1
|
Unverdorben LV, Pirani A, Gontjes K, Moricz B, Holmes CL, Snitkin ES, Bachman MA. Klebsiella pneumoniae evolution in the gut leads to spontaneous capsule loss and decreased virulence potential. mBio 2025:e0236224. [PMID: 40162782 DOI: 10.1128/mbio.02362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Klebsiella pneumoniae (Kp) is an opportunistic pathogen that poses a major threat in healthcare settings. The gut is a primary Kp reservoir in hospitalized patients, and colonization is a major risk factor for Kp infection. The stability of virulence determinants such as capsule and lipopolysaccharide during gut colonization is largely unexplored. In a murine gut colonization model, we demonstrated that spontaneous capsule loss occurs rapidly but varies by Kp pathotype. A classical Kp strain and a carbapenem-resistant strain of the epidemic sequence type 258 lineage had significant levels (median of 25% and 9.5%, respectively) of capsule loss. In contrast, a hypervirulent strain did not lose capsule to a significant degree (median 0.1%), despite readily losing capsule during in vitro passage. Insertion sequences (ISs) or mutations were found disrupting capsule operon genes of all isolates and in O-antigen encoding genes in a subset of isolates. Mouse-derived acapsular isolates from two pathotypes had significant fitness defects in a murine pneumonia model. Removal of the IS in the capsule operon in a mouse-derived acapsular classical isolate restored capsule production to wild-type levels. Genomic analysis of Klebsiella rectal isolates from hospitalized patients found that 18 of 245 strains (7%) had at least one IS disrupting the capsule operon. Combined, these data indicate that Kp capsule loss can occur during gut colonization in a strain-dependent manner, not only impacting strain virulence but also potentially altering patient infection risk. IMPORTANCE In hospitalized patients, gut colonization by the bacterial pathogen Klebsiella pneumoniae (Kp) is a major risk factor for the development of infections. The genome of Kp varies across isolates, and the presence of certain virulence genes is associated with the ability to progress from colonization to infection. Here, we identified that virulence genes encoding capsule and lipopolysaccharide, which normally protect bacteria from the immune system, are disrupted by mutations during murine gut colonization. These mutations occurred frequently in some isolates of Kp but not others, and these virulence gene mutants from the gut were defective in causing infections. An analysis of 245 human gut isolates demonstrated that this capsule loss also occurred in patients. This work highlights that mutations that decrease virulence occur during gut colonization, the propensity for these mutations differs by isolate, and that stability of virulence genes is important to consider when assessing infection risk in patients.
Collapse
Affiliation(s)
- Lavinia V Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ali Pirani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kyle Gontjes
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bridget Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Caitlyn L Holmes
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Song Y, An Q, Chen S, Dai H, Ma S, Wu C, Lyu Y, Shen J, Krüger-Haker H, Schwarz S, Wang L, Wang Y, Xia Z. Antimicrobial resistance of pet-derived bacteria in China, 2000-2020. Antimicrob Agents Chemother 2025:e0165724. [PMID: 40135877 DOI: 10.1128/aac.01657-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
With the rapid growth of the pet industry in China, bacterial infectious diseases in pets have increased, highlighting the need to monitor antimicrobial resistance (AMR) in pet-derived bacteria to improve the diagnosis and treatment. Before the establishment of the China Antimicrobial Resistance Surveillance Network for Pets (CARPet) in 2021, a comprehensive analysis of such data in China was lacking. Our review of 38 point-prevalence surveys conducted between 2000 and 2020 revealed increasing trends in AMR among pet-derived Escherichia coli, Klebsiella pneumoniae, Staphylococcus spp., Enterococcus spp., and other bacterial pathogens in China. Notable resistance to β-lactams and fluoroquinolones, which are largely used in both pets and livestock animals, was observed. For example, resistance rates for ampicillin and ciprofloxacin in E. coli frequently exceeded 50.0%, with up to 41.3% of the isolates producing extended-spectrum β-lactamases. The emergence of carbapenem-resistant K. pneumoniae and E. coli, carrying blaNDM and blaOXA genes, highlighted the need for vigilant monitoring. The detection rate of SCCmec (Staphylococcal Cassette Chromosome mec), a genetic element associated with methicillin resistance, in Staphylococcus pseudintermedius isolated from pets in China was found to be over 40.0%. The resistance rate of E. faecalis to vancomycin was 2.1% (5/223) in East China, which was higher than the detection rate of human-derived vancomycin-resistant Enterococcus (0.1%, 12/11,215). Establishing the national AMR surveillance network CARPet was crucial, focusing on representative cities, diverse clinical samples, and including both commonly used antimicrobial agents in veterinary practice and critically important antimicrobial agents for human medicine, such as carbapenems, tigecycline, and vancomycin.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi An
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hegen Dai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanli Lyu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Stefan Schwarz
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhaofei Xia
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Sianturi J, Weber F, Singh RK, Lingscheid T, Tober-Lau P, Kurth F, Fries BC, Seeberger PH. Klebsiella pneumoniae Glycoconjugate Vaccine Leads Based on Semi-Synthetic O1 and O2ac Antigens. Angew Chem Int Ed Engl 2025; 64:e202419516. [PMID: 39729621 DOI: 10.1002/anie.202419516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Klebsiella pneumoniae (KP) is a common opportunistic pathogen that emerged as a new critical threat to human health, due to its hypervirulence and widespread resistance against many antibiotics, including carbapenems. Alternative intervention strategies such as vaccines are not available. Cell-surface lipopolysaccharides (LPS) and capsular polysaccharides (CPS) are attractive targets for vaccine development. We present a method to synthesize LPS substructures, covering over 70 % of virulent KP strains that were used to characterize the antibody repertoire of infected patients. Thereby, glycoconjugate vaccine leads against the Klebsiella pneumoniae serotypes O1, O2a, O2afg and O2ac have been identified.
Collapse
Affiliation(s)
- Julinton Sianturi
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Fabienne Weber
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Rajat Kumar Singh
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
- Present address: Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, United States
| | - Tilman Lingscheid
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Pinkus Tober-Lau
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Florian Kurth
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Infectious Diseases and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Center for Lung Research (DZL), Germany
| | - Bettina C Fries
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
4
|
Magallanes C, Eugster E, Clavijo F, Siri MI, Cantero J, Echeverría P, Torello J, Castro M, Márquez C. Emergence of Multidrug-Resistant NDM-5-Producing ST307 Klebsiella pneumoniae in Uruguay, 2023. Microb Drug Resist 2025. [PMID: 39910403 DOI: 10.1089/mdr.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Carbapenem and colistin-resistant Klebsiella pneumoniae pose a significant threat to public health, particularly in intensive care units, due to high morbidity and mortality rates. This study aimed to analyze five NDM carbapenemase-producing multidrug-resistant K. pneumoniae isolates from different hospitals. Antimicrobial susceptibility testing, hypermucoviscosity analysis, biofilm production assessment, MLST, PCR, and whole-genome sequencing were conducted. All isolates harbored NDM-5 metallo-β-lactamase, belonging to MLST 307, were biofilm producers and exhibited a stop codon (Q30) along MgrB. Genomic analysis revealed multiple-replicon plasmids carrying resistance genes, notably blaNDM-5, blaCTX-M-15, rmtB, and qnrB1, with complex genetic structures encoding several mobile genetic elements, including the Tn3 family and IS26. All isolates harbored wzi173 (capsule-locus KL102), iutA (a siderophore-associated gene), and the type 3 fimbriae mrkABCDFHIJ operon. The core genome single nucleotide polymorphisms (SNPs) analysis suggests the circulation of two strains of ST307 clone (SNPs range differences 4-77). These findings highlight the potential plasticity of the high-risk ST307 clone and the urgent need for surveillance and intervention strategies to combat antimicrobial resistance. To our knowledge, this is the first report of K. pneumoniae ST307 carrying blaNDM-5 and the first description of ST307 in Uruguay. The presence of blaNDM-5 and pan-aminoglycoside resistance rmtB genes are identified for the first time in Uruguay.
Collapse
Affiliation(s)
- Carmen Magallanes
- Laboratorio de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eliana Eugster
- Laboratorio de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Felipe Clavijo
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - María Inés Siri
- Laboratorio de Microbiología Molecular, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Jorge Cantero
- Departamento DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Médicas, Facultad de Ciencias de la Salud, Universidad Nacional del Este, Minga Guazú, Paraguay
| | | | | | - Mercedes Castro
- Laboratorio de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Sociedad Médica Universal, Montevideo, Uruguay
| | - Carolina Márquez
- Laboratorio de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Beaudry MS, Bhuiyan MIU, Glenn TC. Enriching the future of public health microbiology with hybridization bait capture. Clin Microbiol Rev 2024; 37:e0006822. [PMID: 39545729 PMCID: PMC11629615 DOI: 10.1128/cmr.00068-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYPublic health microbiology focuses on microorganisms and infectious agents that impact human health. For years, this field has relied on culture or molecular methods to investigate complex samples of public health importance. However, with the increase in accuracy and decrease in sequencing cost over the last decade, there has been a transition to the use of next-generation sequencing in public health microbiology. Nevertheless, many available sequencing methods (e.g., shotgun metagenomics and amplicon sequencing) do not work well in complex sample types, require deep sequencing, or have inherent biases associated with them. Hybridization bait capture, also known as target enrichment, brings in solutions for such limitations. It is an increasingly popular technique to simultaneously characterize many thousands of genetic elements while reducing the amount of sequencing needed (thereby reducing the sequencing costs). Here, we summarize the concept of hybridization bait capture for public health, reviewing a total of 35 bait sets designed in six key topic areas for public health microbiology [i.e., antimicrobial resistance (AMR), bacteria, fungi, parasites, vectors, and viruses], and compare hybridization bait capture to previously relied upon methods. Furthermore, we provide an in-depth comparison of the three most popular bait sets designed for AMR by evaluating each of them against three major AMR databases: Comprehensive Antibiotic Resistance Database, Microbial Ecology Group Antimicrobial Resistance Database, and Pathogenicity Island Database. Thus, this article provides a review of hybridization bait capture for public health microbiologists.
Collapse
Affiliation(s)
- Megan S. Beaudry
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | | | - Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Lei TY, Liao BB, Yang LR, Wang Y, Chen XB. Hypervirulent and carbapenem-resistant Klebsiella pneumoniae: A global public health threat. Microbiol Res 2024; 288:127839. [PMID: 39141971 DOI: 10.1016/j.micres.2024.127839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/16/2024]
Abstract
The evolution of hypervirulent and carbapenem-resistant Klebsiella pneumoniae can be categorized into three main patterns: the evolution of KL1/KL2-hvKp strains into CR-hvKp, the evolution of carbapenem-resistant K. pneumoniae (CRKp) strains into hv-CRKp, and the acquisition of hybrid plasmids carrying carbapenem resistance and virulence genes by classical K. pneumoniae (cKp). These strains are characterized by multi-drug resistance, high virulence, and high infectivity. Currently, there are no effective methods for treating and surveillance this pathogen. In addition, the continuous horizontal transfer and clonal spread of these bacteria under the pressure of hospital antibiotics have led to the emergence of more drug-resistant strains. This review discusses the evolution and distribution characteristics of hypervirulent and carbapenem-resistant K. pneumoniae, the mechanisms of carbapenem resistance and hypervirulence, risk factors for susceptibility, infection syndromes, treatment regimens, real-time surveillance and preventive control measures. It also outlines the resistance mechanisms of antimicrobial drugs used to treat this pathogen, providing insights for developing new drugs, combination therapies, and a "One Health" approach. Narrowing the scope of surveillance but intensifying implementation efforts is a viable solution. Monitoring of strains can be focused primarily on hospitals and urban wastewater treatment plants.
Collapse
Affiliation(s)
- Ting-Yu Lei
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Bin-Bin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Liang-Rui Yang
- First Affiliated Hospital of Dali University, Yunnan 671000, China.
| | - Ying Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Xu-Bing Chen
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
7
|
Al-Zahrani IA, Brek TM. Comprehensive Genome Analysis of Colistin-Only-Sensitive KPC-2 and NDM1-1-Coproducing Klebsiella pneumoniae ST11 and Acinetobacter baumannii ST2 From a Critically Ill Patient With COVID-19 in Saudi Arabia: Whole Genome Sequencing (WGS) of K. pneumoniae ST11 and A. baumannii ST2. Int J Microbiol 2024; 2024:9233075. [PMID: 39502515 PMCID: PMC11537734 DOI: 10.1155/2024/9233075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/13/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024] Open
Abstract
The COVID-19 pandemic has intensified the issue of multidrug-resistant (MDR) infections, particularly in intensive care units (ICUs). This study documents the first known case of coinfection with two extensively drug-resistant (XDR) bacterial isolates in a critically ill patient with COVID-19 in Saudi Arabia. Both XDR isolates were recovered from blood and were resistant to all tested antimicrobial agents except colistin. Whole genome sequencing (WGS) revealed that the K. pneumoniae isolate KP-JZ107 had sequence type 11 (ST11) and core genome MLST (cgMLST 304742), while the A. baumannii isolate AB-JZ67 had ST2 and cgMLST 785. KP-JZ107 was found to possess the virulence plasmid KpVP-type-1, carbapenemase genes bla NDM and bla KPC , and numerous antimicrobial-resistant genes (ARGs). The AB-JZ67 isolate had several biofilm-related genes, including biofilm-associated protein (BAP), csuE, and pgaB, and multiple ARGs, including bla ADC-25, bla OXA-23, and bla OXA-66. Our findings suggest that the coexistence of KP-JZ107 and AB-JZ67 isolates may indicate their widespread presence in ICUs, requiring comprehensive surveillance studies across all hospitals.
Collapse
Affiliation(s)
- Ibrahim A. Al-Zahrani
- Medical Laboratory Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit-Biosafety Level-3, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer M. Brek
- Public Health Laboratory, The Regional Laboratory, Jazan Health Cluster, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Ferriol-González C, Concha-Eloko R, Bernabéu-Gimeno M, Fernández-Cuenca F, Cañada-García JE, García-Cobos S, Sanjuán R, Domingo-Calap P. Targeted phage hunting to specific Klebsiella pneumoniae clinical isolates is an efficient antibiotic resistance and infection control strategy. Microbiol Spectr 2024; 12:e0025424. [PMID: 39194291 PMCID: PMC11448410 DOI: 10.1128/spectrum.00254-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Klebsiella pneumoniae is one of the most threatening multi-drug-resistant pathogens today, with phage therapy being a promising alternative for personalized treatments. However, the intrinsic capsule diversity in Klebsiella spp. poses a substantial barrier to the phage host range, complicating the development of broad-spectrum phage-based treatments. Here, we have isolated and genomically characterized phages capable of infecting each of the acquired 77 reference serotypes of Klebsiella spp., including capsular types widespread among high-risk K. pneumoniae clones causing nosocomial infections. We demonstrated the possibility of isolating phages for all capsular types in the collection, revealing high capsular specificity among taxonomically related phages, in contrast to a few phages that exhibited broad-spectrum infection capabilities. To decipher the determinants of the specificity of these phages, we focused on their receptor-binding proteins, with particular attention to depolymerases. We also explored the possibility of designing a broad-spectrum phage cocktail based on phages isolated in reference capsular-type strains and determining the ability to lyse relevant clinical isolates. A combination of 12 phages capable of infecting 55% of the reference Klebsiella spp. serotypes was tested on a panel of carbapenem-resistant K. pneumoniae clinical isolates. Thirty-one percent of isolates were susceptible to the phage cocktail. However, our results suggest that in a highly variable encapsulated bacterial host, phage hunting must be directed to the specific Klebsiella isolates. This work is a step forward in the understanding of the complexity of phage-host interactions and highlights the importance of implementing precise and phage-specific strategies to treat K. pneumoniae infections worldwide.IMPORTANCEThe emergence of resistant bacteria is a serious global health problem. In the absence of effective treatments, phages are a personalized and effective therapeutic alternative. However, little is still known about phage-host interactions, which are key to implementing effective strategies. Here, we focus on the study of Klebsiella pneumoniae, a highly pathogenic encapsulated bacterium. The complexity and variability of the capsule, where in most cases phage receptors are found, make it difficult for phage-based treatments. Here, we isolated a large collection of Klebsiella phages against all the reference strains and in a cohort of clinical isolates. Our results suggest that clinical isolates represent a challenge, especially high-risk clones. Thus, we propose targeted phage hunting as an effective strategy to implement phage-derived therapies. Our results are a step forward for new phage-based strategies to control K. pneumoniae infections, highlighting the importance of understanding phage-host interactions to design personalized treatments against Klebsiella spp.
Collapse
Affiliation(s)
- Celia Ferriol-González
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Robby Concha-Eloko
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Mireia Bernabéu-Gimeno
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Felipe Fernández-Cuenca
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena-CSIC-Universidad de Sevilla, Sevilla, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier E Cañada-García
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Sanjuán
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Pilar Domingo-Calap
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
9
|
Zhao M, Li H, Gan D, Wang M, Deng H, Yang QE. Antibacterial effect of phage cocktails and phage-antibiotic synergy against pathogenic Klebsiella pneumoniae. mSystems 2024; 9:e0060724. [PMID: 39166877 PMCID: PMC11406915 DOI: 10.1128/msystems.00607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
The global rise of antibiotic resistance has renewed interest in phage therapy, as an alternative to antibiotics to eliminate multidrug-resistant (MDR) bacterial pathogens. However, optimizing the broad-spectrum efficacy of phage therapy remains a challenge. In this study, we addressed this issue by employing strategies to improve antimicrobial efficacy of phage therapy against MDR Klebsiella pneumoniae strains, which are notorious for their resistance to conventional antibiotics. This includes the selection of broad host range phages, optimization of phage formulation, and combinations with last-resort antibiotics. Our findings unveil that having a broad host range was a dominant trait of isolated phages, and increasing phage numbers in combination with antibiotics significantly enhanced the suppression of bacterial growth. The decreased incidence of bacterial infection was explained by a reduction in pathogen density and emergence of bacterial resistance. Furthermore, phage-antibiotic synergy (PAS) demonstrated considerable broad-spectrum antibacterial potential against different clades of clinical MDR K. pneumoniae pathogens. The improved treatment outcomes of optimized PAS were also evident in a murine model, where mice receiving optimized PAS therapy demonstrated a reduced bacterial burden in mouse tissues. Taken together, these findings offer an important development in optimizing PAS therapy and its efficacy in the elimination of MDR K. pneumoniae pathogens. IMPORTANCE The worldwide spread of antimicrobial resistance (AMR) has posed a great challenge to global public health. Phage therapy has become a promising alternative against difficult-to-treat pathogens. One important goal of this study was to optimize the therapeutic efficiency of phage-antibiotic combinations, known as phage-antibiotic synergy (PAS). Through comprehensive analysis of the phenotypic and genotypic characteristics of a large number of CRKp-specific phages, we developed a systematic model for phage cocktail combinations. Crucially, our finding demonstrated that PAS treatments not only enhance the bactericidal effects of colistin and tigecycline against multidrug-resistant (MDR) K. pneumoniae strains in in vitro and in vivo context but also provide a robust response when antibiotics fail. Overall, the optimized PAS therapy demonstrates considerable potential in combating diverse K. pneumoniae pathogens, highlighting its relevance as a strategy to mitigate antibiotic resistance threats effectively.
Collapse
Affiliation(s)
- Mengshi Zhao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongru Li
- Department of Infectious Disease, Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou University affiliated Provincial Hospital,, Fuzhou, China
| | - Dehao Gan
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengzhu Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiu E Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Tanni AA, Sharmen F, Chakma K, Yasmin F, Akash AS, Akash MAA, Riana SH, Afrin S, Ferdous J, Sultana N, Biswas SK, Islam SMR, Mannan A. Whole-genome sequencing of Klebsiella pneumoniae isolated from clinical specimens in Chattogram, Bangladesh. Microbiol Resour Announc 2024; 13:e0044224. [PMID: 38940528 PMCID: PMC11256831 DOI: 10.1128/mra.00442-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae (Kpn) is a global concern due to the increasing rate of mortality and hospital cost burden in the affected population. This study reports the whole-genome sequences of nine multidrug-resistant Kpn from a hospital in Chattogram city of Bangladesh.
Collapse
Affiliation(s)
- Afroza Akter Tanni
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Farjana Sharmen
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Kallyan Chakma
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Farhana Yasmin
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Al-Shahriar Akash
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Md. Ashikur Alim Akash
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Sumaiya Hafiz Riana
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Sajia Afrin
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Jannatul Ferdous
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Nahid Sultana
- Department of Microbiology, Chattogram Maa O Shishu Hospital, Agrabad, Chattogram, Bangladesh
| | - Sanjoy Kanti Biswas
- Department of Microbiology, Chattogram Maa O Shishu Hospital, Agrabad, Chattogram, Bangladesh
| | - S. M. Rafiqul Islam
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| | - Adnan Mannan
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
- Next-generation Sequencing, Research and Innovation Laboratory Chittagong (NRICh), Biotechnology Research and Innovation Centre (BRIC), University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
11
|
Rahmat Ullah S, Jamal M, Rahman A, Andleeb S. Comprehensive insights into Klebsiella pneumoniae: unravelling clinical impact, epidemiological trends and antibiotic-resistance challenges. J Antimicrob Chemother 2024; 79:1484-1492. [PMID: 38832539 DOI: 10.1093/jac/dkae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Klebsiella pneumoniae, a challenging opportunistic bacterium, became a notable global health concern owing to its clinical impact, widespread epidemiology and escalating antibiotic resistance. This comprehensive review delves into the multifaceted dimensions of K. pneumoniae, with a focus on its clinical implications, epidemiological patterns and the critical issue of antibiotic resistance. The review also emphasizes the implications of K. pneumoniae in the context of antimicrobial stewardship and infection control. Epidemiological aspects are scrutinized, shedding light on the global distribution and prevalence of K. pneumoniae. Factors influencing its transmission and persistence in healthcare facilities and communities are examined, with patient demographics, healthcare practices and geographical variations. The review centres on antibiotic resistance, a critical issue in the era of bacteria displaying resistance to multiple drugs. The mechanisms of resistance used by K. pneumoniae against various classes of antibiotics are elucidated, along with the alarming rise of carbapenem-resistant strains. It also highlights ongoing research efforts and innovative strategies aimed at addressing this critical public health issue. This comprehensive review offers a holistic understanding of K. pneumoniae, emphasizing its clinical significance, global epidemiology and the immediate necessity for effective strategies to combat antibiotic resistance. It serves as a valuable resource for healthcare practitioners, researchers and policymakers seeking to manage better and mitigate the impact of this pathogen on public health.
Collapse
Affiliation(s)
- Sidra Rahmat Ullah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Mardan, 23200 Mardan, Pakistan
| | - Abdur Rahman
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
12
|
Mills RO, Dadzie I, Le-Viet T, Baker DJ, Addy HPK, Akwetey SA, Donkoh IE, Quansah E, Semanshia PS, Morgan J, Mensah A, Adade NE, Ampah EO, Owusu E, Mwintige P, Amoako EO, Spadar A, Holt KE, Foster-Nyarko E. Genomic diversity and antimicrobial resistance in clinical Klebsiella pneumoniae isolates from tertiary hospitals in Southern Ghana. J Antimicrob Chemother 2024; 79:1529-1539. [PMID: 38751093 PMCID: PMC11215549 DOI: 10.1093/jac/dkae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 07/02/2024] Open
Abstract
OBJECTIVES Comprehensive data on the genomic epidemiology of hospital-associated Klebsiella pneumoniae in Ghana are scarce. This study investigated the genomic diversity, antimicrobial resistance patterns, and clonal relationships of 103 clinical K. pneumoniae isolates from five tertiary hospitals in Southern Ghana-predominantly from paediatric patients aged under 5 years (67/103; 65%), with the majority collected from urine (32/103; 31%) and blood (25/103; 24%) cultures. METHODS We generated hybrid Nanopore-Illumina assemblies and employed Pathogenwatch for genotyping via Kaptive [capsular (K) locus and lipopolysaccharide (O) antigens] and Kleborate (antimicrobial resistance and hypervirulence) and determined clonal relationships using core-genome MLST (cgMLST). RESULTS Of 44 distinct STs detected, ST133 was the most common, comprising 23% of isolates (n = 23/103). KL116 (28/103; 27%) and O1 (66/103; 64%) were the most prevalent K-locus and O-antigen types. Single-linkage clustering highlighted the global spread of MDR clones such as ST15, ST307, ST17, ST11, ST101 and ST48, with minimal allele differences (1-5) from publicly available genomes worldwide. Conversely, 17 isolates constituted novel clonal groups and lacked close relatives among publicly available genomes, displaying unique genetic diversity within our study population. A significant proportion of isolates (88/103; 85%) carried resistance genes for ≥3 antibiotic classes, with the blaCTX-M-15 gene present in 78% (n = 80/103). Carbapenem resistance, predominantly due to blaOXA-181 and blaNDM-1 genes, was found in 10% (n = 10/103) of the isolates. CONCLUSIONS Our findings reveal a complex genomic landscape of K. pneumoniae in Southern Ghana, underscoring the critical need for ongoing genomic surveillance to manage the substantial burden of antimicrobial resistance.
Collapse
Affiliation(s)
- Richael O Mills
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Dadzie
- Department of Medical Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Thanh Le-Viet
- Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK
| | - David J Baker
- Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Humphrey P K Addy
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel A Akwetey
- Department of Clinical Microbiology, University of Development Studies, Tamale, Ghana
| | - Irene E Donkoh
- Department of Medical Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Quansah
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Prince S Semanshia
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jennifer Morgan
- Department of Medical Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Abraham Mensah
- Department of Microbiology and Immunology, University of Cape Coast, Cape Coast, Ghana
| | - Nana E Adade
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Microbiology, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Emmanuel O Ampah
- Microbiology Department, Greater Accra Regional Hospital, Ridge, Accra, Ghana
| | - Emmanuel Owusu
- Microbiology Department, Greater Accra Regional Hospital, Ridge, Accra, Ghana
| | - Philimon Mwintige
- Microbiology Laboratory, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Eric O Amoako
- Public Health Laboratory, Effia Nkwanta Regional Hospital, Sekondi-Takoradi, Ghana
| | - Anton Spadar
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Kathryn E Holt
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Ebenezer Foster-Nyarko
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| |
Collapse
|
13
|
Tan M, Liang L, Liao C, Zhou Z, Long S, Yi X, Wang C, Wei C, Cai J, Li X, Wei G. A rapid and ultra-sensitive dual readout platform for Klebsiella pneumoniae detection based on RPA-CRISPR/Cas12a. Front Cell Infect Microbiol 2024; 14:1362513. [PMID: 38994004 PMCID: PMC11236598 DOI: 10.3389/fcimb.2024.1362513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/μL and 10 fg/μL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.
Collapse
Affiliation(s)
- Meiying Tan
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Lina Liang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chuan Liao
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Zihan Zhou
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Shaoping Long
- Department of Clinical Laboratory, Baise People's Hospital, Guangxi, China
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Chunfang Wang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Caiheng Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
| | - Jinyuan Cai
- School of Food and Chemical Engineering, Liuzhou Institute of Technology, Guangxi, China
| | - Xuebin Li
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Guangxi, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
14
|
Gestels Z, Baranchyk Y, Van den Bossche D, Laumen J, Abdellati S, Britto Xavier B, Manoharan-Basil SS, Kenyon C. Could traces of fluoroquinolones in food induce ciprofloxacin resistance in Escherichia coli and Klebsiella pneumoniae? An in vivo study in Galleria mellonella with important implications for maximum residue limits in food. Microbiol Spectr 2024; 12:e0359523. [PMID: 38687060 PMCID: PMC11237748 DOI: 10.1128/spectrum.03595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
We hypothesized that the residual concentrations of fluoroquinolones allowed in food (acceptable daily intake-ADIs) could select for ciprofloxacin resistance in our resident microbiota. We developed models of chronic Escherichia coli and Klebsiella pneumoniae infection in Galleria mellonella larvae and exposed them to ADI doses of ciprofloxacin via single dosing and daily dosing regimens. The emergence of ciprofloxacin resistance was assessed via isolation of the target bacteria in selective agar plates. Exposure to as low as one-tenth of the ADI dose of the single and daily dosing regimens of ciprofloxacin resulted in the selection of ciprofloxacin resistance in K. pneumoniae but not E. coli. This resistance was associated with cross-resistance to doxycycline and ceftriaxone. Whole genome sequencing revealed inactivating mutations in the transcription repressors, ramR and rrf2, as well as mutations in gyrA and gyrB. We found that ciprofloxacin doses 10-fold lower than those classified as acceptable for daily intake could induce resistance to ciprofloxacin in K. pneumoniae. These results suggest that it would be prudent to include the induction of antimicrobial resistance as a significant criterion for determining ADIs and the associated maximum residue limits in food.IMPORTANCEThis study found that the concentrations of ciprofloxacin/enrofloxacin allowed in food can induce de novo ciprofloxacin resistance in Klebsiella pneumoniae. This suggests that it would be prudent to reconsider the criteria used to determine "safe" upper concentration limits in food.
Collapse
Affiliation(s)
- Zina Gestels
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yuliia Baranchyk
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Dorien Van den Bossche
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jolein Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Said Abdellati
- Clinical and Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil Britto Xavier
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team—HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Krul D, Rodrigues LS, Siqueira AC, Mesa D, Dos Santos ÉM, Vasconcelos TM, Spalanzani RN, Cardoso R, Ricieri MC, de Araújo Motta F, Conte D, Dalla-Costa LM. High-risk clones of carbapenem resistant Klebsiella pneumoniae recovered from pediatric patients in Southern Brazil. Braz J Microbiol 2024; 55:1437-1443. [PMID: 38499916 PMCID: PMC11153399 DOI: 10.1007/s42770-024-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) exhibit high mortality rates in pediatric patients and usually belong to international high-risk clones. This study aimed to investigate the molecular epidemiology and carbapenem resistance mechanisms of K. pneumoniae isolates recovered from pediatric patients, and correlate them with phenotypical data. Twenty-five CRKP isolates were identified, and antimicrobial susceptibility was assessed using broth microdilution. Carbapenemase production and β-lactamase genes were detected by phenotypic and genotypic tests. Multilocus sequence typing was performed to differentiate the strains and whole-genome sequencing was assessed to characterize a new sequence type. Admission to the intensive care unit and the use of catheters were significantly positive correlates of CRKP infection, and the mortality rate was 36%. Almost all isolates showed multidrug-resistant phenotype, and most frequent resistant gene was blaKPC. We observed the dissemination of ST307 and clones belonging to CG258, which are considered high risk. In pediatric patients, these clones present with high genomic plasticity, favoring adaptation of the KPC and NDM enzymes to healthcare environments.
Collapse
Affiliation(s)
- Damaris Krul
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Luiza Souza Rodrigues
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Adriele Celine Siqueira
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Dany Mesa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Érika Medeiros Dos Santos
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
- Hospital Pequeno Príncipe (HPP), Curitiba, Paraná, Brazil
| | - Thaís Muniz Vasconcelos
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Regiane Nogueira Spalanzani
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | | | | | | | - Danieli Conte
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Libera Maria Dalla-Costa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil.
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Av. Silva Jardim, 1632 -Rebouças, Curitiba, Paraná, CEP 80250-060, Brazil.
| |
Collapse
|
16
|
Lin JY, Zhu ZC, Zhu J, Chen L, Du H. Antibiotic heteroresistance in Klebsiella pneumoniae: Definition, detection methods, mechanisms, and combination therapy. Microbiol Res 2024; 283:127701. [PMID: 38518451 DOI: 10.1016/j.micres.2024.127701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Klebsiella pneumoniae is a common opportunistic pathogen that presents significant challenges in the treatment of infections due to its resistance to multiple antibiotics. In recent years, K. pneumoniae has been reported for the development of heteroresistance, a phenomenon where subpopulations of the susceptible bacteria exhibit resistance. This heteroresistance has been associated with increased morbidity and mortality rates. Complicating matters further, its definition and detection pose challenges, often leading to its oversight or misdiagnosis. Various mechanisms contribute to the development of heteroresistance in K. pneumoniae, and these mechanisms differ among different antibiotics. Even for the same antibiotic, multiple mechanisms may be involved. However, our current understanding of these mechanisms remains incomplete, and further research is needed to gain a more comprehensive understanding of heteroresistance. While the clinical recommendation is to use combination antibiotic therapy to mitigate heteroresistance, this approach also comes with several drawbacks and potential adverse effects. In this review, we discuss the definition, detection methods, molecular mechanisms, and treatment of heterogenic resistance, aiming to pave the way for more effective treatment and management in the future. However, addressing the problem of heteroresistance in K. pneumoniae represents a long and complex journey that necessitates comprehensive research efforts.
Collapse
Affiliation(s)
- Jia Yao Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhi Chen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
17
|
Faria NA, Touret T, Simões AS, Palos C, Bispo S, Cristino JM, Ramirez M, Carriço J, Pinto M, Toscano C, Gonçalves E, Gonçalves ML, Costa A, Araújo M, Duarte A, de Lencastre H, Serrano M, Sá-Leão R, Miragaia M. Genomic insights into the expansion of carbapenem-resistant Klebsiella pneumoniae within Portuguese hospitals. J Hosp Infect 2024; 148:62-76. [PMID: 38554808 DOI: 10.1016/j.jhin.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-KP) are a public health concern, causing infections with a high mortality rate, limited therapeutic options and challenging infection control strategies. In Portugal, the CR-KP rate has increased sharply, but the factors associated with this increase are poorly explored. In order to address this question, phylogenetic and resistome analysis were used to compare the draft genomes of 200 CR-KP isolates collected in 2017-2019 from five hospitals in the Lisbon region, Portugal. Most CR-KP belonged to sequence type (ST) 13 (29%), ST17 (15%), ST348 (13%), ST231 (12%) and ST147 (7%). Carbapenem resistance was conferred mostly by the presence of KPC-3 (74%) or OXA-181 (18%), which were associated with IncF/IncN and IncX plasmids, respectively. Almost all isolates were multi-drug resistant, harbouring resistance determinants to aminoglycosides, beta-lactams, trimethoprim, fosfomycin, quinolones and sulphonamides. In addition, 11% of isolates were resistant to colistin. Colonizing and infecting isolates were highly related, and most colonized patients (89%) reported a previous hospitalization. Moreover, among the 171 events of cross-dissemination identified by core genome multi-locus sequence typing data analysis (fewer than five allelic differences), 41 occurred between different hospitals and 130 occurred within the same hospital. The results suggest that CR-KP dissemination in the Lisbon region results from acquisition of carbapenemases in mobile genetic elements, influx of CR-KP into the hospitals by colonized ambulatory patients, and transmission of CR-KP within and between hospitals. Prudent use of carbapenems, patient screening at hospital entry, and improvement of infection control are needed to decrease the burden of CR-KP infection in Portugal.
Collapse
Affiliation(s)
- N A Faria
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal; Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - T Touret
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - A S Simões
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - C Palos
- Hospital Beatriz Ângelo, Lisbon, Portugal
| | - S Bispo
- Hospital Beatriz Ângelo, Lisbon, Portugal
| | - J M Cristino
- Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - M Ramirez
- Centro Hospitalar Lisboa Norte, Lisbon, Portugal; Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - J Carriço
- Centro Hospitalar Lisboa Norte, Lisbon, Portugal; Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - M Pinto
- Centro Hospitalar Lisboa Central, Lisbon, Portugal
| | - C Toscano
- Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - E Gonçalves
- Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | | | - A Costa
- Hospital dos SAMS, Lisbon, Portugal
| | - M Araújo
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - A Duarte
- Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal; Centro de investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Almada, Portugal
| | - H de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal; Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, USA
| | - M Serrano
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - R Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - M Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
18
|
Denissen J, Havenga B, Reyneke B, Khan S, Khan W. Comparing antibiotic resistance and virulence profiles of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa from environmental and clinical settings. Heliyon 2024; 10:e30215. [PMID: 38720709 PMCID: PMC11076977 DOI: 10.1016/j.heliyon.2024.e30215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Antibiotic resistance and virulence profiles of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa, isolated from water sources collected in informal settlements, were compared to clinical counterparts. Cluster analysis using repetitive extragenic palindromic sequence-based polymerase chain reaction (REP-PCR) indicated that, for each respective species, low genetic relatedness was observed between most of the clinical and environmental isolates, with only one clinical P. aeruginosa (PAO1) and one clinical K. pneumoniae (P2) exhibiting high genetic similarity to the environmental strains. Based on the antibiograms, the clinical E. faecium Ef CD1 was extensively drug resistant (XDR); all K. pneumoniae isolates (n = 12) (except K. pneumoniae ATCC 13883) were multidrug resistant (MDR), while the P. aeruginosa (n = 16) isolates exhibited higher susceptibility profiles. The tetM gene (tetracycline resistance) was identified in 47.4 % (n = 6 environmental; n = 3 clinical) of the E. faecium isolates, while the blaKPC gene (carbapenem resistance) was detected in 52.6 % (n = 7 environmental; n = 3 clinical) and 15.4 % (n = 2 environmental) of the E. faecium and K. pneumoniae isolates, respectively. The E. faecium isolates were predominantly poor biofilm formers, the K. pneumoniae isolates were moderate biofilm formers, while the P. aeruginosa isolates were strong biofilm formers. All E. faecium and K. pneumoniae isolates were gamma (γ)-haemolytic, non-gelatinase producing (E. faecium only), and non-hypermucoviscous (K. pneumoniae only), while the P. aeruginosa isolates exhibited beta (β)-haemolysis and produced gelatinase. The fimH (type 1 fimbriae adhesion) and ugE (uridine diphosphate galacturonate 4-epimerase synthesis) virulence genes were detected in the K. pneumoniae isolates, while the P. aeruginosa isolates possessed the phzM (phenazine production) and algD (alginate biosynthesis) genes. Similarities in antibiotic resistance and virulence profiles of environmental and clinical E. faecium, K. pneumoniae, and P. aeruginosa, thus highlights the potential health risks posed by using environmental water sources for daily water needs in low-and-middle-income countries.
Collapse
Affiliation(s)
- Julia Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| |
Collapse
|
19
|
Rahmat Ullah S, Irum S, Mahnoor I, Ismatullah H, Mumtaz M, Andleeb S, Rahman A, Jamal M. Exploring the resistome, virulome, and mobilome of multidrug-resistant Klebsiella pneumoniae isolates: deciphering the molecular basis of carbapenem resistance. BMC Genomics 2024; 25:408. [PMID: 38664636 PMCID: PMC11044325 DOI: 10.1186/s12864-024-10139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/19/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, blaNDM, and blaOXA, respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.
Collapse
Affiliation(s)
- Sidra Rahmat Ullah
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Sidra Irum
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Iqra Mahnoor
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Humaira Ismatullah
- Research Centre for Modelling & Simulation (RCMS), National University of Sciences and Technology, Islamabad, Pakistan
| | - Mariam Mumtaz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan.
| | - Abdur Rahman
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
20
|
Hala S, Malaikah M, Huang J, Bahitham W, Fallatah O, Zakri S, Antony CP, Alshehri M, Ghazzali RN, Ben-Rached F, Alsahafi A, Alsaedi A, AlAhmadi G, Kaaki M, Alazmi M, AlhajHussein B, Yaseen M, Zowawi HM, Alghoribi MF, Althaqafi AO, Al-Amri A, Moradigaravand D, Pain A. The emergence of highly resistant and hypervirulent Klebsiella pneumoniae CC14 clone in a tertiary hospital over 8 years. Genome Med 2024; 16:58. [PMID: 38637822 PMCID: PMC11025284 DOI: 10.1186/s13073-024-01332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a major bacterial and opportunistic human pathogen, increasingly recognized as a healthcare burden globally. The convergence of resistance and virulence in K. pneumoniae strains has led to the formation of hypervirulent and multidrug-resistant strains with dual risk, limiting treatment options. K. pneumoniae clones are known to emerge locally and spread globally. Therefore, an understanding of the dynamics and evolution of the emerging strains in hospitals is warranted to prevent future outbreaks. METHODS In this study, we conducted an in-depth genomic analysis on a large-scale collection of 328 multidrug-resistant (MDR) K. pneumoniae strains recovered from 239 patients from a single major hospital in the western coastal city of Jeddah in Saudi Arabia from 2014 through 2022. We employed a broad range of phylogenetic and phylodynamic methods to understand the evolution of the predominant clones on epidemiological time scales, virulence and resistance determinants, and their dynamics. We also integrated the genomic data with detailed electronic health record (EHR) data for the patients to understand the clinical implications of the resistance and virulence of different strains. RESULTS We discovered a diverse population underlying the infections, with most strains belonging to Clonal Complex 14 (CC14) exhibiting dominance. Specifically, we observed the emergence and continuous expansion of strains belonging to the dominant ST2096 in the CC14 clade across hospital wards in recent years. These strains acquired resistance mutations against colistin and extended spectrum β-lactamase (ESBL) and carbapenemase genes, namely blaOXA-48 and blaOXA-232, located on three distinct plasmids, on epidemiological time scales. Strains of ST2096 exhibited a high virulence level with the presence of the siderophore aerobactin (iuc) locus situated on the same mosaic plasmid as the ESBL gene. Integration of ST2096 with EHR data confirmed the significant link between colonization by ST2096 and the diagnosis of sepsis and elevated in-hospital mortality (p-value < 0.05). CONCLUSIONS Overall, these results demonstrate the clinical significance of ST2096 clones and illustrate the rapid evolution of an emerging hypervirulent and MDR K. pneumoniae in a clinical setting.
Collapse
Affiliation(s)
- Sharif Hala
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Mohammed Malaikah
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
- Laboratory of Infectious Disease Epidemiology, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jiayi Huang
- Laboratory of Infectious Disease Epidemiology, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wesam Bahitham
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Omniya Fallatah
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Samer Zakri
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Chakkiath Paul Antony
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Mohammed Alshehri
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Raeece Naeem Ghazzali
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Fathia Ben-Rached
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Abdullah Alsahafi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Ghadeer AlAhmadi
- King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Mai Kaaki
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Meshari Alazmi
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia
| | - Baraa AlhajHussein
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Muhammad Yaseen
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Hosam M Zowawi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia
| | - Majed F Alghoribi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Abdulhakeem O Althaqafi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Abdulfattah Al-Amri
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Infectious Disease Research Department, King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Western Region, Saudi Arabia
| | - Danesh Moradigaravand
- Laboratory of Infectious Disease Epidemiology, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia.
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.
| |
Collapse
|
21
|
Teo TH, Ayuni NN, Yin M, Liew JH, Chen JQ, Kurepina N, Rajarethinam R, Kreiswirth BN, Chen L, Bifani P. Differential mucosal tropism and dissemination of classical and hypervirulent Klebsiella pneumoniae infection. iScience 2024; 27:108875. [PMID: 38313058 PMCID: PMC10835444 DOI: 10.1016/j.isci.2024.108875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Klebsiella pneumoniae (Kp) infection is an important healthcare concern. The ST258 classical (c)Kp strain is dominant in hospital-acquired infections in North America and Europe, while ST23 hypervirulent (hv)Kp prevails in community-acquired infections in Asia. This study aimed to develop symptomatic mucosal infection models in mice that mirror natural infections in humans to gain a deeper understanding of Kp mucosal pathogenesis. We showed that cKp replicates in the nasal cavity instead of the lungs, and this early infection event is crucial for the establishment of chronic colonization in the cecum and colon. In contrast, hvKp replicates directly in the lungs to lethal bacterial load, and early infection of esophagus supported downstream transient colonization in the ileum and cecum. Here, we have developed an in vivo model that illuminates how differences in Kp tropism are responsible for virulence and disease phenotype in cKp and hvKp, providing the basis for further mechanistic study.
Collapse
Affiliation(s)
- Teck-Hui Teo
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
| | - Nurul N. Ayuni
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Michelle Yin
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
| | - Jun Hao Liew
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Jason Q. Chen
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
| | - Natalia Kurepina
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Singapore
| | - Barry N. Kreiswirth
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Pablo Bifani
- Agency for Science, Technology and Research (A∗STAR), Infectious Diseases (ID) Labs, Singapore 429621, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E7HT, UK
| |
Collapse
|
22
|
Gonçalves T, Marques AT, Manageiro V, Tanoeiro L, Vital JS, Duarte A, Vítor JMB, Caniça M, Gaspar MM, Vale FF. Antimicrobial activity of prophage endolysins against critical Enterobacteriaceae antibiotic-resistant bacteria. Int J Pharm 2024; 651:123758. [PMID: 38160991 DOI: 10.1016/j.ijpharm.2023.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Enterobacteriaceae species are part of the 2017 World Health Organization antibiotic-resistant priority pathogens list for development of novel medicines. Multidrug-resistant Klebsiella pneumoniae is an increasing threat to public health and has become a relevant human pathogen involved in life-threatening infections. Phage therapy involves the use of phages or their lytic endolysins as bioagents for the treatment of bacterial infectious diseases. Gram-negative bacteria have an outer membrane, making difficult the access of endolysins to the peptidoglycan. Here, three endolysins from prophages infecting three distinct Enterobacterales species, Kp2948-Lys from K. pneumoniae, Ps3418-Lys from Providencia stuartii, and Kaer26608-Lys from Klebsiella aerogenes, were purified and exhibited antibacterial activity against their specific bacterium species verified by zymogram assays. These three endolysins were successfully associated to liposomes composed of dimyristoyl phosphatidyl choline (DMPC), dioleoyl phosphatidyl ethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) at a molar ratio (4:4:2), with an encapsulation efficiency ranging from 24 to 27%. Endolysins encapsulated in liposomes resulted in higher antibacterial activity compared to the respective endolysin in the free form, suggesting that the liposome-mediated delivery system enhances fusion with outer membrane and delivery of endolysins to the target peptidoglycan. Obtained results suggest that Kp2948-Lys appears to be specific for K. pneumoniae, while Ps3418-Lys and Kaer26608-Lys appear to have a broader antibacterial spectrum. Endolysins incorporated in liposomes constitute a promising weapon, applicable in the several dimensions (human, animals and environment) of the One Health approach, against multidrug-resistant Enterobacteriaceae.
Collapse
Affiliation(s)
- Tiago Gonçalves
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Andreia T Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Luis Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Joana S Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior Egas Moniz, Quinta da Granja, 2829-511 Monte da Caparica, Portugal
| | - Jorge M B Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Maria Manuela Gaspar
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Filipa F Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
23
|
Araújo L, Papa-Ezdra R, Ávila P, Iribarnegaray V, Bado I, Telechea H, Garcia-Fulgueiras V, Vignoli R. Great Plasticity in a Great Pathogen: Capsular Types, Virulence Factors and Biofilm Formation in ESBL-Producing Klebsiella pneumoniae from Pediatric Infections in Uruguay. Antibiotics (Basel) 2024; 13:170. [PMID: 38391556 PMCID: PMC10886282 DOI: 10.3390/antibiotics13020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Klebsiella pneumoniae is widely recognized as an opportunistic hospital and community pathogen. It is one of the priority microorganisms included in the ESKAPE group, and its antibiotic resistance related to extended-spectrum β-lactamases (ESBL) is a global public health concern. The multi-drug resistance (MDR) phenotype, in combination with pathogenicity factors, could enhance the ability of this pathogen to cause clinical infections. The aim of this study was to characterize pathogenicity factors and biofilm formation in ESBL-producing K. pneumoniae from pediatric clinical infections. Capsular types, virulence factors, and sequence types were characterized by PCR. Biofilm formation was determined by a semiquantitative microtiter technique. MDR phenotype and statistical analysis were performed. The K24 capsular type (27%), virulence factors related to iron uptake fyuA (35%) and kfuBC (27%), and sequence types ST14 (18%) and ST45 (18%) were the most frequently detected. Most of the strains were biofilm producers: weak (22%), moderate (22%), or strong (12%). In 62% of the strains, an MDR phenotype was detected. Strains with K24 capsular type showed an association with ST45 and the presence of fyuA; strains with kfuBC showed an association with moderate or strong biofilm production and belonging to ST14. Weak or no biofilm producers were associated with the absence of kfuBC. The MDR phenotype was associated with the main ESBL gene, blaCTX-M-15. The high plasticity of K. pneumoniae to acquire an MDR phenotype, in combination with the factors exposed in this report, could make it even more difficult to achieve a good clinical outcome with the available therapeutics.
Collapse
Affiliation(s)
- Lucía Araújo
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Romina Papa-Ezdra
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Pablo Ávila
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Victoria Iribarnegaray
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo 12100, Uruguay
| | - Inés Bado
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Hector Telechea
- Unidad Cuidados Intensivos Pediátricos, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Virginia Garcia-Fulgueiras
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
24
|
Örmälä-Tiznado AM, Allander L, Maatallah M, Kabir MH, Brisse S, Sandegren L, Patpatia S, Coorens M, Giske CG. Molecular characteristics, fitness, and virulence of high-risk and non-high-risk clones of carbapenemase-producing Klebsiella pneumoniae. Microbiol Spectr 2024; 12:e0403622. [PMID: 38205958 PMCID: PMC10845972 DOI: 10.1128/spectrum.04036-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
Extensively drug-resistant (XDR) Klebsiella pneumoniae inflict a notable burden on healthcare worldwide. Of specific concern are strains producing carbapenem-hydrolyzing enzymes, as the therapeutic options for these strains are still very limited. Specific sequence types of K. pneumoniae have been noted for their epidemic occurrence globally, but the mechanisms behind the success of specific clones remain unclear. Herein, we have characterized 20 high-risk clones (HiRCs) and 10 non-HiRCs of XDR K. pneumoniae, exploring factors connected to the epidemiological success of some clones. Isolates were subjected to core genome multilocus sequence typing analysis to determine the clonal relationships of the isolates and subsequently characterized with regard to features known to be linked to overall bacterial fitness and virulence. The genomes were analyzed in silico for capsule types, O antigens, virulence factors, antimicrobial resistance genes, prophages, and CRISPR-Cas loci. In vitro growth experiments were conducted to retrieve proxies for absolute and relative fitness for 11 HiRC and 9 non-HiRC isolates selected based on the clonal groups they belonged to, and infections in a Galleria mellonella insect model were used to evaluate the virulence of the isolates in vivo. This study did not find evidence that virulence factors, prophages, CRISPR-Cas loci, or fitness measured in vitro alone would contribute to the global epidemiological success of specific clones of carbapenemase-producing XDR K. pneumoniae. However, this study did find the HiRC group to be more virulent than the non-HiRC group when measured in vivo in a model with G. mellonella. This suggests that the virulence and epidemiological success of certain clones of K. pneumoniae cannot be explained by individual traits investigated in this study and thus warrant further experiments in the future.IMPORTANCEHerein, we explored potential explanations for the successfulness of some epidemic or high-risk clones of carbapenemase-producing Klebsiella pneumoniae. We found differences in mortality in a larva model but found no clear genomic differences in known virulence markers. Most of the research on virulence in K. pneumoniae has been focused on hypervirulent strains, but here, we try to understand differences within the group of highly resistant strains. The results from the larva virulence model could be used to design experiments in higher animals. Moreover, the data could provide further support to a differentiated infection control approach against extensively drug-resistant strains, based on their classification as high-risk clones.
Collapse
Affiliation(s)
- Anni-Maria Örmälä-Tiznado
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Allander
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Makaoui Maatallah
- Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des Produits (LATVPEP: LR01ES16), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Muhammad Humaun Kabir
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sheetal Patpatia
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maarten Coorens
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christian G. Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Heljanko V, Tyni O, Johansson V, Virtanen JP, Räisänen K, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Clinically relevant sequence types of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae detected in Finnish wastewater in 2021-2022. Antimicrob Resist Infect Control 2024; 13:14. [PMID: 38291521 PMCID: PMC10829384 DOI: 10.1186/s13756-024-01370-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a critical threat to human health. Escherichia coli and Klebsiella pneumoniae are clinically the most important species associated with AMR and are the most common carbapenemase-producing (CP) Enterobacterales detected in human specimens in Finland. Wastewater surveillance has emerged as a potential approach for population-level surveillance of AMR, as wastewater could offer a reflection from a larger population with one sample and minimal recognized ethical issues. In this study, we investigated the potential of wastewater surveillance to detect CP E. coli and K. pneumoniae strains similar to those detected in human specimens. METHODS Altogether, 89 composite samples of untreated community wastewater were collected from 10 wastewater treatment plants across Finland in 2021-2022. CP E. coli and K. pneumoniae were isolated using selective culture media and identified using MALDI-TOF MS. Antimicrobial susceptibility testing was performed using disk diffusion test and broth microdilution method, and a subset of isolates was characterized using whole-genome sequencing. RESULTS CP E. coli was detected in 26 (29.2%) and K. pneumoniae in 25 (28.1%) samples. Among E. coli, the most common sequence type (ST) was ST410 (n = 7/26, 26.9%), while ST359 (n = 4/25, 16.0%) predominated among K. pneumoniae. Globally successful STs were detected in both E. coli (ST410, ST1284, ST167, and ST405) and K. pneumoniae (ST512, ST101, and ST307). K. pneumoniae carbapenemases (KPC) were the most common carbapenemases in both E. coli (n = 11/26, 42.3%) and K. pneumoniae (n = 13/25, 52.0%), yet also other carbapenemases, such as blaNDM-5, blaOXA-48, and blaOXA-181, were detected. We detected isolates harboring similar ST and enzyme type combinations previously linked to clusters in Finland, such as E. coli ST410 with blaKPC-2 and K. pneumoniae ST512 with blaKPC-3. CONCLUSIONS Our study highlights the presence of clinically relevant strains of CP E. coli and K. pneumoniae in community wastewater. The results indicate that wastewater surveillance could serve as a monitoring tool for CP Enterobacterales. However, the specificity and sensitivity of the methods should be improved, and technologies, like advanced sequencing methods, should be utilized to distinguish data with public health relevance, harness the full potential of wastewater surveillance, and implement the data in public health surveillance.
Collapse
Affiliation(s)
- Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Olga Tyni
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kati Räisänen
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
26
|
Roach DJ, Sridhar S, Oliver E, Rao SR, Slater DM, Hwang W, Hutt Vater K, Dinesh A, Qadri F, Chisti MJ, Pierce VM, Turbett SE, Bhattacharyya RP, Worby CJ, Earl AM, LaRocque RC, Harris JB. Clinical and Genomic Characterization of a Cohort of Patients With Klebsiella pneumoniae Bloodstream Infection. Clin Infect Dis 2024; 78:31-39. [PMID: 37633257 PMCID: PMC10810715 DOI: 10.1093/cid/ciad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND The clinical and microbial factors associated with Klebsiella pneumoniae bloodstream infections (BSIs) are not well characterized. Prior studies have focused on highly resistant or hypervirulent isolates, limiting our understanding of K. pneumoniae strains that commonly cause BSI. We performed a record review and whole-genome sequencing to investigate the clinical characteristics, bacterial diversity, determinants of antimicrobial resistance, and risk factors for in-hospital death in a cohort of patients with K. pneumoniae BSI. METHODS We identified 562 patients at Massachusetts General Hospital with K. pneumoniae BSIs between 2016 and 2022. We collected data on comorbid conditions, infection source, clinical outcomes, and antibiotic resistance and performed whole-genome sequencing on 108 sequential BSI isolates from 2021 to 2022. RESULTS Intra-abdominal infection was the most common source of infection accounting for 34% of all BSIs. A respiratory tract source accounted for 6% of BSIs but was associated with a higher in-hospital mortality rate (adjusted odds ratio, 5.4 [95% confidence interval, 2.2-12.8]; P < .001 for comparison with other sources). Resistance to the first antibiotic prescribed was also associated with a higher risk of death (adjusted odds ratio, 5.2 [95% confidence interval, 2.2-12.4]; P < .001). BSI isolates were genetically diverse, and no clusters of epidemiologically and genetically linked cases were observed. Virulence factors associated with invasiveness were observed at a low prevalence, although an unexpected association between O-antigen type and the source of infection was found. CONCLUSIONS These observations demonstrate the versatility of K. pneumoniae as an opportunistic pathogen and highlight the need for new approaches for surveillance and the rapid identification of patients with invasive antimicrobial-resistant K. pneumoniae infection.
Collapse
Affiliation(s)
- David J Roach
- The Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sushmita Sridhar
- The Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elizabeth Oliver
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sowmya R Rao
- Department of Global Health, Boston University, Boston, Massachusetts, USA
| | - Damien M Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wontae Hwang
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kian Hutt Vater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anupama Dinesh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Firdausi Qadri
- Dhaka Hospital, International Centre for Diarrheal Disease Research, Bangladesh
| | - Mohammod J Chisti
- Dhaka Hospital, International Centre for Diarrheal Disease Research, Bangladesh
| | - Virginia M Pierce
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Roby P Bhattacharyya
- The Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Colin J Worby
- The Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Ashlee M Earl
- The Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Arcari G, Cecilia F, Oliva A, Polani R, Raponi G, Sacco F, De Francesco A, Pugliese F, Carattoli A. Genotypic Evolution of Klebsiella pneumoniae Sequence Type 512 during Ceftazidime/Avibactam, Meropenem/Vaborbactam, and Cefiderocol Treatment, Italy. Emerg Infect Dis 2023; 29:2266-2274. [PMID: 37877547 PMCID: PMC10617348 DOI: 10.3201/eid2911.230921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
In February 2022, a critically ill patient colonized with a carbapenem-resistant K. pneumoniae producing KPC-3 and VIM-1 carbapenemases was hospitalized for SARS-CoV-2 in the intensive care unit of Policlinico Umberto I hospital in Rome, Italy. During 95 days of hospitalization, ceftazidime/avibactam, meropenem/vaborbactam, and cefiderocol were administered consecutively to treat 3 respiratory tract infections sustained by different bacterial agents. Those therapies altered the resistome of K. pneumoniae sequence type 512 colonizing or infecting the patient during the hospitalization period. In vivo evolution of the K. pneumoniae sequence type 512 resistome occurred through plasmid loss, outer membrane porin alteration, and a nonsense mutation in the cirA siderophore gene, resulting in high levels of cefiderocol resistance. Cross-selection can occur between K. pneumoniae and treatments prescribed for other infective agents. K. pneumoniae can stably colonize a patient, and antimicrobial-selective pressure can promote progressive K. pneumoniae resistome evolution, indicating a substantial public health threat.
Collapse
|
28
|
Xi Y, Zhao J, Zhang J, Jin Y, Yang H, Duan G, Chen S, Long J. Analysis of the features of 105 confirmed CRISPR loci in 487 Klebsiella variicola. Lett Appl Microbiol 2023; 76:ovad108. [PMID: 37715312 DOI: 10.1093/lambio/ovad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
Klebsiella variicola, an emerging human pathogen, poses a threat to public health. The horizontal gene transfer (HGT) of plasmids is an important driver of the emergence of multiple antibiotic-resistant K. variicola. Clustered regularly interspersed short palindromic repeats (CRISPR) coupled with CRISPR-associated genes (CRISPR/Cas) constitute an adaptive immune system in bacteria, and can provide acquired immunity against HGT. However, the information about the CRISPR/Cas system in K. variicola is still limited. In this study, 487 genomes of K. variicola obtained from the National Center for Biotechnology Information database were used to analyze the characteristics of CRISPR/Cas systems. Approximately 21.56% of genomes (105/487) harbor at least one confirmed CRISPR array. Three types of CRISPR/Cas systems, namely the type I-E, I-E*, and IV-A systems, were identified among 105 strains. Spacer origin analysis further revealed that approximately one-third of spacers significantly match plasmids or phages, which demonstrates the implication of CRISPR/Cas systems in controlling HGT. Moreover, spacers in K. variicola tend to target mobile genetic elements from K. pneumoniae. This finding provides new evidence of the interaction of K. variicola and K. pneumoniae during their evolution. Collectively, our results provide valuable insights into the role of CRISPR/Cas systems in K. variicola.
Collapse
Affiliation(s)
- Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jiangfeng Zhang
- Henan Provincial People's Hospital, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
29
|
Cornacchia A, Janowicz A, Centorotola G, Saletti MA, Ranieri SC, Ancora M, Ripà P, Cammà C, Pomilio F, Chiaverini A. Multi-approach methods to predict cryptic carbapenem resistance mechanisms in Klebsiella pneumoniae detected in Central Italy. Front Microbiol 2023; 14:1242693. [PMID: 37700864 PMCID: PMC10493390 DOI: 10.3389/fmicb.2023.1242693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
The rapid emergence of carbapenem-resistant Klebsiella pneumoniae (Kp) strains in diverse environmental niches, even outside of the clinical setting, poses a challenge for the detection and the real-time monitoring of novel antimicrobial resistance trends using molecular and whole genome sequencing-based methods. The aim of our study was to understand cryptic resistance determinants responsible for the phenotypic carbapenem resistance observed in strains circulating in Italy by using a combined approach involving whole genome sequencing (WGS) and genome-wide association study (GWAS). In this study, we collected 303 Kp strains from inside and outside clinical settings between 2018-2022 in the Abruzzo region of Italy. The antimicrobial resistance profile of all isolates was assessed using both phenotypic and bioinformatic methods. We identified 11 strains resistant to carbapenems, which did not carry any known genetic determinants explaining their phenotype. The GWAS results showed that incongruent carbapenem-resistant phenotype was associated specifically with strains with two capsular types, KL13 and KL116 including genes involved in the capsule synthesis, encoding proteins involved in the assembly of the capsule biosynthesis apparatus, capsule-specific sugar synthesis, processing and export, polysaccharide pyruvyl transferase, and lipopolysaccharide biosynthesis protein. These preliminary results confirmed the potential of GWAS in identifying genetic variants present in KL13 and KL116 that could be associated with carbapenem resistance traits in Kp. The implementation of advanced methods, such as GWAS with increased antimicrobial resistance surveillance will potentially improve Kp infection treatment and patient outcomes.
Collapse
Affiliation(s)
- Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Anna Janowicz
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Maria Antonietta Saletti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Sofia Chiatamone Ranieri
- Operative Unit of Clinical Pathology and Microbiology, Department of Services, ASL of Teramo, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Paola Ripà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario, Teramo, Italy
| |
Collapse
|
30
|
Pajand O, Rahimi H, Badmasti F, Gholami F, Alipour T, Darabi N, Aarestrup FM, Leekitcharoenphon P. Various arrangements of mobile genetic elements among CC147 subpopulations of Klebsiella pneumoniae harboring bla NDM-1: a comparative genomic analysis of carbapenem resistant strains. J Biomed Sci 2023; 30:73. [PMID: 37626377 PMCID: PMC10464136 DOI: 10.1186/s12929-023-00960-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Certain clonal complexes (CCs) of Klebsiella pneumoniae such as CC147 (ST147 and ST392) are major drivers of blaNDM dissemination across the world. ST147 has repeatedly reported from our geographical region, but its population dynamics and evolutionary trajectories need to be further studied. METHODS Comparative genomic analysis of 51 carbapenem-nonsusceptible strains as well as three hypervirulent K. pneumoniae (hvKp) recovered during 16-months of surveillance was performed using various bioinformatics tools. We investigated the genetic proximity of our ST147 strains with publicly available corresponding genomes deposited globally and from neighbor countries in our geographic region. RESULTS While IncL/M plasmid harboring blaOXA-48 was distributed among divergent clones, blaNDM-1 was circulated by twenty of the 25 CC147 dominant clone and were mostly recovered from the ICU. The NDM-1 core structure was bracketed by a single isoform of mobile genetic elements (MGEs) [ΔISKpn26-NDM-TnAs3-ΔIS3000-Tn5403] and was located on Col440I plasmid in 68.7% of ST392. However, various arrangements of MGEs including MITESen1/MITESen1 composite transposon or combination of MITESen1/ISSen4/IS903B/IS5/ISEhe3 on IncFIb (pB171) were identified in ST147. It seems that ST392 circulated blaNDM-1 in 2018 before being gradually replaced by ST147 from the middle to the end of sample collection in 2019. ST147 strains possessed the highest number of resistance markers and showed high genetic similarity with four public genomes that harbored blaNDM-1 on the same replicon type. Mainly, there was a convergence between clusters and isolated neighboring countries in the minimum-spanning tree. A conserved arrangement of resistance markers/MGEs was linked to methyltransferase armA which was embedded in class 1 integron in 8 isolates of ST147/ST48 high-risk clones. CONCLUSION Our findings highlight the dynamic nature of blaNDM-1 transmission among K. pneumoniae in Iran that occurs both clonally and horizontally via various combinations of MGEs. This is the first analysis of Iranian ST147/NDM + clone in the global context.
Collapse
Affiliation(s)
- Omid Pajand
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamzeh Rahimi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Faeze Gholami
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahereh Alipour
- Microbiology Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Darabi
- Microbiology Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
31
|
Wang J, Feng Y, Zong Z. Worldwide transmission of ST11-KL64 carbapenem-resistant Klebsiella pneumoniae: an analysis of publicly available genomes. mSphere 2023; 8:e0017323. [PMID: 37199964 PMCID: PMC10449508 DOI: 10.1128/msphere.00173-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023] Open
Abstract
ST11-KL64 is an internationally distributed lineage of carbapenem-resistant Klebsiella pneumoniae and is the most common type in China. The international and interprovincial (in China) transmission of ST11-KL64 CRKP remains to be elucidated. We used both static clusters defined based on a fixed cutoff of ≤21 pairwise single-nucleotide polymorphisms and dynamic groups defined by modeling the likelihood to be linked by a transmission threshold to investigate the transmission of ST11-KL64 strains based on genome sequences mining. We analyzed all publicly available genomes (n = 730) of ST11-KL64 strains, almost all of which had known carbapenemase genes with KPC-2 being dominant. We identified 4 clusters of international transmission and 14 clusters of interprovincial transmission across China of ST11-KL64 strains. We found that dynamic grouping could provide further resolution for determining clonal relatedness in addition to the widely adopted static clustering and therefore increases the confidence for inferring transmission.IMPORTANCECarbapenem-resistant Klebsiella pneumoniae (CRKP) is a serious challenge for clinical management and is prone to spread in and between healthcare settings. ST11-KL64 is the dominant CRKP type in China with a worldwide distribution. Here, we used two different methods, the widely used clustering based on a fixed single-nucleotide polymorphism (SNP) cutoff and the recently developed grouping by modeling transmission likelihood, to mine all 730 publicly available ST11-KL64 genomes. We identified international transmission of several strains and interprovincial transmission in China of a few, which warrants further investigations to uncover the mechanisms for their spread. We found that static clustering based on ≤21 fixed SNPs is sensitive to detect transmission and dynamic grouping has higher resolutions to provide complementary information. We suggest the use of the two methods in combination for analyzing transmission of bacterial strains. Our findings highlight the need of coordinated actions at both international and interprovincial levels for tackling multi-drug resistant organisms.
Collapse
Affiliation(s)
- Junna Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| |
Collapse
|
32
|
Mourão J, Ribeiro-Almeida M, Novais C, Magalhães M, Rebelo A, Ribeiro S, Peixe L, Novais Â, Antunes P. From Farm to Fork: Persistence of Clinically Relevant Multidrug-Resistant and Copper-Tolerant Klebsiella pneumoniae Long after Colistin Withdrawal in Poultry Production. Microbiol Spectr 2023; 11:e0138623. [PMID: 37428073 PMCID: PMC10434174 DOI: 10.1128/spectrum.01386-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Concerns about colistin-resistant bacteria in animal food-environmental-human ecosystems prompted the poultry sector to implement colistin restrictions and explore alternative trace metals/copper feed supplementation. The impact of these strategies on the selection and persistence of colistin-resistant Klebsiella pneumoniae in the whole poultry production chain needs clarification. We assessed colistin-resistant and copper-tolerant K. pneumoniae occurrence in chickens raised with inorganic and organic copper formulas from 1-day-old chicks to meat (7 farms from 2019 to 2020), after long-term colistin withdrawal (>2 years). Clonal diversity and K. pneumoniae adaptive features were characterized by cultural, molecular, and whole-genome-sequencing (WGS) approaches. Most chicken flocks (75%) carried K. pneumoniae at early and preslaughter stages, with a significant decrease (P < 0.05) in meat batches (17%) and sporadic water/feed contamination. High rates (>50%) of colistin-resistant/mcr-negative K. pneumoniae were observed among fecal samples, independently of feed. Most samples carried multidrug-resistant (90%) and copper-tolerant (81%; silA and pcoD positive and with a MICCuSO4 of ≥16 mM) isolates. WGS revealed accumulation of colistin resistance-associated mutations and F type multireplicon plasmids carrying antibiotic resistance and metal/copper tolerance genes. The K. pneumoniae population was polyclonal, with various lineages dispersed throughout poultry production. ST15-KL19, ST15-KL146, and ST392-KL27 and IncF plasmids were similar to those from global human clinical isolates, suggesting chicken production as a reservoir/source of clinically relevant K. pneumoniae lineages and genes with potential risk to humans through food and/or environmental exposure. Despite the limited mcr spread due to the long-term colistin ban, this action was ineffective in controlling colistin-resistant/mcr-negative K. pneumoniae, regardless of feed. This study provides crucial insights into the persistence of clinically relevant K. pneumoniae in the poultry production chain and highlights the need for continued surveillance and proactive food safety actions within a One Health perspective. IMPORTANCE The spread of bacteria resistant to last-resort antibiotics such as colistin throughout the food chain is a serious concern for public health. The poultry sector has responded by restricting colistin use and exploring alternative trace metals/copper feed supplements. However, it is unclear how and to which extent these changes impact the selection and persistence of clinically relevant Klebsiella pneumoniae throughout the poultry chain. We found a high occurrence of copper-tolerant and colistin-resistant/mcr-negative K. pneumoniae in chicken flocks, regardless of inorganic and organic copper formulas use and a long-term colistin ban. Despite the high K. pneumoniae isolate diversity, the occurrence of identical lineages and plasmids across samples and/or clinical isolates suggests poultry as a potential source of human K. pneumoniae exposure. This study highlights the need for continued surveillance and proactive farm-to-fork actions to mitigate the risks to public health, relevant for stakeholders involved in the food industry and policymakers tasked with regulating food safety.
Collapse
Affiliation(s)
- Joana Mourão
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Marisa Ribeiro-Almeida
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mafalda Magalhães
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- ESS, Polytechnic of Porto, Porto, Portugal
| | - Sofia Ribeiro
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ângela Novais
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
33
|
Tsui CKM, Ben Abid F, Al Ismail K, McElheny CL, Al Maslamani M, Omrani AS, Doi Y. Genomic Epidemiology of Carbapenem-Resistant Klebsiella in Qatar: Emergence and Dissemination of Hypervirulent Klebsiella pneumoniae Sequence Type 383 Strains. Antimicrob Agents Chemother 2023; 67:e0003023. [PMID: 37310284 PMCID: PMC10353355 DOI: 10.1128/aac.00030-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023] Open
Abstract
The emergence of carbapenem-resistant, hypervirulent Klebsiella pneumoniae is a new threat to health care. We studied the molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae isolates in Qatar using whole-genome sequence data. We also characterized the prevalence and genetic basis of hypervirulent phenotypes and established the virulence potential using a Galleria mellonella model. Of 100 Klebsiella isolates studied, NDM and OXA-48 were the most common carbapenemases. Core genome single-nucleotide polymorphism (SNP) analysis indicated the presence of diverse sequence types and clonal lineages; isolates belonging to Klebsiella quasipneumoniae subsp. quasipneumoniae sequence type 196 (ST196) and ST1416 may be disseminated among several health care centers. Ten K. pneumoniae isolates carried rmpA and/or truncated rmpA2, and 2 isolates belonged to KL2, indicating low prevalence of classical hypervirulent isolates. Isolates carrying both carbapenem resistance and hypervirulence genes were confined mainly to ST231 and ST383 isolates. One ST383 isolate was further investigated by MinION sequencing, and the assembled genome indicated that blaNDM was located on an IncHI1B-type plasmid (pFQ61_ST383_NDM-5) which coharbored several virulence factors, including the regulator of the mucoid phenotype (rmpA), the regulator of mucoid phenotype 2 (rmpA2), and aerobactin (iucABCD and iutA), likely resulting from recombination events. Comparative genomics indicated that this hybrid plasmid may be present in two additional Qatari ST383 isolates. Carbapenem-resistant, hypervirulent K. pneumoniae ST383 isolates pose an emerging threat to global health due to their simultaneous hypervirulence and multidrug resistance.
Collapse
Affiliation(s)
- Clement Kin-Ming Tsui
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Fatma Ben Abid
- Weill Cornell Medicine—Qatar, Doha, Qatar
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Khalil Al Ismail
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Christi Lee McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Muna Al Maslamani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Ali S. Omrani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
34
|
Wan W, Yang X, Yu H, Wang M, Jia W, Huang B, Qu F, Shan B, Tang YW, Chen L, Du H. Genomic characterization of carbapenem-resistant Klebsiella oxytoca complex in China: a multi-center study. Front Microbiol 2023; 14:1153781. [PMID: 37465019 PMCID: PMC10350504 DOI: 10.3389/fmicb.2023.1153781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Carbapenem-resistant (CR) Klebsiella oxytoca complex can be associated with high mortality, emerging as a new threat to the public health. K. oxytoca complex is phylogenetically close to K. pneumoniae, one of most common species associated with multidrug resistance in Enterobacterale. The latest research showed that K. oxytoca is a complex of six species. Currently, the epidemiological and genomic characteristics of CR K. oxytoca complex in China are still unclear. Here, we conducted a multi-center study on 25 CR K. oxytoca complex collected from five representative regions in China. These isolates were, respectively, recovered from respiratory tract (12 cases, 48.0%), abdominal cavity (5 cases, 20.0%), blood (4 cases, 16.0%), urine tract (3 cases, 12.0%) and skin or soft tissue (1 cases, 4.0%). Among them, 32.0% (8/25) of patients infected with K. oxytoca complex had a poor prognosis. In this study, three K. oxytoca complex species were detected, namely K. michiganensis, K. oxytoca and K. pasteurii, among which K. michiganensis was the most common. Three carbapenemase genes were identified, including blaNDM-1 (10, 38.5%), blaKPC-2 (9, 34.6%) and blaIMP (6 blaIMP-4 and 1 blaIMP-8; 7, 26.9%). Subsequent multilocus sequence typing identified various sequence types (STs), among which ST43, ST92 and ST145 were relatively common. Different from the clonal dissemination of high-risk carbapenem-resistant K. pneumoniae strains, our research revealed a polyclonal dissemination characteristic of CR K. oxytoca complex in China. S1-nuclease PFGE and Southern blot experiment showed that carbapenemase genes were encoded in plasmids of different sizes. Two blaNDM-harboring plasmids were subsequently sequenced, and were characterized to be IncX3 and IncC incompatibility groups, respectively. This is the first multi-center study of CR K. oxytoca complex in China, which improved our understanding of the prevalence and antimicrobial resistance characteristics of CR K. oxytoca complex in China.
Collapse
Affiliation(s)
- Weimin Wan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiaochun Yang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hua Yu
- Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Jia
- Center of Medical Laboratory, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fen Qu
- Laboratory Medicine Center, Aviation General Hospital, Beijing, China
| | - Bin Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Wei Tang
- Department of Medical Affairs, Danaher Diagnostic Platform/Cepheid (People's Republic of China), New York, NY, United States
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack-Meridian Health, Nutley, NJ, United States
- Hackensack Meridian School of Medicine, Seton Hall University, Nutley, NJ, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Hu M, Xing B, Yang M, Han R, Pan H, Guo H, Liu Z, Huang T, Du K, Jiang S, Zhang Q, Lu W, Huang X, Zhou C, Li J, Song W, Deng Z, Xiao M. Characterization of a novel genus of jumbo phages and their application in wastewater treatment. iScience 2023; 26:106947. [PMID: 37324530 PMCID: PMC10265529 DOI: 10.1016/j.isci.2023.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/22/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023] Open
Abstract
Phages widely exist in numerous environments from wastewater to deep ocean, representing a huge virus diversity, yet remain poorly characterized. Among them, jumbo phages are of particular interests due to their large genome (>200 kb) and unusual biology. To date, only six strains of jumbo phages infecting Klebsiella pneumoniae have been described. Here, we report the isolation and characterization of two jumbo phages from hospital wastewater representing the sixth genus: φKp5130 and φKp9438. Both phages showed lytic activity against broad range of clinical antibiotic-resistant K. pneumoniae strains and distinct physiology including long latent period, small burst size, and high resistance to thermal and pH stress. The treatment of sewage water with the phages cocktail resulted in dramatic decline in K. pneumoniae population. Overall, this study provides detailed molecular and genomics characterization of two novel jumbo phages, expands viral diversity, and provides novel candidate phages to facilitate environmental wastewater treatment.
Collapse
Affiliation(s)
- Ming Hu
- Department of Special Medicine, Basic Medicine College, Qingdao University, Qingdao 266071, China
| | - Bo Xing
- BGI-Shenzhen, Shenzhen 518083, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Yang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI College, Zhengzhou University, Zhengzhou 450000, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Rui Han
- BGI-Beijing, Beijing 102601, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huazheng Pan
- Department of The Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hui Guo
- Department of The Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhen Liu
- Department of Special Medicine, Basic Medicine College, Qingdao University, Qingdao 266071, China
| | - Tao Huang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Kang Du
- University of Science and Technology of China, Hefei 230026, China
| | | | - Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenjing Lu
- Department of Dermatology, Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Xun Huang
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Congzhao Zhou
- University of Science and Technology of China, Hefei 230026, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Beijing, Beijing 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
36
|
Rodrigues C, Lanza VF, Peixe L, Coque TM, Novais Â. Phylogenomics of Globally Spread Clonal Groups 14 and 15 of Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0339522. [PMID: 37098951 PMCID: PMC10269502 DOI: 10.1128/spectrum.03395-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/26/2023] [Indexed: 04/27/2023] Open
Abstract
Klebsiella pneumoniae sequence type 14 (ST14) and ST15 caused outbreaks of CTX-M-15 and/or carbapenemase producers worldwide, but their phylogeny and global dynamics remain unclear. We clarified the evolution of K. pneumoniae clonal group 14 (CG14) and CG15 by analyzing the capsular locus (KL), resistome, virulome, and plasmidome of public genomes (n = 481) and de novo sequences (n = 9) representing main sublineages circulating in Portugal. CG14 and CG15 evolved independently within 6 main subclades defined according to the KL and the accessory genome. The CG14 (n = 65) clade was structured in two large monophyletic subclades, CG14-I (KL2, 86%) and CG14-II (KL16, 14%), whose emergences were dated to 1932 and 1911, respectively. Genes encoding extended-spectrum β-lactamase (ESBL), AmpC, and/or carbapenemases were mostly observed in CG14-I (71% versus 22%). CG15 clade (n = 170) was segregated into subclades CG15-IA (KL19/KL106, 9%), CG15-IB (variable KL types, 6%), CG15-IIA (KL24, 43%) and CG15-IIB (KL112, 37%). Most CG15 genomes carried specific GyrA and ParC mutations and emerged from a common ancestor in 1989. CTX-M-15 was especially prevalent in CG15 (68% CG15 versus 38% CG14) and in CG15-IIB (92%). Plasmidome analysis revealed 27 predominant plasmid groups (PG), including particularly pervasive and recombinant F-type (n = 10), Col (n = 10), and new plasmid types. While blaCTX-M-15 was acquired multiple times by a high diversity of F-type mosaic plasmids, other antibiotic resistance genes (ARGs) were dispersed by IncL (blaOXA-48) or IncC (blaCMY/TEM-24) plasmids. We first demonstrate an independent evolutionary trajectory for CG15 and CG14 and how the acquisition of specific KL, quinolone-resistance determining region (QRDR) mutations (CG15), and ARGs in highly recombinant plasmids could have shaped the expansion and diversification of particular subclades (CG14-I and CG15-IIA/IIB). IMPORTANCE Klebsiella pneumoniae represents a major threat in the burden of antibiotic resistance (ABR). Available studies to explain the origin, the diversity, and the evolution of certain ABR K. pneumoniae populations have mainly been focused on a few clonal groups (CGs) using phylogenetic analysis of the core genome, the accessory genome being overlooked. Here, we provide unique insights into the phylogenetic evolution of CG14 and CG15, two poorly characterized CGs which have contributed to the global dissemination of genes responsible for resistance to first-line antibiotics such as β-lactams. Our results point out an independent evolution of these two CGs and highlight the existence of different subclades structured by the capsular type and the accessory genome. Moreover, the contribution of a turbulent flux of plasmids (especially multireplicon F type and Col) and adaptive traits (antibiotic resistance and metal tolerance genes) to the pangenome reflect the exposure and adaptation of K. pneumoniae under different selective pressures.
Collapse
Affiliation(s)
- Carla Rodrigues
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Val F. Lanza
- Unidad de Genómica Traslacional Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Luísa Peixe
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa M. Coque
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Ângela Novais
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog Glob Health 2023; 117:328-341. [PMID: 36089853 PMCID: PMC10177687 DOI: 10.1080/20477724.2022.2121362] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
For people living in developed countries life span is growing at a faster pace than ever. One of the main reasons for such success is attributable to the introduction and extensive use in the clinical practice of antibiotics over the course of the last seven decades. In hospital settings, Klebsiella pneumoniae represents a well-known and commonly described opportunistic pathogen, typically characterized by resistance to several antibiotic classes. On the other hand, the broad wedge of population living in Low and/or Middle Income Countries is increasing rapidly, allowing the spread of several commensal bacteria which are transmitted via human contact. Community transmission has been the original milieu of K. pneumoniae isolates characterized by an outstanding virulence (hypervirulent). These two characteristics, also defined as "pathotypes", originally emerged as different pathways in the evolutionary history of K. pneumoniae. For a long time, the Sequence Type (ST), which is defined by the combination of alleles of the 7 housekeeping genes of the Multi-Locus Sequence Typing, has been a reliable marker of the pathotype: multidrug-resistant clones (e.g. ST258, ST147, ST101) in the Western world and hypervirulent clones (e.g. ST23, ST65, ST86) in the Eastern. Currently, the boundaries separating the two pathotypes are fading away due to several factors, and we are witnessing a worrisome convergence in certain high-risk clones. Here we review the evidence available on confluence of multidrug-resistance and hypervirulence in specific K. pneumoniae clones.
Collapse
Affiliation(s)
- Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
38
|
Hu Y, Yang Y, Feng Y, Fang Q, Wang C, Zhao F, McNally A, Zong Z. Prevalence and clonal diversity of carbapenem-resistant Klebsiella pneumoniae causing neonatal infections: A systematic review of 128 articles across 30 countries. PLoS Med 2023; 20:e1004233. [PMID: 37339120 DOI: 10.1371/journal.pmed.1004233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/04/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is the most common pathogen causing neonatal infections, leading to high mortality worldwide. Along with increasing antimicrobial use in neonates, carbapenem-resistant K. pneumoniae (CRKP) has emerged as a severe challenge for infection control and treatment. However, no comprehensive systematic review is available to describe the global epidemiology of neonatal CRKP infections. We therefore performed a systematic review of available data worldwide and combined a genome-based analysis to address the prevalence, clonal diversity, and carbapenem resistance genes of CRKP causing neonatal infections. METHODS AND FINDINGS We performed a systematic review of studies reporting population-based neonatal infections caused by CRKP in combination with a genome-based analysis of all publicly available CRKP genomes with neonatal origins. We searched multiple databases (PubMed, Web of Science, Embase, Ovid MEDLINE, Cochrane, bioRxiv, and medRxiv) to identify studies that have reported data of neonatal CRKP infections up to June 30, 2022. We included studies addressing the prevalence of CRKP infections and colonization in neonates but excluded studies lacking the numbers of neonates, the geographical location, or independent data on Klebsiella or CRKP isolates. We used narrative synthesis for pooling data with JMP statistical software. We identified 8,558 articles and excluding those that did not meet inclusion criteria. We included 128 studies, none of which were preprints, comprising 127,583 neonates in 30 countries including 21 low- and middle-income countries (LMICs) for analysis. We found that bloodstream infection is the most common infection type in reported data. We estimated that the pooled global prevalence of CRKP infections in hospitalized neonates was 0.3% (95% confidence interval [CI], 0.2% to 0.3%). Based on 21 studies reporting patient outcomes, we found that the pooled mortality of neonatal CRKP infections was 22.9% (95% CI, 13.0% to 32.9%). A total of 535 neonatal CRKP genomes were identified from GenBank including Sequence Read Archive, of which 204 were not linked to any publications. We incorporated the 204 genomes with a literature review for understanding the species distribution, clonal diversity, and carbapenemase types. We identified 146 sequence types (STs) for neonatal CRKP strains and found that ST17, ST11, and ST15 were the 3 most common lineages. In particular, ST17 CRKP has been seen in neonates in 8 countries across 4 continents. The vast majority (75.3%) of the 1,592 neonatal CRKP strains available for analyzing carbapenemase have genes encoding metallo-β-lactamases and NDM (New Delhi metallo-β-lactamase) appeared to be the most common carbapenemase (64.3%). The main limitation of this study is the absence or scarcity of data from North America, South America, and Oceania. CONCLUSIONS CRKP contributes to a considerable number of neonatal infections and leads to significant neonatal mortality. Neonatal CRKP strains are highly diverse, while ST17 is globally prevalent and merits early detection for treatment and prevention. The dominance of blaNDM carbapenemase genes imposes challenges on therapeutic options in neonates and supports the continued inhibitor-related drug discovery.
Collapse
Affiliation(s)
- Ya Hu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yongqiang Yang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Chengcheng Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Feifei Zhao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Hussain A, Mazumder R, Ahmed A, Saima U, Phelan JE, Campino S, Ahmed D, Asadulghani M, Clark TG, Mondal D. Genome dynamics of high-risk resistant and hypervirulent Klebsiella pneumoniae clones in Dhaka, Bangladesh. Front Microbiol 2023; 14:1184196. [PMID: 37303793 PMCID: PMC10248448 DOI: 10.3389/fmicb.2023.1184196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Klebsiella pneumoniae is recognized as an urgent public health threat because of the emergence of difficult-to-treat (DTR) strains and hypervirulent clones, resulting in infections with high morbidity and mortality rates. Despite its prominence, little is known about the genomic epidemiology of K. pneumoniae in resource-limited settings like Bangladesh. We sequenced genomes of 32 K. pneumoniae strains isolated from patient samples at the International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b). Genome sequences were examined for their diversity, population structure, resistome, virulome, MLST, O and K antigens and plasmids. Our results revealed the presence of two K. pneumoniae phylogroups, namely KpI (K. pneumoniae) (97%) and KpII (K. quasipneumoniae) (3%). The genomic characterization revealed that 25% (8/32) of isolates were associated with high-risk multidrug-resistant clones, including ST11, ST14, ST15, ST307, ST231 and ST147. The virulome analysis confirmed the presence of six (19%) hypervirulent K. pneumoniae (hvKp) and 26 (81%) classical K. pneumoniae (cKp) strains. The most common ESBL gene identified was blaCTX-M-15 (50%). Around 9% (3/32) isolates exhibited a difficult-to-treat phenotype, harboring carbapenem resistance genes (2 strains harbored blaNDM-5 plus blaOXA-232, one isolate blaOXA-181). The most prevalent O antigen was O1 (56%). The capsular polysaccharides K2, K20, K16 and K62 were enriched in the K. pneumoniae population. This study suggests the circulation of the major international high-risk multidrug-resistant and hypervirulent (hvKp) K. pneumoniae clones in Dhaka, Bangladesh. These findings warrant immediate appropriate interventions, which would otherwise lead to a high burden of untreatable life-threatening infections locally.
Collapse
Affiliation(s)
- Arif Hussain
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Razib Mazumder
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Abdullah Ahmed
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Umme Saima
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jody E. Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dilruba Ahmed
- Clinical Microbiology and Immunology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Asadulghani
- Biosafety and BSL3 Laboratory, Biosafety Office, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dinesh Mondal
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
40
|
Rodrigues IC, Ribeiro-Almeida M, Ribeiro J, Silveira L, Prata JC, Pista A, Martins da Costa P. Occurrence of Multidrug-Resistant Bacteria Resulting from the Selective Pressure of Antibiotics: A Comprehensive Analysis of ESBL K. pneumoniae and MRSP Isolated in a Dog with Rhinorrhea. Vet Sci 2023; 10:vetsci10050326. [PMID: 37235409 DOI: 10.3390/vetsci10050326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Because of public health concerns, much greater scrutiny is now placed on antibiotic use in pets, especially for antimicrobial agents that have human analogs. Therefore, this study aimed to characterize the phenotypic and genotypic profiles of multidrug-resistant bacteria isolated from nasal swabs samples taken from a one-year-old male Serra da Estrela dog with rhinorrhea that was treated with amikacin. An extended-spectrum β-lactamases (ESBL) Klebsiella pneumoniae was isolated in the first sample taken from the left nasal cavity of the dog. Seven days later, methicillin-resistant (MRSP) Staphylococcus pseudintermedius was also isolated. Nevertheless, no alterations to the therapeutic protocol were performed. Once the inhibitory action of the antibiotic disappeared, the competitive advantage of the amikacin-resistant MRSP was lost, and only commensal flora was observed on both nasal cavities. The genotypic profile of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae revealed the same characteristics and close relation to other strains, mainly from Estonia, Slovakia and Romania. Regarding MRSP isolates, although resistance to aminoglycosides was present in the first MRSP, the second isolate carried aac(6')-aph(2″), which enhanced its resistance to amikacin. However, the veterinary action was focused on the treatment of the primary agent (ESBL K. pneumoniae), and the antibiotic applied was according to its phenotypic profile, which may have led to the resolution of the infectious process. Therefore, this study highlights the importance of targeted therapy, proper clinical practice and laboratory-hospital communication to safeguard animal, human and environmental health.
Collapse
Affiliation(s)
- Inês C Rodrigues
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marisa Ribeiro-Almeida
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Rede de Química e Tecnologia (REQUIMTE), Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Ribeiro
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Leonor Silveira
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1600-609 Lisbon, Portugal
| | - Joana C Prata
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal
| | - Angela Pista
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1600-609 Lisbon, Portugal
| | - Paulo Martins da Costa
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
41
|
Zaki BM, Hussein AH, Hakim TA, Fayez MS, El-Shibiny A. Phages for treatment of Klebsiella pneumoniae infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:207-239. [PMID: 37739556 DOI: 10.1016/bs.pmbts.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen involved in both hospital- and community-acquired infections. K. pneumoniae is associated with various infections, including pneumonia, septicemia, meningitis, urinary tract infection, and surgical wound infection. K. pneumoniae possesses serious virulence, biofilm formation ability, and severe resistance to many antibiotics especially hospital-acquired strains, due to excessive use in healthcare systems. This limits the available effective antibiotics that can be used for patients suffering from K. pneumoniae infections; therefore, alternative treatments are urgently needed. Bacteriophages (for short, phages) are prokaryotic viruses capable of infecting, replicating, and then lysing (lytic phages) the bacterial host. Phage therapy exhibited great potential for treating multidrug-resistant bacterial infections comprising K. pneumoniae. Hence, this chapter emphasizes and summarizes the research articles in the PubMed database from 1948 until the 15th of December 2022, addressing phage therapy against K. pneumoniae. The chapter provides an overview of K. pneumoniae phages covering different aspects, including phage isolation, different morphotypes of isolated phages, in vitro characterization, anti-biofilm activity, various therapeutic forms, in vivo research and clinical studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Toka A Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed S Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
42
|
Pham MH, Hoi LT, Beale MA, Khokhar FA, Hoa NT, Musicha P, Blackwell GA, Long HB, Huong DT, Binh NG, Co DX, Giang T, Bui C, Tran HN, Bryan J, Herrick A, Feltwell T, Nadjm B, Parkhill J, van Doorn HR, Trung NV, Van Kinh N, Török ME, Thomson NR. Evidence of widespread endemic populations of highly multidrug resistant Klebsiella pneumoniae in hospital settings in Hanoi, Vietnam: a prospective cohort study. THE LANCET. MICROBE 2023; 4:e255-e263. [PMID: 36801013 DOI: 10.1016/s2666-5247(22)00338-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 09/14/2022] [Accepted: 11/16/2022] [Indexed: 02/18/2023]
Abstract
BACKGROUND Patients with prolonged hospitalisation have a significant risk of carriage of and subsequent infection with extended spectrum β-lactamase (ESBL)-producing and carbapenemase-producing Klebsiella pneumoniae. However, the distinctive roles of the community and hospital environments in the transmission of ESBL-producing or carbapenemase-producing K pneumoniae remain elusive. We aimed to investigate the prevalence and transmission of K pneumoniae within and between the two tertiary hospitals in Hanoi, Viet Nam, using whole-genome sequencing. METHODS We did a prospective cohort study of 69 patients in intensive care units (ICUs) from two hospitals in Hanoi, Viet Nam. Patients were included if they were aged 18 years or older, admitted for longer than the mean length of stay in their ICU, and cultured K pneumoniae from their clinical samples. Longitudinally collected samples from patients (collected weekly) and the ICU environment (collected monthly) were cultured on selective media, and whole-genome sequences from K pneumoniae colonies analysed. We did phylogenetic analyses and correlated phenotypic antimicrobial susceptibility testing with genotypic features of K pneumoniae isolates. We constructed transmission networks of patient samples, relating ICU admission times and locations with genetic similarity of infecting K pneumoniae. FINDINGS Between June 1, 2017, and Jan 31, 2018, 69 patients were in the ICUs and eligible for inclusion, and a total of 357 K pneumoniae isolates were cultured and successfully sequenced. 228 (64%) of K pneumoniae isolates carried between two and four different ESBL-encoding and carbapenemase-encoding genes, with 164 (46%) isolates carrying genes encoding both, with high minimum inhibitory concentrations. We found a novel co-occurrence of blaKPC-2 and blaNDM-1 in 46·6% of samples from the globally successful ST15 lineage. Despite being physically and clinically separated, the two hospitals shared closely related strains carrying the same array of antimicrobial resistance genes. INTERPRETATION These results highlight the high prevalence of ESBL-positive carbapenem-resistant K pneumoniae in ICUs in Viet Nam. Through studying K pneumoniae ST15 in detail, we showed how important resistance genes are contained within these strains that are carried broadly by patients entering the two hospitals directly or through referral. FUNDING Medical Research Council Newton Fund, Ministry of Science and Technology, Wellcome Trust, Academy of Medical Sciences, Health Foundation, and National Institute for Health and Care Research Cambridge Biomedical Research Centre.
Collapse
Affiliation(s)
- My H Pham
- Wellcome Sanger Institute, Hinxton, UK; Oxford University Clinical Research Unit, Hanoi, Viet Nam
| | - Le Thi Hoi
- National Hospital for Tropical Diseases, Hanoi, Viet Nam; Hanoi Medical University, Hanoi, Viet Nam
| | | | - Fahad A Khokhar
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute for Therapeutic Immunology and Infectious Disease, Cambridge, UK
| | - Nguyen Thi Hoa
- National Hospital for Tropical Diseases, Hanoi, Viet Nam; National Lung Hospital, Department of Microbiology and National Tuberculosis Reference Laboratory, Hanoi, Viet Nam
| | | | - Grace A Blackwell
- Wellcome Sanger Institute, Hinxton, UK; EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Hoang Bao Long
- Oxford University Clinical Research Unit, Hanoi, Viet Nam
| | - Dang Thi Huong
- National Hospital for Tropical Diseases, Hanoi, Viet Nam
| | | | | | - Tran Giang
- National Hospital for Tropical Diseases, Hanoi, Viet Nam
| | | | - Hai Ninh Tran
- National Hospital for Tropical Diseases, Hanoi, Viet Nam
| | - James Bryan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Archie Herrick
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Behzad Nadjm
- Oxford University Clinical Research Unit, Hanoi, Viet Nam; MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Hindrik Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Viet Nam; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nguyen Vu Trung
- National Hospital for Tropical Diseases, Hanoi, Viet Nam; Hanoi Medical University, Hanoi, Viet Nam
| | | | - Mili Estée Török
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK; London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
43
|
Wang J, Feng Y, Zong Z. The Origins of ST11 KL64 Klebsiella pneumoniae: a Genome-Based Study. Microbiol Spectr 2023; 11:e0416522. [PMID: 36971550 PMCID: PMC10101065 DOI: 10.1128/spectrum.04165-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major severe threat for human health, and its spread is largely driven by a few dominant lineages defined by sequence types (ST) and capsular (KL) types. ST11-KL64 is one such dominant lineage that is particularly common in China but also has a worldwide distribution. However, the population structure and origin of ST11-KL64 K. pneumoniae remain to be determined. We retrieved all K. pneumoniae genomes (n = 13,625, as of June 2022) from NCBI, comprising 730 ST11-KL64 strains. Phylogenomic analysis of core-genome single-nucleotide polymorphisms identified two major clades (I and II) plus an additional singleton of ST11-KL64. We performed dated ancestral reconstruction analysis using BactDating and found that clade I likely emerged in 1989 in Brazil, while clade II emerged around 2008 in eastern China. We then investigated the origin of the two clades and the singleton using a phylogenomic approach combined with analysis of potential recombination regions. We found that ST11-KL64 clade I is likely a hybrid with 91.2% (ca. 4.98 Mb) of the chromosome derived from the ST11-KL15 lineage and 8.8% (483 kb) acquired from ST147-KL64. In contrast, ST11-KL64 clade II was derived from ST11-KL47 with swapping of a 157-kb region (3% of the chromosome) containing the capsule gene cluster with clonal complex 1764 (CC1764)-KL64. The singleton also evolved from ST11-KL47 but with swapping of a 126-kb region with ST11-KL64 clade I. In conclusion, ST11-KL64 is a heterogenous lineage comprising two major clades and a singleton with different origins that emerged in different countries at different time points. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a severe threat globally and is associated with increased lengths of hospital stay and high mortality in affected patients. The spread of CRKP is largely driven by a few dominant lineages, including ST11-KL64, the dominant type in China with a worldwide distribution. Here, we tested the hypothesis that ST11-KL64 K. pneumoniae is a single genomic lineage by performing a genome-based study. However, we found that ST11-KL64 comprises a singleton and two major clades, which emerged in different countries in different years. In particular, the two clades and the singleton have different origins and acquired the KL64 capsule gene cluster from various sources. Our study underscores that the chromosomal region containing the capsule gene cluster is a hot spot of recombination in K. pneumoniae. This represents a major evolutionary mechanism employed by some bacteria for rapid evolution with novel clades that accommodate stress for survival.
Collapse
Affiliation(s)
- Junna Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| |
Collapse
|
44
|
Garza-Ramos U, Rodríguez-Medina N, Córdova-Fletes C, Rubio-Mendoza D, Alonso-Hernández CJ, López-Jácome LE, Morfín-Otero R, Rodríguez-Noriega E, Rojas-Larios F, Vázquez-Larios MDR, Ponce-de-Leon A, Choy-Chang EV, Franco-Cendejas R, Martinez-Guerra BA, Morales-de-La-Peña CT, Mena-Ramírez JP, López-Gutiérrez E, García-Romo R, Ballesteros-Silva B, Valadez-Quiroz A, Avilés-Benítez LK, Feliciano-Guzmán JM, Pérez-Vicelis T, Velázquez-Acosta MDC, Padilla-Ibarra C, López-Moreno LI, Corte-Rojas RE, Couoh-May CA, Quevedo-Ramos MA, López-García M, Chio-Ortiz G, Gil-Veloz M, Molina-Chavarria A, Mora-Domínguez JP, Romero-Romero D, May-Tec FJ, Garza-González E. Whole genome analysis of Gram-negative bacteria using the EPISEQ CS application and other bioinformatic platforms. J Glob Antimicrob Resist 2023; 33:61-71. [PMID: 36878463 DOI: 10.1016/j.jgar.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
OBJECTIVES To determine genomic characteristics and molecular epidemiology of carbapenem non-susceptible Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa from medical centres of Mexico using whole genome sequencing data analysed with the EPISEQⓇ CS application and other bioinformatic platforms. METHODS Clinical isolates collected from 28 centres in Mexico included carbapenem-non-susceptible K. pneumoniae (n = 22), E. coli (n = 24), A. baumannii (n = 16), and P. aeruginosa (n = 13). Isolates were subjected to whole genome sequencing using the Illumina (MiSeq) platform. FASTQ files were uploaded to the EPISEQⓇ CS application for analysis. Additionally, the tools Kleborate v2.0.4 and Pathogenwatch were used as comparators for Klebsiella genomes, and the bacterial whole genome sequence typing database was used for E. coli and A. baumannii. RESULTS For K. pneumoniae, both bioinformatic approaches detected multiple genes encoding aminoglycoside, quinolone, and phenicol resistance, and the presence of blaNDM-1 explained carbapenem non-susceptibility in 18 strains and blaKPC-3 in four strains. Regarding E. coli, both EPISEQⓇ CS and bacterial whole genome sequence typing database analyses detected multiple virulence and resistance genes: 20 of 24 (83.3%) strains carried blaNDM, 3 of 24 (12.4%) carried blaOXA-232, and 1 carried blaOXA-181. Genes that confer resistance to aminoglycosides, tetracyclines, sulfonamides, phenicols, trimethoprim, and macrolides were also detected by both platforms. Regarding A. baumannii, the most frequent carbapenemase-encoding gene detected by both platforms was blaOXA-72, followed by blaOXA-66. Both approaches detected similar genes for aminoglycosides, carbapenems, tetracyclines, phenicols, and sulfonamides. Regarding P. aeruginosa, blaVIM, blaIMP, and blaGES were the more frequently detected. Multiple virulence genes were detected in all strains. CONCLUSION Compared to the other available platforms, EPISEQⓇ CS enabled a comprehensive resistance and virulence analysis, providing a reliable method for bacterial strain typing and characterization of the virulome and resistome.
Collapse
Affiliation(s)
| | | | | | - Daira Rubio-Mendoza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | | | | | - Rao Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Jalisco, Mexico
| | | | | | | | - Alfredo Ponce-de-Leon
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico
| | | | | | | | | | - Juan Pablo Mena-Ramírez
- Hospital General de Zona No. 21, IMSS. Centro Universitario de los Altos, Universidad de Guadalajara. Jalisco, Mexico
| | | | | | | | | | | | | | - Talia Pérez-Vicelis
- Hospital Regional de alta especialidad Bicentenario de la independencia, Estado de México, Mexico
| | | | | | | | | | | | | | | | | | - Mariana Gil-Veloz
- Hospital Regional de Alta Especialidad del Bajío, Guanajuato, Mexico
| | | | | | | | | | | |
Collapse
|
45
|
Genomic Characterization of Multidrug-Resistant Extended Spectrum β-Lactamase-Producing Klebsiella pneumoniae from Clinical Samples of a Tertiary Hospital in South Kivu Province, Eastern Democratic Republic of Congo. Microorganisms 2023; 11:microorganisms11020525. [PMID: 36838490 PMCID: PMC9960421 DOI: 10.3390/microorganisms11020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Multidrug-resistant (MDR) and extended spectrum β-lactamase (ESBL)-producing extra-intestinal K. pneumoniae are associated with increased morbidity and mortality. This study aimed to characterize the resistance and virulence profiles of extra-intestinal MDR ESBL-producing K. pneumoniae associated with infections at a tertiary hospital in South-Kivu province, DRC. Whole-genome sequencing (WGS) was carried out on 37 K. pneumoniae isolates displaying MDR and ESBL-producing phenotype. The assembled genomes were analysed for phylogeny, virulence factors and antimicrobial resistance genes (ARG) determinants. These isolates were compared to sub-Saharan counterparts. K. pneumoniae isolates displayed a high genetic variability with up to 16 sequence types (ST). AMR was widespread against β-lactamases (including third and fourth-generation cephalosporins, but not carbapenems), aminoglycosides, ciprofloxacin, tetracycline, erythromycin, nitrofurantoin, and cotrimoxazole. The blaCTX-M-15 gene was the most common β-lactamase gene among K. pneumoniae isolates. No carbapenemase gene was found. ARG for aminoglycosides, quinolones, phenicols, tetracyclines, sulfonamides, nitrofurantoin were widely distributed among the isolates. Nine isolates had the colistin-resistant R256G substitution in the pmrB efflux pump gene without displaying reduced susceptibility to colistin. Despite carrying virulence genes, none had hypervirulence genes. Our results highlight the genetic diversity of MDR ESBL-producing K. pneumoniae isolates and underscore the importance of monitoring simultaneously the evolution of phenotypic and genotypic AMR in Bukavu and DRC, while calling for caution in administering colistin and carbapenem to patients.
Collapse
|
46
|
Pathak A, Tejan N, Dubey A, Chauhan R, Fatima N, Jyoti, Singh S, Bhayana S, Sahu C. Outbreak of colistin resistant, carbapenemase ( bla NDM, bla OXA-232) producing Klebsiella pneumoniae causing blood stream infection among neonates at a tertiary care hospital in India. Front Cell Infect Microbiol 2023; 13:1051020. [PMID: 36816594 PMCID: PMC9929527 DOI: 10.3389/fcimb.2023.1051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Infections caused by multi-drug resistant Klebsiella pneumoniae are a leading cause of mortality and morbidity among hospitalized patients. In neonatal intensive care units (NICU), blood stream infections by K. pneumoniae are one of the most common nosocomial infections leading to poor clinical outcomes and prolonged hospital stays. Here, we describe an outbreak of multi-drug resistant K. pneumoniae among neonates admitted at the NICU of a large tertiary care hospital in India. The outbreak involved 5 out of 7 neonates admitted in the NICU. The antibiotic sensitivity profiles revealed that all K. pneumoniae isolates were multi-drug resistant including carbapenems and colistin. The isolates belonged to three different sequence types namely, ST-11, ST-16 and ST-101. The isolates harboured carbapenemase genes, mainly bla NDM-1, bla NDM-5 and bla OXA-232 besides extended-spectrum β-lactamases however the colistin resistance gene mcr-1, mcr-2 and mcr-3 could not be detected. Extensive environmental screening of the ward and healthcare personnel led to the isolation of K. pneumoniae ST101 from filtered incubator water, harboring bla NDM-5, bla OXA-232 and ESBL genes (bla CTX-M) but was negative for the mcr genes. Strict infection control measures were applied and the outbreak was contained. This study emphasizes that early detection of such high-risk clones of multi-drug resistant isolates, surveillance and proper infection control practices are crucial to prevent outbreaks and further spread into the community.
Collapse
Affiliation(s)
- Ashutosh Pathak
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Akanksha Dubey
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Radha Chauhan
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Nida Fatima
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Jyoti
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sushma Singh
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sahil Bhayana
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
47
|
Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics (Basel) 2023; 12:antibiotics12020234. [PMID: 36830145 PMCID: PMC9952820 DOI: 10.3390/antibiotics12020234] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative opportunistic pathogen responsible for a variety of community and hospital infections. Infections caused by carbapenem-resistant K. pneumoniae (CRKP) constitute a major threat for public health and are strongly associated with high rates of mortality, especially in immunocompromised and critically ill patients. Adhesive fimbriae, capsule, lipopolysaccharide (LPS), and siderophores or iron carriers constitute the main virulence factors which contribute to the pathogenicity of K. pneumoniae. Colistin and tigecycline constitute some of the last resorts for the treatment of CRKP infections. Carbapenemase production, especially K. pneumoniae carbapenemase (KPC) and metallo-β-lactamase (MBL), constitutes the basic molecular mechanism of CRKP emergence. Knowledge of the mechanism of CRKP appearance is crucial, as it can determine the selection of the most suitable antimicrobial agent among those most recently launched. Plazomicin, eravacycline, cefiderocol, temocillin, ceftolozane-tazobactam, imipenem-cilastatin/relebactam, meropenem-vaborbactam, ceftazidime-avibactam and aztreonam-avibactam constitute potent alternatives for treating CRKP infections. The aim of the current review is to highlight the virulence factors and molecular pathogenesis of CRKP and provide recent updates on the molecular epidemiology and antimicrobial treatment options.
Collapse
|
48
|
Dumigan A, Gonzalez RC, Morris B, Sá-Pessoa J. Visualisation of Host-Pathogen Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1406:19-39. [PMID: 37016109 DOI: 10.1007/978-3-031-26462-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The core of biomedical science is the use of laboratory techniques to support the diagnosis and treatment of disease in clinical settings. Despite tremendous advancement in our understanding of medicine in recent years, we are still far from having a complete understanding of human physiology in homeostasis, let alone the pathology of disease states. Indeed medical advances over the last two hundred years would not have been possible without the invention of and continuous development of visualisation techniques available to research scientists and clinicians. As we have all learned from the recent COVID pandemic, despite advances in modern medicine we still have much to learn regarding infection biology. Indeed antimicrobial resistant (AMR) bacteria are a global threat to human health, meaning research into bacterial pathogenesis is vital. In this chapter, we will briefly describe the nature of microbes and host immune responses before delving into some of the visualisation techniques utilised in the field of biomedical research with a focus on host-pathogen interactions. We will give a brief overview of commonly used techniques from gold standard staining methods, in situ hybridisation, microscopy, western blotting, microbial characterisation, to cutting-edge image flow cytometry and mass spectrometry. Specifically, we will focus on techniques utilised to visualise interactions between the host, our own bodies, and invading organisms including bacteria. We will touch on in vitro and ex vivo modelling methodology with examples utilised to delineate pathogenicity in disease. A better understanding of bacterial biology, immunology and how these fields interact (host-pathogen communications) in biomedical research is integral to developing novel therapeutic approaches which circumvent the need for antibiotics, an important issue as we enter a post-antibiotic era.
Collapse
Affiliation(s)
- Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | | | - Brenda Morris
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
49
|
Nykrynova M, Barton V, Bezdicek M, Lengerova M, Skutkova H. Identification of highly variable sequence fragments in unmapped reads for rapid bacterial genotyping. BMC Genomics 2022; 23:445. [PMID: 36581824 PMCID: PMC9798552 DOI: 10.1186/s12864-022-08550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bacterial genotyping is a crucial process in outbreak investigation and epidemiological studies. Several typing methods such as pulsed-field gel electrophoresis, multilocus sequence typing (MLST) and whole genome sequencing are currently used in routine clinical practice. However, these methods are costly, time-consuming and have high computational demands. An alternative to these methods is mini-MLST, a quick, cost-effective and robust method based on high-resolution melting analysis. Nevertheless, no standardized approach to identify markers suitable for mini-MLST exists. Here, we present a pipeline for variable fragment detection in unmapped reads based on a modified hybrid assembly approach using data from one sequencing platform. RESULTS In routine assembly against the reference sequence, high variable reads are not aligned and remain unmapped. If de novo assembly of them is performed, variable genomic regions can be located in created scaffolds. Based on the variability rates calculation, it is possible to find a highly variable region with the same discriminatory power as seven housekeeping gene fragments used in MLST. In the work presented here, we show the capability of identifying one variable fragment in de novo assembled scaffolds of 21 Escherichia coli genomes and three variable regions in scaffolds of 31 Klebsiella pneumoniae genomes. For each identified fragment, the melting temperatures are calculated based on the nearest neighbor method to verify the mini-MLST's discriminatory power. CONCLUSIONS A pipeline for a modified hybrid assembly approach consisting of reference-based mapping and de novo assembly of unmapped reads is presented. This approach can be employed for the identification of highly variable genomic fragments in unmapped reads. The identified variable regions can then be used in efficient laboratory methods for bacterial typing such as mini-MLST with high discriminatory power, fully replacing expensive methods such as MLST. The results can and will be delivered in a shorter time, which allows immediate and fast infection monitoring in clinical practice.
Collapse
Affiliation(s)
- Marketa Nykrynova
- grid.4994.00000 0001 0118 0988Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Vojtech Barton
- grid.4994.00000 0001 0118 0988Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Matej Bezdicek
- grid.412554.30000 0004 0609 2751Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Martina Lengerova
- grid.412554.30000 0004 0609 2751Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Helena Skutkova
- grid.4994.00000 0001 0118 0988Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| |
Collapse
|
50
|
Dong N, Li R, Lai Y. Editorial: Klebsiella pneumoniae: Antimicrobial resistance, virulence and therapeutic strategies. Front Cell Infect Microbiol 2022; 12:1108817. [PMID: 36619763 PMCID: PMC9817102 DOI: 10.3389/fcimb.2022.1108817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ning Dong
- Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Soochow University, Suzhou, China,*Correspondence: Ning Dong,
| | - Ruichao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yichyi Lai
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, China,Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, China
| |
Collapse
|