1
|
Gao S, Zheng H, Liu E, Tian J, Zhou J. Controllable Droplet Splitting with Parallel-Plate Optoelectrowetting Chips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1-5. [PMID: 39748799 DOI: 10.1021/acs.langmuir.4c04355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Recent advances in microfluidic technology highlight electrowetting for its programmability and precision. However, traditional electrowetting chips face limitations in scalability due to fixed electrode sizes. Optoelectrowetting (OEW) offers a solution with light-controlled virtual electrodes, but droplet splitting remains challenging. This study introduces a parallel-plate OEW chip, enhancing droplet manipulation and achieving rapid splitting with light-controlled dark stripe electrodes. We proposed the dimensionless parameter η to characterize droplet splitting, and a mathematical model describes key factors influencing controllable splitting, providing valuable design guidelines for OEW chips.
Collapse
Affiliation(s)
- Shang Gao
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hanyun Zheng
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Enqing Liu
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Junyan Tian
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jia Zhou
- School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
3
|
Blanco JCG, Macías-García A, Rodríguez-Rego JM, Mendoza-Cerezo L, Sánchez-Margallo FM, Marcos-Romero AC, Pagador-Carrasco JB. Optimising Bioprinting Nozzles through Computational Modelling and Design of Experiments. Biomimetics (Basel) 2024; 9:460. [PMID: 39194439 DOI: 10.3390/biomimetics9080460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
3D bioprinting is a promising technique for creating artificial tissues and organs. One of the main challenges of bioprinting is cell damage, due to high pressures and tensions. During the biofabrication process, extrusion bioprinting usually results in low cell viability, typically ranging from 40% to 80%, although better printing performance with higher cell viability can be achieved by optimising the experimental design and operating conditions, with nozzle geometry being a key factor. This article presents a review of studies that have used computational fluid dynamics (CFD) to optimise nozzle geometry. They show that the optimal ranges for diameter and length are 0.2 mm to 1 mm and 8 mm to 10 mm, respectively. In addition, it is recommended that the nozzle should have an internal angle of 20 to 30 degrees, an internal coating of ethylenediaminetetraacetic acid (EDTA), and a shear stress of less than 10 kPa. In addition, a design of experiments technique to obtain an optimal 3D bioprinting configuration for a bioink is also presented. This experimental design would identify bioprinting conditions that minimise cell damage and improve the viability of the printed cells.
Collapse
Affiliation(s)
- Juan C Gómez Blanco
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, km41.8, 10071 Cáceres, Spain
| | - Antonio Macías-García
- Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | - Jesús M Rodríguez-Rego
- Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | - Laura Mendoza-Cerezo
- Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | | | - Alfonso C Marcos-Romero
- Department of Mechanical, Energy and Materials Engineering, School of Industrial Engineering, University of Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | | |
Collapse
|
4
|
Peto-Gutiérrez C, Vázquez-Victorio G, Hautefeuille M. Characterization of Benchtop-Fabricated Arrays of Nanowrinkled Surface Electrodes as a Nitric Oxide Electrochemical Sensor. BIOSENSORS 2023; 13:794. [PMID: 37622879 PMCID: PMC10452632 DOI: 10.3390/bios13080794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
In this work, we present an accessible benchtop fabrication technique to obtain a planar array of gold nanowrinkled surface electrodes (ANSE) for the construction of electrochemical cells, specifically to monitor soluble biomarkers of interest in cell culture environments. We present a complete characterization of the array and its response as an electrochemical cell. To validate our sensor, we evaluated the device sensitivity to detect nitric oxide (NO), an important molecule produced by endothelial cells as a response to environmental signals such as mechanics and growth factors. While testing measurements of nitric oxide in aqueous solutions with isotonic salt concentrations, we evidenced the influence of the environmental conditions for such electrochemical measurements, showing that the aqueous medium, usually not accounted for, significantly impacts the outcome. Finally, we present the application of the electrochemical sensor for the detection of nitric oxide released from stimulated endothelial cells as a proof of concept.
Collapse
Affiliation(s)
- Cindy Peto-Gutiérrez
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Genaro Vázquez-Victorio
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mathieu Hautefeuille
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia (LaNSBioDyT), Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratoire de Biologie du Développement (UMR 7622), Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
5
|
Cairns J, Leonard E, Khan K, Parks C, Maglennon G, Zhang B, Lazic SE, Ewart L, David R. Optimal experimental design for efficient toxicity testing in microphysiological systems: A bone marrow application. Front Pharmacol 2023; 14:1142581. [PMID: 37063297 PMCID: PMC10103791 DOI: 10.3389/fphar.2023.1142581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/21/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction: Microphysiological systems (MPS; organ-on-a-chip) aim to recapitulate the 3D organ microenvironment and improve clinical predictivity relative to previous approaches. Though MPS studies provide great promise to explore treatment options in a multifactorial manner, they are often very complex. It is therefore important to assess and manage technical confounding factors, to maximise power, efficiency and scalability.Methods: As an illustration of how MPS studies can benefit from a systematic evaluation of confounders, we developed an experimental design approach for a bone marrow (BM) MPS and tested it for a specified context of use, the assessment of lineage-specific toxicity.Results: We demonstrated the accuracy of our multicolour flow cytometry set-up to determine cell type and maturity, and the viability of a “repeated measures” design where we sample from chips repeatedly for increased scalability and robustness. Importantly, we demonstrated an optimal way to arrange technical confounders. Accounting for these confounders in a mixed-model analysis pipeline increased power, which meant that the expected lineage-specific toxicities following treatment with olaparib or carboplatin were detected earlier and at lower doses. Furthermore, we performed a sample size analysis to estimate the appropriate number of replicates required for different effect sizes. This experimental design-based approach will generalise to other MPS set-ups.Discussion: This design of experiments approach has established a groundwork for a reliable and reproducible in vitro analysis of BM toxicity in a MPS, and the lineage-specific toxicity data demonstrate the utility of this model for BM toxicity assessment. Toxicity data demonstrate the utility of this model for BM toxicity assessment.
Collapse
Affiliation(s)
- Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- *Correspondence: Jonathan Cairns, ; Rhiannon David,
| | - Emilyanne Leonard
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kainat Khan
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Conor Parks
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gareth Maglennon
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bairu Zhang
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Stanley E. Lazic
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lorna Ewart
- Safety Platforms, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rhiannon David
- Safety Innovation, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- *Correspondence: Jonathan Cairns, ; Rhiannon David,
| |
Collapse
|
6
|
Shinde A, Illath K, Kasiviswanathan U, Nagabooshanam S, Gupta P, Dey K, Chakrabarty P, Nagai M, Rao S, Kar S, Santra TS. Recent Advances of Biosensor-Integrated Organ-on-a-Chip Technologies for Diagnostics and Therapeutics. Anal Chem 2023; 95:3121-3146. [PMID: 36716428 DOI: 10.1021/acs.analchem.2c05036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Uvanesh Kasiviswanathan
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shalini Nagabooshanam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Suresh Rao
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh 517507, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
7
|
Riester O, Laufer S, Deigner HP. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system. J Nanobiotechnology 2022; 20:540. [PMID: 36575530 PMCID: PMC9793564 DOI: 10.1186/s12951-022-01737-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In vivo-mimicking conditions are critical in in vitro cell analysis to obtain clinically relevant results. The required conditions, comparable to those prevalent in nature, can be provided by microfluidic dynamic cell cultures. Microfluidics can be used to fabricate and test the functionality and biocompatibility of newly developed nanosystems or to apply micro- and nanoelectromechanical systems embedded in a microfluidic system. However, the use of microfluidic systems is often hampered by their accessibility, acquisition cost, or customization, especially for scientists whose primary research focus is not microfluidics. RESULTS Here we present a method for 3D printing that can be applied without special prior knowledge and sophisticated equipment to produce various ready-to-use microfluidic components with a size of 100 µm. Compared to other available methods, 3D printing using fused deposition modeling (FDM) offers several advantages, such as time-reduction and avoidance of sophisticated equipment (e.g., photolithography), as well as excellent biocompatibility and avoidance of toxic, leaching chemicals or post-processing (e.g., stereolithography). We further demonstrate the ease of use of the method for two relevant applications: a cytotoxicity screening system and an osteoblastic differentiation assay. To our knowledge, this is the first time an application including treatment, long-term cell culture and analysis on one chip has been demonstrated in a directly 3D-printed microfluidic chip. CONCLUSION The direct 3D printing method is tested and validated for various microfluidic components that can be combined on a chip depending on the specific requirements of the experiment. The ease of use and production opens up the potential of microfluidics to a wide range of users, especially in biomedical research. Our demonstration of its use as a cytotoxicity screening system and as an assay for osteoblastic differentiation shows the methods potential in the development of novel biomedical applications. With the presented method, we aim to disseminate microfluidics as a standard method in biomedical research, thus improving the reproducibility and transferability of results to clinical applications.
Collapse
Affiliation(s)
- Oliver Riester
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Laufer
- grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Hans-Peter Deigner
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Faculty of Science, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,grid.418008.50000 0004 0494 3022EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
| |
Collapse
|
8
|
Short WD, Olutoye OO, Padon BW, Parikh UM, Colchado D, Vangapandu H, Shams S, Chi T, Jung JP, Balaji S. Advances in non-invasive biosensing measures to monitor wound healing progression. Front Bioeng Biotechnol 2022; 10:952198. [PMID: 36213059 PMCID: PMC9539744 DOI: 10.3389/fbioe.2022.952198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics and biologic interfaces of the sensors and actuators for real time biosensing and actuation of the tissues. We also discuss high-resolution, advanced imaging techniques, which go beyond traditional confocal and fluorescence microscopy to visualize microscopic details of the composition of the wound matrix, linearity of collagen, and live tracking of components within the wound microenvironment. Computational modeling of the wound matrix, including partial differential equation datasets as well as machine learning models that can serve as powerful tools for physicians to guide their decision-making process are discussed.
Collapse
Affiliation(s)
- Walker D. Short
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Oluyinka O. Olutoye
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Benjamin W. Padon
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Umang M. Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Daniel Colchado
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Hima Vangapandu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Shayan Shams
- Department of Applied Data Science, San Jose State University, San Jose, CA, United States
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Taiyun Chi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Swathi Balaji,
| |
Collapse
|
9
|
Etezadi F, Le MNT, Shahsavarani H, Alipour A, Moazzezy N, Samani S, Amanzadeh A, Pahlavan S, Bonakdar S, Shokrgozar MA, Hasegawa K. Optimization of a PDMS-Based Cell Culture Substrate for High-Density Human-Induced Pluripotent Stem Cell Adhesion and Long-Term Differentiation into Cardiomyocytes under a Xeno-Free Condition. ACS Biomater Sci Eng 2022; 8:2040-2052. [PMID: 35468288 DOI: 10.1021/acsbiomaterials.2c00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the numerous advantages of PDMS-based substrates in various biomedical applications, they are limited by their highly hydrophobic surface that does not optimally interact with cells for attachment and growth. Hence, the lack of lengthy and straightforward procedures for high-density cell production on the PDMS-based substrate is one of the significant challenges in cell production in the cell therapy field. In this study, we found that the PDMS substrate coated with a combination of polydopamine (PDA) and laminin-511 E8 fragments (PDA + LME8-coated PDMS) can support human-induced pluripotent stem cell (hiPSC) attachment and growth for the long term and satisfy their demands of differentiation into cardiomyocytes (iCMs). Compared with prior studies, the density of hiPSCs and their adhesion time on the PDMS surface were increased during iCM production. Although the differentiated iCMs beat and produce mechanical forces, which disturb cellular attachments, the iCMs on the PDA + LME8-coated PDMS substrate showed dramatically better attachment than the control condition. Further, the substrate required less manipulation by enabling one-step seeding throughout the process in iCM formation from hiPSCs under animal-free conditions. In light of the results achieved, the PDA + LME8-coated PDMS substrate will be an up-and-coming tool for cardiomyocyte production for cell therapy and tissue engineering, microfluidics, and organ-on-chip platforms.
Collapse
Affiliation(s)
- Fatemeh Etezadi
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran.,Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.,Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Minh Nguyen Tuyet Le
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Hosein Shahsavarani
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran.,Department of Cell and Molecular Sciences, Faculty of Life Science and Biotechnology, Shahid Beheshti University, 1983963113 Tehran, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Neda Moazzezy
- Molecular Biology Department, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Saeed Samani
- Department of Tissue Engineering & Applied Cell Sciences, TUMS School of Advanced Technologies in Medicine, No. 88, Italia St, Tehran, 1417755469, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Development Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACERCR, Banihashem Ave, Tehran 16635-148, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Mohammad Ali Shokrgozar
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Organ-on-a-Chip: Design and Simulation of Various Microfluidic Channel Geometries for the Influence of Fluid Dynamic Parameters. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083829] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Shear stress, pressure, and flow rate are fluid dynamic parameters that can lead to changes in the morphology, proliferation, function, and survival of many cell types and have a determinant impact on tissue function and viability. Microfluidic devices are promising tools to investigate these parameters and fluid behaviour within different microchannel geometries. This study discusses and analyses different designed microfluidic channel geometries regarding the influence of fluid dynamic parameters on their microenvironment at specified fluidic parameters. The results demonstrate that in the circular microchamber, the velocity and shear stress profiles assume a parabolic shape with a maximum velocity occurring in the centre of the chamber and a minimum velocity at the walls. The longitudinal microchannel shows a uniform velocity and shear stress profile throughout the microchannel. Simulation studies for the two geometries with three parallel microchannels showed that in proximity to the micropillars, the velocity and shear stress profiles decreased. Moreover, the pressure is inversely proportional to the width and directly proportional to the flow rate within the microfluidic channels. The simulations showed that the velocity and wall shear stress indicated different values at different flow rates. It was also found that the width and height of the microfluidic channels could affect both velocity and shear stress profiles, contributing to the control of shear stress. The study has demonstrated strategies to predict and control the effects of these forces and the potential as an alternative to conventional cell culture as well as to recapitulate the cell- and organ-specific microenvironment.
Collapse
|
11
|
Low-Cost Devices for Three-Dimensional Cell Aggregation, Real-Time Monitoring Microscopy, Microfluidic Immunostaining, and Deconvolution Analysis. Bioengineering (Basel) 2022; 9:bioengineering9020060. [PMID: 35200413 PMCID: PMC8869754 DOI: 10.3390/bioengineering9020060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
The wide use of 3D-organotypic cell models is imperative for advancing our understanding of basic cell biological mechanisms. For this purpose, easy-to-use enabling technology is required, which should optimally link standardized assessment methods to those used for the formation, cultivation, and evaluation of cell aggregates or primordial tissue. We thus conceived, manufactured, and tested devices which provide the means for cell aggregation and online monitoring within a hanging drop. We then established a workflow for spheroid manipulation and immune phenotyping. This described workflow conserves media and reagent, facilitates the uninterrupted tracking of spheroid formation under various conditions, and enables 3D-marker analysis by means of 3D epifluorescence deconvolution microscopy. We provide a full description of the low-cost manufacturing process for the fluidic devices and microscopic assessment tools, and the detailed blueprints and building instructions are disclosed. Conclusively, the presented compilation of methods and techniques promotes a quick and barrier-free entry into 3D cell biology.
Collapse
|
12
|
Pang L, Ding J, Liu XX, Kou Z, Guo L, Xu X, Fan SK. Microfluidics-Based Single-Cell Research for Intercellular Interaction. Front Cell Dev Biol 2021; 9:680307. [PMID: 34458252 PMCID: PMC8397490 DOI: 10.3389/fcell.2021.680307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular interaction between cell-cell and cell-ECM is critical to numerous biology and medical studies, such as stem cell differentiation, immunotherapy and tissue engineering. Traditional methods employed for delving into intercellular interaction are limited by expensive equipment and sophisticated procedures. Microfluidics technique is considered as one of the powerful measures capable of precisely capturing and manipulating cells and achieving low reagent consumption and high throughput with decidedly integrated functional components. Over the past few years, microfluidics-based systems for intercellular interaction study at a single-cell level have become frequently adopted. This review focuses on microfluidic single-cell studies for intercellular interaction in a 2D or 3D environment with a variety of cell manipulating techniques and applications. The challenges to be overcome are highlighted.
Collapse
Affiliation(s)
- Long Pang
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Jing Ding
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| | - Xi-Xian Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhixuan Kou
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Lulu Guo
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Xi Xu
- School of Basic Medical Science, The Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an, China
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an Medical University, Xi’an, China
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
13
|
Ahmed HMMAM, Moreira Teixeira LS. New Endeavors of (Micro)Tissue Engineering: Cells Tissues Organs on-Chip and Communication Thereof. Cells Tissues Organs 2021; 211:721-735. [PMID: 34198305 DOI: 10.1159/000516356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/30/2021] [Indexed: 01/25/2023] Open
Abstract
The development of new therapies is tremendously hampered by the insufficient availability of human model systems suitable for preclinical research on disease target identification, drug efficacy, and toxicity. Thus, drug failures in clinical trials are too common and too costly. Animal models or standard 2D in vitro tissue cultures, regardless of whether they are human based, are regularly not representative of specific human responses. Approaching near human tissues and organs test systems is the key goal of organs-on-chips (OoC) technology. This technology is currently showing its potential to reduce both drug development costs and time-to-market, while critically lessening animal testing. OoC are based on human (stem) cells, potentially derived from healthy or disease-affected patients, thereby amenable to personalized therapy development. It is noteworthy that the OoC market potential goes beyond pharma, with the possibility to test cosmetics, food additives, or environmental contaminants. This (micro)tissue engineering-based technology is highly multidisciplinary, combining fields such as (developmental) biology, (bio)materials, microfluidics, sensors, and imaging. The enormous potential of OoC is currently facing an exciting new challenge: emulating cross-communication between tissues and organs, to simulate more complex systemic responses, such as in cancer, or restricted to confined environments, as occurs in osteoarthritis. This review describes key examples of multiorgan/tissue-on-chip approaches, or linked organs/tissues-on-chip, focusing on challenges and promising new avenues of this advanced model system. Additionally, major emphasis is given to the translation of established tissue engineering approaches, bottom up and top down, towards the development of more complex, robust, and representative (multi)organ/tissue-on-chip approaches.
Collapse
Affiliation(s)
- Haysam M M A M Ahmed
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands,
| | - Liliana S Moreira Teixeira
- Department of Developmental Bioengineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Kwizera EA, Sun M, White AM, Li J, He X. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. ACS Biomater Sci Eng 2021; 7:2043-2063. [PMID: 33871975 PMCID: PMC8205986 DOI: 10.1021/acsbiomaterials.1c00083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Manipulation of microscale bioparticles including living cells is of great significance to the broad bioengineering and biotechnology fields. Dielectrophoresis (DEP), which is defined as the interactions between dielectric particles and the electric field, is one of the most widely used techniques for the manipulation of bioparticles including cell separation, sorting, and trapping. Bioparticles experience a DEP force if they have a different polarization from the surrounding media in an electric field that is nonuniform in terms of the intensity and/or phase of the electric field. A comprehensive literature survey shows that the DEP-based microfluidic devices for manipulating bioparticles can be categorized according to the methods of creating the nonuniformity via patterned microchannels, electrodes, and media to generate the DEP force. These methods together with the theory of DEP force generation are described in this review, to provide a summary of the methods and materials that have been used to manipulate various bioparticles for various specific biological outcomes. Further developments of DEP-based technologies include identifying materials that better integrate with electrodes than current popular materials (silicone/glass) and improving the performance of DEP manipulation of bioparticles by combining it with other methods of handling bioparticles. Collectively, DEP-based microfluidic manipulation of bioparticles holds great potential for various biomedical applications.
Collapse
Affiliation(s)
- Elyahb A. Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Mingrui Sun
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alisa M. White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Rothbauer M, Bachmann BE, Eilenberger C, Kratz SR, Spitz S, Höll G, Ertl P. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. MICROMACHINES 2021; 12:470. [PMID: 33919242 PMCID: PMC8143089 DOI: 10.3390/mi12050470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Organ-on-a-chip technology has the potential to accelerate pharmaceutical drug development, improve the clinical translation of basic research, and provide personalized intervention strategies. In the last decade, big pharma has engaged in many academic research cooperations to develop organ-on-a-chip systems for future drug discoveries. Although most organ-on-a-chip systems present proof-of-concept studies, miniaturized organ systems still need to demonstrate translational relevance and predictive power in clinical and pharmaceutical settings. This review explores whether microfluidic technology succeeded in paving the way for developing physiologically relevant human in vitro models for pharmacology and toxicology in biomedical research within the last decade. Individual organ-on-a-chip systems are discussed, focusing on relevant applications and highlighting their ability to tackle current challenges in pharmacological research.
Collapse
Affiliation(s)
- Mario Rothbauer
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-22, 1090 Vienna, Austria
| | - Barbara E.M. Bachmann
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Christoph Eilenberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sebastian R.A. Kratz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Drug Delivery and 3R-Models Group, Buchmann Institute for Molecular Life Sciences & Institute for Pharmaceutical Technology, Goethe University Frankfurt Am Main, 60438 Frankfurt, Germany
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Höll
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
16
|
Przystupski D, Górska A, Michel O, Podwin A, Śniadek P, Łapczyński R, Saczko J, Kulbacka J. Testing Lab-on-a-Chip Technology for Culturing Human Melanoma Cells under Simulated Microgravity. Cancers (Basel) 2021; 13:402. [PMID: 33499085 PMCID: PMC7866167 DOI: 10.3390/cancers13030402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
The dynamic development of the space industry makes space flights more accessible and opens up new opportunities for biological research to better understand cell physiology under real microgravity. Whereas specialized studies in space remain out of our reach, preliminary experiments can be performed on Earth under simulated microgravity (sµg). Based on this concept, we used a 3D-clinostat (3D-C) to analyze the effect of short exposure to sµg on human keratinocytes HaCaT and melanoma cells A375 cultured on all-glass Lab-on-a-Chip (LOC). Our preliminary studies included viability evaluation, mitochondrial and caspase activity, and proliferation assay, enabling us to determine the effect of sµg on human cells. By comparing the results concerning cells cultured on LOCs and standard culture dishes, we were able to confirm the biocompatibility of all-glass LOCs and their potential application in microgravity research on selected human cell lines. Our studies revealed that HaCaT and A375 cells are susceptible to simulated microgravity; however, we observed an increased caspase activity and a decrease of proliferation in cancer cells cultured on LOCs in comparison to standard cell cultures. These results are an excellent basis to conduct further research on the possible application of LOCs systems in cancer research in space.
Collapse
Affiliation(s)
- Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Agata Górska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Agnieszka Podwin
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (A.P.); (P.Ś.)
| | - Patrycja Śniadek
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (A.P.); (P.Ś.)
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| |
Collapse
|
17
|
Interdigitated aluminium and titanium sensors for assessing epithelial barrier functionality by electric cell-substrate impedance spectroscopy (ECIS). Biomed Microdevices 2020; 22:30. [PMID: 32328801 PMCID: PMC7181462 DOI: 10.1007/s10544-020-00486-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electric cell-substrate impedance spectroscopy (ECIS) enables non-invasive and continuous read-out of electrical parameters of living tissue. The aim of the current study was to investigate the performance of interdigitated sensors with 50 μm electrode width and 50 μm inter-electrode distance made of gold, aluminium, and titanium for monitoring the barrier properties of epithelial cells in tissue culture. At first, the measurement performance of the photolithographic fabricated sensors was characterized by defined reference electrolytes. The sensors were used to monitor the electrical properties of two adherent epithelial barrier tissue models: renal proximal tubular LLC-PK1 cells, representing a normal functional transporting epithelium, and human cervical cancer-derived HeLa cells, forming non-transporting cancerous epithelial tissue. Then, the impedance spectra obtained were analysed by numerically fitting the parameters of the two different models to the measured impedance spectrum. Aluminium sensors proved to be as sensitive and consistent in repeated online-recordings for continuous cell growth and differentiation monitoring as sensors made of gold, the standard electrode material. Titanium electrodes exhibited an elevated intrinsic ohmic resistance in comparison to gold reflecting its lower electric conductivity. Analysis of impedance spectra through applying models and numerical data fitting enabled the detailed investigation of the development and properties of a functional transporting epithelial tissue using either gold or aluminium sensors. The result of the data obtained, supports the consideration of aluminium and titanium sensor materials as potential alternatives to gold sensors for advanced application of ECIS spectroscopy.
Collapse
|
18
|
PDMS Nano-Modified Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform. NANOMATERIALS 2020; 10:nano10040668. [PMID: 32252384 PMCID: PMC7221996 DOI: 10.3390/nano10040668] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Microfluidics cell-based assays require strong cell-substrate adhesion for cell viability, proliferation, and differentiation. The intrinsic properties of PDMS, a commonly used polymer in microfluidics systems, regarding cell-substrate interactions have limited its application for microfluidics cell-based assays. Various attempts by previous researchers, such as chemical modification, plasma-treatment, and protein-coating of PDMS revealed some improvements. These strategies are often reversible, time-consuming, short-lived with either cell aggregates formation, not cost-effective as well as not user- and eco-friendly too. To address these challenges, cell-surface interaction has been tuned by the modification of PDMS doped with different biocompatible nanomaterials. Gold nanowires (AuNWs), superparamagnetic iron oxide nanoparticles (SPIONs), graphene oxide sheets (GO), and graphene quantum dot (GQD) have already been coupled to PDMS as an alternative biomaterial enabling easy and straightforward integration during microfluidic fabrication. The synthesized nanoparticles were characterized by corresponding methods. Physical cues of the nanostructured substrates such as Young’s modulus, surface roughness, and nanotopology have been carried out using atomic force microscopy (AFM). Initial biocompatibility assessment of the nanocomposites using human amniotic mesenchymal stem cells (hAMSCs) showed comparable cell viabilities among all nanostructured PDMS composites. Finally, osteogenic stem cell differentiation demonstrated an improved differentiation rate inside microfluidic devices. The results revealed that the presence of nanomaterials affected a 5- to 10-fold increase in surface roughness. In addition, the results showed enhancement of cell proliferation from 30% (pristine PDMS) to 85% (nano-modified scaffolds containing AuNWs and SPIONs), calcification from 60% (pristine PDMS) to 95% (PDMS/AuNWs), and cell surface marker expression from 40% in PDMS to 77% in SPION- and AuNWs-PDMS scaffolds at 14 day. Our results suggest that nanostructured composites have a very high potential for stem cell studies and future therapies.
Collapse
|
19
|
Warr C, Valdoz JC, Bickham BP, Knight CJ, Franks NA, Chartrand N, Van Ry PM, Christensen KA, Nordin GP, Cook AD. Biocompatible PEGDA Resin for 3D Printing. ACS APPLIED BIO MATERIALS 2020; 3:2239-2244. [PMID: 32467881 DOI: 10.1021/acsabm.0c00055] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a non-cytotoxic resin compatible with and designed for use in custom high-resolution 3D printers that follow the design approach described in Gong et al., Lab Chip 17, 2899 (2017). The non-cytotoxic resin is based on a poly(ethylene glycol) diacrylate (PEGDA) monomer with avobenzone as the UV absorber instead of 2-nitrophenyl phenyl sulfide (NPS). Both NPS-PEGDA and avobenzone-PEGDA (A-PEGDA) resins were evaluated for cytotoxicity and cell adhesion. We show that NPS-PEGDA can be made effectively non-cytotoxic with a post-print 12-hour ethanol wash, and that A-PEGDA, as-printed, is effectively non-cytotoxic. 3D prints made with either resin do not support strong cell adhesion in their as-printed state; however, cell adhesion increases dramatically with a short plasma treatment. Using A-PEGDA, we demonstrate spheroid formation in ultra-low adhesion 3D printed wells, and cell migration from spheroids on plasma-treated adherent surfaces. Given that A-PEGDA can be 3D printed with high resolution, it has significant promise for a wide variety of cell-based applications using 3D printed microfluidic structures.
Collapse
Affiliation(s)
- Chandler Warr
- Chemical Engineering Department, Brigham Young University, Provo, Utah, USA 84602
| | - Jonard Corpuz Valdoz
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Bryce P Bickham
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah, USA 84602
| | - Connor J Knight
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Nicholas A Franks
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Nicholas Chartrand
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Pam M Van Ry
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Kenneth A Christensen
- Chemistry and Biochemistry Department, Brigham Young University, Provo, Utah, USA 84602
| | - Gregory P Nordin
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah, USA 84602
| | - Alonzo D Cook
- Chemical Engineering Department, Brigham Young University, Provo, Utah, USA 84602
| |
Collapse
|
20
|
Hashemzadeh H, Allahverdi A, Ghorbani M, Soleymani H, Kocsis Á, Fischer MB, Ertl P, Naderi-Manesh H. Gold Nanowires/Fibrin Nanostructure as Microfluidics Platforms for Enhancing Stem Cell Differentiation: Bio-AFM Study. MICROMACHINES 2019; 11:mi11010050. [PMID: 31906040 PMCID: PMC7019962 DOI: 10.3390/mi11010050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Organ-on-a-chip technology has gained great interest in recent years given its ability to control the spatio-temporal microenvironments of cells and tissues precisely. While physical parameters of the respective niche such as microchannel network sizes, geometric features, flow rates, and shear forces, as well as oxygen tension and concentration gradients, have been optimized for stem cell cultures, little has been done to improve cell-matrix interactions in microphysiological systems. Specifically, detailed research on the effect of matrix elasticity and extracellular matrix (ECM) nanotopography on stem cell differentiation are still in its infancy, an aspect that is known to alter a stem cell’s fate. Although a wide range of hydrogels such as gelatin, collagen, fibrin, and others are available for stem cell chip cultivations, only a limited number of elasticities are generally employed. Matrix elasticity and the corresponding nanotopography are key factors that guide stem cell differentiation. Given this, we investigated the addition of gold nanowires into hydrogels to create a tunable biointerface that could be readily integrated into any organ-on-a-chip and cell chip system. In the presented work, we investigated the matrix elasticity (Young’s modulus, stiffness, adhesive force, and roughness) and nanotopography of gold nanowire loaded onto fibrin hydrogels using the bio-AFM (atomic force microscopy) method. Additionally, we investigated the capacity of human amniotic mesenchymal stem cells (hAMSCs) to differentiate into osteo- and chondrogenic lineages. Our results demonstrated that nanogold structured-hydrogels promoted differentiation of hAMSCs as shown by a significant increase in Collagen I and II production. Additionally, there was enhanced calcium mineralization activity and proteoglycans formation after a cultivation period of two weeks within microfluidic devices.
Collapse
Affiliation(s)
- Hadi Hashemzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran;
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran; (A.A.); (M.G.); (H.S.)
| | - Mohammad Ghorbani
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran; (A.A.); (M.G.); (H.S.)
| | - Hossein Soleymani
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran; (A.A.); (M.G.); (H.S.)
| | - Ágnes Kocsis
- Department of Health Science and Biomedicine, Danube University Krems, 3500 Vienna, Austria; (Á.K.); (M.B.F.)
| | - Michael Bernhard Fischer
- Department of Health Science and Biomedicine, Danube University Krems, 3500 Vienna, Austria; (Á.K.); (M.B.F.)
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
- Correspondence: (P.E.); (H.N.-M.); Tel.: +43(1)-58801-163605 (H.N.M.)
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran;
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran; (A.A.); (M.G.); (H.S.)
- Correspondence: (P.E.); (H.N.-M.); Tel.: +43(1)-58801-163605 (H.N.M.)
| |
Collapse
|
21
|
Fattahi P, Haque A, Son KJ, Guild J, Revzin A. Microfluidic devices, accumulation of endogenous signals and stem cell fate selection. Differentiation 2019; 112:39-46. [PMID: 31884176 DOI: 10.1016/j.diff.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Pouria Fattahi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Amranul Haque
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyung Jin Son
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Joshua Guild
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Gehlen DB, De Lencastre Novaes LC, Long W, Ruff AJ, Jakob F, Haraszti T, Chandorkar Y, Yang L, van Rijn P, Schwaneberg U, De Laporte L. Rapid and Robust Coating Method to Render Polydimethylsiloxane Surfaces Cell-Adhesive. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41091-41099. [PMID: 31600051 DOI: 10.1021/acsami.9b16025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polydimethylsiloxane (PDMS) is a synthetic material with excellent properties for biomedical applications because of its easy fabrication method, high flexibility, permeability to oxygen, transparency, and potential to produce high-resolution structures in the case of lithography. However, PDMS needs to be modified to support homogeneous cell attachments and spreading. Even though many physical and chemical methods, like plasma treatment or extracellular matrix coatings, have been developed over the last decades to increase cell-surface interactions, these methods are still very time-consuming, often not efficient enough, complex, and can require several treatment steps. To overcome these issues, we present a novel, robust, and fast one-step PDMS coating method using engineered anchor peptides fused to the cell-adhesive peptide sequence (glycine-arginine-glycine-aspartate-serine, GRGDS). The anchor peptide attaches to the PDMS surface predominantly by hydrophobic interactions by simply dipping PDMS in a solution containing the anchor peptide, presenting the GRGDS sequence on the surface available for cell adhesion. The binding performance and kinetics of the anchor peptide to PDMS are characterized, and the coatings are optimized for efficient cell attachment of fibroblasts and endothelial cells. Additionally, the applicability is proven using PDMS-based directional nanotopographic gradients, showing a lower threshold of 5 μm wrinkles for fibroblast alignment.
Collapse
Affiliation(s)
- David B Gehlen
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 Aachen , Germany
| | | | - Wei Long
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , D-52074 Aachen , Germany
| | - Anna Joelle Ruff
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , D-52074 Aachen , Germany
| | - Felix Jakob
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , D-52074 Aachen , Germany
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 Aachen , Germany
| | - Yashoda Chandorkar
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 Aachen , Germany
| | - Liangliang Yang
- University Medical Center Groningen , Department of Biomedical Engineering , FB40 , 9713 AV Groningen , The Netherlands
| | - Patrick van Rijn
- University Medical Center Groningen , Department of Biomedical Engineering , FB40 , 9713 AV Groningen , The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , D-52074 Aachen , Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 Aachen , Germany
- Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , Worringerweg 1-2 , D-52074 Aachen , Germany
| |
Collapse
|
23
|
Kim JA, Hong S, Rhee WJ. Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis. World J Stem Cells 2019; 11:803-816. [PMID: 31693013 PMCID: PMC6828593 DOI: 10.4252/wjsc.v11.i10.803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research, the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems. Recently, researchers have been actively developing and evaluating three-dimensional (3D) cell culture-based platforms using microfluidic technologies, such as organ-on-a-chip and organoid-on-a-chip platforms, and they have achieved promising breakthroughs in stem cell engineering. In this review, we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery. In a subsequent section, we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research. In addition, some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.
Collapse
Affiliation(s)
- Jeong Ah Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Soohyun Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, South Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
24
|
Kratz SRA, Höll G, Schuller P, Ertl P, Rothbauer M. Latest Trends in Biosensing for Microphysiological Organs-on-a-Chip and Body-on-a-Chip Systems. BIOSENSORS 2019; 9:E110. [PMID: 31546916 PMCID: PMC6784383 DOI: 10.3390/bios9030110] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Organs-on-chips are considered next generation in vitro tools capable of recreating in vivo like, physiological-relevant microenvironments needed to cultivate 3D tissue-engineered constructs (e.g., hydrogel-based organoids and spheroids) as well as tissue barriers. These microphysiological systems are ideally suited to (a) reduce animal testing by generating human organ models, (b) facilitate drug development and (c) perform personalized medicine by integrating patient-derived cells and patient-derived induced pluripotent stem cells (iPSCs) into microfluidic devices. An important aspect of any diagnostic device and cell analysis platform, however, is the integration and application of a variety of sensing strategies to provide reliable, high-content information on the health status of the in vitro model of choice. To overcome the analytical limitations of organs-on-a-chip systems a variety of biosensors have been integrated to provide continuous data on organ-specific reactions and dynamic tissue responses. Here, we review the latest trends in biosensors fit for monitoring human physiology in organs-on-a-chip systems including optical and electrochemical biosensors.
Collapse
Affiliation(s)
- Sebastian Rudi Adam Kratz
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Gregor Höll
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Patrick Schuller
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Mario Rothbauer
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| |
Collapse
|
25
|
Ramme AP, Koenig L, Hasenberg T, Schwenk C, Magauer C, Faust D, Lorenz AK, Krebs AC, Drewell C, Schirrmann K, Vladetic A, Lin GC, Pabinger S, Neuhaus W, Bois F, Lauster R, Marx U, Dehne EM. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci OA 2019; 5:FSO413. [PMID: 31534781 DOI: 10.1101/376970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Microphysiological systems play a pivotal role in progressing toward a global paradigm shift in drug development. Here, we designed a four-organ-chip interconnecting miniaturized human intestine, liver, brain and kidney equivalents. All four organ models were predifferentiated from induced pluripotent stem cells from the same healthy donor and integrated into the microphysiological system. The coculture of the four autologous tissue models in one common medium deprived of tissue specific growth factors was successful over 14-days. Although there were no added growth factors present in the coculture medium, the intestine, liver and neuronal model maintained defined marker expression. Only the renal model was overgrown by coexisting cells and did not further differentiate. This model platform will pave the way for autologous coculture cross-talk assays, disease induction and subsequent drug testing.
Collapse
Affiliation(s)
| | - Leopold Koenig
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | | | | | | - Daniel Faust
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | | | | - Christopher Drewell
- Technische Universität Berlin, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355 Berlin, Deutschland
| | - Kerstin Schirrmann
- The University of Manchester, Physics of Fluids & Soft Matter Group, Oxford Road, Manchester M13 9PL, UK
| | - Alexandra Vladetic
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Grace-Chiaen Lin
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Stephan Pabinger
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Frederic Bois
- INERIS, METO unit, Parc ALATA BP2, 60550 Verneuil en Halatte, France
| | - Roland Lauster
- Technische Universität Berlin, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355 Berlin, Deutschland
| | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | |
Collapse
|
26
|
Ramme AP, Koenig L, Hasenberg T, Schwenk C, Magauer C, Faust D, Lorenz AK, Krebs AC, Drewell C, Schirrmann K, Vladetic A, Lin GC, Pabinger S, Neuhaus W, Bois F, Lauster R, Marx U, Dehne EM. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci OA 2019; 5:FSO413. [PMID: 31534781 PMCID: PMC6745596 DOI: 10.2144/fsoa-2019-0065] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Microphysiological systems play a pivotal role in progressing toward a global paradigm shift in drug development. Here, we designed a four-organ-chip interconnecting miniaturized human intestine, liver, brain and kidney equivalents. All four organ models were predifferentiated from induced pluripotent stem cells from the same healthy donor and integrated into the microphysiological system. The coculture of the four autologous tissue models in one common medium deprived of tissue specific growth factors was successful over 14-days. Although there were no added growth factors present in the coculture medium, the intestine, liver and neuronal model maintained defined marker expression. Only the renal model was overgrown by coexisting cells and did not further differentiate. This model platform will pave the way for autologous coculture cross-talk assays, disease induction and subsequent drug testing.
Collapse
Affiliation(s)
| | - Leopold Koenig
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | | | | | | - Daniel Faust
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | | | | - Christopher Drewell
- Technische Universität Berlin, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355 Berlin, Deutschland
| | - Kerstin Schirrmann
- The University of Manchester, Physics of Fluids & Soft Matter Group, Oxford Road, Manchester M13 9PL, UK
| | - Alexandra Vladetic
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Grace-Chiaen Lin
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Stephan Pabinger
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Frederic Bois
- INERIS, METO unit, Parc ALATA BP2, 60550 Verneuil en Halatte, France
| | - Roland Lauster
- Technische Universität Berlin, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355 Berlin, Deutschland
| | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | |
Collapse
|
27
|
Azarmanesh M, Bawazeer S, Mohamad AA, Sanati-Nezhad A. Rapid and Highly Controlled Generation of Monodisperse Multiple Emulsions via a One-Step Hybrid Microfluidic Device. Sci Rep 2019; 9:12694. [PMID: 31481702 PMCID: PMC6722102 DOI: 10.1038/s41598-019-49136-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple Emulsions (MEs) contain a drop laden with many micro-droplets. A single-step microfluidic-based synthesis process of MEs is presented to provide a rapid and controlled generation of monodisperse MEs. The design relies on the interaction of three immiscible fluids with each other in subsequent droplet formation steps to generate monodisperse ME constructs. The design is within a microchannel consists of two compartments of cross-junction and T-junction. The high shear stress at the cross-junction creates a stagnation point that splits the first immiscible phase to four jet streams each of which are sprayed to micrometer droplets surrounded by the second phase. The resulted structure is then supported by the third phase at the T-junction to generate and transport MEs. The ME formation within microfluidics is numerically simulated and the effects of several key parameters on properties of MEs are investigated. The dimensionless modeling of ME formation enables to change only one parameter at the time and analyze the sensitivity of the system to each parameter. The results demonstrate the capability of highly controlled and high-throughput MEs formation in a one-step synthesis process. The consecutive MEs are monodisperse in size which open avenues for the generation of controlled MEs for different applications.
Collapse
Affiliation(s)
- Milad Azarmanesh
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Saleh Bawazeer
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Abdulmajeed A Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada. .,Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
28
|
Park D, Lee J, Chung JJ, Jung Y, Kim SH. Integrating Organs-on-Chips: Multiplexing, Scaling, Vascularization, and Innervation. Trends Biotechnol 2019; 38:99-112. [PMID: 31345572 DOI: 10.1016/j.tibtech.2019.06.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Organs-on-chips (OoCs) have attracted significant attention because they can be designed to mimic in vivo environments. Beyond constructing a single OoC, recent efforts have tried to integrate multiple OoCs to broaden potential applications such as disease modeling and drug discoveries. However, various challenges remain for integrating OoCs towards in vivo-like operation, such as incorporating various connections for integrating multiple OoCs. We review multiplexed OoCs and challenges they face: scaling, vascularization, and innervation. In our opinion, future OoCs will be constructed to have increased predictive power for in vivo phenomena and will ultimately become a mainstream tool for high quality biomedical and pharmaceutical research.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jaeseo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Justin J Chung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
29
|
Kratz SRA, Eilenberger C, Schuller P, Bachmann B, Spitz S, Ertl P, Rothbauer M. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems. Sci Rep 2019; 9:9287. [PMID: 31243326 PMCID: PMC6594959 DOI: 10.1038/s41598-019-45633-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
In the advent of affordable photo- and soft-lithography using polydimethylsiloxane (PDMS), low cost multi-step microfabrication methods have become available to a broad scientific community today. Although these methods are frequently applied for microfluidic prototype production in academic and industrial settings, fast design iterations and rapid prototyping within a few minutes with a high degree of flexibility are nearly impossible. To reduce microfluidic concept-to-chip time and costs, a number of alternative rapid prototyping techniques have recently been introduced including CNC micromachining, 3D printing and plotting out of numeric CAD designs as well as micro-structuring of thin PDMS sheets and pressure sensitive adhesives. Although micro-structuring of pressure sensitive adhesives promises high design flexibility, rapid fabrication and simple biochip assembly, most adhesives are toxic for living biological systems. Since an appropriate bio-interface and proper biology-material interaction is key for any cell chip and organ-on-a-chip system, only a limited number of medical-grade materials are available for microfluidic prototyping. In this study, we have characterized four functional biomedical-grade pressure sensitive adhesives for rapid prototyping (e.g. less than 1 hour) applications including structuring precision, physical and optical properties as well as biocompatibilities. While similar biocompatibility was found for all four adhesives, significant differences in cutting behavior, bonding strength to glass and polymers as well as gas permeability was observed. Practical applications included stability testing of multilayered, membrane-integrated organ-on-a-chip devices under standard cell culture conditions (e.g. 2-3 weeks at 37 °C and 100% humidity) and a shear-impact up to 5 dynes/cm2. Additionally, time- and shear-dependent uptake of non-toxic fluorescently labelled nanoparticles on human endothelial cells are demonstrated using micro-structured adhesive-bonded devices. Our results show that (a) both simple and complex microdevices can be designed, fabricated and tested in less than 1 hour, (b) these microdevices are stable for weeks even under physiological shear force conditions and (c) can be used to maintain cell monolayers as well as 3D cell culture systems.
Collapse
Affiliation(s)
- S R A Kratz
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9/163-164, 1060, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - C Eilenberger
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9/163-164, 1060, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - P Schuller
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9/163-164, 1060, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - B Bachmann
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9/163-164, 1060, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Donaueschingenstraße 13, 1200, Vienna, Austria
| | - S Spitz
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9/163-164, 1060, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - P Ertl
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9/163-164, 1060, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - M Rothbauer
- Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, Vienna, Getreidemarkt 9/163-164, 1060, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
30
|
Kleine-Brüggeney H, van Vliet LD, Mulas C, Gielen F, Agley CC, Silva JCR, Smith A, Chalut K, Hollfelder F. Long-Term Perfusion Culture of Monoclonal Embryonic Stem Cells in 3D Hydrogel Beads for Continuous Optical Analysis of Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804576. [PMID: 30570812 DOI: 10.1002/smll.201804576] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Developmental cell biology requires technologies in which the fate of single cells is followed over extended time periods, to monitor and understand the processes of self-renewal, differentiation, and reprogramming. A workflow is presented, in which single cells are encapsulated into droplets (Ø: 80 µm, volume: ≈270 pL) and the droplet compartment is later converted to a hydrogel bead. After on-chip de-emulsification by electrocoalescence, these 3D scaffolds are subsequently arrayed on a chip for long-term perfusion culture to facilitate continuous cell imaging over 68 h. Here, the response of murine embryonic stem cells to different growth media, 2i and N2B27, is studied, showing that the exit from pluripotency can be monitored by fluorescence time-lapse microscopy, by immunostaining and by reverse-transcription and quantitative PCR (RT-qPCR). The defined 3D environment emulates the natural context of cell growth (e.g., in tissue) and enables the study of cell development in various matrices. The large scale of cell cultivation (in 2000 beads in parallel) may reveal infrequent events that remain undetected in lower throughput or ensemble studies. This platform will help to gain qualitative and quantitative mechanistic insight into the role of external factors on cell behavior.
Collapse
Affiliation(s)
- Hans Kleine-Brüggeney
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Liisa D van Vliet
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Carla Mulas
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Fabrice Gielen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Chibeza C Agley
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - José C R Silva
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Austin Smith
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Kevin Chalut
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
- Department of Physics, University of Cambridge, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
31
|
Wnorowski A, Yang H, Wu JC. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Adv Drug Deliv Rev 2019; 140:3-11. [PMID: 29885330 DOI: 10.1016/j.addr.2018.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
In recent years, drug development costs have soared, primarily due to the failure of preclinical animal and cell culture models, which do not directly translate to human physiology. Organ-on-a-chip (OOC) is a burgeoning technology with the potential to revolutionize disease modeling, drug discovery, and toxicology research by strengthening the relevance of culture-based models while reducing costly animal studies. Although OOC models can incorporate a variety of tissue sources, the most robust and relevant OOC models going forward will include stem cells. In this review, we will highlight the benefits of stem cells as a tissue source while considering current limitations to their complete and effective implementation into OOC models.
Collapse
Affiliation(s)
- Alexa Wnorowski
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States; Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA 943055, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford, CA 94305, United States; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
32
|
Rothbauer M, Rosser JM, Zirath H, Ertl P. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol 2018; 55:81-86. [PMID: 30189349 DOI: 10.1016/j.copbio.2018.08.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Organ-on-a-chip technology offers the potential to recapitulate human physiology by keeping human cells in a precisely controlled and artificial tissue-like microenvironment. The current and potential advantages of organs-on-chips over conventional cell cultures systems and animal models have captured the attention of scientists, clinicians and policymakers as well as advocacy groups in the past few years. Recent advances in tissue engineering and stem cell research are also aiding the development of clinically relevant chip-based organ and diseases models with organ level physiology for drug screening, biomedical research and personalized medicine. Here, the latest advances in organ-on-a-chip technology are reviewed and future clinical applications discussed.
Collapse
Affiliation(s)
- Mario Rothbauer
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Julie M Rosser
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Helene Zirath
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Peter Ertl
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
| |
Collapse
|
33
|
Zirath H, Rothbauer M, Spitz S, Bachmann B, Jordan C, Müller B, Ehgartner J, Priglinger E, Mühleder S, Redl H, Holnthoner W, Harasek M, Mayr T, Ertl P. Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models. Front Physiol 2018; 9:815. [PMID: 30018569 PMCID: PMC6037982 DOI: 10.3389/fphys.2018.00815] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Knowledge on the availability of dissolved oxygen inside microfluidic cell culture systems is vital for recreating physiological-relevant microenvironments and for providing reliable and reproducible measurement conditions. It is important to highlight that in vivo cells experience a diverse range of oxygen tensions depending on the resident tissue type, which can also be recreated in vitro using specialized cell culture instruments that regulate external oxygen concentrations. While cell-culture conditions can be readily adjusted using state-of-the-art incubators, the control of physiological-relevant microenvironments within the microfluidic chip, however, requires the integration of oxygen sensors. Although several sensing approaches have been reported to monitor oxygen levels in the presence of cell monolayers, oxygen demands of microfluidic three-dimensional (3D)-cell cultures and spatio-temporal variations of oxygen concentrations inside two-dimensional (2D) and 3D cell culture systems are still largely unknown. To gain a better understanding on available oxygen levels inside organ-on-a-chip systems, we have therefore developed two different microfluidic devices containing embedded sensor arrays to monitor local oxygen levels to investigate (i) oxygen consumption rates of 2D and 3D hydrogel-based cell cultures, (ii) the establishment of oxygen gradients within cell culture chambers, and (iii) influence of microfluidic material (e.g., gas tight vs. gas permeable), surface coatings, cell densities, and medium flow rate on the respiratory activities of four different cell types. We demonstrate how dynamic control of cyclic normoxic-hypoxic cell microenvironments can be readily accomplished using programmable flow profiles employing both gas-impermeable and gas-permeable microfluidic biochips.
Collapse
Affiliation(s)
- Helene Zirath
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mario Rothbauer
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Bachmann
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Christian Jordan
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Bernhard Müller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Josef Ehgartner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Eleni Priglinger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Severin Mühleder
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Michael Harasek
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
34
|
Next-Generation Live-Cell Microarray Technologies. Methods Mol Biol 2018. [PMID: 29633200 DOI: 10.1007/978-1-4939-7792-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Over the last decades the application of cell-based assays and in vitro cell culture systems has fundamentally transformed our understanding of biological functions on a cellular and organism level. The resulting ubiquitous usage of cell-based assays in today's scientific world has therefore generated a need for advanced in vitro diagnostic systems. This increased demand has further led to the development of miniaturized live-cell microarrays for biomedical applications including high-throughput screening tools and microfluidic systems. The greatest benefit of miniaturized cell analysis systems is the ability to provide quantitative data in real time with high reliability and sensitivity, which are key parameters for any cell-based assay. An additional advantage of live-cell microarrays is their inherent capability for large-scale screening of single cells, multicell populations, as well as spheroids.
Collapse
|
35
|
Charwat V, Olmos Calvo I, Rothbauer M, Kratz SRA, Jungreuthmayer C, Zanghellini J, Grillari J, Ertl P. Combinatorial in Vitro and in Silico Approach To Describe Shear-Force Dependent Uptake of Nanoparticles in Microfluidic Vascular Models. Anal Chem 2018; 90:3651-3655. [PMID: 29478320 DOI: 10.1021/acs.analchem.7b04788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present work, we combine experimental and computational methods to define the critical shear stress as an alternative parameter for nanotoxicological and nanomedical evaluations using an in vitro microfluidic vascular model. We demonstrate that our complementary in vitro and in silico approach is well suited to assess the fluid flow velocity above which clathrin-mediated (active) nanoparticle uptake per cell decreases drastically although higher numbers of nanoparticles per cell are introduced. Results of our study revealed a critical shear stress of 1.8 dyn/cm2, where maximum active cellular nanoparticle uptake took place, followed by a 70% decrease in uptake of 249 nm nanoparticles at 10 dyn/cm2, respectively. The observed nonlinear relationship between flow velocity and nanoparticle uptake strongly suggests that fluid mechanical forces also need to be considered in order to predict potential in vivo distribution, bioaccumulation, and clearance of nanomaterials and novel nanodrugs.
Collapse
Affiliation(s)
- Verena Charwat
- Department of Biotechnology , University of Natural Resources and Life Sciences , Vienna , Austria
| | - Isabel Olmos Calvo
- Department of Medicine III , Medical University Vienna , Vienna , Austria
| | - Mario Rothbauer
- Faculty of Technical Chemistry , Vienna University of Technology , Vienna , Austria
| | | | | | - Jürgen Zanghellini
- Department of Biotechnology , University of Natural Resources and Life Sciences , Vienna , Austria.,ACIB - Austrian Centre for Industrial Biotechnology , Vienna , Austria
| | - Johannes Grillari
- Department of Biotechnology , University of Natural Resources and Life Sciences , Vienna , Austria
| | - Peter Ertl
- Faculty of Technical Chemistry , Vienna University of Technology , Vienna , Austria
| |
Collapse
|
36
|
Brazey B, Cottet J, Bolopion A, Van Lintel H, Renaud P, Gauthier M. Impedance-based real-time position sensor for lab-on-a-chip devices. LAB ON A CHIP 2018; 18:818-831. [PMID: 29435551 DOI: 10.1039/c7lc01344b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This paper presents the theoretical and experimental development of an integrated position sensor for lab-on-a-chip devices. The interest for single cell analysis is growing. However, this requires monitoring and controlling cell displacements in real time during their journey in the chip. Due to the high number of cells that must be monitored at the same time, classical vision-based sensors are not suitable. This paper aims to present an alternative based on impedance measurement. The position of the cells is obtained from the variation of impedance measured between two electrodes. This technique presents several advantages: the sensor is integrated into the chip, the measurement electrodes are compatible with the fabrication process of actuation electrodes for dielectrophoresis, the sampling time of the sensor is high and the position of the cells can be obtained in real time. This article highlights the concept of position-sensitive impedance sensing. The design of the chip, and in particular of the electrodes, is discussed to improve the sensitivity and repeatability of the measurement. The issue of real-time detection in a noisy environment is solved by using an extended Kalman filter. As a first proof of concept, this article presents experimental validation on a 1D case to determine the longitudinal position of 8.7 μm diameter beads in a channel.
Collapse
Affiliation(s)
- B Brazey
- FEMTO-ST Institute, AS2M Department, Univ. de Bourgogne Franche-Comté CNRS, 24 rue Savary, F-25000 Besançon, France.
| | | | | | | | | | | |
Collapse
|
37
|
Stem Cell-Based Therapies for Polyglutamine Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:439-466. [DOI: 10.1007/978-3-319-71779-1_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Woodruff K, Maerkl SJ. Microfluidic Module for Real-Time Generation of Complex Multimolecule Temporal Concentration Profiles. Anal Chem 2017; 90:696-701. [PMID: 29183126 DOI: 10.1021/acs.analchem.7b04099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We designed a microfluidic module that generates complex and dynamic concentration profiles of multiple molecules over a large concentration range using pulse-width modulation (PWM). Our PWM module can combine up to six different inputs and select among three downstream mixing channels, as required by the application. The module can produce concentrations with a dynamic range of three decades. We created complex, temporal concentration profiles of two molecules, with each concentration independently controllable, and show that the PWM module can execute rapid concentration changes as well as long-time scale pharmacokinetic profiles. Concentration profiles were generated for molecules with molecular weights ranging from 560 Da to 150 kDa. Our PWM module produces robust and precise concentration profiles under a variety of operating conditions, making it ideal for integration with existing microfluidic devices for advanced cell and pharmacokinetic studies.
Collapse
Affiliation(s)
- Kristina Woodruff
- Institute of Bioengineering, School of Engineering and School of Life Science, École Polytechnique Fédérale de Lausanne , Lausanne, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering and School of Life Science, École Polytechnique Fédérale de Lausanne , Lausanne, Switzerland
| |
Collapse
|
39
|
Inducing cellular senescence in vitro by using genetically encoded photosensitizers. Aging (Albany NY) 2017; 8:2449-2462. [PMID: 27744420 PMCID: PMC5115900 DOI: 10.18632/aging.101065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022]
Abstract
Cellular senescence, a form of cell cycle arrest, is one of the cellular responses to different types of exogenous and endogenous damage. The senescence phenotype can be induced in vitro by oncogene overexpression and/or DNA damage. Recently, we have reported a novel mechanism of cellular senescence induction by mild genotoxic stress. Specifically, we have shown that the formation of a small number of DNA lesions in normal and cancer cells during S phase leads to cellular senescence-like arrest within the same cell cycle. Here, based on this mechanism, we suggest an approach to remotely induce premature senescence in human cell cultures using short-term light irradiation. We used the genetically encoded photosensitizers, tandem KillerRed and miniSOG, targeted to chromatin by fusion to core histone H2B to induce moderate levels of DNA damage by light in S phase cells. We showed that the cells that express the H2B-fused photosensitizers acquire a senescence phenotype upon illumination with the appropriate light source. Furthermore, we demonstrated that both chromatin-targeted tandem KillerRed (produces O2−) and miniSOG (produces 1O2) induce single-stranded DNA breaks upon light illumination. Interestingly, miniSOG was also able to induce double-stranded DNA breaks.
Collapse
|
40
|
Zhu Y, Wang L, Yu H, Yin F, Wang Y, Liu H, Jiang L, Qin J. In situ generation of human brain organoids on a micropillar array. LAB ON A CHIP 2017; 17:2941-2950. [PMID: 28752164 DOI: 10.1039/c7lc00682a] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Brain organoids derived from human induced pluripotent stem cells can recapitulate the early stages of brain development, representing a powerful in vitro system for modeling brain development and diseases. However, the existing methods for brain organoid formation often require time-consuming procedures, including the initial formation of embryoid bodies (EBs) from hiPSCs, and subsequent neural induction and differentiation companied by multi-steps of cell transfer and encapsulation in a 3D matrix. Herein, we propose a simple strategy to enable in situ formation of massive brain organoids from hiPSCs on a micropillar array without tedious manual procedures. The optimized micropillar configurations allow for controlled EB formation, neural induction and differentiation, and generation of functional human brain organoids in 3D culture on a single device. The generated brain organoids were examined to imitate brain organogenesis in vivo at early stages of gestation with specific features of neuronal differentiation, brain regionalization, and cortical organization. By combining microfabrication techniques with stem cells and developmental biology principles, the proposed method can greatly simplify brain organoid formation protocols as compared to conventional methods, overcoming the potential limitations of cell contamination, lower throughput and variance of organoid morphology. It can also provide a useful platform for the engineering of stem cell organoids with improved functions and extending their applications in developmental biology, drug testing and disease modeling.
Collapse
Affiliation(s)
- Yujuan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sci OA 2017; 3:FSO187. [PMID: 28670476 PMCID: PMC5481871 DOI: 10.4155/fsoa-2016-0091] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Microfluidic lab-on-a-chip provides a new platform with unique advantages to mimic complex physiological microenvironments in vivo and has been increasingly exploited to stem cell research. In this review, we highlight recent advances of microfluidic devices for stem cell culture and differentiation toward the development of organ-on-a-chip, especially with an emphasis on vital innovations within the last 2 years. Various aspects for improving on-chip stem-cell culture and differentiation, particularly toward organ-on-a-chip, are discussed, along with microenvironment control, surface modification, extracellular scaffolds, high throughput and stimuli. The combination of microfluidic technologies and stem cells hold great potential toward versatile systems of ‘organ-on-a-chip’ as desired.
Adapted with permission from [1–8]. Stem cells, capable of self-renewing and differentiating into cells of various tissue types, are drawing more and more attention for their enormous potential in many clinically associated applications that include drug screening, disease modeling and regenerative medicine. Conventional cell culture methods, however, have proven to be difficult to mimic in vivo like microenvironments and to provide a number of well-controlled stimuli that are critical for stem cell culture and differentiation. In contrast, microfluidic devices offer new capacities and unique advantages to mimic complex physiological microenvironments in vivo, and has been increasingly applied to stem cell research.
Collapse
|
42
|
Shin SR, Kilic T, Zhang YS, Avci H, Hu N, Kim D, Branco C, Aleman J, Massa S, Silvestri A, Kang J, Desalvo A, Hussaini MA, Chae S, Polini A, Bhise N, Hussain MA, Lee H, Dokmeci MR, Khademhosseini A. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600522. [PMID: 28546915 PMCID: PMC5441508 DOI: 10.1002/advs.201600522] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/15/2017] [Indexed: 05/04/2023]
Abstract
Development of an efficient sensing platform capable of continual monitoring of biomarkers is needed to assess the functionality of the in vitro organoids and to evaluate their biological responses toward pharmaceutical compounds or chemical species over extended periods of time. Here, a novel label-free microfluidic electrochemical (EC) biosensor with a unique built-in on-chip regeneration capability for continual measurement of cell-secreted soluble biomarkers from an organoid culture in a fully automated manner without attenuating the sensor sensitivity is reported. The microfluidic EC biosensors are integrated with a human liver-on-a-chip platform for continual monitoring of the metabolic activity of the organoids by measuring the levels of secreted biomarkers for up to 7 d, where the metabolic activity of the organoids is altered by a systemically applied drug. The variations in the biomarker levels are successfully measured by the microfluidic regenerative EC biosensors and agree well with cellular viability and enzyme-linked immunosorbent assay analyses, validating the accuracy of the unique sensing platform. It is believed that this versatile and robust microfluidic EC biosensor that is capable of automated and continual detection of soluble biomarkers will find widespread use for long-term monitoring of human organoids during drug toxicity studies or efficacy assessments of in vitro platforms.
Collapse
|
43
|
|
44
|
Lindner M, Bauer G. Accelerating practical applications of cutting edge human iPS cell technologies. Nihon Yakurigaku Zasshi 2017; 149:115-118. [PMID: 28260740 DOI: 10.1254/fpj.149.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Khalid N, Kobayashi I, Nakajima M. Recent lab-on-chip developments for novel drug discovery. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [DOI: 10.1002/wsbm.1381] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nauman Khalid
- School of Food and Agricultural Sciences; University of Management and Technology; Lahore Pakistan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences; Deakin University; Waurn Ponds Australia
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Japan
| | - Isao Kobayashi
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Japan
- Food Research Institute; NARO; Tsukuba Japan
| | - Mitsutoshi Nakajima
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Japan
- Food Research Institute; NARO; Tsukuba Japan
| |
Collapse
|
46
|
Sticker D, Lechner S, Jungreuthmayer C, Zanghellini J, Ertl P. Microfluidic Migration and Wound Healing Assay Based on Mechanically Induced Injuries of Defined and Highly Reproducible Areas. Anal Chem 2017; 89:2326-2333. [PMID: 28192955 DOI: 10.1021/acs.analchem.6b03886] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
All cell migration and wound healing assays are based on the inherent ability of adherent cells to move into adjacent cell-free areas, thus providing information on cell culture viability, cellular mechanisms and multicellular movements. Despite their widespread use for toxicological screening, biomedical research and pharmaceutical studies, to date no satisfactory technological solutions are available for the automated, miniaturized and integrated induction of defined wound areas. To bridge this technological gap, we have developed a lab-on-a-chip capable of mechanically inducing circular cell-free areas within confluent cell layers. The microdevices were fabricated using off-stoichiometric thiol-ene-epoxy (OSTEMER) polymer resulting in hard-polymer devices that are robust, cost-effective and disposable. We show that the pneumatically controlled membrane deflection/compression method not only generates highly reproducible (RSD 4%) injuries but also allows for repeated wounding in microfluidic environments. Performance analysis demonstrated that applied surface coating remains intact even after multiple wounding, while cell debris is simultaneously removed using laminar flow conditions. Furthermore, only a few injured cells were found along the edge of the circular cell-free areas, thus allowing reliable and reproducible cell migration of a wide range of surface sensitive anchorage dependent cell types. Practical application is demonstrated by investigating healing progression and endothelial cell migration in the absence and presence of an inflammatory cytokine (TNF-α) and a well-known cell proliferation inhibitor (mitomycin-C).
Collapse
Affiliation(s)
- Drago Sticker
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH , Muthgasse 11, 1190 Vienna, Austria
| | - Sarah Lechner
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH , Muthgasse 11, 1190 Vienna, Austria
| | - Christian Jungreuthmayer
- Bioinformatics and High Performance Computing, Austrian Centre of Industrial Biotechnology , Muthgasse 11, 1190 Vienna, Austria.,TGM-Technologisches Gewerbemuseum , Wexstraße 19-23, 1200 Vienna, Austria
| | - Jürgen Zanghellini
- Bioinformatics and High Performance Computing, Austrian Centre of Industrial Biotechnology , Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences , Muthgasse 18, 1190 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Vienna University of Technology , Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
47
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
48
|
Li S, Kuddannaya S, Chuah YJ, Bao J, Zhang Y, Wang D. Combined effects of multi-scale topographical cues on stable cell sheet formation and differentiation of mesenchymal stem cells. Biomater Sci 2017; 5:2056-2067. [DOI: 10.1039/c7bm00134g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To decipher specific cell responses to diverse and complex in vivo signals, it is essential to emulate specific surface chemicals, extra cellular matrix (ECM) components and topographical signals through reliable and easily reproducible in vitro systems.
Collapse
Affiliation(s)
- Sisi Li
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Shreyas Kuddannaya
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Dongan Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
49
|
Soleymani J, Perez-Guaita D, Hasanzadeh M, Shadjou N, Jouyban A. Materials and methods of signal enhancement for spectroscopic whole blood analysis: Novel research overview. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Abstract
The development of microfabricated devices that will provide high-throughput quantitative data and high resolution in a fast, repeatable and reproducible manner is essential for plant biology research.
Collapse
Affiliation(s)
- Meltem Elitaş
- Department of Mechatronics
- Faculty of Engineering and Natural Sciences
- Sabanci University
- 34956, Istanbul
- Turkey
| | - Meral Yüce
- Nanotechnology Research and Application Centre
- Sabanci University
- 34956, Istanbul
- Turkey
| | - Hikmet Budak
- Department of Molecular Biology
- Genetics and Bioengineering
- Faculty of Engineering and Natural Sciences
- Sabanci University
- 34956, Istanbul
| |
Collapse
|