1
|
Orlandi G, Rossi N, Chiarelli F, Di Filippo P. Vipera Snakebite in Children: A Focus on Europe. CHILDREN (BASEL, SWITZERLAND) 2025; 12:393. [PMID: 40150675 PMCID: PMC11941593 DOI: 10.3390/children12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Although there are over 5 million cases of snakebites each year, up-to-date data on epidemiology and management in European children are lacking in literature. Snakebite envenoming is a rare but potentially life-threatening event, and children are more susceptible due to their lower weight-to-venom ratio. Symptoms of viper envenomation in children are mainly local, but the lymphatic and blood diffusion of the venom may cause systemic symptoms, mainly hemotoxic and cytotoxic symptoms. Immunotherapy with anti-viper serums is the cornerstone of treatment for viper bites, while the use of antibiotics, steroids and analgesics is still unclear and unstandardized. Recently, efforts have been made to improve the pediatric approach to viper envenomation in European children. Several pediatric case reports in children were reported in literature, and a pediatric grading severity score and electronic clinical tool (VipGrade®) were created to better manage this issue. However, larger studies are needed to validate these pediatric tools. This narrative review focuses on the clinical characteristics and management of European snake envenomation in children.
Collapse
Affiliation(s)
| | | | | | - Paola Di Filippo
- Department of Pediatrics, University of Chieti, 66100 Chieti, Italy; (G.O.); (N.R.); (F.C.)
| |
Collapse
|
2
|
Zona Rubio DC, Aragón DM, Almeida Alves I. Innovations in Snake Venom-Derived Therapeutics: A Systematic Review of Global Patents and Their Pharmacological Applications. Toxins (Basel) 2025; 17:136. [PMID: 40137909 PMCID: PMC11945783 DOI: 10.3390/toxins17030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 03/29/2025] Open
Abstract
Active compounds from natural sources, particularly snake venoms, are crucial for pharmaceutical development despite challenges in drug discovery. Snake venoms, historically used for medicinal purposes, contain bioactive peptides and enzymes that show therapeutic potential for conditions such as arthritis, asthma, cancer, chronic pain, infections and cardiovascular diseases. The objective of this study was to examine pharmacological and biomedical innovations by identifying the key research trends, the most studied snake species, and their therapeutic applications. A systematic review of patents related to snake venoms was conducted using the European Patent Office database, Espacenet, covering 2014 to mid-2024. The search employed the keyword "venom," applying IPC classification A61K38/00, resulting in 31 patents after screening. A PubMed survey on "snake venom derivatives innovations" was conducted to compare the scientific literature volume with the identified patents. This review highlights the therapeutic potential of snake venom-derived products for coagulation disorders, cancer, inflammation, and pain management. Despite challenges in pharmacokinetics and venom variability, advancements in biotechnology offer promise for personalized therapies. The future of snake venom-based treatments appears promising for addressing complex medical conditions.
Collapse
Affiliation(s)
- Diana Carolina Zona Rubio
- Grupo de Investigación Cuidado Cardiorrespiratorio, Universidad Manuela Beltrán, Bogotá 110231, Colombia
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Izabel Almeida Alves
- Faculdade de Farmácia, Departamento do Medicamento, Universidade Federal da Bahia, Salvador 40110-909, Bahia, Brazil;
- Programa de Pós-Graduação em Farmácia, Universidade Estadual da Bahia, Salvador 40110-909, Bahia, Brazil
| |
Collapse
|
3
|
Fusco LS, Lopez GL, Maslovski F, Brignone S, Chaves MG, Calvete JJ, Franco YG, Hernandez D, Van de Velde A, Marin C, Palma S, Maletto B, Moron G, Leiva LC. Evaluation of a nanostructured CpG-ODN/ascorbyl palmitate as a safe and effective adjuvant for anticrotalic PLA2 serum. Trans R Soc Trop Med Hyg 2025:trae129. [PMID: 39749533 DOI: 10.1093/trstmh/trae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The WHO states that antivenom is the only safe and effective treatment to neutralize snake venom. Snakebite antivenom typically involves horse hyperimmunization with crude venom and Freund's adjuvant. METHODS In the current work, we analyzed the ascorbyl palmitate liquid crystal structure with snake protein or PLA2, the carrier charge capacity, and we evaluated the immune response induced by the enzyme P9a(Cdt-PLA2) formulated in a nanostructure using CpG-ODN, determining the titer of IgG antibodies. BALB/c mice were subcutaneously immunized on days 0, 15 and 30 with P9a(Cdt-PLA2)/CpG-ODN/Coa-ASC16 or P9a(Cdt-PLA2)/Freund's adjuvant (complete first and incomplete-booster). On day 48 the mice were sacrificed. The neutralization ability of antibodies from animals immunized with P9a(Cdt-PLA2)/CpG-ODN/Coa-ASC16 or P9a(Cdt-PLA2)/Freund's adjuvant was tested against PLA2 activity and venom lethality. RESULTS In both groups of immunized mice, the antibody titers in blood samples at the assayed time were high (approximately 1×105). The antibodies were able to neutralize P9a(Cdt-PLA2) activity in vitro and lethality in vivo. Microscopic analysis showed that P9a(Cdt-PLA2)/CpG-ODN/Coa-ASC16 produces minimal damage at injection sites compared with Freund's adjuvant. CONCLUSION The Coa-ASC16/CpG-ODN formulation shows promise as a safe and effective adjuvant against crotalic PLA2, inducing a strong humoral response and reducing local tissue damage compared with Freund's adjuvant.
Collapse
Affiliation(s)
- Luciano S Fusco
- Conse jo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), CP3400 Corrientes, Argentina
- Facultad de Ciencias Exactas Naturales y Agrimensura, Universidad Nacional del Nordeste, CP3400 Corrientes, Argentina
| | - Gisela L Lopez
- Conse jo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), CP3400 Corrientes, Argentina
| | - Franco Maslovski
- Conse jo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), CP3400 Corrientes, Argentina
| | - Sofía Brignone
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, UNITEFA (CONICET), CP5000 Córdoba, Argentina
| | - María G Chaves
- Facultad de Ciencias Exactas Naturales y Agrimensura, Universidad Nacional del Nordeste, CP3400 Corrientes, Argentina
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Yanet G Franco
- Facultad de Ciencias Exactas Naturales y Agrimensura, Universidad Nacional del Nordeste, CP3400 Corrientes, Argentina
| | - David Hernandez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, CP3400 Corrientes, Argentina
| | - Andrea Van de Velde
- Conse jo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), CP3400 Corrientes, Argentina
| | - Constanza Marin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, CP5000 Córdoba, Argentina
- Consejo Nacional de CP5000Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CP5000 Córdoba, Argentina
| | - Santiago Palma
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, UNITEFA (CONICET), CP5000 Córdoba, Argentina
| | - Belkys Maletto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, CP5000 Córdoba, Argentina
- Consejo Nacional de CP5000Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CP5000 Córdoba, Argentina
| | - Gabriel Moron
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, CP5000 Córdoba, Argentina
- Consejo Nacional de CP5000Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CP5000 Córdoba, Argentina
| | - Laura C Leiva
- Conse jo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), CP3400 Corrientes, Argentina
- Facultad de Ciencias Exactas Naturales y Agrimensura, Universidad Nacional del Nordeste, CP3400 Corrientes, Argentina
| |
Collapse
|
4
|
Gutiérrez JM, R Casewell N, Laustsen AH. Progress and Challenges in the Field of Snakebite Envenoming Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:465-485. [PMID: 39088847 DOI: 10.1146/annurev-pharmtox-022024-033544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Snakebite envenoming kills and maims hundreds of thousands of people every year, especially in the rural settings of tropical regions. Envenomings are still treated with animal-derived antivenoms, which have prevented many lives from being lost but which are also medicines in need of innovation. Strides are being made to improve envenoming therapies, with promising efforts made toward optimizing manufacturing and quality aspects of existing antivenoms, accelerating research and development of recombinant antivenoms based on monoclonal antibodies, and repurposing of small-molecule inhibitors that block key toxins. Here, we review the most recent advances in these fields and discuss therapeutic opportunities and limitations for different snakebite treatment modalities. Finally, we discuss challenges related to preclinical and clinical evaluation, regulatory pathways, large-scale manufacture, and distribution and access that need to be addressed to fulfill the goals of the World Health Organization's global strategy to prevent and control snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica;
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom;
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
5
|
Arias-Esquivel AM, Moscoso E, Umaña D, Arguedas M, Solano D, Durán G, Gómez A, Gutiérrez JM, León G. Stress levels, hematological condition, and productivity of plasma-producing horses used for snake antivenom manufacture: A comparison of two industrial bleeding methods. Toxicon X 2024; 24:100212. [PMID: 39525403 PMCID: PMC11543541 DOI: 10.1016/j.toxcx.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The immunization and industrial bleeding of horses are essential stages for producing snake antivenoms. In Costa Rica, the traditional method involves stimulating the antibody response of horses by periodically injecting venoms, collecting hyperimmune plasma over three consecutive bleeding days, and repeating this process every eight weeks. While this method does not cause major physical or hematological issues in horses, the associated stress has not been evaluated. We compared this traditional method with an alternative method that involves injecting venoms, collecting hyperimmune plasma in a single bleeding day, and repeating the process every two weeks. We assessed stress (via serum and fecal cortisol levels and an ethological study), hematological parameters (hematocrit and hemoglobin concentration), and plasma productivity over eight months. Serum cortisol levels remained within the normal range for both methods throughout the immunization/bleeding cycle. However, serum and fecal cortisol levels were significantly higher in horses subjected to the traditional method compared to those in the alternative method. Neither method caused significant hematological alterations. Notably, the alternative method yielded a higher volume of plasma. We concluded that adopting the alternative method ensures horse welfare while improving industrial bleeding productivity. This approach may reduce costs and improve the availability of this essential treatment for vulnerable populations.
Collapse
Affiliation(s)
| | - Edwin Moscoso
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Deibid Umaña
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauricio Arguedas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Aarón Gómez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
6
|
Chanda A, Salvi NC, Shelke PV, Kalita B, Patra A, Puzari U, Khadilkar MV, Mukherjee AK. Supplementation of polyclonal antibodies, developed against epitope-string toxin-specific peptide immunogens, to commercial polyvalent antivenom, shows improved neutralization of Indian Big Four and Naja kaouthia snake venoms. Toxicon X 2024; 24:100210. [PMID: 39398349 PMCID: PMC11471238 DOI: 10.1016/j.toxcx.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Snakebites profoundly impact the rural population of tropical nations, leading to significant socio-economic repercussions. Polyvalent antivenom (PAV) therapy faces several limitations, including intra-specific variations and poor efficacy against some major toxins and low molecular mass, poorly immunogenic toxins, which contribute to increased mortality and morbidity rates. Innovative strategies for developing novel antivenoms are continuously explored to address these challenges. The present study focuses on designing of 17 epitope-string toxin-specific peptide immunogens from pharmacologically active major and/or poorly immunogenic toxins (snake venom metalloprotease, Kunitz-type serine protease inhibitor, phospholipase A2, three-finger toxin) from the venom of the 'Big Four' venomous snakes and Naja kaouthia (NK) in India. These custom peptide antibodies demonstrated robust immuno-reactivity against the venoms 'Big Four' and NK. When these antibodies were supplemented with commercial PAV at a defined ratio (formulated polyvalent antivenom or FPAV), it significantly enhanced the neutralization of snake venom enzymes and in vivo neutralization of lethality and pharmacological activities such as haemorrhage, necrosis, pro-coagulant, defibrinogenation, and myotoxicity of 'Big Four' and NK venoms compared to PAV in mice. The present study highlights a promising strategy for developing next-generation antivenoms using synthetic peptide-based immunogens, offering a targeted approach to address the limitations of current antivenom therapy.
Collapse
Affiliation(s)
- Abhishek Chanda
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, 97331, Oregon, USA
| | - Nitin C. Salvi
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, 410504, Maharashtra, India
| | - Pravin V. Shelke
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, 410504, Maharashtra, India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana, 121002, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana, 121002, India
| | - Upasana Puzari
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Milind V. Khadilkar
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, 410504, Maharashtra, India
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| |
Collapse
|
7
|
Rajendiran P, Naidu R, Othman I, Zainal Abidin SA. Identification of antigenic proteins from the venom of Malaysian snakes using immunoprecipitation assay and tandem mass spectrometry (LC-MS/MS). Heliyon 2024; 10:e37243. [PMID: 39286227 PMCID: PMC11403504 DOI: 10.1016/j.heliyon.2024.e37243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Snake envenomation poses a significant risk to Malaysians and country visitors. Malaysia witnesses an estimated 650 snake bites per 100,000 population annually. The primary treatment for snake envenomation involves administering antivenom derived from horses, despite its drawbacks, such as anaphylactic reactions and serum sickness. Identifying the venom proteome is crucial for understanding and predicting the clinical implications of envenomation and developing effective treatments targeting specific venom proteins. In this study, we employ an immunoprecipitation assay followed by LC-MS/MS to identify antigenic proteins in five common venomous snakes in Malaysia compassing of two families which are pit vipers, (Calloselasma rhodostoma and Cryptelytrops purpureomaculatus) and cobras (Ophiophagus hannah, Naja kaouthia, and Naja sumatrana). The immunoprecipitation assay utilises a 2 % agarose gel, allowing antigenic proteins to diffuse and bind with antibodies in the antivenom. The antivenom utilised in this research was procured from the Queen Saovabha Memorial Institute (QSMI), Thailand, including king cobra antivenom (KCAV), cobra antivenom (CAV), Malayan pit viper antivenom (MPAV), Russell's viper antivenom (RPAV), hematopolyvalent antivenom (HPAV), neuropolyvalent antivenom (NPAV), banded krait antivenom (BKAV), and Malayan krait antivenom (MKAV). The protein identified through these interactions which are exclusive to the cobras are three-finger toxins (3FTXs) while snake C-type lectins (Snaclecs) are unique to the pit vipers. Common protein that are present in both families are L-amino acid oxidase (LAAO), Phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP). Identifying these proteins is vital for formulating a broad-spectrum antivenom applicable across multiple species.
Collapse
Affiliation(s)
- Preetha Rajendiran
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
8
|
Edge RJ, Marriott AE, Stars EL, Patel RN, Wilkinson MC, King LDW, Slagboom J, Tan CH, Ratanabanangkoon K, Draper SJ, Ainsworth S. Plug and play virus-like particles for the generation of anti-toxin antibodies. Toxicon X 2024; 23:100204. [PMID: 39280983 PMCID: PMC11401359 DOI: 10.1016/j.toxcx.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Snakebite is a major global health concern, for which antivenom remains the only approved treatment to neutralise the harmful effects of the toxins. However, some medically important toxins are poorly immunogenic, resulting in reduced efficacy of the final product. Boosting the immunogenicity of these toxins in the commercial antivenom immunising mixtures could be an effective strategy to improve the final dose efficacy, and displaying snake antigens on Virus-like particles (VLPs) is one method for this. However, despite some applications in the field of snakebite, VLPs have yet to be explored in methods that could be practical at an antivenom manufacturing scale. Here we describe the utilisation of a "plug and play" VLP system to display immunogenic linear peptide epitopes from three finger toxins (3FTxs) and generate anti-toxin antibodies. Rabbits were immunised with VLPs displaying individual consensus linear epitopes and their antibody responses were characterised by immunoassay. Of the three experimental consensus sequences, two produced antibodies capable of recognising the consensus peptides, whilst only one of these could also recognise native whole toxins. Further characterisation of antibodies raised against this peptide demonstrated a sub-class specific response, and that these were able to elicit partially neutralising antibody responses, resulting in increased survival times in a murine snakebite envenoming model.
Collapse
Affiliation(s)
- Rebecca J Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Amy E Marriott
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Emma L Stars
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark C Wilkinson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Choo Hock Tan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| |
Collapse
|
9
|
Sánchez A, Cerdas M, Gutiérrez J, Vargas M, Segura Á, Herrera M, Chaves-Araya S, Sánchez R, Villalta M, Durán G, Sánchez A, Solano G, Cordero D, Sánchez P, Gutiérrez JM, León G. Pilot-scale evaluation of a dynamic body-feed filtration system for primary clarification of snake antivenoms produced by the caprylic acid method. Toxicon X 2024; 23:100202. [PMID: 39246647 PMCID: PMC11378971 DOI: 10.1016/j.toxcx.2024.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
The performance of dynamic body-feed filtration (DBF) in the removal of bulky solids produced during the manufacturing of snake antivenoms using the caprylic acid method was evaluated. For this purpose, diatomites with different filterability properties were compared in a bench-scale study to assess their effectiveness in removing the precipitated material formed after the addition of caprylic acid to equine hyperimmune plasma. C1000 diatomite at a concentration of 90 g/L of precipitated plasma showed the best performance. Then, the process was scaled up to three batches of 50 L of hyperimmune horse plasma. At this pilot scale, 108 ± 4% of the immunoglobulins present following plasma precipitation were recovered after DBF. The antivenoms generated using this procedure met quality specifications. When compared to open filtration systems commonly used at an industrial scale by many antivenom manufacturers, DBF has a similar yield and produces filtrates with comparable physicochemical characteristics. However, DBF ensures the microbiological quality of the primary clarification in a way that open systems cannot. This is because: 1) DBF is performed in a single-use closed device of depth filters which prevents microbial contamination, and 2) DBF removes bulky material in few minutes instead of the more than 24 h needed by open filtration systems, thus reducing the risk of contamination. It was concluded that DBF is a cost-effective, easily validated, and GMP-compliant alternative for primary clarification following caprylic acid precipitation of plasma in snake antivenom production.
Collapse
Affiliation(s)
- Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Maykel Cerdas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jairo Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Stephanie Chaves-Araya
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Ronald Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Cordero
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Paola Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
10
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Benhammou D, Chippaux JP, Ntone R, Madec Y, Amta P, Noel G, Karl FN, Perilhou A, Matchim L, Sanchez M, Ndifon M, Clauteaux P, Eteki L, Boum Y, Nkwescheu AS, Taieb F. Snakebites in Cameroon: Tolerance of a Snake Antivenom (Inoserp™ PAN-AFRICA) in Africa in Real-Life Conditions. Toxins (Basel) 2024; 16:165. [PMID: 38668590 PMCID: PMC11053651 DOI: 10.3390/toxins16040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/29/2024] Open
Abstract
Snakebite envenomation (SBE) is a public health issue in sub-Saharan countries. Antivenom is the only etiological treatment. Excellent tolerance is essential in managing SBE successfully. This study aimed to evaluate tolerance of InoserpTM PAN-AFRICA (IPA). It was conducted on fourteen sites across Cameroon. IPA was administered intravenously and repeated at the same dose every two hours if needed. Early and late tolerance was assessed by the onset of clinical signs within two hours and at a visit two weeks or more after the first IPA administration, respectively. Over 20 months, 447 patients presenting with a snakebite were included. One dose of IPA was administered to 361 patients and repeated at least once in 106 patients. No significant difference was shown between the proportion of adverse events in patients who received IPA (266/361, 73.7%) and those who did not (69/85, 81.2%) (p = 0.95). Adverse reactions, probably attributable to IPA, were identified in four (1.1%) patients, including one severe (angioedema) and three mild. All these reactions resolved favorably. None of the serious adverse events observed in twelve patients were attributed to IPA. No signs of late intolerance were observed in 302 patients. Tolerance appears to be satisfactory. The availability of effective and well-tolerated antivenoms would reduce the duration of treatment and prevent most disabilities and/or deaths.
Collapse
Affiliation(s)
- David Benhammou
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris Cité University, F-75015 Paris, France; (D.B.)
| | - Jean-Philippe Chippaux
- MERIT Unit, Institut de Recherche pour le Développement, Paris Cité University, F-75006 Paris, France
| | - Rodrigue Ntone
- Epicentre Yaounde, Yaounde BP 12069, Cameroon; (R.N.); (F.N.K.); (L.M.); (M.N.); (L.E.)
| | - Yoann Madec
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris Cité University, F-75015 Paris, France; (D.B.)
| | - Pierre Amta
- Tokombere Hospital, Tokombere, Mora BP 74, Cameroon;
| | - Gaëlle Noel
- Institut Pasteur, Translational Research Center, Paris Cité University, F-75015 Paris, France; (G.N.); (P.C.)
| | - Fai Njuwa Karl
- Epicentre Yaounde, Yaounde BP 12069, Cameroon; (R.N.); (F.N.K.); (L.M.); (M.N.); (L.E.)
| | - Anaïs Perilhou
- Institut Pasteur, Clinical Research Coordination Center, Paris Cité University, F-75015 Paris, France;
| | - Lucrece Matchim
- Epicentre Yaounde, Yaounde BP 12069, Cameroon; (R.N.); (F.N.K.); (L.M.); (M.N.); (L.E.)
| | - Marie Sanchez
- Institut Pasteur, Data Management Core Facility, Paris Cité University, F-75015 Paris, France;
| | - Mark Ndifon
- Epicentre Yaounde, Yaounde BP 12069, Cameroon; (R.N.); (F.N.K.); (L.M.); (M.N.); (L.E.)
| | - Pedro Clauteaux
- Institut Pasteur, Translational Research Center, Paris Cité University, F-75015 Paris, France; (G.N.); (P.C.)
| | - Lucrèce Eteki
- Epicentre Yaounde, Yaounde BP 12069, Cameroon; (R.N.); (F.N.K.); (L.M.); (M.N.); (L.E.)
| | - Yap Boum
- Epicentre Yaounde, Yaounde BP 12069, Cameroon; (R.N.); (F.N.K.); (L.M.); (M.N.); (L.E.)
- Institut Pasteur de Bangui, Bangui BP 923, Central African Republic
- Faculté de Médecine et de Sciences Biomédicales, Yaounde I University, Yaounde BP 1364, Cameroon
| | | | - Fabien Taieb
- Institut Pasteur Medical Center, Paris Cité University, F-75015 Paris, France
| |
Collapse
|
12
|
Talukdar A, Doley R. Identification of poorly immunodepleted phospholipase A 2 (PLA 2) proteins of Bungarus fasciatus venom from Assam, India and evaluation of Indian polyvalent antivenom using third-generation antivenomics. Toxicon 2024; 239:107617. [PMID: 38219916 DOI: 10.1016/j.toxicon.2024.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Bungarus fasciatus also referred to as the Banded krait is a snake which possesses venom and belongs to the Elapidae family. It is widely distributed across the Indian subcontinent and South East Asian countries and is responsible for numerous snakebites in the population. B. fasciatus possesses a neurotoxic venom and envenomation by the snake results in significant morbidity and occasional morbidity in the victim if not treated appropriately. In this study, the efficacy of Indian polyvalent antivenom (Premium Serums polyvalent antivenom) was evaluated against the venom of B. fasciatus from Guwahati, Assam (India) employing the Third-generation antivenomics technique followed by identification of venom proteins from three poorly immunodepleted peaks (P5, P6 and P7) using LC-MS/MS analysis. Seven proteins were identified from the three peaks and all these venom proteins belonged to the phospholipase A2 (PLA2) superfamily. The identified PLA2 proteins were corroborated by the in vitro enzymatic activities (PLA2 and Anticoagulant activity) exhibited by the three peaks and previous reports of pathological manifestation in the envenomated victims. Neutralization of enzymatic activities by Premium Serums polyvalent antivenom was also assessed in vitro for crude venom, P5, P6 and P7 which revealed moderate to poor inhibition. Inclusion of venom proteins/peptides, which are non-immunodepleted or poorly immunodepleted, into the immunization mixture of venom used for antivenom production may help in enhancing the efficacy of the polyvalent antivenom.
Collapse
Affiliation(s)
- Amit Talukdar
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
13
|
Damsbo A, Rimbault C, Burlet NJ, Vlamynck A, Bisbo I, Belfakir SB, Laustsen AH, Rivera-de-Torre E. A comparative study of the performance of E. coli and K. phaffii for expressing α-cobratoxin. Toxicon 2024; 239:107613. [PMID: 38218383 DOI: 10.1016/j.toxicon.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Three-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression. However, achieving the correct disulfide bond formation in recombinant toxins is challenging and requires extensive optimization of expression and purification methods to enhance stability and functionality. In this study, we investigated the expression of α-cobratoxin, a well-characterized 3FTx from the monocled cobra (Naja kaouthia), in three different expression systems, namely Escherichia coli BL21 (DE3) cells with the csCyDisCo plasmid, Escherichia coli SHuffle cells, and Komagataella phaffii (formerly known as Pichia pastoris). While none of the tested systems yielded α-cobratoxin identical to the variant isolated from whole venom, the His6-tagged α-cobratoxin expressed in K. phaffii exhibited a comparable secondary structure according to circular dichroism spectra and similar binding properties to the α7 subunit of the nicotinic acetylcholine receptor. The findings presented here illustrate the advantages and limitations of the different expression systems and can help guide researchers who wish to express 3FTxs.
Collapse
Affiliation(s)
- Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Nick J Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Anneline Vlamynck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Ida Bisbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Selma B Belfakir
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, DK-2800 Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
14
|
Khalek IS, Senji Laxme RR, Nguyen YTK, Khochare S, Patel RN, Woehl J, Smith JM, Saye-Francisco K, Kim Y, Misson Mindrebo L, Tran Q, Kędzior M, Boré E, Limbo O, Verma M, Stanfield RL, Menzies SK, Ainsworth S, Harrison RA, Burton DR, Sok D, Wilson IA, Casewell NR, Sunagar K, Jardine JG. Synthetic development of a broadly neutralizing antibody against snake venom long-chain α-neurotoxins. Sci Transl Med 2024; 16:eadk1867. [PMID: 38381847 DOI: 10.1126/scitranslmed.adk1867] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Snakebite envenoming is a major global public health concern for which improved therapies are urgently needed. The antigenic diversity present in snake venom toxins from various species presents a considerable challenge to the development of a universal antivenom. Here, we used a synthetic human antibody library to find and develop an antibody that neutralizes long-chain three-finger α-neurotoxins produced by numerous medically relevant snakes. Our antibody bound diverse toxin variants with high affinity, blocked toxin binding to the nicotinic acetylcholine receptor in vitro, and protected mice from lethal venom challenge. Structural analysis of the antibody-toxin complex revealed a binding mode that mimics the receptor-toxin interaction. The overall workflow presented is generalizable for the development of antibodies that target conserved epitopes among antigenically diverse targets, and it offers a promising framework for the creation of a monoclonal antibody-based universal antivenom to treat snakebite envenoming.
Collapse
Affiliation(s)
- Irene S Khalek
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - R R Senji Laxme
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Yen Thi Kim Nguyen
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Rohit N Patel
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jordan Woehl
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Jessica M Smith
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Karen Saye-Francisco
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yoojin Kim
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Laetitia Misson Mindrebo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Quoc Tran
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Mateusz Kędzior
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Evy Boré
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Oliver Limbo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Megan Verma
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stefanie K Menzies
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Stuart Ainsworth
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Devin Sok
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Joseph G Jardine
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| |
Collapse
|
15
|
Serino-Silva C, Bittencourt Rodrigues CF, Miyamoto JG, Hatakeyama DM, Kavazoi VK, Da Rocha MMT, Tanaka AS, Tashima AK, de Morais-Zani K, Grego KF, Tanaka-Azevedo AM. Proteomics and life-history variability of Endogenous Phospholipases A2 Inhibitors (PLIs) in Bothrops jararaca plasma. PLoS One 2024; 19:e0295806. [PMID: 38319909 PMCID: PMC10846723 DOI: 10.1371/journal.pone.0295806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024] Open
Abstract
In Brazil, the genus Bothrops is responsible for most ophidian accidents. Snake venoms have a wide variety of proteins and peptides exhibiting a broad repertoire of pharmacological and toxic effects that elicit systemic injury and characteristic local effects. The snakes' natural resistance to envenomation caused by the presence of inhibitory compounds on their plasma have been extensively studied. However, the presence of these inhibitors in different developmental stages is yet to be further discussed. The aim of this study was to evaluate the ontogeny of Bothrops jararaca plasma inhibitor composition and, to this end, plasma samples of B. jararaca were obtained from different developmental stages (neonates, youngs, and adults) and sexes (female and male). SDS-PAGE, Western blotting, affinity chromatography, and mass spectrometry were performed to analyze the protein profile and interaction between B. jararaca plasma and venom proteins. In addition, the presence of γBjPLI, a PLA2 inhibitor previously identified and characterized in B. jararaca serum, was confirmed by Western blotting. According to our results, 9-17% of plasma proteins were capable of binding to venom proteins in the three developmental stages. The presence of different endogenous inhibitors and, more specifically, different PLA2 inhibitor (PLI) classes and antihemorrhagic factors were confirmed in specimens of B. jararaca from newborn by mass spectrometry. For the first time, the αPLI and βPLI were detected in B. jararaca plasma, although low or no ontogenetic and sexual correlation were found. The γPLI were more abundant in adult female, than in neonate and young female, but similar to neonate, young and adult male according to the results of mass spectrometry analysis. Our results suggest that there are proteins in the plasma of these animals that can help counteract the effects of self-envenomation from birth.
Collapse
Affiliation(s)
- Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Victor Koiti Kavazoi
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia (PPIB—IPT, IBU and USP), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Aparecida Sadae Tanaka
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alexandre Keiji Tashima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Thumtecho S, Burlet NJ, Ljungars A, Laustsen AH. Towards better antivenoms: navigating the road to new types of snakebite envenoming therapies. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230057. [PMID: 38116472 PMCID: PMC10729942 DOI: 10.1590/1678-9199-jvatitd-2023-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J. Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Silva LT, Junior RS, Teixeira de Carvalho TX, Moutinho Pataca LC, Dias Heneine LG. Analysis of antibodies avidity for Tityus serrulatus scorpion venom in antivenom production and its potential for application as a potency test. Toxicon 2023; 236:107315. [PMID: 37827265 DOI: 10.1016/j.toxicon.2023.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Antivenoms are the only specific medication for neutralizing toxins present in venom of animals such scorpions and snakes through antigen-antibody binding. Several analyses are carried out throughout its production in order to ensure the quality and effectiveness of the antivenom that will be administered to the patient. One of these is the potency assay, which is performed to assess the ability of antivenoms to neutralize the toxic effects of the venom injected in mice. The substitution of in vivo for in vitro assays such as ELISA has been presented by other authors, bringing several advantages such as the reduction in the use of animals, in costs and in the duration of the assays. However, the avidity index of antivenom antibodies determined by ELISA has not yet been applied for this purpose. Therefore, the objective of this study was to evaluate the avidity of sera from hyperimmunized horses with crude Tityus serrulatus venom, a scorpion species associated with the most serious accidents in Brazil, and its potential for application as a potency test replacing the in vivo assay. The avidity ELISA proved to be interesting for monitoring the binding strength of antibodies produced by horses in hyperimmune plasma production programs. It was possible to verify oscillations in antibody avidity that occurred along the immunization cycles, differences between novice and veteran horses, maturation of antibody avidity, and correlation between avidity index and antibody titre. Similar results were obtained for crude venom and purified Ts1 toxin. In addition, the avidity ELISA apparently demonstrated potential for application as a potency test in the initial stage of antivenom production. However, more studies are necessary.
Collapse
Affiliation(s)
- Lucas Tadeu Silva
- Ezequiel Dias Foundation - Funed, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
18
|
Baudou FG, Gutiérrez JM, Rodríguez JP. Immune response to neurotoxic South American snake venoms. Toxicon 2023; 234:107300. [PMID: 37757959 DOI: 10.1016/j.toxicon.2023.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
South American rattlesnakes (Crotalus durissus spp) and coral snakes (Micrurus sp) venoms are characterized by inducing a limited inflammatory innate immune response, in contrast to Bothrops sp snake venoms which exert a prominent inflammatory activity. Some Crotalus durissus spp venoms, in addition, exert immunosuppressive activities that hamper the development of neutralizing antibodies in animals immunized for antivenom production. Micrurus sp venoms are rich in low molecular mass neurotoxins that elicit a limited immune response. These characteristics make it difficult to generate antivenoms of high neutralizing activity. Therefore, the study of the mechanisms operating behind this limited immune response to venoms is relevant from both fundamental and practical perspectives. This review summarizes key aspects of the immune response to these venoms and discusses some pending challenges to further understand these phenomena and to improve antivenom production.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Grupo de Investigaciones Básicas y Aplicadas en Inmunología y Bioactivos (GIBAIB), Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| |
Collapse
|
19
|
Fitzpatrick LLJ, Ligabue-Braun R, Nekaris KAI. Slowly Making Sense: A Review of the Two-Step Venom System within Slow ( Nycticebus spp.) and Pygmy Lorises ( Xanthonycticebus spp.). Toxins (Basel) 2023; 15:514. [PMID: 37755940 PMCID: PMC10536643 DOI: 10.3390/toxins15090514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Since the early 2000s, studies of the evolution of venom within animals have rapidly expanded, offering new revelations on the origins and development of venom within various species. The venomous mammals represent excellent opportunities to study venom evolution due to the varying functional usages, the unusual distribution of venom across unrelated mammals and the diverse variety of delivery systems. A group of mammals that excellently represents a combination of these traits are the slow (Nycticebus spp.) and pygmy lorises (Xanthonycticebus spp.) of south-east Asia, which possess the only confirmed two-step venom system. These taxa also present one of the most intriguing mixes of toxic symptoms (cytotoxicity and immunotoxicity) and functional usages (intraspecific competition and ectoparasitic defence) seen in extant animals. We still lack many pieces of the puzzle in understanding how this venom system works, why it evolved what is involved in the venom system and what triggers the toxic components to work. Here, we review available data building upon a decade of research on this topic, focusing especially on why and how this venom system may have evolved. We discuss that research now suggests that venom in slow lorises has a sophisticated set of multiple uses in both intraspecific competition and the potential to disrupt the immune system of targets; we suggest that an exudate diet reveals several toxic plants consumed by slow and pygmy lorises that could be sequestered into their venom and which may help heal venomous bite wounds; we provide the most up-to-date visual model of the brachial gland exudate secretion protein (BGEsp); and we discuss research on a complement component 1r (C1R) protein in saliva that may solve the mystery of what activates the toxicity of slow and pygmy loris venom. We conclude that the slow and pygmy lorises possess amongst the most complex venom system in extant animals, and while we have still a lot more to understand about their venom system, we are close to a breakthrough, particularly with current technological advances.
Collapse
Affiliation(s)
- Leah Lucy Joscelyne Fitzpatrick
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre 90050-170, Brazil
| | - K Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
20
|
M Morris N, A Blee J, Hauert S. Global parameter optimisation and sensitivity analysis of antivenom pharmacokinetics and pharmacodynamics. Toxicon 2023; 232:107206. [PMID: 37356552 DOI: 10.1016/j.toxicon.2023.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In recent years it has become possible to design snakebite antivenoms with diverse pharmacokinetic properties. Owing to the pharmacokinetic variability of venoms, the choice of antivenom scaffold may influence a treatment's neutralisation coverage. Computation offers a useful medium through which to assess the pharmacokinetics and pharmacodynamics of envenomation-treatment systems, as antivenoms with identical neutralising capacities can be simulated. In this study, we simulate envenomation and treatment with a variety of antivenoms, to define the properties of effective antivenoms. Systemic envenomation and treatment were described using a two-compartment pharmacokinetic model. Treatment of Naja sumatrana and Cryptelytrops purpureomaculatus envenomation was simulated with a set of 200,000 theoretical antivenoms across 10 treatment time delays. These two venoms are well-characterised and have differing pharmacokinetic properties. The theoretical antivenom set varied across molecular weight, dose, kon, koff, and valency. The best and worst treatments were identified using an area under the curve metric, and a global sensitivity analysis was performed to quantify the influence of the input parameters on treatment outcome. The simulations show that scaffolds of diverse molecular formats can be effective. Molecular weight and valency have a negligible direct impact on treatment outcome, however low molecular weight scaffolds offer more flexibility across the other design parameters, particularly when treatment is delayed. The simulations show kon to primarily mediate treatment efficacy, with rates above 105 M-1s-1 required for the most effective treatments. koff has the greatest impact on the performance of less effective scaffolds. While the same scaffold preferences for improved treatment are seen for both model snakes, the parameter bounds for C. purpureomaculatus envenomation are more constrained. This paper establishes a computational framework for the optimisation of antivenom design.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
21
|
Gamulin E, Mateljak Lukačević S, Halassy B, Kurtović T. Snake Antivenoms-Toward Better Understanding of the Administration Route. Toxins (Basel) 2023; 15:398. [PMID: 37368699 DOI: 10.3390/toxins15060398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Envenomations induced by animal bites and stings constitute a significant public health burden. Even though a standardized protocol does not exist, parenterally administered polyclonal antivenoms remain the mainstay in snakebite therapy. There is a prevailing opinion that their application by the i.m. route has poor efficacy and that i.v. administration should preferentially be chosen in order to achieve better accomplishment of the antivenom therapeutic activity. Recently, it has been demonstrated that neutralization not only in the systemic circulation but also in the lymphatic system might be of great importance for the clinical outcome since it represents another relevant body compartment through which the absorption of the venom components occurs. In this review, the present-day and summarized knowledge of the laboratory and clinical findings on the i.v. and i.m. routes of antivenom administration is provided, with a special emphasis on the contribution of the lymphatic system to the process of venom elimination. Until now, antivenom-mediated neutralization has not yet been discussed in the context of the synergistic action of both blood and lymph. A current viewpoint might help to improve the comprehension of the venom/antivenom pharmacokinetics and the optimal approach for drug application. There is a great need for additional dependable, practical, well-designed studies, as well as more practice-related experience reports. As a result, opportunities for resolving long-standing disputes over choosing one therapeutic principle over another might be created, improving the safety and effectiveness of snakebite management.
Collapse
Affiliation(s)
- Erika Gamulin
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Sanja Mateljak Lukačević
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Tihana Kurtović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Huertas RM, Arguedas M, Estrada JM, Moscoso E, Umaña D, Solano G, Vargas M, Segura Á, Sánchez A, Herrera M, Villalta M, Arroyo-Portilla C, Gutiérrez JM, León G. Clinical effects of immunization, bleeding, and albumin-based fluid therapy in horses used as immunoglobulin source to produce a polyspecific antivenom (Echitab-plus-ICP) towards venoms of African snakes. Toxicon X 2023; 18:100158. [PMID: 37180815 PMCID: PMC10172988 DOI: 10.1016/j.toxcx.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
During the production of snake antivenoms, the animals used as immunoglobulin source are subjected to processes that could deteriorate their physical condition. Therefore, these conditions must be carefully designed and validated. In this work, the immunization and bleeding protocols applied to horses used to produce the African polyspecific antivenom EchiTAb-plus-ICP were evaluated regarding their effects on the horses' health. The study focused on horses that had been previously immunized with venoms and then received periodic booster venom injections for antivenom production. It was found that the periodic immunization with 5 mg of a mixture of venoms of Bitis arietans, Echis ocellatus, Dendroaspis polylepis, and Naja nigricollis did not induce systemic signs of envenomation, and only caused mild swelling at the injection site, which did not evolve to abscesses, fistulas, or fibrosis. Three consecutive days of bleeding, collecting 6-8 L of blood per day, and self-transfusing the red blood cells (RBC) in the second and third days, did not induce evident cardiorespiratory alterations. However, this procedure caused significant reductions in RBC, hematocrit, hemoglobin, and total plasma protein values. Seven weeks after bleeding, these parameters were recovered, and horses were ready for the next immunization/bleeding cycle. The intravenous administration of equine albumin, at a dose of 2 g/kg body weight, increased the apparent plasma volume and the albumin concentration. However, this procedure induced early adverse reactions and transient alterations of the serum levels of the enzyme gamma-glutamyl transferase (GGT), thus suggesting some degree of hepatic injury. It was concluded that immunization and bleeding as described in this work do not cause significant clinical alterations in the horse's health, except for a transient drop in some hematological parameters. The albumin-based fluid therapy used does not hasten the recovery after bleeding but instead induces adverse events in the animals.
Collapse
Affiliation(s)
- Rose Mary Huertas
- Laboratorio de Análisis Clínicos, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Mauricio Arguedas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan Manuel Estrada
- Hospital de Equinos, Especies Mayores y Terapias Regenerativas, Escuela de Medicina Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Edwin Moscoso
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Deibid Umaña
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Cynthia Arroyo-Portilla
- Departamento de Análisis Clínicos, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Corresponding author.
| |
Collapse
|
23
|
Rimbault C, Knudsen PD, Damsbo A, Boddum K, Ali H, Hackney CM, Ellgaard L, Bohn MF, Laustsen AH. A single-chain variable fragment selected against a conformational epitope of a recombinantly produced snake toxin using phage display. N Biotechnol 2023; 76:23-32. [PMID: 37037303 DOI: 10.1016/j.nbt.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Phage display technology is a powerful tool for selecting monoclonal antibodies against a diverse set of antigens. Within toxinology, however, it remains challenging to generate monoclonal antibodies against many animal toxins, as they are difficult to obtain from venom. Recombinant toxins have been proposed as a solution to overcome this challenge, but so far, few have been used as antigens to generate neutralizing antibodies. Here, we describe the recombinant expression of α-cobratoxin in E. coli and its successful application as an antigen in a phage display selection campaign. From this campaign, an scFv (single chain variable fragment) was isolated with similar binding affinity to a control scFv generated against the native toxin. The selected scFv recognizes a structural epitope, enabling it to inhibit the interaction between the acetylcholine receptor and the native toxin in vitro. This approach represents the first entirely in vitro antibody selection strategy for generating neutralizing monoclonal antibodies against a snake toxin.
Collapse
Affiliation(s)
- Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Pelle D Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kim Boddum
- Sophion Bioscience A/S, DK-2750 Ballerup, Denmark
| | - Hanif Ali
- Quadrucept Bio Ltd, Kemp House, 152 City Road, London, EC1V 2NX, United Kingdom
| | - Celeste M Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Markus-Frederik Bohn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
24
|
Romo E, Torres M, Martin-Solano S. Current situation of snakebites envenomation in the Neotropics: Biotechnology, a versatile tool in the production of antivenoms. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Snakebite envenomation is a neglected tropical disease that affects millions of people around the world with a great impact on health and the economy. Unfortunately, public health programs do not include this kind of disease as a priority in their social programs. Cases of snakebite envenomations in the Neotropics are inaccurate due to inadequate disease management from medical records to the choice of treatments. Victims of snakebite envenomation are primarily found in impoverished agricultural areas where remote conditions limit the availability of antivenom. Antivenom serum is the only Food and Drug Administration-approved treatment used up to date. However, it has several disadvantages in terms of safety and effectiveness. This review provides a comprehensive insight dealing with the current epidemiological status of snakebites in the Neotropics and technologies employed in antivenom production. Also, modern biotechnological tools such as transcriptomic, proteomic, immunogenic, high-density peptide microarray and epitope mapping are highlighted for producing new-generation antivenom sera. These results allow us to propose strategic solutions in the Public Health Sector for managing this disease.
Keywords: antivenom, biotechnology, neglected tropical disease, omics, recombinant antibody.
Collapse
Affiliation(s)
- Elizabeth Romo
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Marbel Torres
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Immunology and Virology Laboratory, Nanoscience and Nanotechnology Center, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Ecuador
| | - Sarah Martin-Solano
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública, Universidad Central del Ecuador
| |
Collapse
|
25
|
Romero-Giraldo LE, Pulido S, Berrío MA, Flórez MF, Rey-Suárez P, Nuñez V, Pereañez JA. Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A 2 from Coral Snake Micrurus dumerilii to Develop Antivenoms. Toxins (Basel) 2022; 14:toxins14120825. [PMID: 36548722 PMCID: PMC9788014 DOI: 10.3390/toxins14120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Micrurus dumerilii is a coral snake of clinic interest in Colombia. Its venom is mainly composed of phospholipases A2 being MdumPLA2 the most abundant protein. Nevertheless, Micrurus species produce a low quantity of venom, which makes it difficult to produce anticoral antivenoms. Therefore, in this work, we present the recombinant expression of MdumPLA2 to evaluate its biological activities and its immunogenic potential to produce antivenoms. For this, a genetic construct rMdumPLA2 was cloned into the pET28a vector and expressed heterologously in bacteria. His-rMdumPLA2 was extracted from inclusion bodies, refolded in vitro, and isolated using affinity and RP-HPLC chromatography. His-rMdumPLA2 was shown to have phospholipase A2 activity, a weak anticoagulant effect, and induced myonecrosis and edema. The anti-His-rMdumPLA2 antibodies produced in rabbits recognized native PLA2, the complete venom of M. dumerilii, and a phospholipase from another species of the Micrurus genus. Antibodies neutralized 100% of the in vitro phospholipase activity of the recombinant toxin and a moderate percentage of the myotoxic activity of M. dumerilii venom in mice. These results indicate that His-rMdumPLA2 could be used as an immunogen to improve anticoral antivenoms development. This work is the first report of an M. dumerilii functional recombinant PLA2.
Collapse
Affiliation(s)
- Luz E. Romero-Giraldo
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
| | - Sergio Pulido
- Tropical Disease Study and Control Program—PECET, University of Antioquia, Medellín 50010, Colombia
- LifeFactors Zona Franca SAS, Rionegro 54047, Colombia
| | - Mario A. Berrío
- Tropical Disease Study and Control Program—PECET, University of Antioquia, Medellín 50010, Colombia
| | - María F. Flórez
- Tropical Disease Study and Control Program—PECET, University of Antioquia, Medellín 50010, Colombia
| | - Paola Rey-Suárez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago 8320000, Chile
| | - Vitelbina Nuñez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
- Microbiology School, University of Antioquia, Medellín 50010, Colombia
| | - Jaime A. Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia
- Correspondence:
| |
Collapse
|
26
|
Arguedas M, Umaña D, Moscoso E, García A, Pereira C, Sánchez A, Durán G, Cordero D, Sánchez A, Segura Á, Vargas M, Herrera M, Villalta M, Gómez A, Salas C, Díaz C, María Gutiérrez J, León G. Comparison of adjuvant emulsions for their safety and ability to enhance the antibody response in horses immunized with African snake venoms. Vaccine X 2022; 12:100233. [PMID: 36337837 PMCID: PMC9634357 DOI: 10.1016/j.jvacx.2022.100233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Adjuvant emulsions are widely used to enhance the antibody response in animals used as immunoglobulin source to produce snake antivenoms. We tested the performance of four commercial emulsion adjuvants (Montanide, Freund, Carbigen, and Emulsigen-D) and an experimental adjuvant (QH-769) in the antibody response of horses towards venoms of the African snakes Bitis arietans, Echis ocellatus, Dendroaspis polylepis and Naja nigricollis. Montanide, Freund and Carbigen adjuvants generated the highest immune response but induced moderate/severe local lesions at the site of injection. In contrast, Emulsigen-D and QH-769 adjuvants generated the lowest immune response and low incidence of local lesions. No evidence of systemic alterations was observed in the horses immunized with any of the adjuvants. It is suggested that the use of Montanide or Freund-based emulsions in the first immunization steps, followed by the use of Emulsigen-D, QH-769 or similar adjuvants in the following injections, could result in a satisfactory immune response against snake venoms, while not inducing serious local deleterious effects.
Collapse
Affiliation(s)
- Mauricio Arguedas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Deibid Umaña
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Edwin Moscoso
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Armando García
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Carolina Pereira
- Escuela de Zootecnia, Facultad de Ciencias Agroalimentarias, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Cordero
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Aarón Gómez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Catalina Salas
- Escuela de Zootecnia, Facultad de Ciencias Agroalimentarias, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Corresponding author at: Guillermo León, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica.
| |
Collapse
|
27
|
Gómez A, Sánchez A, Durán G, Cordero D, Segura Á, Vargas M, Solano D, Herrera M, Chaves-Araya S, Villalta M, Sánchez M, Arguedas M, Díaz C, Gutiérrez JM, León G. Intrageneric cross-reactivity of monospecific rabbit antisera against venoms of the medically most important Bitis spp. and Echis spp. African snakes. PLoS Negl Trop Dis 2022; 16:e0010643. [PMID: 35960772 PMCID: PMC9374258 DOI: 10.1371/journal.pntd.0010643] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Snakebite envenomation exerts a heavy toll in sub-Saharan Africa. The design and production of effective polyspecific antivenoms for this region demand a better understanding of the immunological characteristics of the different venoms from the most medically important snakes, to select the most appropriate venom combinations for generating antivenoms of wide neutralizing scope. Bitis spp. and Echis spp. represent the most important viperid snake genera in Africa. METHODOLOGY/PRINCIPAL FINDINGS Eight rabbit-derived monospecific antisera were raised against the venoms of four species of Bitis spp. and four species of Echis spp. The effects of immunization in the rabbits were assessed, as well as the development of antibody titers, as judged by immunochemical assays and neutralization of lethal, hemorrhagic, and in vitro coagulant effects. At the end of immunizations, local and pulmonary hemorrhage, together with slight increments in the plasma activity of creatine kinase (CK), were observed owing to the action of hemorrhagic and myotoxic venom components. Immunologic analyses revealed a considerable extent of cross-reactivity of monospecific antisera against heterologous venoms within each genus, although some antisera provided a more extensive cross-reactivity than others. The venoms that generated antisera with the broadest coverage were those of Bitis gabonica and B. rhinoceros within Bitis spp. and Echis leucogaster within Echis spp. CONCLUSIONS/SIGNIFICANCE The methodology followed in this study provides a rational basis for the selection of the best combination of venoms for generating antivenoms of high cross-reactivity against viperid venoms in sub-Saharan Africa. Results suggest that the venoms of B. gabonica, B. rhinoceros, and E. leucogaster generate antisera with the broadest cross-reactivity within their genera. These experimental results in rabbits need to be translated to large animals used in antivenom production to assess whether these predictions are reproduced in horses or sheep.
Collapse
Affiliation(s)
- Aarón Gómez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Cordero
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Stephanie Chaves-Araya
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Melvin Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauricio Arguedas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
28
|
Tan KY, Shamsuddin NN, Tan CH. Sharp-nosed Pit Viper (Deinagkistrodon acutus) from Taiwan and China: A comparative study on venom toxicity and neutralization by two specific antivenoms across the Strait. Acta Trop 2022; 232:106495. [PMID: 35504314 DOI: 10.1016/j.actatropica.2022.106495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/01/2022]
Abstract
In East Asia, the Sharp-nosed Pit Viper (Deinagkistrodon acutus) is a medically important venomous snake in Taiwan and China, two geographical areas long separated by the Taiwan Strait. Yet, snake venom variation is little known between specimens found across the Strait. This study thus investigated the intra-species variation of D. acutus venoms from Taiwan (Da-Taiwan) and China (Da-China) in their profiles of gel electrophoresis, toxicity, immunoreactivity and neutralization effect by antivenom. Da-China venom exhibited higher procoagulant, hemorrhagic and lethal activities than Da-Taiwan venom, presumably attributed to the higher abundance of moderate-to-high molecular weight toxins (procoagulants and hemorrhagins) in the venom. The mono-specific antivenoms produced in Taiwan (DaMAV-Taiwan) and China (DaMAV-China) were immunoreactive toward both venoms, and were able to neutralize the venom toxicity to different extents. DaMAV-Taiwan was more efficacious in neutralizing the venom procoagulant and lethal effects, while DaMAV-China was more potent against hemorrhagic effect. The discrepancy in efficacy between the two antivenoms could be due to varying proportions of neutralizing antibodies in the respective products, influenced by techniques of antibody raising and purification. Further study is warranted to elucidate variation in the proteome and antigenicity of D. acutus venom between snakes from Taiwan and China.
Collapse
|
29
|
Virus-like particles displaying conserved toxin epitopes stimulate polyspecific, murine antibody responses capable of snake venom recognition. Sci Rep 2022; 12:11328. [PMID: 35790745 PMCID: PMC9256628 DOI: 10.1038/s41598-022-13376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Antivenom is currently the first-choice treatment for snakebite envenoming. However, only a low proportion of antivenom immunoglobulins are specific to venom toxins, resulting in poor dose efficacy and potency. We sought to investigate whether linear venom epitopes displayed on virus like particles can stimulate an antibody response capable of recognising venom toxins from diverse medically important species. Bioinformatically-designed epitopes, corresponding to predicted conserved regions of group I phospholipase A2 and three finger toxins, were engineered for display on the surface of hepatitis B core antigen virus like particles and used to immunise female CD1 mice over a 14 weeks. Antibody responses to all venom epitope virus like particles were detectable by ELISA by the end of the immunisation period, although total antibody and epitope specific antibody titres were variable against the different epitope immunogens. Immunoblots using pooled sera demonstrated recognition of various venom components in a diverse panel of six elapid venoms, representing three continents and four genera. Insufficient antibody yields precluded a thorough assessment of the neutralising ability of the generated antibodies, however we were able to test polyclonal anti-PLA2 IgG from three animals against the PLA2 activity of Naja nigricollis venom, all of which showed no neutralising ability. This study demonstrates proof-of-principle that virus like particles engineered to display conserved toxin linear epitopes can elicit specific antibody responses in mice which are able to recognise a geographically broad range of elapid venoms.
Collapse
|
30
|
Morris NM, Blee JA, Hauert S. Developing a computational pharmacokinetic model of systemic snakebite envenomation and antivenom treatment. Toxicon 2022; 215:77-90. [PMID: 35716719 DOI: 10.1016/j.toxicon.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Snakebite envenomation is responsible for over 100,000 deaths and 400,000 cases of disability annually, most of which are preventable through access to safe and effective antivenoms. Snake venom toxins span a wide molecular weight range, influencing their absorption, distribution, and elimination within the body. In recent years, a range of scaffolds have been applied to antivenom development. These scaffolds similarly span a wide molecular weight range and subsequently display diverse pharmacokinetic behaviours. Computational simulations represent a powerful tool to explore the interplay between these varied antivenom scaffolds and venoms, to assess whether a pharmacokinetically optimal antivenom exists. The purpose of this study was to establish a computational model of systemic snakebite envenomation and treatment, for the quantitative assessment and comparison of conventional and next-generation antivenoms. A two-compartment mathematical model of envenomation and treatment was defined and the system was parameterised using existing data from rabbits. Elimination and biodistribution parameters were regressed against molecular weight to predict the dynamics of IgG, F(ab')2, Fab, scFv, and nanobody antivenoms, spanning a size range of 15-150 kDa. As a case study, intramuscular envenomation by Naja sumatrana (equatorial spitting cobra) and its treatment using Fab, F(ab')2, and IgG antivenoms was simulated. Variable venom dose tests were applied to visualise effective antivenom dose levels. Comparisons to existing antivenoms and experimental rescue studies highlight the large dose reductions that could result from recombinant antivenom use. This study represents the first comparative in silico model of snakebite envenomation and treatment.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
31
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Patikorn C, Ismail AK, Abidin SAZ, Blanco FB, Blessmann J, Choumlivong K, Comandante JD, Doan UV, Mohamed Ismail Z, Khine YY, Maharani T, Nwe MT, Qamruddin RM, Safferi RS, Santamaria E, Tiglao PJG, Trakulsrichai S, Vasaruchapong T, Chaiyakunapruk N, Taychakhoonavudh S, Othman I. Situation of snakebite, antivenom market and access to antivenoms in ASEAN countries. BMJ Glob Health 2022; 7:e007639. [PMID: 35296460 PMCID: PMC8928241 DOI: 10.1136/bmjgh-2021-007639] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/02/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Snakebite envenoming is a neglected tropical disease posing public health challenges globally. The Association of Southeast Asian Nations (ASEAN) countries are among the tropical regions with disproportionately high incidence of snakebite. Hence, this study aimed to review the situation of snakebite, antivenom market and access to antivenoms in ASEAN. METHODS This mixed-methods study included comprehensive literature review and in-depth interviews with key informants to assess the situation of management system of snakebite, antivenom market and access to antivenoms in seven ASEAN countries, including Malaysia, Thailand, Indonesia, Philippines, Vietnam, Lao PDR and Myanmar. Data were analysed by a framework method. RESULTS ASEAN have developed various strategies to improve outcomes of snakebite victims. Five domestic antivenom manufacturers in the region produce up to 288 375 vials of antivenoms annually with the value of US$13 058 053 million which could treat 42 213 snakebite victims. However, there remain challenges to be addressed especially the lack of snakebite-related informatics system, inadequate antivenoms at the healthcare facilities and when the majority of snakebite victims seek traditional healers instead of conventional treatment. CONCLUSION Improving the situation of snakebite and antivenom is not only about the availability of antivenom, but the whole landscape of surrounding management and supporting system. The assessment of the situation of snakebite and antivenom is crucial for countries or regions where snakebites are prevalent to recognise their current standpoint to inform the development of strategies to achieve the goal set by the WHO of halving the global burden of snakebite by 2030.
Collapse
Affiliation(s)
- Chanthawat Patikorn
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | | | - Francis Bonn Blanco
- Department of Emergency Medicine, Ospital ng Muntinlupa, Muntinlupa City, Philippines
- Department of Emergency Medicine, Eastern Visayas Regional Medical Center, Tacloban City, Philippines
| | - Jörg Blessmann
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - John David Comandante
- Department of Emergency, Prehospital, Disaster and Ambulatory Care Medicine, Ospital ng Makati, Makati City, Philippines
- National Poison Management and Control Center, University of the Philippines - Philippine General Hospital, Manilla, Philippines
| | - Uyen Vy Doan
- Division of Medical Toxicology, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
| | | | - Yi Yi Khine
- Nephrology Department, Thingangyun Sanpya General Hospital (TSGH), Yangon, Myanmar
| | - Tri Maharani
- National Institute of Research and Development, Ministry of Health Indonesia, Jakarta, Indonesia
| | | | | | - Ruth Sabrina Safferi
- Emergency and Trauma Department, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia
| | - Emelia Santamaria
- Health Emergencies and Disasters (HEAD) Study Group, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
- Department of Emergency Medicine, University of the Philippines-Philippine General Hospital, Manila, Philippines
| | - Patrick Joseph G Tiglao
- Department of Emergency Medicine, Eastern Visayas Regional Medical Center, Tacloban City, Philippines
- Department of Emergency Medicine, University of the Philippines-Philippine General Hospital, Manila, Metro Manila, Philippines
| | - Satariya Trakulsrichai
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Taksa Vasaruchapong
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, The University of Utah College of Pharmacy, Salt Lake City, Utah, USA
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - Suthira Taychakhoonavudh
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
33
|
Ledsgaard L, Laustsen AH, Pus U, Wade J, Villar P, Boddum K, Slavny P, Masters EW, Arias AS, Oscoz S, Griffiths DT, Luther AM, Lindholm M, Leah RA, Møller MS, Ali H, McCafferty J, Lomonte B, Gutiérrez JM, Karatt-Vellatt A. In vitro discovery of a human monoclonal antibody that neutralizes lethality of cobra snake venom. MAbs 2022; 14:2085536. [PMID: 35699567 PMCID: PMC9225616 DOI: 10.1080/19420862.2022.2085536] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/31/2022] [Indexed: 10/24/2022] Open
Abstract
The monocled cobra (Naja kaouthia) is among the most feared snakes in Southeast Asia due to its toxicity, which is predominantly derived from long-chain α-neurotoxins. The only specific treatment for snakebite envenoming is antivenom based on animal-derived polyclonal antibodies. Despite the lifesaving importance of these medicines, major limitations in safety, supply consistency, and efficacy create a need for improved treatments. Here, we describe the discovery and subsequent optimization of a recombinant human monoclonal immunoglobulin G antibody against α-cobratoxin using phage display technology. Affinity maturation by light chain-shuffling resulted in a significant increase in in vitro neutralization potency and in vivo efficacy. The optimized antibody prevented lethality when incubated with N. kaouthia whole venom prior to intravenous injection. This study is the first to demonstrate neutralization of whole snake venom by a single recombinant monoclonal antibody, thus providing a tantalizing prospect of bringing recombinant antivenoms based on human monoclonal or oligoclonal antibodies to the clinic.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Urska Pus
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | - Ana S. Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hanif Ali
- Quadrucept Bio, Cambourne, United Kingdom
| | | | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José M. Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
34
|
Jiménez-Charris E, Montoya-Gómez A, Torres JK, Gómez-Díaz M, Bolívar-García W. First functional and proteomic analysis of Bothrops asper snake venom from Gorgona Island - Colombia, and its comparative characterization with two Colombian Southwest ecoregions. Biochimie 2021; 194:19-27. [PMID: 34923046 DOI: 10.1016/j.biochi.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
Bothrops asper envenoming is a public health problem in tropical regions of Latin America. Bothrops asper has spread until Gorgona Island in the Pacific Colombian Ocean, but its biochemical venom characterization is poorly known. Thus, to increase knowledge on Bothrops species venoms, we developed for the first time the proteomic analysis using a shotgun approach and performed functional evaluations relevant to its toxicity and compared with two Colombian Southwest ecoregions from the Pacific and Western sides. Besides, we evaluated two antivenoms produced in Colombia (INS and PROBIOL) against three B. asper venom ecoregions through the ELISA approach and first-generation antivenom against B. asper from Gorgona Island. The protein components of B. asper from Gorgona Island were assigned to nine known protein families, sharing a conserved compositional pattern with B. asper from the pacific ecoregion. The RP-HPLC and in vitro activity suggest a phenotypic congruence in the expression of PLA2s and metalloproteinases between the B. asper snake venom from Gorgona Island and pacific, but inversely to the Western ecoregion. Additionally, the antivenoms immunoreactivity against the three B. asper lineage venoms was different. The INS displayed higher titers than PROBIOL against all the venoms and exhibited the most effective immunocapturing capacity against the individual components of snake venom from Gorgona Island. The results of this investigation suggest that B. asper from Gorgona Island displayed similar clinical manifestations concerning the Pacific ecoregion, and the immunoreactivity by antivenoms could be used after B. asper envenomation in Gorgona Island, using one of them preferably.
Collapse
Affiliation(s)
| | | | - Jorge Kelvin Torres
- Research Group in Animal Ecology, Department of Biology, Universidad del Valle, Cali, Colombia
| | - Mónica Gómez-Díaz
- Research Group in Animal Ecology, Department of Biology, Universidad del Valle, Cali, Colombia
| | - Wilmar Bolívar-García
- Research Group in Animal Ecology, Department of Biology, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
35
|
Jenkins TP, Ahmadi S, Bittenbinder MA, Stewart TK, Akgun DE, Hale M, Nasrabadi NN, Wolff DS, Vonk FJ, Kool J, Laustsen AH. Terrestrial venomous animals, the envenomings they cause, and treatment perspectives in the Middle East and North Africa. PLoS Negl Trop Dis 2021; 15:e0009880. [PMID: 34855751 PMCID: PMC8638997 DOI: 10.1371/journal.pntd.0009880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Middle East and Northern Africa, collectively known as the MENA region, are inhabited by a plethora of venomous animals that cause up to 420,000 bites and stings each year. To understand the resultant health burden and the key variables affecting it, this review describes the epidemiology of snake, scorpion, and spider envenomings primarily based on heterogenous hospital data in the MENA region and the pathologies associated with their venoms. In addition, we discuss the venom composition and the key medically relevant toxins of these venomous animals, and, finally, the antivenoms that are currently in use to counteract them. Unlike Asia and sub-Saharan Africa, scorpion stings are significantly more common (approximately 350,000 cases/year) than snakebites (approximately 70,000 cases/year) and present the most significant contributor to the overall health burden of envenomings, with spider bites being negligible. However, this review also indicates that there is a substantial lack of high-quality envenoming data available for the MENA region, rendering many of these estimates speculative. Our understanding of the venoms and the toxins they contain is also incomplete, but already presents clear trends. For instance, the majority of snake venoms contain snake venom metalloproteinases, while sodium channel-binding toxins and potassium channel-binding toxins are the scorpion toxins that cause most health-related challenges. There also currently exist a plethora of antivenoms, yet only few are clinically validated, and their high cost and limited availability present a substantial health challenge. Yet, some of the insights presented in this review might help direct future research and policy efforts toward the appropriate prioritization of efforts and aid the development of future therapeutic solutions, such as next-generation antivenoms.
Collapse
Affiliation(s)
- Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matyas A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Trenton K. Stewart
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dilber E. Akgun
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Melissa Hale
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nafiseh N. Nasrabadi
- Pharmaceutical Sciences Research Centre, Student Research Commitee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Venomous Animals and Antivenom Production, Razi Vaccine, and Serum Research Institute, Karaj, Iran
| | - Darian S. Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
36
|
Potet J, Beran D, Ray N, Alcoba G, Habib AG, Iliyasu G, Waldmann B, Ralph R, Faiz MA, Monteiro WM, de Almeida Gonçalves Sachett J, di Fabio JL, Cortés MDLÁ, Brown NI, Williams DJ. Access to antivenoms in the developing world: A multidisciplinary analysis. Toxicon X 2021; 12:100086. [PMID: 34786555 PMCID: PMC8578041 DOI: 10.1016/j.toxcx.2021.100086] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Access to safe, effective, quality-assured antivenom products that are tailored to endemic venomous snake species is a crucial component of recent coordinated efforts to reduce the global burden of snakebite envenoming. Multiple access barriers may affect the journey of antivenoms from manufacturers to the bedsides of patients. Our review describes the antivenom ecosystem at different levels and identifies solutions to overcome these challenges. At the global level, there is insufficient manufacturing output to meet clinical needs, notably for antivenoms intended for use in regions with a scarcity of producers. At national level, variable funding and deficient regulation of certain antivenom markets can lead to the procurement of substandard antivenom. This is particularly true when producers fail to seek registration of their products in the countries where they should be used, or where weak assessment frameworks allow registration without local clinical evaluation. Out-of-pocket expenses by snakebite victims are often the main source of financing antivenoms, which results in the underuse or under-dosing of antivenoms, and a preference for low-cost products regardless of efficacy. In resource-constrained rural areas, where the majority of victims are bitten, supply of antivenom in peripheral health facilities is often unreliable. Misconceptions about treatment of snakebite envenoming are common, further reducing demand for antivenom and exacerbating delays in reaching facilities equipped for antivenom use. Multifaceted interventions are needed to improve antivenom access in resource-limited settings. Particular attention should be paid to the comprehensive list of actions proposed within the WHO Strategy for Prevention and Control of Snakebite Envenoming.
Collapse
Affiliation(s)
- Julien Potet
- Médecins Sans Frontières Access Campaign, Geneva, Switzerland
| | - David Beran
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Gabriel Alcoba
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Médecins Sans Frontières, Medical Department, Operational Center Geneva, Geneva, Switzerland
| | - Abdulrazaq Garba Habib
- Infectious Disease and Tropical Medicine Unit, Department of Medicine, College of Health Science, Bayero University Kano, Nigeria
| | - Garba Iliyasu
- Infectious Disease and Tropical Medicine Unit, Department of Medicine, College of Health Science, Bayero University Kano, Nigeria
| | | | - Ravikar Ralph
- Department of Internal Medicine & Poisons Information Center, Christian Medical College, Vellore, 632004, Tamil Nadu, India
| | | | - Wuelton Marcelo Monteiro
- Department of Research, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- School of Health Sciences, Universidade Do Estado Do Amazonas, Manaus, Brazil
| | | | | | | | - Nicholas I. Brown
- Global Snakebite Initiative, 19 Haig Street, Ashgrove, Qld, 4060, Australia
- University of Queensland, Australia
| | - David J. Williams
- Global Snakebite Initiative, 19 Haig Street, Ashgrove, Qld, 4060, Australia
| |
Collapse
|
37
|
Martins D, Potet J, Ribeiro I. Snakebites and COVID-19: two crises, one research and development opportunity. BMJ Glob Health 2021; 6:e006913. [PMID: 34697086 PMCID: PMC8557241 DOI: 10.1136/bmjgh-2021-006913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Diogo Martins
- Snakebites Priority Area, Wellcome Trust, London, UK
- Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK
| | - Julien Potet
- Neglected Tropical Diseases Advisor, Médecins Sans Frontières Access Campaign, Geneva, Switzerland
| | - Isabela Ribeiro
- Research and Development - Dynamic Portfolio Unit, Drugs for Neglected Diseases initiative, Geneva, Switzerland
| |
Collapse
|
38
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
39
|
Patra A, Herrera M, Gutiérrez JM, Mukherjee AK. The application of laboratory-based analytical tools and techniques for the quality assessment and improvement of commercial antivenoms used in the treatment of snakebite envenomation. Drug Test Anal 2021; 13:1471-1489. [PMID: 34089574 DOI: 10.1002/dta.3108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Snakebite envenomation is a public health problem of high impact, particularly for the developing world. Antivenom, which contains whole or protease-digested immunoglobulin G, purified from the plasma of hyper-immunized animals (mainly horses), is the mainstay for the treatment of snakebite envenomation. The success of antivenom therapy depends upon its ability to abrogate or reduce the local and systemic toxicity of envenomation. In addition, antivenom administration must be safe for the patients. Therefore, antivenom manufacturers must ensure that these products are effective and safe in the treatment of envenomations. Antivenom efficacy and safety are determined by the physicochemical characteristics of formulations, purity of the immunoglobulin fragments and antibodies, presence of protein aggregates, endotoxin burden, preservative load, and batch to batch variation, as well as on the ability to neutralize the most important toxins of the venoms against which the antivenom is designed. In this context, recent studies have shown that laboratory-based simple analytical techniques, for example, size exclusion chromatography, sodium dodecyl sulphate polyacrylamide gel electrophoresis, mass spectrometry, immunological profiling including immuno-turbidimetry and enzyme-linked immunosorbent assays, Western blotting, immune-chromatographic technique coupled to mass spectrometry analysis, reverse-phase high performance liquid chromatography, spectrofluorometric analysis, in vitro neutralization of venom enzymatic activities, and other methodologies, can be applied for the assessment of antivenom quality, safety, stability, and efficacy. This article reviews the usefulness of different analytical techniques for the quality assessment of commercial antivenoms. It is suggested that these tests should be applied for screening the quality of commercial antivenoms before their preclinical and clinical assessment.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India.,Life Science Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, 781035, India
| |
Collapse
|
40
|
León G, Herrera M, Vargas M, Arguedas M, Sánchez A, Segura Á, Gómez A, Solano G, Corrales-Aguilar E, Risner K, Narayanan A, Bailey C, Villalta M, Hernández A, Sánchez A, Cordero D, Solano D, Durán G, Segura E, Cerdas M, Umaña D, Moscoso E, Estrada R, Gutiérrez J, Méndez M, Castillo AC, Sánchez L, Sánchez R, Gutiérrez JM, Díaz C, Alape A. Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Sci Rep 2021; 11:9825. [PMID: 33972631 PMCID: PMC8110969 DOI: 10.1038/s41598-021-89242-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
In the current global emergency due to SARS-CoV-2 outbreak, passive immunotherapy emerges as a promising treatment for COVID-19. Among animal-derived products, equine formulations are still the cornerstone therapy for treating envenomations due to animal bites and stings. Therefore, drawing upon decades of experience in manufacturing snake antivenom, we developed and preclinically evaluated two anti-SARS-CoV-2 polyclonal equine formulations as potential alternative therapy for COVID-19. We immunized two groups of horses with either S1 (anti-S1) or a mixture of S1, N, and SEM mosaic (anti-Mix) viral recombinant proteins. Horses reached a maximum anti-viral antibody level at 7 weeks following priming, and showed no major adverse acute or chronic clinical alterations. Two whole-IgG formulations were prepared via hyperimmune plasma precipitation with caprylic acid and then formulated for parenteral use. Both preparations had similar physicochemical and microbiological quality and showed ELISA immunoreactivity towards S1 protein and the receptor binding domain (RBD). The anti-Mix formulation also presented immunoreactivity against N protein. Due to high anti-S1 and anti-RBD antibody content, final products exhibited high in vitro neutralizing capacity of SARS-CoV-2 infection, 80 times higher than a pool of human convalescent plasma. Pre-clinical quality profiles were similar among both products, but clinical efficacy and safety must be tested in clinical trials. The technological strategy we describe here can be adapted by other producers, particularly in low- and middle-income countries.
Collapse
Affiliation(s)
- Guillermo León
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica.
| | - Mauricio Arguedas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Aarón Gómez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eugenia Corrales-Aguilar
- Virology-CIET (Research Center for Tropical Diseases), Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Kenneth Risner
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, George Mason University, Virginia, USA
| | - Mauren Villalta
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Hernández
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Cordero
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Eduardo Segura
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Maykel Cerdas
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Deibid Umaña
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Edwin Moscoso
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Estrada
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Jairo Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Marcos Méndez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ana Cecilia Castillo
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Laura Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ronald Sánchez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
41
|
Sánchez A, Segura Á, Pla D, Munuera J, Villalta M, Quesada-Bernat S, Chavarría D, Herrera M, Gutiérrez JM, León G, Calvete JJ, Vargas M. Comparative venomics and preclinical efficacy evaluation of a monospecific Hemachatus antivenom towards sub-Saharan Africa cobra venoms. J Proteomics 2021; 240:104196. [PMID: 33775842 DOI: 10.1016/j.jprot.2021.104196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/07/2023]
Abstract
Cobras are the most medically important elapid snakes in Africa. The African genera Naja and Hemachatus include snakes with neurotoxic and cytotoxic venoms, with shared biochemical, toxinological and antigenic characteristics. We have studied the antigenic cross-reactivity of four sub-Saharan Africa cobra venoms against an experimental monospecific Hemachatus haemachatus antivenom through comparative proteomics, preclinical assessment of neutralization, and third generation antivenomics. The venoms of H. haemachatus, N. annulifera, N. mossambica and N. nigricollis share an overall qualitative family toxin composition but depart in their proportions of three-finger toxin (3FTxs) classes, phospholipases A2 (PLA2s), snake venom metalloproteinases (SVMPs), and cysteine-rich secretory proteins (CRISPs). A monospecific anti-Hemachatus antivenom produced by Costa Rican Instituto Clodomiro Picado neutralized the lethal activity of the homologous and heterologous neuro/cytotoxic (H. haemachatus) and cyto/cardiotoxic (N. mossambica and N. nigricollis) venoms of the three spitting cobras sampled, while it was ineffective against the lethal and toxic activities of the neurotoxic venom of the non-spitting snouted cobra N. annulifera. The ability of the anti-Hemachatus-ICP antivenom to neutralize toxic (dermonecrotic and anticoagulant) and enzymatic (PLA2) activities of spitting cobra venoms suggested a closer kinship of H. haemachatus and Naja subgenus Afrocobra spitting cobras than to Naja subgenus Uraeus neurotoxic taxa. These results were confirmed by third generation antivenomics. BIOLOGICAL SIGNIFICANCE: African Naja species represent the most widespread medically important elapid snakes across Africa. To gain deeper insight into the spectrum of medically relevant toxins, we compared the proteome of three spitting cobras (Hemachatus haemachatus, Naja mossambica and N. nigricollis) and one non-spitting cobra (N. annulifera). Three finger toxins and phospholipases A2 are the two major protein families among the venoms analyzed. The development of antivenoms of broad species coverage is an urgent need in sub-Saharan Africa. An equine antivenom raised against H. haemachatus venom showed cross-reactivity with the venoms of H. haemachatus, N. mossambica and N. nigricollis, while having poor recognition of the venom of N. annulifera. This immunological information provides clues for the design of optimum venom mixtures for the preparation of broad spectrum antivenoms.
Collapse
Affiliation(s)
- Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Davinia Pla
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - José Munuera
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain; Escuela Técnica Superior de Ingenieria Agronómica y del Medio Natural, Universitat Politècnica de València, Valencia, Spain
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Sarai Quesada-Bernat
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | | | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
42
|
Kurtović T, Lang Balija M, Brvar M, Dobaja Borak M, Mateljak Lukačević S, Halassy B. Comparison of Preclinical Properties of Several Available Antivenoms in the Search for Effective Treatment of Vipera ammodytes and Vipera berus Envenoming. Toxins (Basel) 2021; 13:toxins13030211. [PMID: 33805701 PMCID: PMC8001446 DOI: 10.3390/toxins13030211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Snakebites are a relatively rare medical emergency in Europe. In more than half of the annual cases caused by Vipera ammodytes, Vipera berus, and Vipera aspis, immunotherapy with animal-derived antivenom is indicated. Among eight products recently identified as available against European medically relevant species, only Zagreb antivenom, Viperfav, and ViperaTAb have been used almost exclusively for decades. Zagreb antivenom comprises V. ammodytes-specific F(ab')2 fragments. Viperfav is a polyspecific preparation based on F(ab')2 fragments against V. aspis, V. berus, and V. ammodytes venoms. ViperaTAb contains Fab fragments against the venom of V. berus. In 2014 the production of Zagreb antivenom was discontinued. Additionally, in the period of 2017 to 2018 a shortage of Viperfav occurred. Due to a lack of the product indicated for the treatment of V. ammodytes bites, other antivenoms were implemented into clinical practice without comparative assessment of their eligibility. The aim of our work was to identify a high-quality antivenom that might ensure the successful treatment of V. ammodytes and V. berus bites at the preclinical level. Differentiation between bites from these two species is difficult and unreliable in clinical practice, so the availability of a unique antivenom applicable in the treatment of envenoming caused by both species would be the most advantageous for Southeastern Europe. Zagreb antivenom, Viperfav, and ViperaTAb, as well as Viper venom antitoxin for V. berus envenoming and the in-development Inoserp Europe, which was designed to treat envenoming caused by all medically important European snakes, were comparatively tested for the first time. Emphasis was placed on their physicochemical properties, primarily purity and aggregate content, as well as their in vivo protective efficacies. As Zagreb antivenom is no longer available on the European market, Viperfav is the highest-quality product currently available and the only antivenom whose neutralisation potency against V. ammodytes and V. berus venoms was above regulatory requirements.
Collapse
Affiliation(s)
- Tihana Kurtović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; (M.L.B.); (S.M.L.)
- Centre of Excellence for Virus Immunology and Vaccines, CERVirVac, Rockefellerova 10, 10000 Zagreb, Croatia
- Correspondence: (T.K.); (B.H.)
| | - Maja Lang Balija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; (M.L.B.); (S.M.L.)
- Centre of Excellence for Virus Immunology and Vaccines, CERVirVac, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Miran Brvar
- Centre for Clinical Toxicology and Pharmacology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia; (M.B.); (M.D.B.)
- Centre for Clinical Physiology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia
| | - Mojca Dobaja Borak
- Centre for Clinical Toxicology and Pharmacology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia; (M.B.); (M.D.B.)
| | - Sanja Mateljak Lukačević
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; (M.L.B.); (S.M.L.)
- Centre of Excellence for Virus Immunology and Vaccines, CERVirVac, Rockefellerova 10, 10000 Zagreb, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; (M.L.B.); (S.M.L.)
- Centre of Excellence for Virus Immunology and Vaccines, CERVirVac, Rockefellerova 10, 10000 Zagreb, Croatia
- Correspondence: (T.K.); (B.H.)
| |
Collapse
|
43
|
Antivenomics and in vivo preclinical efficacy of six Latin American antivenoms towards south-western Colombian Bothrops asper lineage venoms. PLoS Negl Trop Dis 2021; 15:e0009073. [PMID: 33524033 PMCID: PMC7877754 DOI: 10.1371/journal.pntd.0009073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/11/2021] [Accepted: 12/15/2020] [Indexed: 11/19/2022] Open
Abstract
Background Bothrops asper represents the clinically most important snake species in Central America and Northern South America, where it is responsible for an estimated 50–80% of snakebites. Compositional variability among the venom proteomes of B. asper lineages across its wide range mirrors clinical differences in their envenomings. Bothropic antivenoms generated in a number of Latin American countries commonly exhibit a certain degree of paraspecific effectiveness in the neutralization of congeneric venoms. Defining the phylogeographic boundaries of an antivenom's effectivity has implications for optimizing its clinical use. However, the molecular bases and impact of venom compositions on the immune recognition and neutralization of the toxic activities of across geographically disparate populations of B. asper lineages has not been comprehensively studied. Methodology/Principal findings Third-generation antivenomics was applied to quantify the cross-immunorecognizing capacity against the individual components of venoms of three B. asper lineages (B. asper (sensu stricto), B. ayerbei and B. rhombeatus) distributed in south-western (SW) Colombia, of six Latin American antivenoms, produced against homologous (Colombia, INS-COL and PROBIOL) and Costa Rica (ICP)), and heterologous (Argentina (BIOL), Perú (INS-PERU) and Venezuela (UCV)) bothropic venoms. In vivo neutralization assays of the lethal, hemorrhagic, coagulant, defibrinogenating, myotoxic, edematogenic, indirect hemolytic, and proteolytic activities of the three SW Colombian B. asper lineage venoms were carried to compare the preclinical efficacy of three (Colombian INS-COL and PROBIOL, and Costa Rican ICP) antivenoms frequently used in Colombia. Antivenomics showed that all the six antivenom affinity matrices efficiently immunoretained most of the B. asper lineages venom proteins and exhibited impaired binding towards the venoms' peptidomes. The neutralization profile of the INS-COL, PROBIOL and ICP antivenoms towards the biological activities of the venoms of SW Colombian B. asper (sensu stricto), B. ayerbei and B. rhombeatus lineages was coherent with the antivenomics outcome. In addition, the combination of in vitro (antivenomics) and in vivo neutralization results allowed us to determine their toxin-specific and venom neutralizing antibody content. Noteworthy, heterologous INS-PERU, BIOL, and UCV bothropic antivenoms had equal or higher binding capacity towards the venoms components of SW Colombian B. asper lineages that the homologous Colombian and Costa Rican antivenoms. Conclusions/Significance The combined in vitro and in vivo preclinical outcome showed that antivenoms manufactured in Colombia and Costa Rica effectively neutralize the major toxic activities of SW Colombian B. asper lineage venoms. The antivenomics profiles of the heterologous antivenoms manufactured in Argentina, Venezuela, and Perú strongly suggests their (pre)clinical adequacy for the treatment of B. asper lineage envenomings in SW Colombia. However, their recommendation in the clinical setting is pending on in vivo neutralization testing and clinical testing in humans. Bothrops asper is a highly adaptable snake species complex, which is considered the most dangerous snake throughout much of its distribution range from the Atlantic lowland of eastern México to northwestern Perú. Antivenoms are the only scientifically validated treatment of snakebite envenomings. Venom variation is particularly common in wide ranging species, such as B. asper, and may result in variable clinical presentations of envenomings, as is the case for the B. asper species complex, potentially undermining the efficacy of snakebite treatments depending on the immunization mixture used in the generation of the antivenom. Conversely, phylogenetic conservation of antigenic determinants confers an unpredictable degree of paraspecificity to homologous antivenoms produced for a geographic area, but also to heterologous congeneric antivenoms, towards the venom components of allopatric conspecific populations. This work aimed at comparing the preclinical profile of a panel of Latin American homologous and heterologous antivenoms against the venoms of B. asper lineages distributed in SW Colombia. The outcome of this study strongly suggests the suitability of considering the heterologous antivenoms BIOL (Argentina), UCV (Venezuela) and INS-PERU (Perú) as alternatives to homologous Colombian INS-COL and PROBIOL and Costa Rican ICP antivenoms for the treatment of envenomings by B. asper (sensu stricto) in W Colombia and Ecuador, B. ayerbei in Cauca and Nariño (Colombia), and B. rhombeatus in Cauca river valley, SW Colombia. Snakebite envenoming is an important occupational health problem, particularly in rural areas of developing countries. The timely administration of an effective antivenom remains the mainstay of snakebite management. However, the use of antivenoms is often limited by non-availability due to high cost or by lack of effectiveness. Antivenom shortage can be addressed through the generation of novel polyspecific antivenoms of wide clinical efficacy against the venoms of the medically-relevant snake species within the geographical range where these antivenoms are intended to be deployed, but also by optimizing the paraspecific use of current antivenoms. In Colombia, antivenoms are supplied by two manufacturers, one public, the Instituto Nacional de Salud (INS), and one private, Laboratorios Probiol (PROBIOL). However, the antivenom supply in Colombia has traditionally been insufficient, a circumstance that has led the Colombian Ministerio de Salud y Protección Social to issue several resolutions and decrees to announce this health emergency in the country, and to import antivenoms produced in México and Costa Rica. Contrary to these countries, where B. asper represents the only species of the genus, in SW Colombia three close phylogenetically related B. asper lineages, B. asper (sensu stricto), B. rhombeatus, and B. ayerbei, are responsible for most severe cases of snakebite accidents and exhibit remarkable differences in the physiopathological profile of their envenomings. This work aimed to assess the immunorecognition characteristics of a panel of antivenoms manufactured in Colombia, Costa Rica, Argentina, Perú and Venezuela towards the venoms of the three SW Colombian B. asper lineages. Additionally, combined quantitative in vitro and in vivo data show that the homologous antivenoms produced in Colombia (INS-COL, PROBIOL) and Costa Rica (ICP) effectively neutralize the lethality and the major toxic activities tested of the three SW Colombian B. asper lineage venoms. Heterologous Argentinian (BIOL), Venezuelan (UCV) and Peruvian (INS-PERU) antivenoms also showed comparable, even higher, effective immunocapturing ability towards the venom proteomes of SW Colombian B. asper (sensu stricto), B. rhombeatus, and B. ayerbei, than the Colombian and Costa Rican antivenoms. These results are in line with previous studies highlighting the notable conservation of paraspecific antigenic determinants across the phylogeny of genus Bothrops, and advocate for considering the heterologous Argentinian, Venezuelan and Peruvian antivenoms as further therapeutic alternatives for the treatment of B. asper spp. snakebites in Colombia.
Collapse
|
44
|
Le Geyt J, Pach S, Gutiérrez JM, Habib AG, Maduwage KP, Hardcastle TC, Hernández Diaz R, Avila-Aguero ML, Ya KT, Williams D, Halbert J. Paediatric snakebite envenoming: recognition and management of cases. Arch Dis Child 2021; 106:14-19. [PMID: 33115713 DOI: 10.1136/archdischild-2020-319428] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023]
Abstract
Snakebite in children can often be severe or potentially fatal, owing to the lower volume of distribution relative to the amount of venom injected, and there is potential for long-term sequelae. In the second of a two paper series, we describe the pathophysiology of snakebite envenoming including the local and systemic effects. We also describe the diagnosis and management of snakebite envenoming including prehospital first aid and definitive medical and surgical care.
Collapse
Affiliation(s)
- Jacqueline Le Geyt
- Paediatric Emergency Medicine, Chelsea and Westminster Healthcare NHS Trust, London, UK
| | - Sophie Pach
- General Medicine, Royal Free London NHS Foundation Trust, London, UK
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Abdulrazaq Garba Habib
- African Center of Excellence on Population Health and Policy, Bayero University, Kano, Nigeria
| | | | - Timothy Craig Hardcastle
- Trauma Service, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
- Department of Surgery, University of KwaZulu-Natal, Durban, South Africa
| | | | - María Luisa Avila-Aguero
- Pediatric Infectious Diseases, Hospital Nacional de Niños, San Jose, Costa Rica
- Center for Infectious Disease Modeling and Analysis, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Kyaw Thu Ya
- Department of Paediatric Nephrology, University of Medicine, Mandalay, Myanmar
- Department of Paediatrics, University of Medicine, Mandalay, Myanmar
| | - David Williams
- No affiliation, West Wallsend, New South Wales, Australia
| | - Jay Halbert
- Department of Paediatrics, Royal London Hospital, London, UK
| |
Collapse
|
45
|
Quality-Related Properties of Equine Immunoglobulins Purified by Different Approaches. Toxins (Basel) 2020; 12:toxins12120798. [PMID: 33327454 PMCID: PMC7764988 DOI: 10.3390/toxins12120798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Whole IgG antivenoms are prepared from hyperimmune animal plasma by various refinement strategies. The ones most commonly used at industrial scale are precipitation by sodium or ammonium sulphate (ASP), and caprylic acid precipitation (CAP) of non-immunoglobulin proteins. The additional procedures, which have so far been used for experimental purposes only, are anion-exchange (AEX) and cation-exchange chromatography (CEX), as well as affinity chromatography (AC) using IgG’s Fc-binding ligands. These protocols extract the whole IgG fraction from plasma, which contains both venom-specific and therapeutically irrelevant antibodies. Such preparations represent a complex mixture of various IgG subclasses whose functional and/or structural properties, as well as relative distribution, might be affected differently, depending on employed purification procedure. The aim of this work was to compare the influence of aforementioned refinement strategies on the IgG subclass distribution, venom-specific protective efficacy, thermal stability, aggregate formation and retained impurity profile of the final products. A unique sample of Vipera ammodytes ammodytes specific hyperimmune horse plasma was used as a starting material, enabling direct comparison of five purification approaches. The highest purity was achieved by CAP and AC (above 90% in a single step), while the lowest aggregate content was present in samples from AEX processing. Albumin was the main contaminant in IgG preparations obtained by ASP and CEX, while transferrin dominantly contaminated IgG sample from AEX processing. Alpha-1B-glycoprotein was present in CAP IgG fraction, as well as in those from ASP- and AEX-based procedures. AC approach induced the highest loss of IgG(T) subclass. CEX and AEX showed the same tendency, while CAP and ASP had almost no impact on subclass distribution. The shift in IgG subclass composition influenced the specific protective efficacy of the respective final preparation as measured in vivo. AC and CEX remarkably affected drug’s venom-neutralization activity, in contrary to the CAP procedure, that preserved protective efficacy of the IgG fraction. Presented data might improve the process of designing and establishing novel downstream processing strategies and give guidance for optimization of the current ones by providing information on potency-protecting and purity-increasing properties of each purification principle.
Collapse
|
46
|
Lynagh T, Kiontke S, Meyhoff-Madsen M, Gless BH, Johannesen J, Kattelmann S, Christiansen A, Dufva M, Laustsen AH, Devkota K, Olsen CA, Kümmel D, Pless SA, Lohse B. Peptide Inhibitors of the α-Cobratoxin-Nicotinic Acetylcholine Receptor Interaction. J Med Chem 2020; 63:13709-13718. [PMID: 33143415 PMCID: PMC7705965 DOI: 10.1021/acs.jmedchem.0c01202] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Venomous snakebites cause >100
000 deaths every year, in many cases
via potent depression of human neuromuscular signaling by snake α-neurotoxins.
Emergency therapy still relies on antibody-based antivenom, hampered
by poor access, frequent adverse reactions, and cumbersome production/purification.
Combining high-throughput discovery and subsequent structure–function
characterization, we present simple peptides that bind α-cobratoxin
(α-Cbtx) and prevent its inhibition of nicotinic acetylcholine
receptors (nAChRs) as a lead for the development of alternative antivenoms.
Candidate peptides were identified by phage display and deep sequencing,
and hits were characterized by electrophysiological recordings, leading
to an 8-mer peptide that prevented α-Cbtx inhibition of nAChRs.
We also solved the peptide:α-Cbtx cocrystal structure, revealing
that the peptide, although of unique primary sequence, binds to α-Cbtx
by mimicking structural features of the nAChR binding pocket. This
demonstrates the potential of small peptides to neutralize lethal
snake toxins in vitro, establishing a potential route to simple, synthetic,
low-cost antivenoms.
Collapse
Affiliation(s)
- Timothy Lynagh
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.,Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stephan Kiontke
- Division of Structural Biology, Department of Biology/Chemistry, University of Osnabrück, Barbarastraße 13, Osnabrück 49076, Germany.,Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| | - Maria Meyhoff-Madsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bengt H Gless
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jónas Johannesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Sabrina Kattelmann
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Anders Christiansen
- Fluid Array Systems and Technology, Nano and Bio-physical Systems, Department of Health Technology, Technical University of Denmark, Building 423 Produktionstorvet, DK-2800 Kongens Lyngby, Denmark
| | - Martin Dufva
- Fluid Array Systems and Technology, Nano and Bio-physical Systems, Department of Health Technology, Technical University of Denmark, Building 423 Produktionstorvet, DK-2800 Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kanchan Devkota
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Daniel Kümmel
- Division of Structural Biology, Department of Biology/Chemistry, University of Osnabrück, Barbarastraße 13, Osnabrück 49076, Germany.,Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Stephan Alexander Pless
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Brian Lohse
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
47
|
Fontana Oliveira IC, Gutiérrez JM, Lewin MR, Oshima-Franco Y. Varespladib (LY315920) inhibits neuromuscular blockade induced by Oxyuranus scutellatus venom in a nerve-muscle preparation. Toxicon 2020; 187:101-104. [PMID: 32889027 DOI: 10.1016/j.toxicon.2020.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 11/28/2022]
Abstract
The phospholipase A2 (PLA2) inhibitors varespladib (LY315920) and its orally available derivative methyl-varespladib (LY333013) have been proposed as potential therapies for the treatment of snakebite envenomings in which toxicity depends on the action of PLA2s. In this study, the ability of LY315920 to abrogate the effect of the potent neurotoxic venom of Oxyuranus scutellatus (taipan) was assessed using the mouse phrenic nerve-diaphragm preparation. LY315920 inhibited the venom when (a) incubated with venom before addition to the medium; (b) added to the medium before addition of venom, and; (c) added to the medium within 30 min after addition of venom, and even after the onset of decline in twitch response. This contrasts with previous results with antivenom using the same experimental model, in which the window of time when antibodies are effective is shorter than 10 min. It is proposed that such differences may depend either on the higher affinity of the inhibitor for PLA2s or on the possibility that LY315920 reaches the cytosol of the nerve terminals, inhibiting neurotoxins that have been internalized. Our findings bear implications on the therapeutic potential of varespladib in neurotoxic snakebite envenomings mediated by presynaptically-acting PLA2s.
Collapse
Affiliation(s)
- Isadora Caruso Fontana Oliveira
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Rodovia Raposo Tavares Km 92.5, 18023-000, Sorocaba, SP, Brazil
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Matthew R Lewin
- California Academy of Sciences, San Francisco, CA, 94118, USA; Ophirex, Inc., Corte Madera, CA, 94925, USA
| | - Yoko Oshima-Franco
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Rodovia Raposo Tavares Km 92.5, 18023-000, Sorocaba, SP, Brazil.
| |
Collapse
|
48
|
Kurtović T, Brgles M, Balija ML, Steinberger S, Sviben D, Marchetti-Deschmann M, Halassy B. Streamlined downstream process for efficient and sustainable (Fab') 2 antivenom preparation. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200025. [PMID: 32760431 PMCID: PMC7384442 DOI: 10.1590/1678-9199-jvatitd-2020-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Antivenoms are the only validated treatment against snakebite envenoming. Numerous drawbacks pertaining to their availability, safety and efficacy are becoming increasingly evident due to low sustainability of current productions. Technological innovation of procedures generating therapeutics of higher purity and better physicochemical characteristics at acceptable cost is necessary. The objective was to develop at laboratory scale a compact, feasible and economically viable platform for preparation of equine F(ab')2 antivenom against Vipera ammodytes ammodytes venom and to support it with efficiency data, to enable estimation of the process cost-effectiveness. METHODS The principle of simultaneous caprylic acid precipitation and pepsin digestion has been implemented into plasma downstream processing. Balance between incomplete IgG breakdown, F(ab')2 over-digestion and loss of the active drug's protective efficacy was achieved by adjusting pepsin to a 1:30 substrate ratio (w/w) and setting pH at 3.2. Precipitation and digestion co-performance required 2 h-long incubation at 21 °C. Final polishing was accomplished by a combination of diafiltration and flow-through chromatography. In vivo neutralization potency of the F(ab')2 product against the venom's lethal toxicity was determined. RESULTS Only three consecutive steps, performed under finely tuned conditions, were sufficient for preservation of the highest process recovery with the overall yield of 74%, comparing favorably to others. At the same time, regulatory requirements were met. Final product was aggregate- and pepsin-free. Its composition profile was analyzed by mass spectrometry as a quality control check. Impurities, present in minor traces, were identified mostly as IgG/IgM fragments, contributing to active drug. Specific activity of the F(ab')2 preparation with respect to the plasma was increased 3.9-fold. CONCLUSION A highly streamlined mode for production of equine F(ab')2 antivenom was engineered. In addition to preservation of the highest process yield and fulfillment of the regulatory demands, performance simplicity and rapidity in the laboratory setting were demonstrated. Suitability for large-scale manufacturing appears promising.
Collapse
Affiliation(s)
- Tihana Kurtović
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | - Marija Brgles
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | - Maja Lang Balija
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | - Stephanie Steinberger
- Faculty of Technical Chemistry, Institute of Chemical Technologies
and Analytics, TU Wien, Vienna, Austria
| | - Dora Sviben
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| | | | - Beata Halassy
- Center for Research and Knowledge Transfer in Biotechnology,
University of Zagreb, Zagreb, Croatia
| |
Collapse
|
49
|
Gibbs HL, Sanz L, Pérez A, Ochoa A, Hassinger ATB, Holding ML, Calvete JJ. The molecular basis of venom resistance in a rattlesnake-squirrel predator-prey system. Mol Ecol 2020; 29:2871-2888. [PMID: 32593182 DOI: 10.1111/mec.15529] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Understanding how interspecific interactions mould the molecular basis of adaptations in coevolving species is a long-sought goal of evolutionary biology. Venom in predators and venom resistance proteins in prey are coevolving molecular phenotypes, and while venoms are highly complex mixtures it is unclear if prey respond with equally complex resistance traits. Here, we use a novel molecular methodology based on protein affinity columns to capture and identify candidate blood serum resistance proteins ("venom interactive proteins" [VIPs]) in California Ground Squirrels (Otospermophilus beecheyi) that interact with venom proteins from their main predator, Northern Pacific Rattlesnakes (Crotalus o. oreganus). This assay showed that serum-based resistance is both population- and species-specific, with serum proteins from ground squirrels showing higher binding affinities for venom proteins of local snakes compared to allopatric individuals. Venom protein specificity assays identified numerous and diverse candidate prey resistance VIPs but also potential targets of venom in prey tissues. Many specific VIPs bind to multiple snake venom proteins and, conversely, single venom proteins bind multiple VIPs, demonstrating that a portion of the squirrel blood serum "resistome" involves broad-based inhibition of nonself proteins and suggests that resistance involves a toxin scavenging mechanism. Analyses of rates of evolution of VIP protein homologues in related mammals show that most of these proteins evolve under purifying selection possibly due to molecular constraints that limit the evolutionary responses of prey to rapidly evolving snake venom proteins. Our method represents a general approach to identify specific proteins involved in co-evolutionary interactions between species at the molecular level.
Collapse
Affiliation(s)
- H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Libia Sanz
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| | - Alicia Pérez
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| | - Alexander Ochoa
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Alyssa T B Hassinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Matthew L Holding
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA.,Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| |
Collapse
|
50
|
Nazari A, Samianifard M, Rabie H, Mirakabadi AZ. Recombinant antibodies against Iranian cobra venom as a new emerging therapy by phage display technology. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190099. [PMID: 32695146 PMCID: PMC7346683 DOI: 10.1590/1678-9199-jvatitd-2019-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The production of antivenom from immunized animals is an established treatment for snakebites; however, antibody phage display technology may have the capacity to delivery results more quickly and with a better match to local need. Naja oxiana, the Iranian cobra, is a medically important species, responsible for a significant number of deaths annually. This study was designed as proof of principle to determine whether recombinant antibodies with the capacity to neutralize cobra venom could be isolated by phage display. Methods: Toxic fractions from cobra venom were prepared by chromatography and used as targets in phage display to isolate recombinant antibodies from a human scFv library. Candidate antibodies were expressed in E. coli HB2151 and purified by IMAC chromatography. The selected clones were analyzed in in vivo and in vitro experiments. Results: Venom toxicity was contained in two fractions. Around a hundred phage clones were isolated against each fraction, those showing the best promise were G12F3 and G1F4. While all chosen clones showed low but detectable neutralizing effect against Naja oxiana venom, clone G12F3 could inhibit PLA2 activity. Conclusion: Therefore, phage display is believed to have a good potential as an approach to the development of snake antivenom.
Collapse
Affiliation(s)
- Ali Nazari
- Department of Biochemistry and Proteomics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maedeh Samianifard
- Department of Biochemistry and Proteomics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hadi Rabie
- Department of Venomous Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Abbas Zare Mirakabadi
- Department of Venomous Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|