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and assess therapeutic drugs. In this review, we evaluate the latest pharmaceutical research on coronavirus disease 2019 (COVID-19) that utilizes organoids and MPS and discuss future perspectives of their applications.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Fuki Yokoi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
7
|
Choi HK, Bang G, Shin JH, Shin MH, Woo A, Kim SY, Lee SH, Kim EY, Shim HS, Suh YJ, Kim HE, Lee JG, Choi J, Lee JH, Kim CH, Park MS. Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures. Tuberc Respir Dis (Seoul) 2025; 88:130-137. [PMID: 39343426 PMCID: PMC11704724 DOI: 10.4046/trd.2024.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity. METHODS Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells. RESULTS FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells. CONCLUSION This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
Collapse
Affiliation(s)
- Hyeon Kyu Choi
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gaeul Bang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ju Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ala Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Suh
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Eun Kim
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinwook Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Welcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ju Hyeon Lee
- Welcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Lee Y, Lee MK, Lee HR, Kim B, Kim M, Jung S. 3D-printed airway model as a platform for SARS-CoV-2 infection and antiviral drug testing. Biomaterials 2024; 311:122689. [PMID: 38944967 DOI: 10.1016/j.biomaterials.2024.122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
We present a bioprinted three-layered airway model with a physiologically relevant microstructure for the study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection dynamics. This model exhibited clear cell-cell junctions and mucus secretion with an efficient expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Having infected air-exposed epithelial cells in the upper layer with a minimum multiplicity of infection of 0.01, the airway model showed a marked susceptibility to SARS-CoV-2 within one-day post-infection (dpi). Furthermore, the unique longevity allowed the observation of cytopathic effects and barrier degradation for 21 dpi. The in-depth transcriptomic analysis revealed dramatic changes in gene expression affecting the infection pathway, viral proliferation, and host immune response which are consistent with COVID-19 patient data. Finally, the treatment of antiviral agents, such as remdesivir and molnupiravir, through the culture medium underlying the endothelium resulted in a marked inhibition of viral replication within the epithelium. The bioprinted airway model can be used as a manufacturable physiological platform to study disease pathogeneses and drug efficacy.
Collapse
Affiliation(s)
- Yunji Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Hwa-Rim Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byungil Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Sungjune Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Kim SK, Sung E, Lim K. Recent advances and applications of human lung alveolar organoids. Mol Cells 2024; 47:100140. [PMID: 39490990 PMCID: PMC11629183 DOI: 10.1016/j.mocell.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The human lung alveolus is a well-structured and coordinated pulmonary unit, allowing them to perform diverse functions. While there has been significant progress in understanding the molecular and cellular mechanisms behind human alveolar development and pulmonary diseases, the underlying mechanisms of alveolar differentiation and disease development are still unclear, mainly due to the limited availability of human tissues and a lack of proper in vitro lung model systems mimicking human lung physiology. In this review, we summarize recent advances in creating human lung organoid models that mimic alveolar epithelial cell types. Moreover, we discuss how lung alveolar organoid systems are being applied to recent cutting-edge research on lung development, regeneration, and diseases.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Eunho Sung
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Kyungtae Lim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
10
|
Maurat E, Raasch K, Leipold AM, Henrot P, Zysman M, Prevel R, Trian T, Krammer T, Bergeron V, Thumerel M, Nassoy P, Berger P, Saliba AE, Andrique L, Recher G, Dupin I. A novel in vitro tubular model to recapitulate features of distal airways: the bronchioid. Eur Respir J 2024; 64:2400562. [PMID: 39231631 PMCID: PMC11627163 DOI: 10.1183/13993003.00562-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Airflow limitation is the hallmark of obstructive pulmonary diseases, with the distal airways representing a major site of obstruction. Although numerous in vitro models of bronchi already exist, there is currently no culture system for obstructive diseases that reproduces the architecture and function of small airways. Here, we aimed to engineer a model of distal airways to overcome the limitations of current culture systems. METHODS We developed a so-called bronchioid model by encapsulating human bronchial adult stem cells derived from clinical samples in a tubular scaffold made of alginate gel. RESULTS This template drives the spontaneous self-organisation of epithelial cells into a tubular structure. Fine control of the level of contraction is required to establish a model of the bronchiole, which has a physiologically relevant shape and size. Three-dimensional imaging, gene expression and single-cell RNA-sequencing analysis of bronchioids made of bronchial epithelial cells revealed tubular organisation, epithelial junction formation and differentiation into ciliated and goblet cells. Ciliary beating was observed, at a decreased frequency in bronchioids made of cells from COPD patients. The bronchioid could be infected by rhinovirus. An air-liquid interface was introduced that modulated gene expression. CONCLUSION Here, we provide a proof of concept of a perfusable bronchioid with proper mucociliary and contractile functions. The key advantages of our approach, such as the air‒liquid interface, lumen accessibility, recapitulation of pathological features and possible assessment of clinically relevant end-points, will make our pulmonary organoid-like model a powerful tool for preclinical studies.
Collapse
Affiliation(s)
- Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- Equal contribution as joint first authors
| | - Katharina Raasch
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- Equal contribution as joint first authors
| | - Alexander M Leipold
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Pauline Henrot
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Maeva Zysman
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Renaud Prevel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Vanessa Bergeron
- VoxCell Facility, TBMcore UAR CNRS 3427, INSERM US 005, Univ-Bordeaux, Bordeaux, France
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Pierre Nassoy
- Laboratoire Photonique, Numérique et Nanosciences, UMR 5298 CNRS, Univ-Bordeaux, Bordeaux, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de réanimation, Service de chirurgie thoracique, Bordeaux, France
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Laetitia Andrique
- VoxCell Facility, TBMcore UAR CNRS 3427, INSERM US 005, Univ-Bordeaux, Bordeaux, France
| | - Gaëlle Recher
- Laboratoire Photonique, Numérique et Nanosciences, UMR 5298 CNRS, Univ-Bordeaux, Bordeaux, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC1401, Pessac, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
11
|
Loeb K, Lemaille C, Frederick C, Wallace HL, Kindrachuk J. Harnessing high-throughput OMICS in emerging zoonotic virus preparedness and response activities. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167337. [PMID: 38986821 DOI: 10.1016/j.bbadis.2024.167337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Emerging and re-emerging viruses pose unpredictable and significant challenges to global health. Emerging zoonotic infectious diseases, which are transmitted between humans and non-human animals, have been estimated to be responsible for nearly two-thirds of emerging infectious disease events and emergence events attributed to these pathogens have been increasing in frequency with the potential for high global health and economic burdens. In this review we will focus on the application of highthroughput OMICS approaches to emerging zoonotic virus investigtations. We highlight the key contributions of transcriptome and proteome investigations to emerging zoonotic virus preparedness and response activities with a focus on SARS-CoV-2, avian influenza virus subtype H5N1, and Orthoebolavirus investigations.
Collapse
Affiliation(s)
- Kristi Loeb
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Candice Lemaille
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Christina Frederick
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Hannah L Wallace
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Manitoba Centre for Proteomics and Systems Biology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
12
|
Li R, Sone N, Gotoh S, Sun X, Hagood JS. Contemporary and emerging technologies for research in children's rare and interstitial lung disease. Pediatr Pulmonol 2024; 59:2349-2359. [PMID: 37204232 DOI: 10.1002/ppul.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although recent decades have seen the identification, classification and discovery of the genetic basis of many children's interstitial and rare lung disease (chILD) disorders, detailed understanding of pathogenesis and specific therapies are still lacking for most of them. Fortunately, a revolution of technological advancements has created new opportunities to address these critical knowledge gaps. High-throughput sequencing has facilitated analysis of transcription of thousands of genes in thousands of single cells, creating tremendous breakthroughs in understanding normal and diseased cellular biology. Spatial techniques allow analysis of transcriptomes and proteomes at the subcellular level in the context of tissue architecture, in many cases even in formalin-fixed, paraffin-embedded specimens. Gene editing techniques allow creation of "humanized" animal models in a shorter time frame, for improved knowledge and preclinical therapeutic testing. Regenerative medicine approaches and bioengineering advancements facilitate the creation of patient-derived induced pluripotent stem cells and their differentiation into tissue-specific cell types which can be studied in multicellular "organoids" or "organ-on-a-chip" approaches. These technologies, singly and in combination, are already being applied to gain new biological insights into chILD disorders. The time is ripe to systematically apply these technologies to chILD, together with sophisticated data science approaches, to improve both biological understanding and disease-specific therapy.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - Naoyuki Sone
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Xin Sun
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - James S Hagood
- Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Flagg M, de Wit E. Advancing zoonotic respiratory virus research through the use of organoids. Curr Opin Virol 2024; 68-69:101435. [PMID: 39406586 PMCID: PMC11611640 DOI: 10.1016/j.coviro.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 12/07/2024]
Abstract
Zoonotic viruses with the ability to replicate in the human respiratory tract pose a threat to public health. Organoids, which are highly representative, multicellular models representing specific organs or tissues, can aid in our understanding of the pathogenesis, pathogenicity, transmissibility, and reservoir circulation dynamics of zoonotic viruses. Organoid studies can facilitate the rapid selection of antiviral therapies identification of potential reservoir species and intermediate hosts, and inform the selection of suitable laboratory animal models. We review the use of human- and animal-derived organoid models from multiple organs to investigate the threat of emerging zoonotic viruses that cause respiratory disease.
Collapse
Affiliation(s)
- Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, United States of America
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, United States of America.
| |
Collapse
|
14
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
15
|
Swart AL, Laventie BJ, Sütterlin R, Junne T, Lauer L, Manfredi P, Jakonia S, Yu X, Karagkiozi E, Okujava R, Jenal U. Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model. Nat Microbiol 2024; 9:1725-1737. [PMID: 38858595 DOI: 10.1038/s41564-024-01718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Pseudomonas aeruginosa, a leading cause of severe hospital-acquired pneumonia, causes infections with up to 50% mortality rates in mechanically ventilated patients. Despite some knowledge of virulence factors involved, it remains unclear how P. aeruginosa disseminates on mucosal surfaces and invades the tissue barrier. Using infection of human respiratory epithelium organoids, here we observed that P. aeruginosa colonization of apical surfaces is promoted by cyclic di-GMP-dependent asymmetric division. Infection with mutant strains revealed that Type 6 Secretion System activities promote preferential invasion of goblet cells. Type 3 Secretion System activity by intracellular bacteria induced goblet cell death and expulsion, leading to epithelial rupture which increased bacterial translocation and dissemination to the basolateral epithelium. These findings show that under physiological conditions, P. aeruginosa uses coordinated activity of a specific combination of virulence factors and behaviours to invade goblet cells and breach the epithelial barrier from within, revealing mechanistic insight into lung infection dynamics.
Collapse
Affiliation(s)
| | | | | | - Tina Junne
- Biozentrum, University of Basel, Basel, Switzerland
| | - Luisa Lauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Xiao Yu
- Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Evdoxia Karagkiozi
- Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rusudan Okujava
- Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Wu TTH, Travaglini KJ, Rustagi A, Xu D, Zhang Y, Andronov L, Jang S, Gillich A, Dehghannasiri R, Martínez-Colón GJ, Beck A, Liu DD, Wilk AJ, Morri M, Trope WL, Bierman R, Weissman IL, Shrager JB, Quake SR, Kuo CS, Salzman J, Moerner W, Kim PS, Blish CA, Krasnow MA. Interstitial macrophages are a focus of viral takeover and inflammation in COVID-19 initiation in human lung. J Exp Med 2024; 221:e20232192. [PMID: 38597954 PMCID: PMC11009983 DOI: 10.1084/jem.20232192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.
Collapse
Affiliation(s)
- Timothy Ting-Hsuan Wu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Kyle J. Travaglini
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Yue Zhang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Leonid Andronov
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - SoRi Jang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Astrid Gillich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanny J. Martínez-Colón
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aimee Beck
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron J. Wilk
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Winston L. Trope
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rob Bierman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B. Shrager
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Stephen R. Quake
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christin S. Kuo
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - W.E. Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Peter S. Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Catherine A. Blish
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark A. Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| |
Collapse
|
17
|
Pannu S, Exline MC, Bednash JS, Englert JA, Diaz P, Bartlett A, Brock G, Wu Q, Davis IC, Crouser ED. SCARLET (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial): study protocol for a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 trial of i.v. citicoline (CDP-choline) in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure. Trials 2024; 25:328. [PMID: 38760804 PMCID: PMC11102211 DOI: 10.1186/s13063-024-08155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The SARS CoV-2 pandemic has resulted in more than 1.1 million deaths in the USA alone. Therapeutic options for critically ill patients with COVID-19 are limited. Prior studies showed that post-infection treatment of influenza A virus-infected mice with the liponucleotide CDP-choline, which is an essential precursor for de novo phosphatidylcholine synthesis, improved gas exchange and reduced pulmonary inflammation without altering viral replication. In unpublished studies, we found that treatment of SARS CoV-2-infected K18-hACE2-transgenic mice with CDP-choline prevented development of hypoxemia. We hypothesize that administration of citicoline (the pharmaceutical form of CDP-choline) will be safe in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure (HARF) and that we will obtain preliminary evidence of clinical benefit to support a larger Phase 3 trial using one or more citicoline doses. METHODS We will conduct a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 dose-ranging and safety study of Somazina® citicoline solution for injection in consented adults of any sex, gender, age, or ethnicity hospitalized for SARS CoV-2-associated HARF. The trial is named "SCARLET" (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial). We hypothesize that SCARLET will show that i.v. citicoline is safe at one or more of three doses (0.5, 2.5, or 5 mg/kg, every 12 h for 5 days) in hospitalized SARS CoV-2-infected patients with HARF (20 per dose) and provide preliminary evidence that i.v. citicoline improves pulmonary outcomes in this population. The primary efficacy outcome will be the SpO2:FiO2 ratio on study day 3. Exploratory outcomes include Sequential Organ Failure Assessment (SOFA) scores, dead space ventilation index, and lung compliance. Citicoline effects on a panel of COVID-relevant lung and blood biomarkers will also be determined. DISCUSSION Citicoline has many characteristics that would be advantageous to any candidate COVID-19 therapeutic, including safety, low-cost, favorable chemical characteristics, and potentially pathogen-agnostic efficacy. Successful demonstration that citicoline is beneficial in severely ill patients with SARS CoV-2-induced HARF could transform management of severely ill COVID patients. TRIAL REGISTRATION The trial was registered at www. CLINICALTRIALS gov on 5/31/2023 (NCT05881135). TRIAL STATUS Currently enrolling.
Collapse
Affiliation(s)
- Sonal Pannu
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew C Exline
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joseph S Bednash
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Philip Diaz
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy Bartlett
- Center for Clinical and Translational Sciences, The Ohio State University, Columbus, OH, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Qing Wu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ian C Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
| | - Elliott D Crouser
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Turki T, Al Habib S, Taguchi YH. Novel Automatic Classification of Human Adult Lung Alveolar Type II Cells Infected with SARS-CoV-2 through the Deep Transfer Learning Approach. MATHEMATICS 2024; 12:1573. [DOI: 10.3390/math12101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Transmission electron microscopy imaging provides a unique opportunity to inspect the detailed structure of infected lung cells with SARS-CoV-2. Unlike previous studies, this novel study aims to investigate COVID-19 classification at the lung cellular level in response to SARS-CoV-2. Particularly, differentiating between healthy and infected human alveolar type II (hAT2) cells with SARS-CoV-2. Hence, we explore the feasibility of deep transfer learning (DTL) and introduce a highly accurate approach that works as follows: First, we downloaded and processed 286 images pertaining to healthy and infected hAT2 cells obtained from the electron microscopy public image archive. Second, we provided processed images to two DTL computations to induce ten DTL models. The first DTL computation employs five pre-trained models (including DenseNet201 and ResNet152V2) trained on more than one million images from the ImageNet database to extract features from hAT2 images. Then, it flattens and provides the output feature vectors to a trained, densely connected classifier with the Adam optimizer. The second DTL computation works in a similar manner, with a minor difference in that we freeze the first layers for feature extraction in pre-trained models while unfreezing and jointly training the next layers. The results using five-fold cross-validation demonstrated that TFeDenseNet201 is 12.37× faster and superior, yielding the highest average ACC of 0.993 (F1 of 0.992 and MCC of 0.986) with statistical significance (P<2.2×10−16 from a t-test) compared to an average ACC of 0.937 (F1 of 0.938 and MCC of 0.877) for the counterpart (TFtDenseNet201), showing no significance results (P=0.093 from a t-test).
Collapse
Affiliation(s)
- Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sarah Al Habib
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Computer Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
19
|
Gandikota C, Vaddadi K, Sivasami P, Huang C, Liang Y, Pushparaj S, Deng X, Channappanava R, Metcalf JP, Liu L. The use of human iPSC-derived alveolar organoids to explore SARS-CoV-2 variant infections and host responses. J Med Virol 2024; 96:e29579. [PMID: 38572923 PMCID: PMC11603130 DOI: 10.1002/jmv.29579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) primarily targets the respiratory system. Physiologically relevant human lung models are indispensable to investigate virus-induced host response and disease pathogenesis. In this study, we generated human induced pluripotent stem cell (iPSC)-derived alveolar organoids (AOs) using an established protocol that recapitulates the sequential steps of in vivo lung development. AOs express alveolar epithelial type II cell protein markers including pro-surfactant protein C and ATP binding cassette subfamily A member 3. Compared to primary human alveolar type II cells, AOs expressed higher mRNA levels of SARS-CoV-2 entry factors, angiotensin-converting enzyme 2 (ACE2), asialoglycoprotein receptor 1 (ASGR1) and basigin (CD147). Considering the localization of ACE2 on the apical side in AOs, we used three AO models, apical-in, sheared and apical-out for SARS-CoV-2 infection. All three models of AOs were robustly infected with the SARS-CoV-2 irrespective of ACE2 accessibility. Antibody blocking experiment revealed that ASGR1 was the main receptor for SARS-CoV2 entry from the basolateral in apical-in AOs. AOs supported the replication of SARS-CoV-2 variants WA1, Alpha, Beta, Delta, and Zeta and Omicron to a variable degree with WA1 being the highest and Omicron being the least. Transcriptomic profiling of infected AOs revealed the induction of inflammatory and interferon-related pathways with NF-κB signaling being the predominant host response. In summary, iPSC-derived AOs can serve as excellent human lung models to investigate infection of SARS-CoV-2 variants and host responses from both apical and basolateral sides.
Collapse
Affiliation(s)
- Chaitanya Gandikota
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Kishore Vaddadi
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Pulavendran Sivasami
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Chaoqun Huang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Yurong Liang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Samuel Pushparaj
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| | - Xufang Deng
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Rudragouda Channappanava
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma
| | - Jordan P. Metcalf
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
20
|
Cadore NA, Lord VO, Recamonde-Mendoza M, Kowalski TW, Vianna FSL. Meta-analysis of Transcriptomic Data from Lung Autopsy and Cellular Models of SARS-CoV-2 Infection. Biochem Genet 2024; 62:892-914. [PMID: 37486510 DOI: 10.1007/s10528-023-10453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Severe COVID-19 is a systemic disorder involving excessive inflammatory response, metabolic dysfunction, multi-organ damage, and several clinical features. Here, we performed a transcriptome meta-analysis investigating genes and molecular mechanisms related to COVID-19 severity and outcomes. First, transcriptomic data of cellular models of SARS-CoV-2 infection were compiled to understand the first response to the infection. Then, transcriptomic data from lung autopsies of patients deceased due to COVID-19 were compiled to analyze altered genes of damaged lung tissue. These analyses were followed by functional enrichment analyses and gene-phenotype association. A biological network was constructed using the disturbed genes in the lung autopsy meta-analysis. Central genes were defined considering closeness and betweenness centrality degrees. A sub-network phenotype-gene interaction analysis was performed. The meta-analysis of cellular models found genes mainly associated with cytokine signaling and other pathogen response pathways. The meta-analysis of lung autopsy tissue found genes associated with coagulopathy, lung fibrosis, multi-organ damage, and long COVID-19. Only genes DNAH9 and FAM216B were found perturbed in both meta-analyses. BLNK, FABP4, GRIA1, ATF3, TREM2, TPPP, TPPP3, FOS, ALB, JUNB, LMNA, ADRB2, PPARG, TNNC1, and EGR1 were identified as central elements among perturbed genes in lung autopsy and were found associated with several clinical features of severe COVID-19. Central elements were suggested as interesting targets to investigate the relation with features of COVID-19 severity, such as coagulopathy, lung fibrosis, and organ damage.
Collapse
Affiliation(s)
- Nathan Araujo Cadore
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vinicius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Centro Universitário CESUCA, Cachoeirinha, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Post-Graduation Program in Genetics and Molecular Biology, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
21
|
Chen B, Du C, Wang M, Guo J, Liu X. Organoids as preclinical models of human disease: progress and applications. MEDICAL REVIEW (2021) 2024; 4:129-153. [PMID: 38680680 PMCID: PMC11046574 DOI: 10.1515/mr-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In the field of biomedical research, organoids represent a remarkable advancement that has the potential to revolutionize our approach to studying human diseases even before clinical trials. Organoids are essentially miniature 3D models of specific organs or tissues, enabling scientists to investigate the causes of diseases, test new drugs, and explore personalized medicine within a controlled laboratory setting. Over the past decade, organoid technology has made substantial progress, allowing researchers to create highly detailed environments that closely mimic the human body. These organoids can be generated from various sources, including pluripotent stem cells, specialized tissue cells, and tumor tissue cells. This versatility enables scientists to replicate a wide range of diseases affecting different organ systems, effectively creating disease replicas in a laboratory dish. This exciting capability has provided us with unprecedented insights into the progression of diseases and how we can develop improved treatments. In this paper, we will provide an overview of the progress made in utilizing organoids as preclinical models, aiding our understanding and providing a more effective approach to addressing various human diseases.
Collapse
Affiliation(s)
- Baodan Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cijie Du
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Guo
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
22
|
Shin G, Hyun S, Kim D, Choi Y, Kim KH, Kim D, Kwon S, Kim YS, Yang SH, Yu J. Cyclohexylalanine-Containing α-Helical Amphipathic Peptide Targets Cardiolipin, Rescuing Mitochondrial Dysfunction in Kidney Injury. J Med Chem 2024; 67:3385-3399. [PMID: 38112308 PMCID: PMC10945481 DOI: 10.1021/acs.jmedchem.3c01578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Mitochondrial dysfunction is linked to degenerative diseases, resulting from cardiolipin (CL)-induced disruption of cristae structure in the inner mitochondrial membrane (IMM); therefore, preserving cristae and preventing CL remodeling offer effective strategies to maintain mitochondrial function. To identify reactive oxygen species (ROS)-blocking agents against mitochondrial dysfunction, a library of cyclohexylamine-containing cell-penetrating α-helical amphipathic "bundle" peptides were screened. Among these, CMP3013 is selectively bound to abnormal mitochondria, preserving the cristae structure impaired by mitochondria-damaging agents. With a stronger affinity for CL compared with other IMM lipid components, CMP3013 exhibited high selectivity. Consequently, it protected cristae, reduced ROS production, and enhanced adenosine triphosphate (ATP) generation. In mouse models of acute kidney injury, a 1 mg/kg dose of CMP3013 demonstrated remarkable efficacy, highlighting its potential as a therapeutic agent for mitochondrial dysfunction-related disorders. Overall, CMP3013 represents a promising agent for mitigating mitochondrial dysfunction and associated diseases.
Collapse
Affiliation(s)
- Gwangsu Shin
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Korea
| | - Soonsil Hyun
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Korea
| | - Dongwoo Kim
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Korea
| | | | - Kyu Hong Kim
- Department
of Biomedical Sciences, Seoul National University
Graduate School, Seoul 03080, Korea
| | - Dongmin Kim
- CAMP
Therapeutics Co., Ltd., Seoul 08826, Korea
| | - Soie Kwon
- Department
of Internal Medicine, Seoul National University
Hospital, Seoul 03080, Korea
| | - Yon Su Kim
- Department
of Internal Medicine, Seoul National University
Hospital, Seoul 03080, Korea
- Kidney
Research Institute, Seoul National University, Seoul 03080, Korea
- Biomedical
Research Institute, Seoul National University
Hospital, Seoul 03080, Republic of Korea
| | - Seung Hee Yang
- Kidney
Research Institute, Seoul National University, Seoul 03080, Korea
- Biomedical
Research Institute, Seoul National University
Hospital, Seoul 03080, Republic of Korea
| | - Jaehoon Yu
- Department
of Chemistry & Education, Seoul National
University, Seoul 08826, Korea
- CAMP
Therapeutics Co., Ltd., Seoul 08826, Korea
| |
Collapse
|
23
|
Zhang J, Liu Y. Epithelial stem cells and niches in lung alveolar regeneration and diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:17-26. [PMID: 38645714 PMCID: PMC11027191 DOI: 10.1016/j.pccm.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Indexed: 04/23/2024]
Abstract
Alveoli serve as the functional units of the lungs, responsible for the critical task of blood-gas exchange. Comprising type I (AT1) and type II (AT2) cells, the alveolar epithelium is continuously subject to external aggressors like pathogens and airborne particles. As such, preserving lung function requires both the homeostatic renewal and reparative regeneration of this epithelial layer. Dysfunctions in these processes contribute to various lung diseases. Recent research has pinpointed specific cell subgroups that act as potential stem or progenitor cells for the alveolar epithelium during both homeostasis and regeneration. Additionally, endothelial cells, fibroblasts, and immune cells synergistically establish a nurturing microenvironment-or "niche"-that modulates these epithelial stem cells. This review aims to consolidate the latest findings on the identities of these stem cells and the components of their niche, as well as the molecular mechanisms that govern them. Additionally, this article highlights diseases that arise due to perturbations in stem cell-niche interactions. We also discuss recent technical innovations that have catalyzed these discoveries. Specifically, this review underscores the heterogeneity, plasticity, and dynamic regulation of these stem cell-niche systems. It is our aspiration that a deeper understanding of the fundamental cellular and molecular mechanisms underlying alveolar homeostasis and regeneration will open avenues for identifying novel therapeutic targets for conditions such as chronic obstructive pulmonary disease (COPD), fibrosis, coronavirus disease 2019 (COVID-19), and lung cancer.
Collapse
Affiliation(s)
- Jilei Zhang
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yuru Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
24
|
Youk J, Kwon HW, Lim J, Kim E, Kim T, Kim R, Park S, Yi K, Nam CH, Jeon S, An Y, Choi J, Na H, Lee ES, Cho Y, Min DW, Kim H, Kang YR, Choi SH, Bae MJ, Lee CG, Kim JG, Kim YS, Yu T, Lee WC, Shin JY, Lee DS, Kim TY, Ku T, Kim SY, Lee JH, Koo BK, Lee H, Yi OV, Han EC, Chang JH, Kim KS, Son TG, Ju YS. Quantitative and qualitative mutational impact of ionizing radiation on normal cells. CELL GENOMICS 2024; 4:100499. [PMID: 38359788 PMCID: PMC10879144 DOI: 10.1016/j.xgen.2024.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
The comprehensive genomic impact of ionizing radiation (IR), a carcinogen, on healthy somatic cells remains unclear. Using large-scale whole-genome sequencing (WGS) of clones expanded from irradiated murine and human single cells, we revealed that IR induces a characteristic spectrum of short insertions or deletions (indels) and structural variations (SVs), including balanced inversions, translocations, composite SVs (deletion-insertion, deletion-inversion, and deletion-translocation composites), and complex genomic rearrangements (CGRs), including chromoplexy, chromothripsis, and SV by breakage-fusion-bridge cycles. Our findings suggest that 1 Gy IR exposure causes an average of 2.33 mutational events per Gb genome, comprising 2.15 indels, 0.17 SVs, and 0.01 CGRs, despite a high level of inter-cellular stochasticity. The mutational burden was dependent on total irradiation dose, regardless of dose rate or cell type. The findings were further validated in IR-induced secondary cancers and single cells without clonalization. Overall, our study highlights a comprehensive and clear picture of IR effects on normal mammalian genomes.
Collapse
Affiliation(s)
- Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun Woo Kwon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joonoh Lim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Eunji Kim
- Department of Radiation Oncology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20, Boramae-ro 5 Gil, Dongjak-gu, Seoul 07061, Republic of Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taewoo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Seongyeol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA
| | - Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sara Jeon
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yohan An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwook Choi
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Hyelin Na
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Eon-Seok Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Youngwon Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Dong-Wook Min
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - HyoJin Kim
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Yeong-Rok Kang
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Si Ho Choi
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Min Ji Bae
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Joon-Goon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Tosol Yu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Science, Busan 46033, Republic of Korea
| | | | | | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae-You Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KI for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Su Yeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joo-Hyeon Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EL Cambridge, UK
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - On Vox Yi
- Department of Breast Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Eon Chul Han
- Department of Surgery, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Tae Gen Son
- Research Center, Dongnam Institute of Radiological and Medical Science, Busan, Republic of Korea.
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
25
|
Chu JTS, Lamers MM. Organoids in virology. NPJ VIRUSES 2024; 2:5. [PMID: 40295690 PMCID: PMC11721363 DOI: 10.1038/s44298-024-00017-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 04/30/2025]
Abstract
To adequately prepare against imminent disease outbreaks from diverse and ever-changing viral pathogens, improved experimental models that can accurately recapitulate host-virus responses and disease pathogenesis in human are essential. Organoid platforms have emerged in recent years as amenable in vitro tools that can bridge the limitations of traditional 2D cell lines and animal models for viral disease research. We highlight in this review the key insights that have contributed by organoid models to virus research, the limitations that exist in current platforms, and outline novel approaches that are being applied to address these shortcomings.
Collapse
Affiliation(s)
- Julie T S Chu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Mart M Lamers
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
26
|
Cani M, Epistolio S, Dazio G, Modesti M, Salfi G, Pedrani M, Isella L, Gillessen S, Vogl UM, Tortola L, Treglia G, Buttigliero C, Frattini M, Pereira Mestre R. Antiandrogens as Therapies for COVID-19: A Systematic Review. Cancers (Basel) 2024; 16:298. [PMID: 38254788 PMCID: PMC10814161 DOI: 10.3390/cancers16020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND In 2019, the breakthrough of the coronavirus 2 disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represented one of the major issues of our recent history. Different drugs have been tested to rapidly find effective anti-viral treatments and, among these, antiandrogens have been suggested to play a role in mediating SARS-CoV-2 infection. Considering the high heterogeneity of studies on this topic, we decided to review the current literature. METHODS We performed a systematic review according to PRISMA guidelines. A search strategy was conducted on PUBMED and Medline. Only original articles published from March 2020 to 31 August 2023 investigating the possible protective role of antiandrogens were included. In vitro or preclinical studies and reports not in the English language were excluded. The main objective was to investigate how antiandrogens may interfere with COVID-19 outcomes. RESULTS Among 1755 records, we selected 31 studies, the majority of which consisted of retrospective clinical data collections and of randomized clinical trials during the first and second wave of the COVID-19 pandemic. CONCLUSIONS In conclusion, we can state that antiandrogens do not seem to protect individuals from SARS-CoV-2 infection and COVID-19 severity and, thus, their use should not be encouraged in this field.
Collapse
Affiliation(s)
- Massimiliano Cani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Samantha Epistolio
- Laboratory of Genetics and Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland (M.F.)
| | - Giulia Dazio
- Laboratory of Genetics and Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland (M.F.)
| | - Mikol Modesti
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
| | - Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Isella
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
| | - Ursula Maria Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Consuelo Buttigliero
- Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Milo Frattini
- Laboratory of Genetics and Molecular Pathology, Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland (M.F.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland (S.G.); (U.M.V.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland;
- Clinical Research Unit, myDoctorAngel, 6934 Bioggio, Switzerland
| |
Collapse
|
27
|
Jung JH, Yang SR, Kim WJ, Rhee CK, Hong SH. Human Pluripotent Stem Cell-Derived Alveolar Organoids: Cellular Heterogeneity and Maturity. Tuberc Respir Dis (Seoul) 2024; 87:52-64. [PMID: 37993994 PMCID: PMC10758311 DOI: 10.4046/trd.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023] Open
Abstract
Chronic respiratory diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and respiratory infections injure the alveoli; the damage evoked is mostly irreversible and occasionally leads to death. Achieving a detailed understanding of the pathogenesis of these fatal respiratory diseases has been hampered by limited access to human alveolar tissue and the differences between mice and humans. Thus, the development of human alveolar organoid (AO) models that mimic in vivo physiology and pathophysiology has gained tremendous attention over the last decade. In recent years, human pluripotent stem cells (hPSCs) have been successfully employed to generate several types of organoids representing different respiratory compartments, including alveolar regions. However, despite continued advances in three-dimensional culture techniques and single-cell genomics, there is still a profound need to improve the cellular heterogeneity and maturity of AOs to recapitulate the key histological and functional features of in vivo alveolar tissue. In particular, the incorporation of immune cells such as macrophages into hPSC-AO systems is crucial for disease modeling and subsequent drug screening. In this review, we summarize current methods for differentiating alveolar epithelial cells from hPSCs followed by AO generation and their applications in disease modeling, drug testing, and toxicity evaluation. In addition, we review how current hPSC-AOs closely resemble in vivo alveoli in terms of phenotype, cellular heterogeneity, and maturity.
Collapse
Affiliation(s)
- Ji-hye Jung
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
- KW-Bio Co., Ltd., Chuncheon, Republic of Korea
| |
Collapse
|
28
|
Li M, Yuan Y, Zou T, Hou Z, Jin L, Wang B. Development trends of human organoid-based COVID-19 research based on bibliometric analysis. Cell Prolif 2023; 56:e13496. [PMID: 37218396 PMCID: PMC10693193 DOI: 10.1111/cpr.13496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a catastrophic threat to human health worldwide. Human stem cell-derived organoids serve as a promising platform for exploring SARS-CoV-2 infection. Several review articles have summarized the application of human organoids in COVID-19, but the research status and development trend of this field have seldom been systematically and comprehensively studied. In this review, we use bibliometric analysis method to identify the characteristics of organoid-based COVID-19 research. First, an annual trend of publications and citations, the most contributing countries or regions and organizations, co-citation analysis of references and sources and research hotspots are determined. Next, systematical summaries of organoid applications in investigating the pathology of SARS-CoV-2 infection, vaccine development and drug discovery, are provided. Lastly, the current challenges and future considerations of this field are discussed. The present study will provide an objective angle to identify the current trend and give novel insights for directing the future development of human organoid applications in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Ting Zou
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zongkun Hou
- School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine)Guizhou Medical UniversityGuiyangChina
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
29
|
Selvarajah B, Platé M, Chambers RC. Pulmonary fibrosis: Emerging diagnostic and therapeutic strategies. Mol Aspects Med 2023; 94:101227. [PMID: 38000335 DOI: 10.1016/j.mam.2023.101227] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Fibrosis is the concluding pathological outcome and major cause of morbidity and mortality in a number of common chronic inflammatory, immune-mediated and metabolic diseases. The progressive deposition of a collagen-rich extracellular matrix (ECM) represents the cornerstone of the fibrotic response and culminates in organ failure and premature death. Idiopathic pulmonary fibrosis (IPF) represents the most rapidly progressive and lethal of all fibrotic diseases with a dismal median survival of 3.5 years from diagnosis. Although the approval of the antifibrotic agents, pirfenidone and nintedanib, for the treatment of IPF signalled a watershed moment for the development of anti-fibrotic therapeutics, these agents slow but do not halt disease progression or improve quality of life. There therefore remains a pressing need for the development of effective therapeutic strategies. In this article, we review emerging therapeutic strategies for IPF as well as the pre-clinical and translational approaches that will underpin a greater understanding of the key pathomechanisms involved in order to transform the way we diagnose and treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Brintha Selvarajah
- Oncogenes and Tumour Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Manuela Platé
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK
| | - Rachel C Chambers
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK.
| |
Collapse
|
30
|
Flagg M, Goldin K, Pérez-Pérez L, Singh M, Williamson BN, Pruett N, Hoang CD, de Wit E. Low level of tonic interferon signalling is associated with enhanced susceptibility to SARS-CoV-2 variants of concern in human lung organoids. Emerg Microbes Infect 2023; 12:2276338. [PMID: 37883246 PMCID: PMC10732190 DOI: 10.1080/22221751.2023.2276338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
There is tremendous heterogeneity in the severity of COVID-19 disease in the human population, and the mechanisms governing the development of severe disease remain incompletely understood. The emergence of SARS-CoV-2 variants of concern (VOC) Delta (B.1.617.2) and Omicron (B.1.1.529) further compounded this heterogeneity. Virus replication and host cell damage in the distal lung is often associated with severe clinical disease, making this an important site to consider when evaluating pathogenicity of SARS-CoV-2 VOCs. Using distal human lung organoids (hLOs) derived from multiple human donors, we compared the fitness and pathogenicity of SARS-CoV-2 VOC Delta and Omicron, along with an ancestral clade B variant D614G, and evaluated donor-dependent differences in susceptibility to infection. We observed substantial attenuation of Omicron in hLOs and demonstrated enhanced susceptibility to Omicron and D614G replication in hLOs from one donor. Transcriptomic analysis revealed that increased susceptibility to SARS-CoV-2 infection in these hLOs was associated with reduced tonic interferon signaling activity at baseline. We show that hLOs can be used to model heterogeneity of SARS-CoV-2 pathogenesis in humans, and propose that variability in tonic interferon signaling set point may impact susceptibility to SARS-CoV-2 VOCs and subsequent COVID-19 disease progression.
Collapse
Affiliation(s)
- Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kerry Goldin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
31
|
Vazquez-Armendariz AI, Tata PR. Recent advances in lung organoid development and applications in disease modeling. J Clin Invest 2023; 133:e170500. [PMID: 37966116 PMCID: PMC10645385 DOI: 10.1172/jci170500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Over the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair. In addition, introduction of other nonepithelial cellular components, such as immune, mesenchymal, and endothelial cells, and employment of novel precision gene editing tools have further broadened the range of applications for these systems by providing a microenvironment and/or phenotype closer to the desired in vivo scenario. Thus, these developments in organoid technology have enhanced our ability to model various aspects of lung biology, including pathogenesis of diseases such as chronic obstructive pulmonary disease, pulmonary fibrosis, cystic fibrosis, and infectious disease and host-microbe interactions, in ways that are often difficult to undertake using only in vivo models. In this Review, we summarize the latest developments in lung organoid technology and their applicability for disease modeling and outline their strengths, drawbacks, and potential avenues for future development.
Collapse
Affiliation(s)
- Ana I. Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
- Department of Medicine V, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research and Institute for Lung Health, Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
32
|
Shah DD, Raghani NR, Chorawala MR, Singh S, Prajapati BG. Harnessing three-dimensional (3D) cell culture models for pulmonary infections: State of the art and future directions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2861-2880. [PMID: 37266588 PMCID: PMC10235844 DOI: 10.1007/s00210-023-02541-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Pulmonary infections have been a leading etiology of morbidity and mortality worldwide. Upper and lower respiratory tract infections have multifactorial causes, which include bacterial, viral, and rarely, fungal infections. Moreover, the recent emergence of SARS-CoV-2 has created havoc and imposes a huge healthcare burden. Drug and vaccine development against these pulmonary pathogens like respiratory syncytial virus, SARS-CoV-2, Mycobacteria, etc., requires a systematic set of tools for research and investigation. Currently, in vitro 2D cell culture models are widely used to emulate the in vivo physiologic environment. Although this approach holds a reasonable promise over pre-clinical animal models, it lacks the much-needed correlation to the in vivo tissue architecture, cellular organization, cell-to-cell interactions, downstream processes, and the biomechanical milieu. In view of these inadequacies, 3D cell culture models have recently acquired interest. Mammalian embryonic and induced pluripotent stem cells may display their remarkable self-organizing abilities in 3D culture, and the resulting organoids replicate important structural and functional characteristics of organs such the kidney, lung, gut, brain, and retina. 3D models range from scaffold-free systems to scaffold-based and hybrid models as well. Upsurge in organs-on-chip models for pulmonary conditions has anticipated encouraging results. Complexity and dexterity of developing 3D culture models and the lack of standardized working procedures are a few of the setbacks, which are expected to be overcome in the coming times. Herein, we have elaborated the significance and types of 3D cell culture models for scrutinizing pulmonary infections, along with the in vitro techniques, their applications, and additional systems under investigation.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
| |
Collapse
|
33
|
Lie LK, Synowiec A, Mazur J, Rabalski L, Pyrć K. An engineered A549 cell line expressing CD13 and TMPRSS2 is permissive to clinical isolate of human coronavirus 229E. Virology 2023; 588:109889. [PMID: 37778059 DOI: 10.1016/j.virol.2023.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
The lack of suitable in vitro culture model has hampered research on wild-type (WT) human coronaviruses. While 3D tissue or organ cultures have been instrumental for this purpose, such models are challenging, time-consuming, expensive and require extensive cell culture adaptation and directed evolution. Consequently, high-throughput applications are beyond reach in most cases. Here we developed a robust A549 cell line permissive to a human coronavirus 229E (HCoV-229E) clinical isolate by transducing CD13 and transmembrane serine protease 2 (TMPRSS2), henceforth referred to as A549++ cells. This modification allowed for productive infection, and a more detailed analysis showed that the virus might use the TMPRSS2-dependent pathway but can still bypass this pathway using cathepsin-mediated endocytosis. Overall, our data showed that A549++ cells are permissive to HCoV-229E clinical isolate, and applicable for further studies on HCoV-229E infectiology. Moreover, this line constitutes a uniform platform for studies on multiple members of the Coronaviridae family.
Collapse
Affiliation(s)
- Laurensius Kevin Lie
- Virogenetics Group, Malopolska Center of Biotechnology, Jagiellonian University, Poland
| | - Aleksandra Synowiec
- Virogenetics Group, Malopolska Center of Biotechnology, Jagiellonian University, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Poland
| | - Jedrzej Mazur
- Virogenetics Group, Malopolska Center of Biotechnology, Jagiellonian University, Poland
| | - Lukasz Rabalski
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland; Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| | - Krzysztof Pyrć
- Virogenetics Group, Malopolska Center of Biotechnology, Jagiellonian University, Poland.
| |
Collapse
|
34
|
Sui C, Lee W. Role of interleukin 6 and its soluble receptor on the diffusion barrier dysfunction of alveolar tissue. Biomed Microdevices 2023; 25:40. [PMID: 37851124 DOI: 10.1007/s10544-023-00680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
During respiratory infection, barrier dysfunction in alveolar tissue can result from "cytokine storm" caused by overly reactive immune response. Particularly, interleukin 6 (IL-6) is implicated as a key biomarker of cytokine storm responsible for and further progression to pulmonary edema. In this study, alveolar-like tissue was reconstructed in a microfluidic device with: (1) human microvascular lung endothelial cells (HULEC-5a) cultured under flow-induced shear stress and (2) human epithelial cells (Calu-3) cultured at air-liquid interface. The effects of IL-6 and the soluble form of its receptor (sIL-6R) on the permeability, electrical resistance, and morphology of the endothelial and epithelial layers were evaluated. The diffusion barrier properties of both the endothelial and epithelial layers were significantly degraded only when IL-6 treatment was combined with sIL-6R. As suggested by recent review and clinical studies, our results provide unequivocal evidence that the barrier dysfunction occurs through trans-signaling in which IL-6 and sIL-6R form a complex and then bind to the surface of endothelial and epithelial cells, but not by classical signaling in which IL-6 binds to membrane-expressed IL-6 receptor. This finding suggests that the role of both IL-6 and sIL-6R should be considered as important biomarkers in developing strategies for treating cytokine storm.
Collapse
Affiliation(s)
- Chao Sui
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
| |
Collapse
|
35
|
Worp N, Subissi L, Perkins MD, Van Kerkhove MD, Agrawal A, Chand M, van Beek J, Oude Munnink BB, Koopmans MPG. Towards the development of a SARS-CoV-2 variant risk assessment tool: expert consultation on the assessment of scientific evidence on emerging variants. THE LANCET. MICROBE 2023; 4:e830-e836. [PMID: 37640039 DOI: 10.1016/s2666-5247(23)00179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 08/31/2023]
Abstract
A systematic approach is required for the development of an evidence-based risk assessment tool to robustly estimate the risks and implications of SARS-CoV-2 variants. We conducted a survey among experts involved in technical advisory roles for WHO to capture their assessment of the robustness of different study types that provide evidence for potential changes in transmissibility, antigenicity, virulence, treatability, and detectability of SARS-CoV-2 variants. The views of 62 experts indicated that studies could be grouped on the basis of robustness and reliability for the different risk indicators mentioned. Several study types that experts scored as providing reliable evidence and that can be performed in a timely manner were identified. Although experts from different technical areas had varying responses, there was agreement on the highest and lowest scoring study types. These findings can help to prioritise, harmonise, and optimise study designs for the further development of a systematic, evidence-based, SARS-CoV-2 variant risk assessment tool.
Collapse
Affiliation(s)
- Nathalie Worp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | | | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | | | - Janko van Beek
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
36
|
Häring C, Jungwirth J, Schroeder J, Löffler B, Engert B, Ehrhardt C. The Local Anaesthetic Procaine Prodrugs ProcCluster ® and Procaine Hydrochloride Impair SARS-CoV-2 Replication and Egress In Vitro. Int J Mol Sci 2023; 24:14584. [PMID: 37834031 PMCID: PMC10572566 DOI: 10.3390/ijms241914584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
As vaccination efforts against SARS-CoV-2 progress in many countries, there is still an urgent need for efficient antiviral treatment strategies for those with severer disease courses, and lately, considerable efforts have been undertaken to repurpose existing drugs as antivirals. The local anaesthetic procaine has been investigated for antiviral properties against several viruses over the past decades. Here, we present data on the inhibitory effect of the procaine prodrugs ProcCluster® and procaine hydrochloride on SARS-CoV-2 infection in vitro. Both procaine prodrugs limit SARS-CoV-2 progeny virus titres as well as reduce interferon and cytokine responses in a proportional manner to the virus load. The addition of procaine during the early stages of the SARS-CoV-2 replication cycle in a cell culture first limits the production of subgenomic RNA transcripts, and later affects the replication of the viral genomic RNA. Interestingly, procaine additionally exerts a prominent effect on SARS-CoV-2 progeny virus release when added late during the replication cycle, when viral RNA production and protein production are already largely completed.
Collapse
Affiliation(s)
- Clio Häring
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| | - Johannes Jungwirth
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| | - Josefine Schroeder
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany;
| | | | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| |
Collapse
|
37
|
Lim K, Rutherford EN, Sun D, Van den Boomen DJH, Edgar JR, Bang JH, Matesic LE, Lee JH, Lehner PJ, Marciniak SJ, Rawlins EL, Dickens JA. A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555522. [PMID: 37693487 PMCID: PMC10491189 DOI: 10.1101/2023.08.30.555522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant1-3. AT2 dysfunction underlies many lung diseases including interstitial lung disease (ILD), in which some inherited forms result from mislocalisation of surfactant protein C (SFTPC) variants4,5. Disease modelling and dissection of mechanisms remains challenging due to complexities in deriving and maintaining AT2 cells ex vivo. Here, we describe the development of expandable adult AT2-like organoids derived from human fetal lung which are phenotypically stable, can differentiate into AT1-like cells and are genetically manipulable. We use these organoids to test key effectors of SFTPC maturation identified in a forward genetic screen including the E3 ligase ITCH, demonstrating that their depletion phenocopies the pathological SFTPC redistribution seen for the SFTPC-I73T variant. In summary, we demonstrate the development of a novel alveolar organoid model and use it to identify effectors of SFTPC maturation necessary for AT2 health.
Collapse
Affiliation(s)
- Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
- Current address: Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Dick J H Van den Boomen
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Harvard Medical School, Department of Cell Biology, Harvard University, LHRRB building, 45 Shattuck Street, Boston MA 02115, USA
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Jae Hak Bang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Lydia E Matesic
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Joo-Hyeon Lee
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK
- Royal Papworth Hospital, Papworth Road, Trumpington, CB2 0AY
| |
Collapse
|
38
|
Shrestha J, Paudel KR, Nazari H, Dharwal V, Bazaz SR, Johansen MD, Dua K, Hansbro PM, Warkiani ME. Advanced models for respiratory disease and drug studies. Med Res Rev 2023; 43:1470-1503. [PMID: 37119028 PMCID: PMC10946967 DOI: 10.1002/med.21956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Hojjatollah Nazari
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Vivek Dharwal
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sajad Razavi Bazaz
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Matt D. Johansen
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of TechnologySydneyNew South WalesAustralia
- Faculty of Health, Australian Research Centre in Complementary & Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Majid Ebrahimi Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
- Institute for Biomedical Materials and Devices, Faculty of ScienceUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
39
|
Kühl L, Graichen P, von Daacke N, Mende A, Wygrecka M, Potaczek DP, Miethe S, Garn H. Human Lung Organoids-A Novel Experimental and Precision Medicine Approach. Cells 2023; 12:2067. [PMID: 37626876 PMCID: PMC10453737 DOI: 10.3390/cells12162067] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The global burden of respiratory diseases is very high and still on the rise, prompting the need for accurate models for basic and translational research. Several model systems are currently available ranging from simple airway cell cultures to complex tissue-engineered lungs. In recent years, human lung organoids have been established as highly transferrable three-dimensional in vitro model systems for lung research. For acute infectious and chronic inflammatory diseases as well as lung cancer, human lung organoids have opened possibilities for precise in vitro research and a deeper understanding of mechanisms underlying lung injury and regeneration. Human lung organoids from induced pluripotent stem cells or from adult stem cells of patients' samples introduce tools for understanding developmental processes and personalized medicine approaches. When further state-of-the-art technologies and protocols come into use, the full potential of human lung organoids can be harnessed. High-throughput assays in drug development, gene therapy, and organoid transplantation are current applications of organoids in translational research. In this review, we emphasize novel approaches in translational and personalized medicine in lung research focusing on the use of human lung organoids.
Collapse
Affiliation(s)
- Laura Kühl
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Pauline Graichen
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Nele von Daacke
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Anne Mende
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany;
- Institute of Lung Health, German Center for Lung Research (DZL), 35392 Giessen, Germany
- CSL Behring Innovation GmbH, 35041 Marburg, Germany
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany;
- Bioscientia MVZ Labor Mittelhessen GmbH, 35394 Giessen, Germany
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (L.K.); (P.G.); (N.v.D.); (A.M.); (D.P.P.)
| |
Collapse
|
40
|
Lee W, Lee S, Yoon JK, Lee D, Kim Y, Han YB, Kim R, Moon S, Park YJ, Park K, Cha B, Choi J, Kim J, Ha NY, Kim K, Cho S, Cho NH, Desai TJ, Chung JH, Lee JH, Kim JI. A single-cell atlas of in vitro multiculture systems uncovers the in vivo lineage trajectory and cell state in the human lung. Exp Mol Med 2023; 55:1831-1842. [PMID: 37582976 PMCID: PMC10474282 DOI: 10.1038/s12276-023-01076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 08/17/2023] Open
Abstract
We present an in-depth single-cell atlas of in vitro multiculture systems on human primary airway epithelium derived from normal and diseased lungs of 27 individual donors. Our large-scale single-cell profiling identified new cell states and differentiation trajectories of rare airway epithelial cell types in human distal lungs. By integrating single-cell datasets of human lung tissues, we discovered immune-primed subsets enriched in lungs and organoids derived from patients with chronic respiratory disease. To demonstrate the full potential of our platform, we further illustrate transcriptomic responses to various respiratory virus infections in vitro airway models. Our work constitutes a single-cell roadmap for the cellular and molecular characteristics of human primary lung cells in vitro and their relevance to human tissues in vivo.
Collapse
Affiliation(s)
- Woochan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seyoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Ki Yoon
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yuri Kim
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Korea
| | - Yeon Bi Han
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Rokhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sungji Moon
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea
| | - Young Jun Park
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
| | - Bukyoung Cha
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
| | - Jaeyong Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Na-Young Ha
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Tushar J Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jin-Haeng Chung
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea.
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
41
|
Rudraraju R, Gartner MJ, Neil JA, Stout ES, Chen J, Needham EJ, See M, Mackenzie-Kludas C, Yang Lee LY, Wang M, Pointer H, Karavendzas K, Abu-Bonsrah D, Drew D, Yang Sun YB, Tan JP, Sun G, Salavaty A, Charitakis N, Nim HT, Currie PD, Tham WH, Porrello E, Polo JM, Humphrey SJ, Ramialison M, Elliott DA, Subbarao K. Parallel use of human stem cell lung and heart models provide insights for SARS-CoV-2 treatment. Stem Cell Reports 2023; 18:1308-1324. [PMID: 37315523 PMCID: PMC10262339 DOI: 10.1016/j.stemcr.2023.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe coronavirus disease 2019 (COVID-19). To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR-Cas9-mediated knockout of ACE2, we demonstrated that angiotensin-converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but that further processing in lung cells required TMPRSS2, while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- The Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthew J Gartner
- The Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Jessica A Neil
- The Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth S Stout
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Elise J Needham
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Michael See
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Charley Mackenzie-Kludas
- The Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Leo Yi Yang Lee
- The Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Mingyang Wang
- The Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Hayley Pointer
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Kathy Karavendzas
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Dad Abu-Bonsrah
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Damien Drew
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Yu Bo Yang Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Jia Ping Tan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Guizhi Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia
| | - Natalie Charitakis
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pediatrics, The Royal Children's Hospital, University of Melbourne Parkville, VIC, Australia
| | - Hieu T Nim
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia; Department of Pediatrics, The Royal Children's Hospital, University of Melbourne Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia
| | - Wai-Hong Tham
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Enzo Porrello
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| | - Sean J Humphrey
- Charles Perkins Centre and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
| | - Mirana Ramialison
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia; Department of Pediatrics, The Royal Children's Hospital, University of Melbourne Parkville, VIC, Australia.
| | - David A Elliott
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia; Department of Pediatrics, The Royal Children's Hospital, University of Melbourne Parkville, VIC, Australia.
| | - Kanta Subbarao
- The Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
42
|
Xu Z, Yang J, Xin X, Liu C, Li L, Mei X, Li M. Merits and challenges of iPSC-derived organoids for clinical applications. Front Cell Dev Biol 2023; 11:1188905. [PMID: 37305682 PMCID: PMC10250752 DOI: 10.3389/fcell.2023.1188905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have entered an unprecedented state of development since they were first generated. They have played a critical role in disease modeling, drug discovery, and cell replacement therapy, and have contributed to the evolution of disciplines such as cell biology, pathophysiology of diseases, and regenerative medicine. Organoids, the stem cell-derived 3D culture systems that mimic the structure and function of organs in vitro, have been widely used in developmental research, disease modeling, and drug screening. Recent advances in combining iPSCs with 3D organoids are facilitating further applications of iPSCs in disease research. Organoids derived from embryonic stem cells, iPSCs, and multi-tissue stem/progenitor cells can replicate the processes of developmental differentiation, homeostatic self-renewal, and regeneration due to tissue damage, offering the potential to unravel the regulatory mechanisms of development and regeneration, and elucidate the pathophysiological processes involved in disease mechanisms. Herein, we have summarized the latest research on the production scheme of organ-specific iPSC-derived organoids, the contribution of these organoids in the treatment of various organ-related diseases, in particular their contribution to COVID-19 treatment, and have discussed the unresolved challenges and shortcomings of these models.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Clinical Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxu Yang
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xianyi Xin
- Department of Pediatric Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chengrun Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xianglin Mei
- Department of pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
43
|
Lotti V, Lagni A, Diani E, Sorio C, Gibellini D. Crosslink between SARS-CoV-2 replication and cystic fibrosis hallmarks. Front Microbiol 2023; 14:1162470. [PMID: 37250046 PMCID: PMC10213757 DOI: 10.3389/fmicb.2023.1162470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
SARS-CoV-2, the etiological cause of the COVID-19 pandemic, can cause severe illness in certain at-risk populations, including people with cystic fibrosis (pwCF). Nevertheless, several studies indicated that pwCF do not have higher risks of SARS-CoV-2 infection nor do they demonstrate worse clinical outcomes than those of the general population. Recent in vitro studies indicate cellular and molecular processes to be significant drivers in pwCF lower infection rates and milder symptoms than expected in cases of SARS-CoV-2 infection. These range from cytokine releases to biochemical alterations leading to morphological rearrangements inside the cells associated with CFTR impairment. Based on available data, the reported low incidence of SARS-CoV-2 infection among pwCF is likely a result of several variables linked to CFTR dysfunction, such as thick mucus, IL-6 reduction, altered ACE2 and TMPRSS2 processing and/or functioning, defective anions exchange, and autophagosome formation. An extensive analysis of the relation between SARS-CoV-2 infection and pwCF is essential to elucidate the mechanisms involved in this lower-than-expected infection impact and to possibly suggest potential new antiviral strategies.
Collapse
Affiliation(s)
- Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Erica Diani
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
44
|
Ahmed TA, Eldaly B, Eldosuky S, Elkhenany H, El-Derby AM, Elshazly MF, El-Badri N. The interplay of cells, polymers, and vascularization in three-dimensional lung models and their applications in COVID-19 research and therapy. Stem Cell Res Ther 2023; 14:114. [PMID: 37118810 PMCID: PMC10144893 DOI: 10.1186/s13287-023-03341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Millions of people have been affected ever since the emergence of the corona virus disease of 2019 (COVID-19) outbreak, leading to an urgent need for antiviral drug and vaccine development. Current experimentation on traditional two-dimensional culture (2D) fails to accurately mimic the in vivo microenvironment for the disease, while in vivo animal model testing does not faithfully replicate human COVID-19 infection. Human-based three-dimensional (3D) cell culture models such as spheroids, organoids, and organ-on-a-chip present a promising solution to these challenges. In this report, we review the recent 3D in vitro lung models used in COVID-19 infection and drug screening studies and highlight the most common types of natural and synthetic polymers used to generate 3D lung models.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Bassant Eldaly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Shadwa Eldosuky
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Muhamed F Elshazly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
45
|
Leiby KL, Yuan Y, Ng R, Raredon MSB, Adams TS, Baevova P, Greaney AM, Hirschi KK, Campbell SG, Kaminski N, Herzog EL, Niklason LE. Rational engineering of lung alveolar epithelium. NPJ Regen Med 2023; 8:22. [PMID: 37117221 PMCID: PMC10147714 DOI: 10.1038/s41536-023-00295-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
Engineered whole lungs may one day expand therapeutic options for patients with end-stage lung disease. However, the feasibility of ex vivo lung regeneration remains limited by the inability to recapitulate mature, functional alveolar epithelium. Here, we modulate multimodal components of the alveolar epithelial type 2 cell (AEC2) niche in decellularized lung scaffolds in order to guide AEC2 behavior for epithelial regeneration. First, endothelial cells coordinate with fibroblasts, in the presence of soluble growth and maturation factors, to promote alveolar scaffold population with surfactant-secreting AEC2s. Subsequent withdrawal of Wnt and FGF agonism synergizes with tidal-magnitude mechanical strain to induce the differentiation of AEC2s to squamous type 1 AECs (AEC1s) in cultured alveoli, in situ. These results outline a rational strategy to engineer an epithelium of AEC2s and AEC1s contained within epithelial-mesenchymal-endothelial alveolar-like units, and highlight the critical interplay amongst cellular, biochemical, and mechanical niche cues within the reconstituting alveolus.
Collapse
Affiliation(s)
- Katherine L Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Ronald Ng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Taylor S Adams
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pavlina Baevova
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Allison M Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Karen K Hirschi
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Erica L Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
46
|
Gouma PI. How to Build Live-Cell Sensor Microdevices. SENSORS (BASEL, SWITZERLAND) 2023; 23:3886. [PMID: 37112227 PMCID: PMC10144235 DOI: 10.3390/s23083886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
There is a lot of discussion on how viruses (such as influenza and SARS-CoV-2) are transmitted in air, potentially from aerosols and respiratory droplets, and thus it is important to monitor the environment for the presence of an active pathogen. Currently, the presence of viruses is being determined using primarily nucleic acid-based detection methods, such as reverse transcription- polymerase chain reaction (RT-PCR) tests. Antigen tests have also been developed for this purpose. However, most nucleic acid and antigen methods fail to discriminate between a viable and a non-viable virus. Therefore, we present an alternative, innovative, and disruptive approach involving a live-cell sensor microdevice that captures the viruses (and bacteria) from the air, becomes infected by them, and emits signals for an early warning of the presence of pathogens. This perspective outlines the processes and components required for living sensors to monitor the presence of pathogens in built environments and highlights the opportunity to use immune sentinels in the cells of normal human skin to produce monitors for indoor air pollutants.
Collapse
Affiliation(s)
- Pelagia-Irene Gouma
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
47
|
Rosado-Olivieri EA, Razooky B, Le Pen J, De Santis R, Barrows D, Sabry Z, Hoffmann HH, Park J, Carroll TS, Poirier JT, Rice CM, Brivanlou AH. Organotypic human lung bud microarrays identify BMP-dependent SARS-CoV-2 infection in lung cells. Stem Cell Reports 2023; 18:1107-1122. [PMID: 37084725 PMCID: PMC10116630 DOI: 10.1016/j.stemcr.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Although lung disease is the primary clinical outcome in COVID-19 patients, how SARS-CoV-2 induces lung pathology remains elusive. Here we describe a high-throughput platform to generate self-organizing and commensurate human lung buds derived from hESCs cultured on micropatterned substrates. Lung buds resemble human fetal lungs and display proximodistal patterning of alveolar and airway tissue directed by KGF. These lung buds are susceptible to infection by SARS-CoV-2 and endemic coronaviruses and can be used to track cell type-specific cytopathic effects in hundreds of lung buds in parallel. Transcriptomic comparisons of infected lung buds and postmortem tissue of COVID-19 patients identified an induction of BMP signaling pathway. BMP activity renders lung cells more susceptible to SARS-CoV-2 infection and its pharmacological inhibition impairs infection by this virus. These data highlight the rapid and scalable access to disease-relevant tissue using lung buds that recapitulate key features of human lung morphogenesis and viral infection biology.
Collapse
Affiliation(s)
- E A Rosado-Olivieri
- Laboratory of Synthetic Embryology, the Rockefeller University, New York, NY, USA
| | - B Razooky
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA
| | - J Le Pen
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA
| | - R De Santis
- Laboratory of Synthetic Embryology, the Rockefeller University, New York, NY, USA
| | - D Barrows
- Bioinformatics Resource Center, the Rockefeller University, New York, NY, USA
| | - Z Sabry
- Laboratory of Synthetic Embryology, the Rockefeller University, New York, NY, USA
| | - H-H Hoffmann
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA
| | - J Park
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA
| | - T S Carroll
- Bioinformatics Resource Center, the Rockefeller University, New York, NY, USA
| | - J T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - C M Rice
- Laboratory of Virology and Infectious Diseases, the Rockefeller University, New York, NY, USA.
| | - A H Brivanlou
- Laboratory of Synthetic Embryology, the Rockefeller University, New York, NY, USA.
| |
Collapse
|
48
|
Hysenaj L, Little S, Kulhanek K, Magnen M, Bahl K, Gbenedio OM, Prinz M, Rodriguez L, Andersen C, Rao AA, Shen A, Lone JC, Lupin-Jimenez LC, Bonser LR, Serwas NK, Mick E, Khalid MM, Taha TY, Kumar R, Li JZ, Ding VW, Matsumoto S, Maishan M, Sreekumar B, Simoneau C, Nazarenko I, Tomlinson MG, Khan K, von Gottberg A, Sigal A, Looney MR, Fragiadakis GK, Jablons DM, Langelier CR, Matthay M, Krummel M, Erle DJ, Combes AJ, Sil A, Ott M, Kratz JR, Roose JP. SARS-CoV-2 infection of airway organoids reveals conserved use of Tetraspanin-8 by Ancestral, Delta, and Omicron variants. Stem Cell Reports 2023; 18:636-653. [PMID: 36827975 PMCID: PMC9948283 DOI: 10.1016/j.stemcr.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.
Collapse
Affiliation(s)
- Lisiena Hysenaj
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Samantha Little
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Kayla Kulhanek
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Melia Magnen
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kriti Bahl
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Oghenekevwe M Gbenedio
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Morgan Prinz
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Lauren Rodriguez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher Andersen
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Arjun Arkal Rao
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan Shen
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Leonard C Lupin-Jimenez
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Luke R Bonser
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nina K Serwas
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eran Mick
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mir M Khalid
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Taha Y Taha
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renuka Kumar
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jack Z Li
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Vivianne W Ding
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shotaro Matsumoto
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mazharul Maishan
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bharath Sreekumar
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Camille Simoneau
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium, Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany
| | - Michael G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Khajida Khan
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Centre for the AIDS Program of Research, Durban, South Africa
| | - Mark R Looney
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA
| | - Gabriela K Fragiadakis
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David M Jablons
- Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles R Langelier
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michael Matthay
- Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew Krummel
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA
| | - Alexis J Combes
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute COVID-19 Research Group, University of California, San Francisco, San Francisco, CA, USA
| | - Johannes R Kratz
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
49
|
Calà G, Sina B, De Coppi P, Giobbe GG, Gerli MFM. Primary human organoids models: Current progress and key milestones. Front Bioeng Biotechnol 2023; 11:1058970. [PMID: 36959902 PMCID: PMC10029057 DOI: 10.3389/fbioe.2023.1058970] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
During the past 10 years the world has experienced enormous progress in the organoids field. Human organoids have shown huge potential to study organ development, homeostasis and to model diseases in vitro. The organoid technology has been widely and increasingly applied to generate patient-specific in vitro 3D cultures, starting from both primary and reprogrammed stem/progenitor cells. This has consequently fostered the development of innovative disease models and new regenerative therapies. Human primary, or adult stem/progenitor cell-derived, organoids can be derived from both healthy and pathological primary tissue samples spanning from fetal to adult age. The resulting 3D culture can be maintained for several months and even years, while retaining and resembling its original tissue's properties. As the potential of this technology expands, new approaches are emerging to further improve organoid applications in biology and medicine. This review discusses the main organs and tissues which, as of today, have been modelled in vitro using primary organoid culture systems. Moreover, we also discuss the advantages, limitations, and future perspectives of primary human organoids in the fields of developmental biology, disease modelling, drug testing and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Calà
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Beatrice Sina
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Politecnico di Milano, Milano, Italy
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mattia Francesco Maria Gerli
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
50
|
Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, Wang L, Griffiths C, Brown ML, Scott WE, Pereyra-Gerber P, Gelson WTH, Brown S, Dillon S, Muraro D, Sharp J, Neary M, Box H, Tatham L, Stewart J, Curley P, Pertinez H, Forrest S, Mlcochova P, Varankar SS, Darvish-Damavandi M, Mulcahy VL, Kuc RE, Williams TL, Heslop JA, Rossetti D, Tysoe OC, Galanakis V, Vila-Gonzalez M, Crozier TWM, Bargehr J, Sinha S, Upponi SS, Fear C, Swift L, Saeb-Parsy K, Davies SE, Wester A, Hagström H, Melum E, Clements D, Humphreys P, Herriott J, Kijak E, Cox H, Bramwell C, Valentijn A, Illingworth CJR, Dahman B, Bastaich DR, Ferreira RD, Marjot T, Barnes E, Moon AM, Barritt AS, Gupta RK, Baker S, Davenport AP, Corbett G, Gorgoulis VG, Buczacki SJA, Lee JH, Matheson NJ, Trauner M, Fisher AJ, Gibbs P, Butler AJ, Watson CJE, Mells GF, Dougan G, Owen A, Lohse AW, Vallier L, Sampaziotis F. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2023; 615:134-142. [PMID: 36470304 PMCID: PMC9977684 DOI: 10.1038/s41586-022-05594-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Teresa Brevini
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| | - Mailis Maes
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gwilym J Webb
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Binu V John
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gustav Buescher
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lu Wang
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Chelsea Griffiths
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marnie L Brown
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - William E Scott
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - William T H Gelson
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Scott Dillon
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Jo Sharp
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Megan Neary
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Box
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lee Tatham
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - James Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Paul Curley
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henry Pertinez
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sally Forrest
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | | | - Mahnaz Darvish-Damavandi
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Victoria L Mulcahy
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - James A Heslop
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Olivia C Tysoe
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | | | | | - Thomas W M Crozier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Johannes Bargehr
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sara S Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Corrina Fear
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Lisa Swift
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Axel Wester
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Jo Herriott
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edyta Kijak
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Cox
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Chloe Bramwell
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony Valentijn
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher J R Illingworth
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Bassam Dahman
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dustin R Bastaich
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Raphaella D Ferreira
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Alfred S Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Gareth Corbett
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Simon J A Buczacki
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
- NHS Blood and Transplant, Cambridge, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew J Fisher
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Gibbs
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrew J Butler
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christopher J E Watson
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre, and the NIHR Blood and Transplant Research Unit (BTRU) at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT), Cambridge, UK
| | - George F Mells
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|