1
|
Chen Y, Wang Y. Innovations in intestinal organoid technology featuring an open apical surface. Eur J Cell Biol 2025; 104:151476. [PMID: 39837176 DOI: 10.1016/j.ejcb.2025.151476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Since the development of the three-dimensional (3D) "mini-gut" culture system, adult stem cell-derived organoid technology has rapidly advanced, providing in vitro models that replicate key cellular, molecular, and physiological properties of multiple organs. The 3D intestinal organoid system has resolved many long-standing challenges associated with immortalized or cancer cell cultures, offering unparalleled capabilities for modeling gastrointestinal development and diseases. However, significant limitations remain, including restricted accessibility to the epithelial apical surface for studying host-microbe interactions, interruptions in modeling chronic gastrointestinal diseases due to frequent passaging and dissociation, and the absence of mechanical cues such as peristalsis and luminal flow, which are critical for organ development and function. To address these challenges, recent advancements have introduced Transwell-based monolayer cultures and microfluidic device-based technologies including "organ-on-a-chip" and scaffold-guided 'mini-gut' system. This review highlights these innovations, with a focus on adult stem cell-derived intestinal organoid models that feature an open apical surface and discusses their prospects and challenges for advancing basic research and clinical applications.
Collapse
Affiliation(s)
- Ye Chen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yi Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Hong Y, Liu J, Wang W, Li H, Kong W, Li X, Zhang W, Pahlavan S, Tang YD, Wang X, Wang K. Pluripotent stem cell-derived cardiomyocyte transplantation: marching from bench to bedside. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2801-x. [PMID: 40418524 DOI: 10.1007/s11427-024-2801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/12/2024] [Indexed: 05/27/2025]
Abstract
Cardiovascular diseases such as myocardial infarction, heart failure, and cardiomyopathy, persist as a leading global cause of death. Current treatment options have inherent limitations, particularly in terms of cardiac regeneration due to the limited regenerative capacity of adult human hearts. The transplantation of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) has emerged as a promising and potential solution to address this challenge. This review aims to summarize the latest advancements and prospects of PSC-CM transplantation (PCT), along with the existing constraints, such as immune rejection and engraftment arrhythmias, and corresponding solutions. Encompassing a comprehensive range from fundamental research findings and preclinical experiments to ongoing clinical trials, we hope to offer insights into PCT from bench to bedside.
Collapse
Affiliation(s)
- Yi Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Department of Education, Peking University First Hospital, Peking University, Beijing, 100035, China
| | - Jiarui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Weixuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Xiaoxia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing, 102200, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, The Academic Center for Education, Culture and Research, Tehran, 14155-4364, Iran
| | - Yi-da Tang
- Department of Cardiology and Institute of Vascular Medicine, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China.
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Center for Non-coding RNA Medicine, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
3
|
Wang J, Zhang H, Qu Y, Yang Y, Xu S, Ji Z, Wang Y, Zhang X, Luo Y. An eighteen-organ microphysiological system coupling a vascular network and excretion system for drug discovery. MICROSYSTEMS & NANOENGINEERING 2025; 11:89. [PMID: 40368882 PMCID: PMC12078732 DOI: 10.1038/s41378-025-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 05/16/2025]
Abstract
Physiological supporting systems, such as the vascular network and excretion system, are crucial for the effective functioning of organs. This study demonstrates that when a body-on-a-chip microdevice is coupled with miniaturized physiological support systems, it can create a multi-organ microphysiological system capable of more accurately mimicking the physiological complexity of a body, thereby offering potential for preclinical drug testing. To exemplify this concept, we have developed a model system comprising 18 types of microtissues interconnected by a vascular network that replicates the in vivo blood distribution among the organs. Furthermore, this system includes an excretory system with a micro-stirrer that ensures elimination efficiency akin to in vivo conditions. Our findings indicate that this system can: (1) survive and function for almost two months; (2) achieve two-compartment pharmacokinetics of a drug; (3) investigate the dynamic relationship between the tissue distribution and toxicity of a drug; (4) establish the multimorbidity model and evaluate the effectiveness of polypharmacy, challenging tasks with traditional animal models; (5) reduce animal usage in drug evaluations. Notably, features from points (2) to (4) are capabilities not achievable by other in vitro models. The strategy proposed in this study can also be applied to the development of multi-organ microphysiological systems that mimic the physiological complexity of human organs or the entire body.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2, Linggong Road, Dalian, 116024, Liaoning Province, China
| | - Huixue Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2, Linggong Road, Dalian, 116024, Liaoning Province, China
| | - Yueyang Qu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Suzhou Medical College, Soochow University, #199, Renai Road, Suzhou, 215127, Jiangsu Province, China
| | - Yang Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2, Linggong Road, Dalian, 116024, Liaoning Province, China
| | - Shuhui Xu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2, Linggong Road, Dalian, 116024, Liaoning Province, China
| | - Zhenni Ji
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2, Linggong Road, Dalian, 116024, Liaoning Province, China
| | - Yuxiu Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2, Linggong Road, Dalian, 116024, Liaoning Province, China
| | - Xiuli Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Suzhou Medical College, Soochow University, #199, Renai Road, Suzhou, 215127, Jiangsu Province, China.
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2, Linggong Road, Dalian, 116024, Liaoning Province, China.
| |
Collapse
|
4
|
Wang H, Qiu J, Lin Y, Bai X, Wei X. A Cartilaginous Organoid System Derived From Human Expanded Pluripotent Stem Cells (hEPSCs). Bio Protoc 2025; 15:e5304. [PMID: 40364989 PMCID: PMC12067298 DOI: 10.21769/bioprotoc.5304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The development of human organotypic models of cartilage provides essential insights into chondrogenesis and chondrocyte hypertrophy while enabling advanced applications in drug discovery, gene editing, and tissue regeneration. Here, we present a robust and efficient protocol for differentiating human expanded pluripotent stem cells (hEPSCs) into hypertrophic chondrocytes through a sclerotome intermediate. The protocol involves initial sclerotome induction, followed by 3D chondrogenic culture and subsequent hypertrophic maturation induced by bone morphogenetic protein-4 (BMP4), thyroid hormone (T3), and β-glycerophosphate. This protocol also allows for sensitive testing of the effects of various compounds on hypertrophic differentiation during the maturation process. Furthermore, we identify an α-adrenergic receptor antagonist, phentolamine, as an inhibitor of hypertrophic differentiation. This organoid system provides a practical platform for exploring cartilage hypertrophy mechanisms and testing therapeutic strategies for cartilage regeneration. Key features • This differentiation protocol generates hypertrophic chondrocytes from hEPSCs through a sclerotome intermediate. • This protocol facilitates sensitive testing of compounds during the hypertrophic maturation stage, enabling the study of molecular mechanisms and therapeutic interventions for cartilage hypertrophy. • This protocol identifies the α-adrenergic receptor antagonist phentolamine as a modulator of hypertrophic differentiation.
Collapse
Affiliation(s)
- Hong Wang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jingyang Qiu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yin Lin
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaocui Wei
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Coxon J, Linder E, Sweet C, Magness S, Green L. Replicating Host-Microbiome Interactions: Harnessing Organ-on-a-Chip and Organoid Technologies to Model Vaginal and Lung Physiology. Annu Rev Biomed Eng 2025; 27:403-423. [PMID: 39971348 DOI: 10.1146/annurev-bioeng-110122-122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Organ-on-a-chip (OOC) and organoid technologies are at the forefront of developing sophisticated in vitro systems that replicate complex host-microbiome interactions, including those associated with vaginal health and lung infection. We explore how these technologies provide insights into host-microbiome and host-pathogen interactions and the associated immune responses. Integrating omics data and high-resolution imaging in analyzing these models enhances our understanding of host-microbiome interactions' temporal and spatial aspects, paving the way for new diagnostic and treatment strategies. This review underscores the potential of OOC and organoid technologies in elucidating the complexities of vaginal health and lung disease, which have received less attention than other organ systems in recent organoid and OCC studies. Yet, each system presents notable characteristics, rendering them ideal candidates for these designs. Additionally, this review describes the key factors associated with each organ system and how to choose the technology setup to replicate human physiology.
Collapse
Affiliation(s)
- Jade Coxon
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Emily Linder
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Caden Sweet
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott Magness
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA
| | - Leopold Green
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
6
|
Hu R, Ma Q, Kong Y, Wang Z, Xu M, Chen X, Su Y, Xiao T, He Q, Wang X, Xu W, Yang Y, Wang X, Li X, Liu Y, Chen S, Zhao R, Guo M, Wang G, Li W. A Compound Screen Based on Isogenic hESC-Derived β Cell Reveals an Inhibitor Targeting ZnT8-Mediated Zinc Transportation to Protect Pancreatic β Cell from Stress-Induced Cell Death. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413161. [PMID: 40192532 PMCID: PMC12120731 DOI: 10.1002/advs.202413161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/07/2025] [Indexed: 06/01/2025]
Abstract
Pancreatic β cell loss by cellular stress contributes to diabetes pathogenesis. Nevertheless, the fundamental mechanism of cellular stress regulation remains elusive. Here, it is found that elevated zinc transportation causes excessive cellular stress in pancreatic β cells in diabetes. With gene-edited human embryonic stem cell-derived β cells (SC-β cells) and human primary islets, the results reveal that elevated zinc transportation initiates the integrated stress response (ISR), and ultimately leads to β cell death. By contrary, genetic abolishment of zinc transportation shields β cells from exacerbated endoplasmic reticulum stress (ER stress) and concurrent ISR. To target excessive zinc transportation with a chemical inhibitor, an isogenic SC-β cells based drug-screening platform is established. Surprisingly, independent of its traditional role as protein synthesis inhibitor at a high-dose (10 µm), low-dose (25 nm) anisomycin significantly inhibits zinc transportation and effectively prevents β cell loss. Remarkably, in vivo administration of anisomycin in mice demonstrates protective effects on β cells and prevents type 2 diabetes induced by high-fat diet. Overall, elevated zinc transportation is identified as a crucial driver of β cell loss and low-dose anisomycin as a potential therapeutic molecule for diabetes.
Collapse
Affiliation(s)
- Rui Hu
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Qing Ma
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yunhui Kong
- Institute of Modern BiologyNanjing UniversityNanjing20018China
| | - Zhaoyue Wang
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Minglu Xu
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xiangyi Chen
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yajuan Su
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Tinghui Xiao
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Qing He
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xuan Wang
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Wenjun Xu
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yiling Yang
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xushu Wang
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Xiaobo Li
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yanfang Liu
- Department of PathologyChanghai HospitalNavy Medical UniversityShanghai200433China
| | - Shuangshuang Chen
- Institute of Translational MedicineShanghai UniversityShanghai200444China
| | - Rui Zhao
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Meng Guo
- National Key Laboratory of Medical Immunology and Institute of ImmunologyNavy Medical UniversityShanghai200433China
| | - Gaowei Wang
- Institute of Modern BiologyNanjing UniversityNanjing20018China
| | - Weida Li
- Institute for Regenerative MedicineState Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| |
Collapse
|
7
|
Gao Q, Wang J, Zhang H, Wang J, Jing Y, Su J. Organoid Vascularization: Strategies and Applications. Adv Healthc Mater 2025:e2500301. [PMID: 40285576 DOI: 10.1002/adhm.202500301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Organoids provide 3D structures that replicate native tissues in biomedical research. The development of vascular networks within organoids enables oxygen and nutrient delivery while facilitating metabolic waste removal, which supports organoid growth and maturation. Recent studies demonstrate that vascularized organoid models offer insights into tissue interactions and promote tissue regeneration. However, the current limitations in establishing functional vascular networks affect organoid growth, viability, and clinical translation potential. This review examines the development of vascularized organoids, including the mechanisms of angiogenesis and vasculogenesis, construction strategies, and biomedical applications. The approaches are categorized into in vivo and in vitro methods, with analysis of their specific advantages and limitations. The review also discusses emerging techniques such as bioprinting and gene editing for improving vascularization and functional integration in organoid-based therapies. Current developments in organoid vascularization indicate potential applications in modeling human diseases and developing therapeutic strategies, contributing to advances in translational research.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jianhua Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
8
|
Liu K, Chen X, Fan Z, Ren F, Liu J, Hu B. From organoids to organoids-on-a-chip: Current applications and challenges in biomedical research. Chin Med J (Engl) 2025; 138:792-807. [PMID: 39994843 PMCID: PMC11970821 DOI: 10.1097/cm9.0000000000003535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 02/26/2025] Open
Abstract
ABSTRACT The high failure rates in clinical drug development based on animal models highlight the urgent need for more representative human models in biomedical research. In response to this demand, organoids and organ chips were integrated for greater physiological relevance and dynamic, controlled experimental conditions. This innovative platform-the organoids-on-a-chip technology-shows great promise in disease modeling, drug discovery, and personalized medicine, attracting interest from researchers, clinicians, regulatory authorities, and industry stakeholders. This review traces the evolution from organoids to organoids-on-a-chip, driven by the necessity for advanced biological models. We summarize the applications of organoids-on-a-chip in simulating physiological and pathological phenotypes and therapeutic evaluation of this technology. This section highlights how integrating technologies from organ chips, such as microfluidic systems, mechanical stimulation, and sensor integration, optimizes organoid cell types, spatial structure, and physiological functions, thereby expanding their biomedical applications. We conclude by addressing the current challenges in the development of organoids-on-a-chip and offering insights into the prospects. The advancement of organoids-on-a-chip is poised to enhance fidelity, standardization, and scalability. Furthermore, the integration of cutting-edge technologies and interdisciplinary collaborations will be crucial for the progression of organoids-on-a-chip technology.
Collapse
Affiliation(s)
- Kailun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Fan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Ren
- State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101 China
| |
Collapse
|
9
|
Jiménez A, López-Ornelas A, Gutiérrez-de la Cruz N, Puente-Rivera J, Mayen-Quinto RD, Sánchez-Monciváis A, Ignacio-Mejía I, Albores-Méndez EM, Vargas-Hernández MA, Estudillo E. The Use of Neurons Derived from Pluripotent Stem Cells to Study Nerve-Cancer Cell Interactions. Int J Mol Sci 2025; 26:3057. [PMID: 40243726 PMCID: PMC11988749 DOI: 10.3390/ijms26073057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Tumor innervation is a complex interaction between nerves and cancer cells that consists of axons invading tumors, and its complexity remains largely unknown in humans. Although some retrospective studies have provided important insights into the relationship between nerves and tumors, further knowledge is required about this biological process. Animal experiments have elucidated several molecular and cellular mechanisms of tumor innervation; however, no experimental models currently exist to study interactions between human cancer and nerve cells. Human pluripotent stem cells can differentiate into neurons for research purposes; however, the use of these neurons to study interactions with cancer cells remains largely unexplored. Hence, here we analyze the potential of human pluripotent stem cells to study the interaction of cancer cells and neurons derived from human pluripotent stem cells to unravel the poorly understood mechanisms of human tumor innervation.
Collapse
Affiliation(s)
- Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico; (A.J.); (A.L.-O.); (J.P.-R.)
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico; (A.J.); (A.L.-O.); (J.P.-R.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Neptali Gutiérrez-de la Cruz
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico; (A.J.); (A.L.-O.); (J.P.-R.)
| | - Rodolfo David Mayen-Quinto
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Anahí Sánchez-Monciváis
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Iván Ignacio-Mejía
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Exsal M. Albores-Méndez
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Marco Antonio Vargas-Hernández
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| |
Collapse
|
10
|
Abbasi M, Aghamollaei H, Vaez A, Amani AM, Kamyab H, Chelliapan S, Jamalpour S, Zambrano-Dávila R. Bringing ophthalmology into the scientific world: Novel nanoparticle-based strategies for ocular drug delivery. Ocul Surf 2025; 37:140-172. [PMID: 40147816 DOI: 10.1016/j.jtos.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The distinctive benefits and drawbacks of various drug delivery strategies to supply corneal tissue improvement for sense organs have been the attention of studies worldwide in recent decades. Static and dynamic barriers of ocular tissue prevent foreign chemicals from entering and inhibit the active absorption of therapeutic medicines. The distribution of different medications to ocular tissue is one of the most appealing and demanding tasks for investigators in pharmacology, biomaterials, and ophthalmology, and it is critical for cornea wound healing due to the controlled release rate and increased drug bioavailability. It should be mentioned that the transport of various types of medications into the different sections of the eye, particularly the cornea, is exceedingly challenging because of its distinctive structure and various barriers throughout the eye. Nanoparticles are being studied to improve medicine delivery strategies for ocular disease. Repetitive corneal drug delivery using biodegradable nanocarriers allows a medicine to remain in different parts of the cornea for extended periods of time and thus improve administration route effectiveness. In this review, we discussed eye anatomy, ocular delivery barriers, as well as the emphasis on the biodegradable nanomaterials ranging from organic nanostructures, such as nanomicelles, polymers, liposomes, niosomes, nanowafers, nanoemulsions, nanosuspensions, nanocrystals, cubosomes, olaminosomes, hybridized NPs, dendrimers, bilosomes, solid lipid NPs, nanostructured lipid carriers, and nanofiber to organic nanomaterials like silver, gold, and mesoporous silica nanoparticles. In addition, we describe the nanotechnology-based ophthalmic medications that are presently on the market or in clinical studies. Finally, drawing on current trends and therapeutic approaches, we discuss the challenges that innovative optical drug delivery systems confront and propose future research routes. We hope that this review will serve as a source of motivation and inspiration for developing innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Milad Abbasi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Universidad UTE, Quito, 170527, Ecuador.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sajad Jamalpour
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Renato Zambrano-Dávila
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito, 170527, Ecuador
| |
Collapse
|
11
|
Zheng H, Chen G, Wang T, Cheng W, Yuan J, Liu F, Xu Y. Case report: Whole exome sequencing identifies a novel variant in the HPRT1 gene in a male with developmental delay. Front Genet 2025; 16:1512070. [PMID: 40092560 PMCID: PMC11906436 DOI: 10.3389/fgene.2025.1512070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Lesch-Nyhan syndrome (LNS, OMIM #300322) is a rare X-linked genetic disorder caused by variants in the HPRT1 gene, which codes for the Hypoxanthine-guanine phosphoribosyltransferase (HGPRT). HPRT1 gene variants disrupt normal purine metabolism, leading to the involvement of multiple organ systems, primarily characterized by hyperuricemia, dystonia, and neurological abnormalities, which makes LNS clinically heterogeneous and diagnostically challenging. Here, we report a rare case of a 27-year-old Chinese male exhibiting severe lower limb motor disorders, hyperuricemia, and intellectual development delay. Blood tests showed hyperuricemia and whole exome sequencing (WES) identified a novel hemizygous variant in the HPRT1 (NM-000194.3) gene: c.104T > C in exon 2, respectively. Bioinformatics techniques indicated that the variant may disrupt the activity of HGPRT. According to the clinical presentation, diagnostic examination, and WES results, the patient was finally diagnosed with LNS. This study identified a previously unreported pathogenic variant in the HPRT1 gene. Although no curative therapy is currently available for HPRT1 gene variants at present, a definite diagnosis of its genetic etiology is of great significance for genetic counseling and family planning.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Infectious Diseases of Animal Origin, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| | - Gui Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Infectious Diseases of Animal Origin, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| | | | - Weisheng Cheng
- Prenatal Diagnostic Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynecology Diseases, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Jing Yuan
- Prenatal Diagnostic Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynecology Diseases, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Fang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Infectious Diseases of Animal Origin, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Infectious Diseases of Animal Origin, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Artegiani B, Hendriks D. Organoids from pluripotent stem cells and human tissues: When two cultures meet each other. Dev Cell 2025; 60:493-511. [PMID: 39999776 DOI: 10.1016/j.devcel.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Human organoids are a widely used tool in cell biology to study homeostatic processes, disease, and development. The term organoids covers a plethora of model systems from different cellular origins that each have unique features and applications but bring their own challenges. This review discusses the basic principles underlying organoids generated from pluripotent stem cells (PSCs) as well as those derived from tissue stem cells (TSCs). We consider how well PSC- and TSC-organoids mimic the different intended organs in terms of cellular complexity, maturity, functionality, and the ongoing efforts to constitute predictive complex models of in vivo situations. We discuss the advantages and limitations associated with each system to answer different biological questions including in the field of cancer and developmental biology, and with respect to implementing emerging advanced technologies, such as (spatial) -omics analyses, CRISPR screens, and high-content imaging screens. We postulate how the two fields may move forward together, integrating advantages of one to the other.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Rizo JA, Ahmad V, Pru JM, Winuthayanon S, Challa S, Kim TH, Jeong JW, Spencer TE, Kelleher AM. Uterine organoids reveal insights into epithelial specification and plasticity in development and disease. Proc Natl Acad Sci U S A 2025; 122:e2422694122. [PMID: 39883834 PMCID: PMC11804710 DOI: 10.1073/pnas.2422694122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025] Open
Abstract
Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation. Our findings demonstrate that uterine epithelium undergoes marked age-dependent changes, transitioning from a highly plastic state capable of forming both monolayered and multilayered structures to a more restricted fate as development progresses. Interestingly, parallels emerge between the developmental plasticity of neonatal uterine epithelium and pathological conditions such as endometrial cancer, where similar regulatory mechanisms may reactivate, driving abnormal epithelial differentiation and tumorigenesis. These results not only deepen our understanding of early uterine development but also offer a valuable model for studying the progression of reproductive diseases and cancers.
Collapse
Affiliation(s)
- Jason A. Rizo
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Vakil Ahmad
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
| | - Jacob M. Pru
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Sarayut Winuthayanon
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL60637
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL60637
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO65211
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| | - Andrew M. Kelleher
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO65211
| |
Collapse
|
14
|
Ohno M, Tani H, Tohyama S. Development and application of 3D cardiac tissues derived from human pluripotent stem cells. Drug Metab Pharmacokinet 2025; 60:101049. [PMID: 39847979 DOI: 10.1016/j.dmpk.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025]
Abstract
Recently human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate drug responses for cardiotoxicity testing and disease modeling. Moreover, three-dimensional (3D) cardiac models, such as engineered heart tissues (EHTs) developed by bioengineering approaches, and cardiac spheroids (CSs) formed by spherical aggregation of hPSC-CMs, have been established as useful tools for drug discovery and transplantation. These 3D models overcome many of the shortcomings of conventional 2D hPSC-CMs, such as immaturity of the cells. Cardiac organoids (COs), like other organs, have also been studied to reproduce structures that resemble a heart in vivo more closely and optimize various culture conditions. Heart-on-a-chip (HoC) developed by a microfluidic chip-based technology that enables real-time monitoring of contraction and electrical activity, provides multifaceted information that is essential for capturing natural tissue development in vivo. Recently, 3D experimental systems have been developed to study organ interactions in vitro. This review aims to discuss the developments and advancements of hPSC-CMs and 3D cardiac tissues.
Collapse
Affiliation(s)
- Masatoshi Ohno
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Department of Prevention Center, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
15
|
Wan R, Liu Y, Yan J, Lin J. Cell therapy: A beacon of hope in the battle against pulmonary fibrosis. FASEB J 2025; 39:e70356. [PMID: 39873972 DOI: 10.1096/fj.202402790r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative. In recent years, stem cells have shown great promise in the field of regenerative medicine due to their self-renewal capacity and multidirectional differentiation potential, and a growing body of literature supports the efficacy of stem cell therapy in PF treatment. This paper systematically summarizes the research progress of various stem cell types in the treatment of PF. Furthermore, it discusses the primary methods and clinical outcomes of stem cell therapy in PF, based on both preclinical and clinical data. Finally, the current challenges and key factors to consider in stem cell therapy for PF are objectively analyzed, and future directions for improving this therapy are proposed, providing new insights and references for the clinical treatment of PF patients.
Collapse
Affiliation(s)
- Ruyan Wan
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jingwen Yan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
17
|
Pucéat M. A Robust Protocol for Pluripotent Stem Cell Modeling of 3D Chamber-Like Cardiac Organoids. Methods Mol Biol 2025; 2924:93-100. [PMID: 40307637 DOI: 10.1007/978-1-0716-4530-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The formation of cardiac organoids brings a new 3D model of cardiac development. The organoid is also very helpful in screening drug efficiency or toxicity. Inspired by cardiac biology of development, a step-by-step protocol is described to generate cardiac chamber-like organoids from pluripotent stem cells. A few examples of functional tests and the use of these organoids for drug toxicity are reported.
Collapse
Affiliation(s)
- Michel Pucéat
- INSERM U1263, INRAE U1260 C2VN Cardiovascular and Nutrition Center, Aix-Marseille University, Marseille, France.
| |
Collapse
|
18
|
Hu Y, Zhu T, Cui H, Cui H. Integrating 3D Bioprinting and Organoids to Better Recapitulate the Complexity of Cellular Microenvironments for Tissue Engineering. Adv Healthc Mater 2025; 14:e2403762. [PMID: 39648636 DOI: 10.1002/adhm.202403762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Indexed: 12/10/2024]
Abstract
Organoids, with their capacity to mimic the structures and functions of human organs, have gained significant attention for simulating human pathophysiology and have been extensively investigated in the recent past. Additionally, 3D bioprinting, as an emerging bio-additive manufacturing technology, offers the potential for constructing heterogeneous cellular microenvironments, thereby promoting advancements in organoid research. In this review, the latest developments in 3D bioprinting technologies aimed at enhancing organoid engineering are introduced. The commonly used bioprinting methods and materials for organoids, with a particular emphasis on the potential advantages of combining 3D bioprinting with organoids are summarized. These advantages include achieving high cell concentrations to form large cellular aggregates, precise deposition of building blocks to create organoids with complex structures and functions, and automation and high throughput to ensure reproducibility and standardization in organoid culture. Furthermore, this review provides an overview of relevant studies from recent years and discusses the current limitations and prospects for future development.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
19
|
Evans EF, Shyr ZA, Traynor BJ, Zheng W. Therapeutic development approaches to treat haploinsufficiency diseases: restoring protein levels. Drug Discov Today 2024; 29:104201. [PMID: 39384033 DOI: 10.1016/j.drudis.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Rare diseases affect one in ten people but only a small fraction of these diseases have an FDA-approved treatment. Haploinsufficiency, caused by a dominant loss-of-function mutation, is a unique rare disease group because patients have one normal allele of the affected gene. This makes rare haploinsufficiency diseases promising candidates for drug development by increasing expression of the normal gene allele, decreasing the target protein degradation and enhancing the target protein function. This review summarizes recent progresses and approaches used in the translational research of therapeutics to treat haploinsufficiency diseases including gene therapy, nucleotide-based therapeutics and small-molecule drug development. We hope that these drug development strategies will accelerate therapeutic development to treat haploinsufficiency diseases.
Collapse
Affiliation(s)
- Elena F Evans
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Zeenat A Shyr
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Bryan J Traynor
- National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20814, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA.
| |
Collapse
|
20
|
Qureshi AA, Wehrle CJ, Ferreira-Gonzalez S, Jiao C, Hong H, Dadgar N, Arpi-Palacios J, Phong YP, Kim J, Sun K, Hashimoto K, Kwon DCH, Miller C, Leipzig N, Ma WW, Melenhorst J, Aucejo F, Schlegel A. Tumor organoids for primary liver cancers: A systematic review of current applications in diagnostics, disease modeling, and drug screening. JHEP Rep 2024; 6:101164. [PMID: 39583095 PMCID: PMC11584567 DOI: 10.1016/j.jhepr.2024.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 11/26/2024] Open
Abstract
Background & Aims Liver cancer-related deaths are projected to exceed one million annually by 2030. Existing therapies have significant limitations, including severe side effects and inconsistent efficacy. Innovative therapeutic approaches to address primary liver cancer (PLC) have led to the ongoing development of tumor-derived organoids. These are sophisticated three-dimensional structures capable of mimicking native tissue architecture and function in vitro, improving our ability to model in vivo homeostasis and disease. Methods This systematic review consolidates known literature on human and mouse liver organoids across all PLC subtypes, emphasizing diagnostic precision, disease modeling, and drug screening capabilities. Results Across all 39 included studies, organoids were most frequently patient-derived, closely followed by cancer cell line-derived. The literature concentrated on hepatocellular carcinoma and intrahepatic cholangiocarcinoma, while exploration of other subtypes was limited. These studies demonstrate a valuable role for PLC organoid cultures in biomarker discovery, disease modeling, and therapeutic exploration. Conclusions Encouraging advances such as organoid-on-a-chip and co-culturing systems hold promise for advancing treatment regimens for PLC. Standardizing in vitro protocols is crucial to integrate research breakthroughs into practical treatment strategies for PLC. Impact and implications This study provides an overview of the current understanding of tumor-derived organoids in primary liver cancers, emphasizing their potential in diagnostics, disease modeling, and drug screening. The scientific foundation rests on the organoids' ability to replicate the tumor microenvironment and genetic landscape, opening new avenues for personalized therapies. These insights are crucial for both researchers and clinicians, as patient-derived organoids can help identify biomarkers and therapeutic targets. Physicians and policymakers can harness these advances to drive progress in precision medicine, while recognizing the challenges involved in standardizing organoid models for clinical implementation.
Collapse
Affiliation(s)
- Ayesha A. Qureshi
- Nationwide Children's Hospital, Abigail Wexner Research Institute, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | | | - Sofia Ferreira-Gonzalez
- CIR Centre for Inflammation Research, University of Edinburgh, 5 Little France Drive Edinburgh, EH16 4UU, UK
| | - Chunbao Jiao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hanna Hong
- Transplantation Center, Cleveland Clinic, OH, USA
| | - Neda Dadgar
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
- Translational Hematology & Oncology Research, Cleveland Clinic, Enterprise Cancer Institute, Cleveland, OH, USA
| | - Jorge Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | - Yee Phoon Phong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | - Jaekeun Kim
- Transplantation Center, Cleveland Clinic, OH, USA
| | - Keyue Sun
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Nic Leipzig
- The University of Akron, Department of Chemical, Biomolecular, and Corrosion Engineering, Akron, OH, USA
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
| | - Jos Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH, USA
| | | | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Di Pietro E, Burla R, La Torre M, González-García MP, Dello Ioio R, Saggio I. Telomeres: an organized string linking plants and mammals. Biol Direct 2024; 19:119. [PMID: 39568075 PMCID: PMC11577926 DOI: 10.1186/s13062-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Telomeres are pivotal determinants of cell stemness, organismal aging, and lifespan. Herein, we examined similarities in telomeres of Arabidopsis thaliana, mice, and humans. We report the common traits, which include their composition in multimers of TTAGGG sequences and their protection by specialized proteins. Moreover, given the link between telomeres, on the one hand, and cell proliferation and stemness on the other, we discuss the counterintuitive convergence between plants and mammals in this regard, focusing on the impact of niches on cell stemness. Finally, we suggest that tackling the study of telomere function and cell stemness by taking into consideration both plants and mammals can aid in the understanding of interconnections and contribute to research focusing on aging and organismal lifespan determinants.
Collapse
Affiliation(s)
- Edison Di Pietro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- CNR Institute of Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), UPM-INIA/CSIC. Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| | - Isabella Saggio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
22
|
Ye S, Marsee A, van Tienderen GS, Rezaeimoghaddam M, Sheikh H, Samsom RA, de Koning EJP, Fuchs S, Verstegen MMA, van der Laan LJW, van de Vosse F, Malda J, Ito K, Spee B, Schneeberger K. Accelerated production of human epithelial organoids in a miniaturized spinning bioreactor. CELL REPORTS METHODS 2024; 4:100903. [PMID: 39561715 PMCID: PMC11705766 DOI: 10.1016/j.crmeth.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Conventional static culture of organoids necessitates weekly manual passaging and results in nonhomogeneous exposure of organoids to nutrients, oxygen, and toxic metabolites. Here, we developed a miniaturized spinning bioreactor, RPMotion, specifically optimized for accelerated and cost-effective culture of epithelial organoids under homogeneous conditions. We established tissue-specific RPMotion settings and standard operating protocols for the expansion of human epithelial organoids derived from the liver, intestine, and pancreas. All organoid types proliferated faster in the bioreactor (5.2-fold, 3-fold, and 4-fold, respectively) compared to static culture while keeping their organ-specific phenotypes. We confirmed that the bioreactor is suitable for organoid establishment directly from biopsies and for long-term expansion of liver organoids. Furthermore, we showed that after accelerated expansion, liver organoids can be differentiated into hepatocyte-like cells in the RPMotion bioreactor. In conclusion, this miniaturized bioreactor enables work-, time-, and cost-efficient organoid culture, holding great promise for organoid-based fundamental and translational research and development.
Collapse
Affiliation(s)
- Shicheng Ye
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Ary Marsee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Gilles S van Tienderen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Mohammad Rezaeimoghaddam
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Hafsah Sheikh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands; Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584 CT, the Netherlands
| | - Sabine Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht 3584 EA, the Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, P.O. Box 2040, Rotterdam 3000 CA, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, P.O. Box 2040, Rotterdam 3000 CA, the Netherlands
| | - Frans van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, the Netherlands
| | - Keita Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Kerstin Schneeberger
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands.
| |
Collapse
|
23
|
Nishimura H, Li Y. Human pluripotent stem cell-derived models of the hippocampus. Int J Biochem Cell Biol 2024; 177:106695. [PMID: 39557338 DOI: 10.1016/j.biocel.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The hippocampus is a crucial structure of the brain, recognised for its roles in the formation of memory, and our ability to navigate the world. Despite its importance, clear understanding of how the human hippocampus develops and its contribution to disease is limited due to the inaccessible nature of the human brain. In this regard, the advent of human pluripotent stem cell (hPSC) technologies has enabled the study of human biology in an unprecedented manner, through the ability to model development and disease as both 2D monolayers and 3D organoids. In this review, we explore the existing efforts to derive the hippocampal lineage from hPSCs and evaluate the various aspects of the in vivo hippocampus that are replicated in vitro. In addition, we highlight key diseases that have been modelled using hPSC-derived cultures and offer our perspective on future directions for this emerging field.
Collapse
Affiliation(s)
- Haruka Nishimura
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
24
|
Yang J, Fischer NG, Ye Z. Revolutionising oral organoids with artificial intelligence. BIOMATERIALS TRANSLATIONAL 2024; 5:372-389. [PMID: 39872928 PMCID: PMC11764189 DOI: 10.12336/biomatertransl.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 01/30/2025]
Abstract
The convergence of organoid technology and artificial intelligence (AI) is poised to revolutionise oral healthcare. Organoids - three-dimensional structures derived from human tissues - offer invaluable insights into the complex biology of diseases, allowing researchers to effectively study disease mechanisms and test therapeutic interventions in environments that closely mimic in vivo conditions. In this review, we first present the historical development of organoids and delve into the current types of oral organoids, focusing on their use in disease models, regeneration and microbiome intervention. We then compare single-source and multi-lineage oral organoids and assess the latest progress in bioprinted, vascularised and neural-integrated organoids. In the next part of the review, we highlight significant advancements in AI, emphasising how AI algorithms may potentially promote organoid development for early disease detection and diagnosis, personalised treatment, disease prediction and drug screening. However, our main finding is the identification of remaining challenges, such as data integration and the critical need for rigorous validation of AI algorithms to ensure their clinical reliability. Our main viewpoint is that current AI-enabled oral organoids are still limited in applications but, as we look to the future, we offer insights into the potential transformation of AI-integrated oral organoids in oral disease diagnosis, oral microbial interactions and drug discoveries. By synthesising these components, this review aims to provide a comprehensive perspective on the current state and future implications of AI-enabled oral organoids, emphasising their role in advancing oral healthcare and improving patient outcomes.
Collapse
Affiliation(s)
- Jiawei Yang
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nicholas G. Fischer
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, USA
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
25
|
Tong L, Cui W, Zhang B, Fonseca P, Zhao Q, Zhang P, Xu B, Zhang Q, Li Z, Seashore-Ludlow B, Yang Y, Si L, Lundqvist A. Patient-derived organoids in precision cancer medicine. MED 2024; 5:1351-1377. [PMID: 39341206 DOI: 10.1016/j.medj.2024.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Organoids are three-dimensional (3D) cultures, normally derived from stem cells, that replicate the complex structure and function of human tissues. They offer a physiologically relevant model to address important questions in cancer research. The generation of patient-derived organoids (PDOs) from various human cancers allows for deeper insights into tumor heterogeneity and spatial organization. Additionally, interrogating non-tumor stromal cells increases the relevance in studying the tumor microenvironment, thereby enhancing the relevance of PDOs in personalized medicine. PDOs mark a significant advancement in cancer research and patient care, signifying a shift toward more innovative and patient-centric approaches. This review covers aspects of PDO cultures to address the modeling of the tumor microenvironment, including extracellular matrices, air-liquid interface and microfluidic cultures, and organ-on-chip. Specifically, the role of PDOs as preclinical models in gene editing, molecular profiling, drug testing, and biomarker discovery and their potential for guiding personalized treatment in clinical practice are discussed.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Weiyingqi Cui
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Boya Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Pedro Fonseca
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qian Zhao
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Ping Zhang
- Organcare (Shenzhen) Biotechnology Company, Shenzhen, China
| | - Beibei Xu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qisi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang, China
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Hong H, Jun Y, Yoon SB, Park S, Lee J, Jang JW, Nam HJ, Cho H. Manufacturing Uniform Cerebral Organoids for Neurological Disease Modeling and Drug Evaluation. Biomater Res 2024; 28:0104. [PMID: 39507522 PMCID: PMC11538552 DOI: 10.34133/bmr.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Human cerebral organoids are promising tools for investigating brain development and the pathogenesis underlying neurological disorders. To use organoids for drug effectiveness and safety screening, the organoids dispensed into each well must be prepared under precisely the same conditions as the cells. Despite decades of extensive research on approaches to improve organoid generation, various challenges remain, such as low yields and heterogeneity in size and differentiation both within and between batches. Here, we newly established uniform cerebral organoids (UCOs) derived from induced pluripotent stem cells by optimizing organoid size and performing real-time monitoring of telencephalic differentiation marker expression. These organoids exhibited morphological uniformity and consistent expression of FOXG1 during telencephalic differentiation, with high productivity. Moreover, UCOs faithfully recapitulated early corticogenesis, concomitant with the establishment of neuroepithelial populations, cortical plate neurons, and glial cells. Furthermore, UCOs systematically developed neural networks and exhibited both excitatory and inhibitory electrophysiological signals when exposed to neurotransmission blockers. Neurodevelopmental disease models derived from UCOs manifested neurite outgrowth defects, which could be ameliorated with targeted drug treatment. We propose UCOs as an advanced platform with low organoid variations and high reproducibility for modeling both brain development and neurological diseases.
Collapse
Affiliation(s)
- Hyowon Hong
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yesl Jun
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sae-Bom Yoon
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Seoyoon Park
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jaemeun Lee
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jeong Woon Jang
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hye Jin Nam
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology,
University of Science and Technology, Daejeon, Republic of Korea
| | - Heeyeong Cho
- Therapeutics & Biotechnology Division,
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology,
University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
27
|
Yoo MH, Kim Y, Lee BS. Thyroid cancer risk associated with perfluoroalkyl carboxylate exposure: Assessment using a human dermal fibroblast-derived extracellular matrix-based thyroid cancer organoid. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135771. [PMID: 39255665 DOI: 10.1016/j.jhazmat.2024.135771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
The burgeoning incidence of thyroid cancer globally necessitates a deeper understanding of its etiological factors. Emerging research suggests a link to environmental contaminants, notably perfluoroalkyl carboxylates (PFACs). This study introduces a novel biomaterial-based approach for modeling thyroid cancer and assesses PFAC exposure-related health risks. This biomaterial-centric methodology enabled a realistic simulation of long-term, low-dose PFAC exposure, yielding critical insights into their carcinogenic potential. Initially, the no observed adverse effect level concentration of 10 μM for four different PFACs, determined using cytotoxicity tests in 2D cell cultures, was employed with thyroid cancer organoids. Specifically, these organoids were exposed to 10 μM of PFACs, refreshed every 3 days over a period of 21 days. The impact of these PFACs on the organoids was assessed using western blotting and immunofluorescence, complemented by high-content screening imaging. This evaluation focused on thyroid-specific biomarkers, epithelial-mesenchymal transition markers, and the proliferation marker Ki-67. Findings indicated significant alterations in these markers, particularly with long-chain PFACs, suggesting an increased risk of thyroid cancer progression and metastasis upon prolonged exposure. This research advances our understanding of thyroid cancer pathology within the context of environmental health risks by investigating the effects of low-dose, long-term exposure to PFACs on human thyroid cancer organoids. The findings reveal the potential carcinogenic risk associated with these substances, emphasizing the urgent need for stricter regulatory controls.
Collapse
Affiliation(s)
- Min Heui Yoo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| |
Collapse
|
28
|
Wells CA, Guhr A, Bairoch A, Chen Y, Hu M, Löser P, Ludwig TE, Mah N, Mueller SC, Seiler Wulczyn AEM, Seltmann S, Rossbach B, Kurtz A. Guidelines for managing and using the digital phenotypes of pluripotent stem cell lines. Stem Cell Reports 2024; 19:1369-1378. [PMID: 39332404 PMCID: PMC11561460 DOI: 10.1016/j.stemcr.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
Each pluripotent stem cell line has a physical entity as well as a digital phenotype, but linking the two unambiguously is confounded by poor naming practices and assumed knowledge. Registration gives each line a unique and persistent identifier that links to phenotypic data generated over the lifetime of that line. Registration is a key recommendation of the 2023 ISSCR Standards for the use of human stem cells in research. Here we consider how community adoption of stem cell line registration could facilitate the establishment of integrated digital phenotypes of specific human pluripotent stem cell (hPSC) lines.
Collapse
Affiliation(s)
- Christine A Wells
- Stem Cell Systems, Department of Anatomy and Physiology, Medical, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Anke Guhr
- Robert Koch Institute, 13353 Berlin, Germany
| | - Amos Bairoch
- University of Geneva and SIB Swiss Institute of Bioinformatics, CMU, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Ying Chen
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Mengqi Hu
- Stem Cell Systems, Department of Anatomy and Physiology, Medical, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter Löser
- Robert Koch Institute, 13353 Berlin, Germany
| | | | - Nancy Mah
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Sabine C Mueller
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | | | - Stefanie Seltmann
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Bella Rossbach
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany
| | - Andreas Kurtz
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer Weg 1, 66280 Sulzbach, Germany; Berlin Institute of Health Center for Regenerative Therapies at Charité, Berlin, Germany.
| |
Collapse
|
29
|
Yuan Y, Wang Y, Xia Y. Xenotransplantation - a shortcut to construct tissue complexity in organoids. Curr Opin Genet Dev 2024; 88:102243. [PMID: 39142048 DOI: 10.1016/j.gde.2024.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Our knowledge of human biology is mainly originated from studies using animal models. However, interspecies differences between human and model organisms may lead to imprecise extrapolation of results obtained from model organisms. Organoids are three-dimensional cell clusters derived from pluripotent or adult stem cells that self-organize into organ-like structures reminiscent of the cognate organ. The establishment of human organoids makes it possible to study organ or tissue pathophysiology that is specific to human beings. However, most organoids do not have organ-specific vasculature, neurons, and immune cells, hence limiting their utility in emulating complex pathophysiological phenotypes. Among the various approaches to address these limitations, xenotransplantation represents a promising 'shortcut'. We will discuss recent advance in constructing tissue complexity in organoids, with a special focus on xenotransplantation.
Collapse
Affiliation(s)
- Yuan Yuan
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232.
| | - Yixuan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232.
| |
Collapse
|
30
|
Du X, Jia H, Chang Y, Zhao Y, Song J. Progress of organoid platform in cardiovascular research. Bioact Mater 2024; 40:88-103. [PMID: 38962658 PMCID: PMC11220467 DOI: 10.1016/j.bioactmat.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiovascular disease is a significant cause of death in humans. Various models are necessary for the study of cardiovascular diseases, but once cellular and animal models have some defects, such as insufficient fidelity. As a new technology, organoid has certain advantages and has been used in many applications in the study of cardiovascular diseases. This article aims to summarize the application of organoid platforms in cardiovascular diseases, including organoid construction schemes, modeling, and application of cardiovascular organoids. Advances in cardiovascular organoid research have provided many models for different cardiovascular diseases in a variety of areas, including myocardium, blood vessels, and valves. Physiological and pathological models of different diseases, drug research models, and methods for evaluating and promoting the maturation of different kinds of organ tissues are provided for various cardiovascular diseases, including cardiomyopathy, myocardial infarction, and atherosclerosis. This article provides a comprehensive overview of the latest research progress in cardiovascular organ tissues, including construction protocols for cardiovascular organoid tissues and their evaluation system, different types of disease models, and applications of cardiovascular organoid models in various studies. The problems and possible solutions in organoid development are summarized.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
31
|
Krajewski O, Opiełka M, Urbanowicz K, Chojnowski K, Kochany P, Pawłowski K, Tomaszewska J, Peters GJ, Smoleński RT, Bełdzińska MM. Management of neurological symptoms in Lesch-Nyhan disease: A systematic review. Neurosci Biobehav Rev 2024; 165:105847. [PMID: 39117131 DOI: 10.1016/j.neubiorev.2024.105847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Lesch-Nyhan Disease (LND) is an X-linked recessive genetic disorder arising from hypoxanthine phosphoribosyltransferase 1 gene mutations, leading to a complete deficiency. LND presents a complex neurological profile characterized by generalized dystonia, motor dysfunctions and self-injurious behavior, which management is challenging. We conducted a systematic review of studies assessing the efficacy of pharmacological and non-pharmacological interventions in management of neurological symptoms in LND (PROSPERO registration number:CRD42023446513). Among 34 reviewed full-text papers; 22 studies were rated as having a high risk of bias. Considerable heterogeneity was found in studies regarding the timing of treatment implementation, adjunctive treatments and outcome assessment. Single-patient studies and clinical trials often showed contradictory results, while therapeutic failures were underreported. S-Adenosylmethionine and Deep Brain Stimulation were the most studied treatment methods and require further research to address inconsistencies. The evidence from levodopa studies underlines that optimal timing of treatment implementation should be thoroughly investigated. Standardized study design and reducing publication bias are crucial to overcome current limitations of assessing intervention efficacy in LND.
Collapse
Affiliation(s)
- Oliwier Krajewski
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Mikołaj Opiełka
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | | | - Karol Chojnowski
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland; Department of Developmental Neurology, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Paweł Kochany
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland; Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Kacper Pawłowski
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Jagoda Tomaszewska
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland; Cancer Center Amsterdam, Amsterdam U.M.C., VU University Medical Center (VUMC), Department of Medical Oncology, Amsterdam 1081 HV, The Netherlands
| | - Ryszard T Smoleński
- Department of Biochemistry, Medical University of Gdansk, Gdansk 80-211, Poland.
| | | |
Collapse
|
32
|
Benčurová K, Tran L, Friske J, Bevc K, Helbich TH, Hacker M, Bergmann M, Zeitlinger M, Haug A, Mitterhauser M, Egger G, Balber T. An in vivo tumour organoid model based on the chick embryonic chorioallantoic membrane mimics key characteristics of the patient tissue: a proof-of-concept study. EJNMMI Res 2024; 14:86. [PMID: 39331331 PMCID: PMC11436503 DOI: 10.1186/s13550-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. RESULTS The main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. CONCLUSIONS We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.
Collapse
Affiliation(s)
- Katarína Benčurová
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kajetana Bevc
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Thomas H Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory Applied Metabolomics, Vienna, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria.
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Theresa Balber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Kagami H, Li X. Spheroids and organoids: Their implications for oral and craniofacial tissue/organ regeneration. J Oral Biol Craniofac Res 2024; 14:540-546. [PMID: 39092136 PMCID: PMC11292544 DOI: 10.1016/j.jobcr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Spheroids are spherical aggregates of cells. Normally, most of adherent cells cannot survive in suspension; however, if they adhere to each other and grow to a certain size, they can survive without attaching to the dish surface. Studies have shown that spheroid formation induces dedifferentiation and improves plasticity, proliferative capability, and differentiation capability. In particular, spontaneous spheroids represent a selective and efficient cultivation technique for somatic stem cells. Organoids are considered mini-organs composed of multiple types of cells with extracellular matrices that are maintained in three-dimensional culture. Although their culture environment is similar to that of spheroids, organoids consist of differentiated cells with fundamental tissue/organ structures similar to those of native organs. Organoids have been used for drug development, disease models, and basic biological studies. Spheroid culture has been reported for various cell types in the oral and craniofacial regions, including salivary gland epithelial cells, periodontal ligament cells, dental pulp stem cells, and oral mucosa-derived cells. For broader clinical application, it is crucial to identify treatment targets that can leverage the superior stemness of spheroids. Organoids have been developed from various organs, including taste buds, oral mucosa, teeth, and salivary glands, for basic biological studies and also with the goal to replace damaged or defective organs. The development of novel immune-tolerant cell sources is the key to the widespread clinical application of organoids in regenerative medicine. Further efforts to understand the underlying basic mechanisms of spheroids and organoids will lead to the development of safe and efficient next-generation regenerative therapies.
Collapse
Affiliation(s)
- Hideaki Kagami
- Department of Dentistry and Oral Surgery, Aichi Medical University, Aichi, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, 399-0781, Japan
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, 399-0781, Japan
| |
Collapse
|
34
|
Ji Y, McLean JL, Xu R. Emerging Human Pluripotent Stem Cell-Based Human-Animal Brain Chimeras for Advancing Disease Modeling and Cell Therapy for Neurological Disorders. Neurosci Bull 2024; 40:1315-1332. [PMID: 38466557 PMCID: PMC11365908 DOI: 10.1007/s12264-024-01189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024] Open
Abstract
Human pluripotent stem cell (hPSC) models provide unprecedented opportunities to study human neurological disorders by recapitulating human-specific disease mechanisms. In particular, hPSC-based human-animal brain chimeras enable the study of human cell pathophysiology in vivo. In chimeric brains, human neural and immune cells can maintain human-specific features, undergo maturation, and functionally integrate into host brains, allowing scientists to study how human cells impact neural circuits and animal behaviors. The emerging human-animal brain chimeras hold promise for modeling human brain cells and their interactions in health and disease, elucidating the disease mechanism from molecular and cellular to circuit and behavioral levels, and testing the efficacy of cell therapy interventions. Here, we discuss recent advances in the generation and applications of using human-animal chimeric brain models for the study of neurological disorders, including disease modeling and cell therapy.
Collapse
Affiliation(s)
- Yanru Ji
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jenna Lillie McLean
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjie Xu
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
35
|
Xin M, Li Q, Wang D, Wang Z. Organoids for Cancer Research: Advances and Challenges. Adv Biol (Weinh) 2024; 8:e2400056. [PMID: 38977414 DOI: 10.1002/adbi.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Indexed: 07/10/2024]
Abstract
As 3D culture technology advances, new avenues have opened for the development of physiological human cancer models. These preclinical models provide efficient ways to translate basic cancer research into clinical tumor therapies. Recently, cancer organoids have emerged as a model to dissect the more complex tumor microenvironment. Incorporating cancer organoids into preclinical programs have the potential to increase the success rate of oncology drug development and recapitulate the most efficacious treatment regimens for cancer patients. In this review, four main types of cancer organoids are introduced, their applications, advantages, limitations, and prospects are discussed, as well as the recent application of single-cell RNA-sequencing (scRNA-seq) in exploring cancer organoids to advance this field.
Collapse
Affiliation(s)
- Miaomaio Xin
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
- University of South Bohemia in Ceske Budejovice, Vodnany, 38925, Czech Republic
| | - Qian Li
- Changsha Medical University, Changsha, Hunan Province, 410000, China
| | - Dongyang Wang
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shanxi Province, 710000, China
| | - Zheng Wang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing, Sichuan Province, 404100, China
| |
Collapse
|
36
|
Moule MG, Benjamin AB, Burger ML, Herlan C, Lebedev M, Lin JS, Koster KJ, Wavare N, Adams LG, Bräse S, Munoz-Medina R, Cannon CL, Barron AE, Cirillo JD. Peptide-mimetic treatment of Pseudomonas aeruginosa in a mouse model of respiratory infection. Commun Biol 2024; 7:1033. [PMID: 39174819 PMCID: PMC11341572 DOI: 10.1038/s42003-024-06725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2000 deaths in the U.S. annually. While the emergence of resistant bacteria has become ominously common, identification of useful new drug classes has been limited over the past over 40 years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity in mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 min in vitro, and is effective against a range of clinical isolates, including extensively drug resistant strains. In vivo, TM5 significantly reduced bacterial load in the lungs within 24 h compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Madeleine G Moule
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aaron B Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Melanie L Burger
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Claudine Herlan
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maxim Lebedev
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University Schools of Medicine and of Engineering, Stanford, CA, USA
| | - Kent J Koster
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Neha Wavare
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Leslie G Adams
- Department of Veterinary Pathobiology, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ricardo Munoz-Medina
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Carolyn L Cannon
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Annelise E Barron
- Department of Bioengineering, Stanford University Schools of Medicine and of Engineering, Stanford, CA, USA.
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA.
| |
Collapse
|
37
|
Liu H, Gan Z, Qin X, Wang Y, Qin J. Advances in Microfluidic Technologies in Organoid Research. Adv Healthc Mater 2024; 13:e2302686. [PMID: 38134345 DOI: 10.1002/adhm.202302686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Organoids have emerged as major technological breakthroughs and novel organ models that have revolutionized biomedical research by recapitulating the key structural and functional complexities of their in vivo counterparts. The combination of organoid systems and microfluidic technologies has opened new frontiers in organoid engineering and offers great opportunities to address the current challenges of existing organoid systems and broaden their biomedical applications. In this review, the key features of the existing organoids, including their origins, development, design principles, and limitations, are described. Then the recent progress in integrating organoids into microfluidic systems is highlighted, involving microarrays for high-throughput organoid manipulation, microreactors for organoid hydrogel scaffold fabrication, and microfluidic chips for functional organoid culture. The opportunities in the nascent combination of organoids and microfluidics that lie ahead to accelerate research in organ development, disease studies, drug screening, and regenerative medicine are also discussed. Finally, the challenges and future perspectives in the development of advanced microfluidic platforms and modified technologies for building organoids with higher fidelity and standardization are envisioned.
Collapse
Affiliation(s)
- Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
38
|
Kogler S, Pedersen GM, Martínez-Ramírez F, Aizenshtadt A, Busek M, Krauss SJK, Wilson SR, Røberg-Larsen H. An FDA-Validated, Self-Cleaning Liquid Chromatography-Mass Spectrometry System for Determining Small-Molecule Drugs and Metabolites in Organoid/Organ-on-Chip Medium. Anal Chem 2024; 96:12129-12138. [PMID: 38985547 PMCID: PMC11270525 DOI: 10.1021/acs.analchem.4c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
As organoids and organ-on-chip (OoC) systems move toward preclinical and clinical applications, there is an increased need for method validation. Using a liquid chromatography-mass spectrometry (LC-MS)-based approach, we developed a method for measuring small-molecule drugs and metabolites in the cell medium directly sampled from liver organoids/OoC systems. The LC-MS setup was coupled to an automatic filtration and filter flush system with online solid-phase extraction (SPE), allowing for robust and automated sample cleanup/analysis. For the matrix, rich in, e.g., protein, salts, and amino acids, no preinjection sample preparation steps (protein precipitation, SPE, etc.) were necessary. The approach was demonstrated with tolbutamide and its liver metabolite, 4-hydroxytolbutamide (4HT). The method was validated for analysis of cell media of human stem cell-derived liver organoids cultured in static conditions and on a microfluidic platform according to Food and Drug Administration (FDA) guidelines with regards to selectivity, matrix effects, accuracy, precision, etc. The system allows for hundreds of injections without replacing chromatography hardware. In summary, drug/metabolite analysis of organoids/OoCs can be performed robustly with minimal sample preparation.
Collapse
Affiliation(s)
- Stian Kogler
- Hybrid
Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences,
Faculty of Medicine, University of Oslo, Oslo 0372, Norway
- Section
for Chemical Life Sciences, Department of Chemistry, University of Oslo, Oslo NO-0315, Norway
| | | | - Felipe Martínez-Ramírez
- Department
of Analytical Chemistry, Faculty of Science, Charles University, Prague CZ-128 43, Czech
Republic
| | - Aleksandra Aizenshtadt
- Hybrid
Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences,
Faculty of Medicine, University of Oslo, Oslo 0372, Norway
| | - Mathias Busek
- Hybrid
Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences,
Faculty of Medicine, University of Oslo, Oslo 0372, Norway
| | - Stefan J. K. Krauss
- Hybrid
Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences,
Faculty of Medicine, University of Oslo, Oslo 0372, Norway
| | - Steven Ray Wilson
- Hybrid
Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences,
Faculty of Medicine, University of Oslo, Oslo 0372, Norway
- Section
for Chemical Life Sciences, Department of Chemistry, University of Oslo, Oslo NO-0315, Norway
| | - Hanne Røberg-Larsen
- Hybrid
Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences,
Faculty of Medicine, University of Oslo, Oslo 0372, Norway
- Section
for Chemical Life Sciences, Department of Chemistry, University of Oslo, Oslo NO-0315, Norway
| |
Collapse
|
39
|
Oh J, Kwon OB, Park SW, Kim JW, Lee H, Kim YK, Choi EJ, Jung H, Choi DK, Oh BJ, Min SH. Advancing Cardiovascular Drug Screening Using Human Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2024; 25:7971. [PMID: 39063213 PMCID: PMC11277421 DOI: 10.3390/ijms25147971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a promising tool for studying cardiac physiology and drug responses. However, their use is largely limited by an immature phenotype and lack of high-throughput analytical methodology. In this study, we developed a high-throughput testing platform utilizing hPSC-CMs to assess the cardiotoxicity and effectiveness of drugs. Following an optimized differentiation and maturation protocol, hPSC-CMs exhibited mature CM morphology, phenotype, and functionality, making them suitable for drug testing applications. We monitored intracellular calcium dynamics using calcium imaging techniques to measure spontaneous calcium oscillations in hPSC-CMs in the presence or absence of test compounds. For the cardiotoxicity test, hPSC-CMs were treated with various compounds, and calcium flux was measured to evaluate their effects on calcium dynamics. We found that cardiotoxic drugs withdrawn due to adverse drug reactions, including encainide, mibefradil, and cetirizine, exhibited toxicity in hPSC-CMs but not in HEK293-hERG cells. Additionally, in the effectiveness test, hPSC-CMs were exposed to ATX-II, a sodium current inducer for mimicking long QT syndrome type 3, followed by exposure to test compounds. The observed changes in calcium dynamics following drug exposure demonstrated the utility of hPSC-CMs as a versatile model system for assessing both cardiotoxicity and drug efficacy. Overall, our findings highlight the potential of hPSC-CMs in advancing drug discovery and development, which offer a physiologically relevant platform for the preclinical screening of novel therapeutics.
Collapse
Affiliation(s)
- Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Oh-Bin Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Sang-Wook Park
- Department of Oral Biochemistry, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jun-Woo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Heejin Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Young-Kyu Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Eun Ji Choi
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (E.J.C.); (H.J.)
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (E.J.C.); (H.J.)
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dong Kyu Choi
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Bae Jun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea; (J.O.); (O.-B.K.); (J.-W.K.); (H.L.); (Y.-K.K.)
| | - Sang-Hyun Min
- Department of Innovative Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
40
|
Wan Y, Ding J, Jia Z, Hong Y, Tian G, Zheng S, Pan P, Wang J, Liang H. Current trends and research topics regarding organoids: A bibliometric analysis of global research from 2000 to 2023. Heliyon 2024; 10:e32965. [PMID: 39022082 PMCID: PMC11253259 DOI: 10.1016/j.heliyon.2024.e32965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The use of animal models for biological experiments is no longer sufficient for research related to human life and disease. The development of organ tissues has replaced animal models by mimicking the structure, function, development and homeostasis of natural organs. This provides more opportunities to study human diseases such as cancer, infectious diseases and genetic disorders. In this study, bibliometric methods were used to analyze organoid-related articles published over the last 20+ years to identify emerging trends and frontiers in organoid research. A total of 13,143 articles from 4125 institutions in 86 countries or regions were included in the analysis. The number of papers increased steadily over the 20-year period. The United States was the leading country in terms of number of papers and citations. Harvard Medical School had the highest number of papers published. Keyword analysis revealed research trends and focus areas such as organ tissues, stem cells, 3D culture and tissue engineering. In conclusion, this study used bibliometric and visualization methods to explore the field of organoid research and found that organ tissues are receiving increasing attention in areas such as cancer, drug discovery, personalized medicine, genetic disease modelling and gene repair, making them a current research hotspot and a future research trend.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianan Ding
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Zixuan Jia
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guijie Tian
- School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou, China
| | - Shuqian Zheng
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Pinfei Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jieyan Wang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| |
Collapse
|
41
|
Lundin BF, Knight GT, Fedorchak NJ, Krucki K, Iyer N, Maher JE, Izban NR, Roberts A, Cicero MR, Robinson JF, Iskandar BJ, Willett R, Ashton RS. RosetteArray ® Platform for Quantitative High-Throughput Screening of Human Neurodevelopmental Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587605. [PMID: 38798648 PMCID: PMC11118315 DOI: 10.1101/2024.04.01.587605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neural organoids have revolutionized how human neurodevelopmental disorders (NDDs) are studied. Yet, their utility for screening complex NDD etiologies and in drug discovery is limited by a lack of scalable and quantifiable derivation formats. Here, we describe the RosetteArray® platform's ability to be used as an off-the-shelf, 96-well plate assay that standardizes incipient forebrain and spinal cord organoid morphogenesis as micropatterned, 3-D, singularly polarized neural rosette tissues (>9000 per plate). RosetteArrays are seeded from cryopreserved human pluripotent stem cells, cultured over 6-8 days, and immunostained images can be quantified using artificial intelligence-based software. We demonstrate the platform's suitability for screening developmental neurotoxicity and genetic and environmental factors known to cause neural tube defect risk. Given the presence of rosette morphogenesis perturbation in neural organoid models of NDDs and neurodegenerative disorders, the RosetteArray platform could enable quantitative high-throughput screening (qHTS) of human neurodevelopmental risk across regulatory and precision medicine applications.
Collapse
Affiliation(s)
- Brady F. Lundin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705 USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Gavin T. Knight
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| | | | - Kevin Krucki
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| | - Nisha Iyer
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jack E. Maher
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas R. Izban
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Abilene Roberts
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Madeline R. Cicero
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Joshua F. Robinson
- Center of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bermans J. Iskandar
- Department of Neurological Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rebecca Willett
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
- Departments of Statistics and Computer Science, University of Chicago, Chicago, IL 60637, USA
| | - Randolph S. Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| |
Collapse
|
42
|
Ackermann M, Saleh F, Abdin SM, Rafiei Hashtchin A, Gensch I, Golgath J, Carvalho Oliveira M, Nguyen AHH, Gaedcke S, Fenske A, Jang MS, Jirmo AC, Abeln M, Hansen G, Lachmann N. Standardized generation of human iPSC-derived hematopoietic organoids and macrophages utilizing a benchtop bioreactor platform under fully defined conditions. Stem Cell Res Ther 2024; 15:171. [PMID: 38886860 PMCID: PMC11184717 DOI: 10.1186/s13287-024-03785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND There is a significant demand for intermediate-scale bioreactors in academic and industrial institutions to produce cells for various applications in drug screening and/or cell therapy. However, the application of these bioreactors in cultivating hiPSC-derived immune cells and other blood cells is noticeably lacking. To address this gap, we have developed a xeno-free and chemically defined intermediate-scale bioreactor platform, which allows for the generation of standardized human iPSC-derived hematopoietic organoids and subsequent continuous production of macrophages (iPSC-Mac). METHODS We describe a novel method for intermediate-scale immune cell manufacturing, specifically the continuous production of functionally and phenotypically relevant macrophages that are harvested on weekly basis for multiple weeks. RESULTS The continuous production of standardized human iPSC-derived macrophages (iPSC-Mac) from 3D hematopoietic organoids also termed hemanoids, is demonstrated. The hemanoids exhibit successive stage-specific embryonic development, recapitulating embryonic hematopoiesis. iPSC-Mac were efficiently and continuously produced from three different iPSC lines and exhibited a consistent and reproducible phenotype, as well as classical functionality and the ability to adapt towards pro- and anti-inflammatory activation stages. Single-cell transcriptomic analysis revealed high macrophage purity. Additionally, we show the ability to use the produced iPSC-Mac as a model for testing immunomodulatory drugs, exemplified by dexamethasone. CONCLUSIONS The novel method demonstrates an easy-to-use intermediate-scale bioreactor platform that produces prime macrophages from human iPSCs. These macrophages are functionally active and require no downstream maturation steps, rendering them highly desirable for both therapeutic and non-therapeutic applications.
Collapse
Affiliation(s)
- Mania Ackermann
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Fawaz Saleh
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Shifaa M Abdin
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Anna Rafiei Hashtchin
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
- Stem Cell Modelling of Development and Disease Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ingrid Gensch
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Julia Golgath
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Marco Carvalho Oliveira
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Ariane H H Nguyen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Svenja Gaedcke
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine and Infectious Disease, Hannover Medical School, Hannover, Germany
| | - Arno Fenske
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mi-Sun Jang
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Adan C Jirmo
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Markus Abeln
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- RESIST, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.
- RESIST, Cluster of Excellence, Hannover Medical School, Hannover, Germany.
- Regenerative Biology to Reconstructive Therapy (REBIRTH) Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
43
|
Wang C, Abadpour S, Aizenshtadt A, Dalmao-Fernandez A, Høyem M, Wilhelmsen I, Stokowiec J, Olsen PA, Krauss S, Chera S, Ghila L, Ræder H, Scholz H. Cell identity dynamics and insight into insulin secretagogues when employing stem cell-derived islets for disease modeling. Front Bioeng Biotechnol 2024; 12:1392575. [PMID: 38933536 PMCID: PMC11199790 DOI: 10.3389/fbioe.2024.1392575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Stem cell-derived islets (SC-islets) are not only an unlimited source for cell-based therapy of type 1 diabetes but have also emerged as an attractive material for modeling diabetes and conducting screening for treatment options. Prior to SC-islets becoming the established standard for disease modeling and drug development, it is essential to understand their response to various nutrient sources in vitro. This study demonstrates an enhanced efficiency of pancreatic endocrine cell differentiation through the incorporation of WNT signaling inhibition following the definitive endoderm stage. We have identified a tri-hormonal cell population within SC-islets, which undergoes reduction concurrent with the emergence of elevated numbers of glucagon-positive cells during extended in vitro culture. Over a 6-week period of in vitro culture, the SC-islets consistently demonstrated robust insulin secretion in response to glucose stimulation. Moreover, they manifested diverse reactivity patterns when exposed to distinct nutrient sources and exhibited deviant glycolytic metabolic characteristics in comparison to human primary islets. Although the SC-islets demonstrated an aberrant glucose metabolism trafficking, the evaluation of a potential antidiabetic drug, pyruvate kinase agonist known as TEPP46, significantly improved in vitro insulin secretion of SC-islets. Overall, this study provided cell identity dynamics investigation of SC-islets during prolonged culturing in vitro, and insights into insulin secretagogues. Associated advantages and limitations were discussed when employing SC-islets for disease modeling.
Collapse
Affiliation(s)
- Chencheng Wang
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
| | - Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
| | | | - Andrea Dalmao-Fernandez
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Merete Høyem
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Ingrid Wilhelmsen
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub, Center of Excellence, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Saadeldin IM, Ehab S, Noreldin AE, Swelum AAA, Bang S, Kim H, Yoon KY, Lee S, Cho J. Current strategies using 3D organoids to establish in vitro maternal-embryonic interaction. J Vet Sci 2024; 25:e40. [PMID: 38834510 PMCID: PMC11156602 DOI: 10.4142/jvs.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024] Open
Abstract
IMPORTANCE The creation of robust maternal-embryonic interactions and implantation models is important for comprehending the early stages of embryonic development and reproductive disorders. Traditional two-dimensional (2D) cell culture systems often fail to accurately mimic the highly complex in vivo conditions. The employment of three-dimensional (3D) organoids has emerged as a promising strategy to overcome these limitations in recent years. The advancements in the field of organoid technology have opened new avenues for studying the physiology and diseases affecting female reproductive tract. OBSERVATIONS This review summarizes the current strategies and advancements in the field of 3D organoids to establish maternal-embryonic interaction and implantation models for use in research and personalized medicine in assisted reproductive technology. The concepts of endometrial organoids, menstrual blood flow organoids, placental trophoblast organoids, stem cell-derived blastoids, and in vitro-generated embryo models are discussed in detail. We show the incorportaion of organoid systems and microfluidic technology to enhance tissue performance and precise management of the cellular surroundings. CONCLUSIONS AND RELEVANCE This review provides insights into the future direction of modeling maternal-embryonic interaction research and its combination with other powerful technologies to interfere with this dialogue either by promoting or hindering it for improving fertility or methods for contraception, respectively. The merging of organoid systems with microfluidics facilitates the creation of sophisticated and functional organoid models, enhancing insights into organ development, disease mechanisms, and personalized medical investigations.
Collapse
Affiliation(s)
- Islam Mohamed Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 11341, Egypt
| | - Ahmed Elsayed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, the Scientific Campus, Damanhour 22511, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Hyejin Kim
- Division in Biomedical Art, Department of Fine Art, Incheon Catholic University Graduate School, Incheon 21986, Korea
| | - Ki Young Yoon
- Department of Companion Animal, Shingu College, Seongnam 13174, Korea
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
45
|
Liu X, Chan VSF, Smith KGC, Ming C, Or CS, Tsui FTW, Gao B, Cook MC, Liu P, Lau CS, Li PH. Recapitulating primary immunodeficiencies with expanded potential stem cells: Proof of concept with STAT1 gain of function. J Allergy Clin Immunol 2024; 153:1125-1139. [PMID: 38072195 DOI: 10.1016/j.jaci.2023.11.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.
Collapse
Affiliation(s)
- Xueyan Liu
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Vera S F Chan
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Kenneth G C Smith
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chang Ming
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Chung Sze Or
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Faria T W Tsui
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Bo Gao
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Matthew C Cook
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Pentao Liu
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Chak Sing Lau
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Philip Hei Li
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev 2024; 207:115202. [PMID: 38336091 DOI: 10.1016/j.addr.2024.115202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The symbiotic interplay of organoid technology and advanced imaging strategies yields innovative breakthroughs in research and clinical applications. Organoids, intricate three-dimensional cell cultures derived from pluripotent or adult stem/progenitor cells, have emerged as potent tools for in vitro modeling, reflecting in vivo organs and advancing our grasp of tissue physiology and disease. Concurrently, advanced imaging technologies such as confocal, light-sheet, and two-photon microscopy ignite fresh explorations, uncovering rich organoid information. Combined with advanced imaging technologies and the power of artificial intelligence, organoids provide new insights that bridge experimental models and real-world clinical scenarios. This review explores exemplary research that embodies this technological synergy and how organoids reshape personalized medicine and therapeutics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 08826, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul 08826, Republic of Korea
| | - Sunghun Cheong
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoojin Chung
- Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
47
|
Yang X, Wu X, Wang Y, Li W, Wu X, Yuan L, Yu T, Li N, Zhang S, Hua J. Induction of lung progenitor cell-like organoids by porcine pluripotent stem cells. FASEB J 2024; 38:e23481. [PMID: 38334430 DOI: 10.1096/fj.202302402r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Organoids are in vitro 3D models that are generated using stem cells to study organ development and regeneration. Despite the extensive research on lung organoids, there is limited information on pig lung cell generation or development. Here, we identified five epithelial cell types along with their characteristic markers using scRNA-seq. Additionally, we found that NKX2.1 and FOXA2 acted as the crucial core transcription factors in porcine lung development. The presence of SOX9/SOX2 double-positive cells was identified as a key marker for lung progenitor cells. The Monocle algorithm was used to create a pseudo-temporal differentiation trajectory of epithelial cells, leading to the identification of signaling pathways related to porcine lung development. Moreover, we established the differentiation method from porcine pluripotent stem cells (pPSCs) to SOX17+ FOXA2+ definitive endoderm (DE) and NKX2.1+ FOXA2+ CDX2- anterior foregut endoderm (AFE). The AFE is further differentiated into lung organoids while closely monitoring the differentiation process. We showed that NKX2.1 overexpression facilitated the induction of lung organoids and supported subsequent lung differentiation and maturation. This model offers valuable insights into studying the interaction patterns between cells and the signaling pathways during the development of the porcine lung.
Collapse
Affiliation(s)
- Xinchun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqi Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liming Yuan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Taiyong Yu
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
48
|
Damiani D, Baggiani M, Della Vecchia S, Naef V, Santorelli FM. Pluripotent Stem Cells as a Preclinical Cellular Model for Studying Hereditary Spastic Paraplegias. Int J Mol Sci 2024; 25:2615. [PMID: 38473862 DOI: 10.3390/ijms25052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.
Collapse
Affiliation(s)
- Devid Damiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Matteo Baggiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| |
Collapse
|
49
|
Sladen PE, Naeem A, Adefila-Ideozu T, Vermeule T, Busson SL, Michaelides M, Naylor S, Forbes A, Lane A, Georgiadis A. AAV-RPGR Gene Therapy Rescues Opsin Mislocalisation in a Human Retinal Organoid Model of RPGR-Associated X-Linked Retinitis Pigmentosa. Int J Mol Sci 2024; 25:1839. [PMID: 38339118 PMCID: PMC10855600 DOI: 10.3390/ijms25031839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Variants within the Retinitis Pigmentosa GTPase regulator (RPGR) gene are the predominant cause of X-Linked Retinitis Pigmentosa (XLRP), a common and severe form of inherited retinal disease. XLRP is characterised by the progressive degeneration and loss of photoreceptors, leading to visual loss and, ultimately, bilateral blindness. Unfortunately, there are no effective approved treatments for RPGR-associated XLRP. We sought to investigate the efficacy of RPGRORF15 gene supplementation using a clinically relevant construct in human RPGR-deficient retinal organoids (ROs). Isogenic RPGR knockout (KO)-induced pluripotent stem cells (IPSCs) were generated using established CRISPR/Cas9 gene editing methods targeting RPGR. RPGR-KO and isogenic wild-type IPSCs were differentiated into ROs and utilised to test the adeno associated virus (AAV) RPGR (AAV-RPGR) clinical vector construct. The transduction of RPGR-KO ROs using AAV-RPGR successfully restored RPGR mRNA and protein expression and localisation to the photoreceptor connecting cilium in rod and cone photoreceptors. Vector-derived RPGR demonstrated equivalent levels of glutamylation to WT ROs. In addition, treatment with AAV-RPGR restored rhodopsin localisation within RPGR-KO ROs, reducing mislocalisation to the photoreceptor outer nuclear layer. These data provide mechanistic insights into RPGRORF15 gene supplementation functional potency in human photoreceptor cells and support the previously reported Phase I/II trial positive results using this vector construct in patients with RPGR-associated XLRP, which is currently being tested in a Phase III clinical trial.
Collapse
Affiliation(s)
- Paul E. Sladen
- MeiraGTx UK II, 34-38 Provost Street, London N1 7NG, UK (A.L.)
| | - Arifa Naeem
- MeiraGTx UK II, 34-38 Provost Street, London N1 7NG, UK (A.L.)
| | | | - Tijmen Vermeule
- MeiraGTx UK II, 34-38 Provost Street, London N1 7NG, UK (A.L.)
| | | | - Michel Michaelides
- MeiraGTx UK II, 34-38 Provost Street, London N1 7NG, UK (A.L.)
- Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK
- University College London Institute of Ophthalmology, London EC1V 9LF, UK
| | - Stuart Naylor
- MeiraGTx UK II, 34-38 Provost Street, London N1 7NG, UK (A.L.)
| | | | - Amelia Lane
- MeiraGTx UK II, 34-38 Provost Street, London N1 7NG, UK (A.L.)
| | | |
Collapse
|
50
|
Pianigiani G, Roccio M. Inner Ear Organoids: Strengths and Limitations. J Assoc Res Otolaryngol 2024; 25:5-11. [PMID: 38334886 PMCID: PMC10907556 DOI: 10.1007/s10162-024-00929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Inner ear organoids derived from differentiation of human pluripotent stem cells have recently gained momentum as tools to study inner ear development and developmental defects. An additional exciting aspect about this technology is represented by its translational potential, specifically, the use of organoids to validate therapeutics for hearing and balance restoration on human/patient-specific cells. This latter aspect will be briefly discussed here including opportunities and current limitations.
Collapse
Affiliation(s)
- Giulia Pianigiani
- Institute for Maternal and Child Health - I.R.C.C.S. "Burlo Garofolo", Trieste, Italy
| | - Marta Roccio
- Inner Ear Stem Cell Lab, Department Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich and University of Zurich, USZ Campus WAGI18, Wagistrasse 18, 8952, Schlieren, Switzerland.
| |
Collapse
|