1
|
Anderson BM, Petsios E, Behn J, Betz A, Allmon WD, Lieberman BS, Hendricks JR. Body-size evolution in gastropods across the Plio-Pleistocene extinction in the western Atlantic. PLoS One 2024; 19:e0313060. [PMID: 39671366 PMCID: PMC11642969 DOI: 10.1371/journal.pone.0313060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/18/2024] [Indexed: 12/15/2024] Open
Abstract
The Plio-Pleistocene turnover event in the western Atlantic following the closure of the Central American Seaway involved high rates of extinction for both gastropod and bivalve molluscs. This extinction was associated with declining nutrient conditions and has been presumed to be associated with a decrease in molluscan body size. Previous work which has been concordant with this expectation, however, has either focused on bivalves or not considered the effects of the recovery post extinction. In three phylogenetically diverse clades, we found that body-size evolution in gastropods across the turnover event is likely tied to ecology. One clade increased in size, one decreased, and another exhibited no substantial change. Individual species lineages exhibit a mixture of microevolutionary changes from the Pliocene to today. This study indicates that gastropod body-size evolution may be more complex than in bivalves, with ecology and other functional traits playing a significant role. Macroevolutionary processes, especially whether a clade re-radiated post extinction, were found to be important. Indeed, a low portion of extant diversity consists of survivors from clades that increased in size or have similar size distributions among their species relative to the Pliocene.
Collapse
Affiliation(s)
| | - Elizabeth Petsios
- Department of Geosciences, Baylor University, Waco, TX, United States of America
| | - Jessica Behn
- Biological Sciences Program, Cornell University, Ithaca, NY, United States of America
| | - Amy Betz
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, Dyche Hall, University of Kansas, Lawrence, KS, United States of America
| | - Warren D. Allmon
- Paleontological Research Institution, Ithaca, NY, United States of America
| | - Bruce S. Lieberman
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, Dyche Hall, University of Kansas, Lawrence, KS, United States of America
| | - Jonathan R. Hendricks
- Paleontological Research Institution, Ithaca, NY, United States of America
- Milwaukee Public Museum, Milwaukee, WI, United States of America
| |
Collapse
|
2
|
Jeunen GJ, Mills S, Lamare M, Duffy GA, Knapp M, Stanton JAL, Mariani S, Treece J, Ferreira S, Durán-Vinet B, Zavodna M, Gemmell NJ. Unlocking Antarctic molecular time-capsules - Recovering historical environmental DNA from museum-preserved sponges. Mol Ecol Resour 2024; 24:e14001. [PMID: 39051108 DOI: 10.1111/1755-0998.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Marine sponges have recently emerged as efficient natural environmental DNA (eDNA) samplers. The ability of sponges to accumulate eDNA provides an exciting opportunity to reconstruct contemporary communities and ecosystems with high temporal and spatial precision. However, the use of historical eDNA, trapped within the vast number of specimens stored in scientific collections, opens up the opportunity to begin to reconstruct the communities and ecosystems of the past. Here, we define the term 'heDNA' to denote the historical environmental DNA that can be obtained from the recent past with high spatial and temporal accuracy. Using a variety of Antarctic sponge specimens stored in an extensive marine invertebrate collection, we were able to recover information on Antarctic fish biodiversity from specimens up to 20 years old. We successfully recovered 64 fish heDNA signals from 27 sponge specimens. Alpha diversity measures did not differ among preservation methods, but sponges stored frozen had a significantly different fish community composition compared to those stored dry or in ethanol. Our results show that we were consistently and reliably able to extract the heDNA trapped within marine sponge specimens, thereby enabling the reconstruction and investigation of communities and ecosystems of the recent past with a spatial and temporal resolution previously unattainable. Future research into heDNA extraction from other preservation methods, as well as the impact of specimen age and collection method, will strengthen and expand the opportunities for this novel resource to access new knowledge on ecological change during the last century.
Collapse
Affiliation(s)
- Gert-Jan Jeunen
- Department of Marine Science, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sadie Mills
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Michael Knapp
- Coastal People: Southern Skies Centre of Research Excellence, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Jackson Treece
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sara Ferreira
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Monika Zavodna
- Otago Genomics Facility, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Pimiento C, Kocáková K, Mathes GH, Argyriou T, Cadena EA, Cooper JA, Cortés D, Field DJ, Klug C, Scheyer TM, Valenzuela-Toro AM, Buess T, Günter M, Gardiner AM, Hatt P, Holdener G, Jacober G, Kobelt S, Masseraz S, Mehli I, Reiff S, Rigendinger E, Ruckstuhl M, Schneider S, Seige C, Senn N, Staccoli V, Baumann J, Flüeler L, Guevara LJ, Ickin E, Kissling KC, Rogenmoser J, Spitznagel D, Villafaña JA, Zanatta C. The extinct marine megafauna of the Phanerozoic. CAMBRIDGE PRISMS. EXTINCTION 2024; 2:e7. [PMID: 40078799 PMCID: PMC11895749 DOI: 10.1017/ext.2024.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 03/14/2025]
Abstract
The modern marine megafauna is known to play important ecological roles and includes many charismatic species that have drawn the attention of both the scientific community and the public. However, the extinct marine megafauna has never been assessed as a whole, nor has it been defined in deep time. Here, we review the literature to define and list the species that constitute the extinct marine megafauna, and to explore biological and ecological patterns throughout the Phanerozoic. We propose a size cut-off of 1 m of length to define the extinct marine megafauna. Based on this definition, we list 706 taxa belonging to eight main groups. We found that the extinct marine megafauna was conspicuous over the Phanerozoic and ubiquitous across all geological eras and periods, with the Mesozoic, especially the Cretaceous, having the greatest number of taxa. Marine reptiles include the largest size recorded (21 m; Shonisaurus sikanniensis) and contain the highest number of extinct marine megafaunal taxa. This contrasts with today's assemblage, where marine animals achieve sizes of >30 m. The extinct marine megafaunal taxa were found to be well-represented in the Paleobiology Database, but not better sampled than their smaller counterparts. Among the extinct marine megafauna, there appears to be an overall increase in body size through time. Most extinct megafaunal taxa were inferred to be macropredators preferentially living in coastal environments. Across the Phanerozoic, megafaunal species had similar extinction risks as smaller species, in stark contrast to modern oceans where the large species are most affected by human perturbations. Our work represents a first step towards a better understanding of the marine megafauna that lived in the geological past. However, more work is required to expand our list of taxa and their traits so that we can obtain a more complete picture of their ecology and evolution.
Collapse
Affiliation(s)
- Catalina Pimiento
- Department of Paleontology, University of Zurich, Zurich, Switzerland
- Department of Biosciences, Swansea University, Swansea, UK
| | - Kristína Kocáková
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Gregor H. Mathes
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Thodoris Argyriou
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Science and Mathematics, American College of Greece-Deree, Athens, Greece
| | - Edwin-Alberto Cadena
- Facultad de Ciencias Naturales and Grupo de Investigación Paleontología Neotropical Tradicional y Molecular (PaleoNeo), University of Rosario, Bogotá, Colombia
- Field Museum of Natural History, Chicago, IL, USA
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Jack A. Cooper
- Department of Biosciences, Swansea University, Swansea, UK
| | - Dirley Cortés
- Smithsonian Tropical Research Institute, Balboa, Panama
- Redpath Museum, Biology Department, McGill University, Montréal, QC, Canada
- Centro de Investigaciones Paleontológicas, Villa de Leyva, Boyacá, Colombia
- Grupo de Investigación Biología para la Conservación, Universidad Pedagógica y Tecnológica de Colombia, Boyacá, Colombia
| | - Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
- Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, London, UK
| | - Christian Klug
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | | | - Ana M. Valenzuela-Toro
- Centro de Investigación y Avance de la Historia Natural de Atacama (CIAHN), Caldera, Chile
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Timon Buess
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Meike Günter
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | | | - Pascale Hatt
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | | | - Giulia Jacober
- Department of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Sabrina Kobelt
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Sheldon Masseraz
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Ian Mehli
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
| | - Sarah Reiff
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Mimo Ruckstuhl
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | | | - Clarissa Seige
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Nathalie Senn
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital, Zurich, Switzerland
| | | | - Jessica Baumann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Livio Flüeler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Lino J. Guevara
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Esin Ickin
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Janis Rogenmoser
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Jaime A. Villafaña
- Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Chiara Zanatta
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Finnegan S, Harnik PG, Lockwood R, Lotze HK, McClenachan L, Kahanamoku SS. Using the Fossil Record to Understand Extinction Risk and Inform Marine Conservation in a Changing World. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:307-333. [PMID: 37683272 DOI: 10.1146/annurev-marine-021723-095235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Understanding the long-term effects of ongoing global environmental change on marine ecosystems requires a cross-disciplinary approach. Deep-time and recent fossil records can contribute by identifying traits and environmental conditions associated with elevated extinction risk during analogous events in the geologic past and by providing baseline data that can be used to assess historical change and set management and restoration targets and benchmarks. Here, we review the ecological and environmental information available in the marine fossil record and discuss how these archives can be used to inform current extinction risk assessments as well as marine conservation strategies and decision-making at global to local scales. As we consider future research directions in deep-time and conservationpaleobiology, we emphasize the need for coproduced research that unites researchers, conservation practitioners, and policymakers with the communities for whom the impacts of climate and global change are most imminent.
Collapse
Affiliation(s)
- Seth Finnegan
- Department of Integrative Biology, University of California, Berkeley, California, USA; ,
| | - Paul G Harnik
- Department of Earth and Environmental Geosciences, Colgate University, Hamilton, New York, USA;
| | - Rowan Lockwood
- Department of Geology, William & Mary, Williamsburg, Virginia, USA;
| | - Heike K Lotze
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Loren McClenachan
- Department of History and School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada;
| | - Sara S Kahanamoku
- Department of Integrative Biology, University of California, Berkeley, California, USA; ,
- Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
5
|
Watkins A. Scaling procedures in climate science: Using temporal scaling to identify a paleoclimate analogue. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 102:31-44. [PMID: 37804549 DOI: 10.1016/j.shpsa.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
Using past episodes of climate change as a source of evidence to inform our projections about contemporary climate change requires establishing the extent to which episodes in the deep past are analogous to the current crisis. However, many scientists claim that contemporary rates of climate change (e.g., rates of carbon emissions or temperature change) are unprecedented, including compared to episodes in the deep past. If so, this would limit the utility of paleoclimate analogues. In this paper, I show how a data adjustment procedure called "temporal scaling," which must be applied to both contemporary and past rate data, complicates the claim that contemporary rates are truly unprecedented. On top of giving actionable recommendations to scientists, this paper advances the philosophical literature concerning the use of models that are known to be somewhat disanalogous to their target systems.
Collapse
Affiliation(s)
- Aja Watkins
- University of Wisconsin-Madison; Madison, WI, USA.
| |
Collapse
|
6
|
Bak TM, Camp RJ, Heim NA, McCauley DJ, Payne JL, Knope ML. A global ecological signal of extinction risk in marine ray-finned fishes (class Actinopterygii). CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e25. [PMID: 40078675 PMCID: PMC11895746 DOI: 10.1017/ext.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 03/14/2025]
Abstract
Many marine fish species are experiencing population declines, but their extinction risk profiles are largely understudied in comparison to their terrestrial vertebrate counterparts. Selective extinction of marine fish species may result in rapid alteration of the structure and function of ocean ecosystems. In this study, we compiled an ecological trait dataset for 8,185 species of marine ray-finned fishes (class Actinopterygii) from FishBase and used phylogenetic generalized linear models to examine which ecological traits are associated with increased extinction risk, based on the International Union for the Conservation of Nature Red List. We also assessed which threat types may be driving these species toward greater extinction risk and whether threatened species face a greater average number of threat types than non-threatened species. We found that larger body size and/or fishes with life histories involving movement between marine, brackish, and freshwater environments are associated with elevated extinction risk. Commercial harvesting threatens the greatest number of species, followed by pollution, development, and then climate change. We also found that threatened species, on average, face a significantly greater number of threat types than non-threatened species. These results can be used by resource managers to help address the heightened extinction risk patterns we found.
Collapse
Affiliation(s)
- Trevor M. Bak
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawaiʻi at Hilo, Hilo, HI, USA
| | - Richard J. Camp
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI, USA
| | - Noel A. Heim
- Department of Earth & Ocean Sciences, Tufts University, Medford, MA, USA
| | - Douglas J. McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, CA, USA
| | - Matthew L. Knope
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, HI, USA
| |
Collapse
|
7
|
Horowitz J, Quattrini AM, Brugler MR, Miller DJ, Pahang K, Bridge TCL, Cowman PF. Bathymetric evolution of black corals through deep time. Proc Biol Sci 2023; 290:20231107. [PMID: 37788705 PMCID: PMC10547549 DOI: 10.1098/rspb.2023.1107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Deep-sea lineages are generally thought to arise from shallow-water ancestors, but this hypothesis is based on a relatively small number of taxonomic groups. Anthozoans, which include corals and sea anemones, are significant contributors to the faunal diversity of the deep sea, but the timing and mechanisms of their invasion into this biome remain elusive. Here, we reconstruct a fully resolved, time-calibrated phylogeny of 83 species in the order Antipatharia (black coral) to investigate their bathymetric evolutionary history. Our reconstruction indicates that extant black coral lineages first diversified in continental slope depths (∼250-3000 m) during the early Silurian (∼437 millions of years ago (Ma)) and subsequently radiated into, and diversified within, both continental shelf (less than 250 m) and abyssal (greater than 3000 m) habitats. Ancestral state reconstruction analysis suggests that the appearance of morphological features that enhanced the ability of black corals to acquire nutrients coincided with their invasion of novel depths. Our findings have important conservation implications for anthozoan lineages, as the loss of 'source' slope lineages could threaten millions of years of evolutionary history and confound future invasion events, thereby warranting protection.
Collapse
Affiliation(s)
- Jeremy Horowitz
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
| | - Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
| | - Mercer R. Brugler
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
- Department of Natural Sciences, University of South Carolina Beaufort, 1100 Boundary Street, Beaufort, SC 29902, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - David J. Miller
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Molecular and Cell Biology, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | - Kristina Pahang
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
| | - Tom C. L. Bridge
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- College of Science and Engineering, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | - Peter F. Cowman
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Molecular and Cell Biology, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- College of Science and Engineering, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| |
Collapse
|
8
|
Monarrez PM, Heim NA, Payne JL. Reduced strength and increased variability of extinction selectivity during mass extinctions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230795. [PMID: 37771968 PMCID: PMC10523066 DOI: 10.1098/rsos.230795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Two of the traits most often observed to correlate with extinction risk in marine animals are geographical range and body size. However, the relative effects of these two traits on extinction risk have not been investigated systematically for either background times or during mass extinctions. To close this knowledge gap, we measure and compare extinction selectivity of geographical range and body size of genera within five classes of benthic marine animals across the Phanerozoic using capture-mark-recapture models. During background intervals, narrow geographical range is strongly associated with greater extinction probability, whereas smaller body size is more weakly associated with greater extinction probability. During mass extinctions, the association between geographical range and extinction probability is reduced in every class and fully eliminated in some, whereas the association between body size and extinction probability varies in strength and direction across classes. While geographical range is universally the stronger predictor of survival during background intervals, variation among classes during mass extinction suggests a fundamental shift in extinction processes during these global catastrophes.
Collapse
Affiliation(s)
- Pedro M. Monarrez
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA 94305, USA
| | - Noel A. Heim
- Department of Earth and Climate Sciences, Tufts University, Medford, MA 02155, USA
| | - Jonathan L. Payne
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Huang S, Edie SM, Collins KS, Crouch NMA, Roy K, Jablonski D. Diversity, distribution and intrinsic extinction vulnerability of exploited marine bivalves. Nat Commun 2023; 14:4639. [PMID: 37582749 PMCID: PMC10427664 DOI: 10.1038/s41467-023-40053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Marine bivalves are important components of ecosystems and exploited by humans for food across the world, but the intrinsic vulnerability of exploited bivalve species to global changes is poorly known. Here, we expand the list of shallow-marine bivalves known to be exploited worldwide, with 720 exploited bivalve species added beyond the 81 in the United Nations FAO Production Database, and investigate their diversity, distribution and extinction vulnerability using a metric based on ecological traits and evolutionary history. The added species shift the richness hotspot of exploited species from the northeast Atlantic to the west Pacific, with 55% of bivalve families being exploited, concentrated mostly in two major clades but all major body plans. We find that exploited species tend to be larger in size, occur in shallower waters, and have larger geographic and thermal ranges-the last two traits are known to confer extinction-resistance in marine bivalves. However, exploited bivalve species in certain regions such as the tropical east Atlantic and the temperate northeast and southeast Pacific, are among those with high intrinsic vulnerability and are a large fraction of regional faunal diversity. Our results pinpoint regional faunas and specific taxa of likely concern for management and conservation.
Collapse
Affiliation(s)
- Shan Huang
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt (Main), Germany.
| | - Stewart M Edie
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | | | - Nicholas M A Crouch
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Kaustuv Roy
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - David Jablonski
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
10
|
del Monte-Luna P, Nakamura M, Vicente A, Pérez-Sosa LB, Yáñez-Arenas A, Trites AW, Lluch-Cota SE. A review of recent and future marine extinctions. CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e13. [PMID: 40078682 PMCID: PMC11895723 DOI: 10.1017/ext.2023.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 03/14/2025]
Abstract
Between 20 and 24 marine extinctions, ranging from algal to mammal species, have occurred over the past 500 years. These relatively low numbers question whether the sixth mass extinction that is underway on land is also occurring in the ocean. There is, however, increasing evidence of worldwide losses of marine populations that may foretell a wave of oncoming marine extinctions. A review of current methods being used to determine the loss of biodiversity from the world's oceans reveals the need to develop and apply new assessment methodologies that incorporate standardized metrics that allow comparisons to be made among different regions and taxonomic groups, and between current extinctions and past mass extinction events. Such efforts will contribute to a better understanding of extinction risk facing marine flora and fauna, as well as the ways in which it can be mitigated.
Collapse
Affiliation(s)
- Pablo del Monte-Luna
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional (IPN), La Paz, Mexico
| | - Miguel Nakamura
- Departamento de Probabilidad y Estadística, Centro de Investigación en Matemáticas A.C. (CIMAT), Guanajuato, Mexico
| | - Alba Vicente
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional (IPN), La Paz, Mexico
- Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona-UB, BarcelonaSpain
| | - Lilian B. Pérez-Sosa
- Departamento de Probabilidad y Estadística, Centro de Investigación en Matemáticas A.C. (CIMAT), Guanajuato, Mexico
| | - Arturo Yáñez-Arenas
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional (IPN), La Paz, Mexico
| | - Andrew W. Trites
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Salvador E. Lluch-Cota
- Programa de Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
11
|
Huang Y, Chen ZQ, Roopnarine PD, Benton MJ, Zhao L, Feng X, Li Z. The stability and collapse of marine ecosystems during the Permian-Triassic mass extinction. Curr Biol 2023; 33:1059-1070.e4. [PMID: 36841237 DOI: 10.1016/j.cub.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/20/2022] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
The history of Earth's biodiversity is punctuated episodically by mass extinctions. These are characterized by major declines of taxon richness, but the accompanying ecological collapse has rarely been evaluated quantitatively. The Permian-Triassic mass extinction (PTME; ∼252 mya), as the greatest known extinction, permanently altered marine ecosystems and paved the way for the transition from Paleozoic to Mesozoic evolutionary faunas. Thus, the PTME offers a window into the relationship between taxon richness and ecological dynamics of ecosystems during a severe extinction. However, the accompanying ecological collapse through the PTME has not been evaluated in detail. Here, using food-web models and a marine paleocommunity dataset spanning the PTME, we show that after the first extinction phase, community stability decreased only slightly despite the loss of more than half of taxonomic diversity, while community stability significantly decreased in the second phase. Thus, taxonomic and ecological changes were unequivocally decoupled, with species richness declining severely ∼61 ka earlier than the collapse of marine ecosystem stability, implying that in major catastrophes, a biodiversity crash may be the harbinger of a more devastating ecosystem collapse.
Collapse
Affiliation(s)
- Yuangeng Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China; Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Zhong-Qiang Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China.
| | - Peter D Roopnarine
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China; Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 1RJ, UK
| | - Laishi Zhao
- State Key Laboratory of Geological Processes and Resource Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China
| | - Xueqian Feng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China
| | - Zhenhua Li
- School of Computer Science, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China
| |
Collapse
|
12
|
Dillon EM, Pier JQ, Smith JA, Raja NB, Dimitrijević D, Austin EL, Cybulski JD, De Entrambasaguas J, Durham SR, Grether CM, Haldar HS, Kocáková K, Lin CH, Mazzini I, Mychajliw AM, Ollendorf AL, Pimiento C, Regalado Fernández OR, Smith IE, Dietl GP. What is conservation paleobiology? Tracking 20 years of research and development. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1031483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conservation paleobiology has coalesced over the last two decades since its formal coining, united by the goal of applying geohistorical records to inform the conservation, management, and restoration of biodiversity and ecosystem services. Yet, the field is still attempting to form an identity distinct from its academic roots. Here, we ask a deceptively simple question: What is conservation paleobiology? To track its development as a field, we synthesize complementary perspectives from a survey of the scientific community that is familiar with conservation paleobiology and a systematic literature review of publications that use the term. We present an overview of conservation paleobiology’s research scope and compare survey participants’ perceptions of what it is and what it should be as a field. We find that conservation paleobiologists use a variety of geohistorical data in their work, although research is typified by near-time records of marine molluscs and terrestrial mammals collected over local to regional spatial scales. Our results also confirm the field’s broad disciplinary basis: survey participants indicated that conservation paleobiology can incorporate information from a wide range of disciplines spanning conservation biology, ecology, historical ecology, paleontology, and archaeology. Finally, we show that conservation paleobiologists have yet to reach a consensus on how applied the field should be in practice. The survey revealed that many participants thought the field should be more applied but that most do not currently engage with conservation practice. Reflecting on how conservation paleobiology has developed over the last two decades, we discuss opportunities to promote community cohesion, strengthen collaborations within conservation science, and align training priorities with the field’s identity as it continues to crystallize.
Collapse
|
13
|
Pimiento C, Antonelli A. Integrating deep-time palaeontology in conservation prioritisation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.959364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Halting biodiversity loss under growing anthropogenic pressure is arguably the greatest environmental challenge we face. Given that not all species are equally threatened and that resources are always limited, establishing robust prioritisation schemes is critical for implementing effective conservation actions. To this end, the International Union for Conservation of Nature (IUCN) Red List of Threatened Species has become a widely used source of information on species’ extinction risk. Various metrics have been proposed that combine IUCN status with different aspects of biodiversity to identify conservation priorities. However, current strategies do not take full advantage of palaeontological data, with conservation palaeobiology often focussing on the near-time fossil record (the last 2 million years). Here, we make a case for the value of the deep-time (over 2 million years ago), as it can offer tangible parallels with today’s biodiversity crisis and inform on the intrinsic traits that make species prone to extinction. As such, palaeontological data holds great predictive power, which could be harnessed to flag species likely to be threatened but that are currently too poorly known to be identified as such. Finally, we identify key IUCN-based prioritisation metrics and outline opportunities for integrating palaeontological data to validate their implementation. Although the human signal of the current extinction crisis makes direct comparisons with the geological past challenging, the deep-time fossil record has more to offer to conservation than is currently recognised.
Collapse
|
14
|
Sperling EA, Boag TH, Duncan MI, Endriga CR, Marquez JA, Mills DB, Monarrez PM, Sclafani JA, Stockey RG, Payne JL. Breathless through Time: Oxygen and Animals across Earth's History. THE BIOLOGICAL BULLETIN 2022; 243:184-206. [PMID: 36548971 DOI: 10.1086/721754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine life. Because the early part of Earth's history lacked both atmospheric oxygen and animals, a persistent co-evolutionary narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxygen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmospheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean deoxygenation (and marine mass extinctions) is increasingly linked to large igneous province eruptions-massive volcanic carbon inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the response of the biosphere at large taxonomic, spatial, and temporal scales.
Collapse
|
15
|
Scarponi D, Nawrot R, Azzarone M, Pellegrini C, Gamberi F, Trincardi F, Kowalewski M. Resilient biotic response to long-term climate change in the Adriatic Sea. GLOBAL CHANGE BIOLOGY 2022; 28:4041-4053. [PMID: 35411661 PMCID: PMC9324144 DOI: 10.1111/gcb.16168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 05/14/2023]
Abstract
Preserving adaptive capacities of coastal ecosystems, which are currently facing the ongoing climate warming and a multitude of other anthropogenic impacts, requires an understanding of long-term biotic dynamics in the context of major environmental shifts prior to human disturbances. We quantified responses of nearshore mollusk assemblages to long-term climate and sea-level changes using 223 samples (~71,300 specimens) retrieved from latest Quaternary sediment cores of the Adriatic coastal systems. These cores provide a rare chance to study coastal systems that existed during glacial lowstands. The fossil mollusk record indicates that nearshore assemblages of the penultimate interglacial (Late Pleistocene) shifted in their faunal composition during the subsequent ice age, and then reassembled again with the return of interglacial climate in the Holocene. These shifts point to a climate-driven habitat filtering modulated by dispersal processes. The resilient, rather than persistent or stochastic, response of the mollusk assemblages to long-term environmental changes over at least 125 thousand years highlights the historically unprecedented nature of the ongoing anthropogenic stressors (e.g., pollution, eutrophication, bottom trawling, and invasive species) that are currently shifting coastal regions into novel system states far outside the range of natural variability archived in the fossil record.
Collapse
Affiliation(s)
- Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e AmbientaliUniversità di BolognaBolognaItaly
- Alma Mater Research Institute on Global Challenges and Climate ChangeUniversità di BolognaBolognaItaly
| | - Rafał Nawrot
- Department of PalaeontologyUniversity of ViennaViennaAustria
| | - Michele Azzarone
- Dipartimento di Scienze Biologiche, Geologiche e AmbientaliUniversità di BolognaBolognaItaly
| | - Claudio Pellegrini
- Istituto di Scienze Marinesezione di BolognaConsiglio Nazionale delle RicercheBolognaItaly
| | - Fabiano Gamberi
- Istituto di Scienze Marinesezione di BolognaConsiglio Nazionale delle RicercheBolognaItaly
| | - Fabio Trincardi
- Istituto di Scienze Marinesezione di BolognaConsiglio Nazionale delle RicercheBolognaItaly
| | - Michał Kowalewski
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
16
|
Marques RC, da Silva AM, Simone LRL. Cladistic analysis of the transisthmian genus Eurytellina (Bivalvia: Tellinoidea) based on morphological and morphometric data. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Munstermann MJ, Heim NA, McCauley DJ, Payne JL, Upham NS, Wang SC, Knope ML. A global ecological signal of extinction risk in terrestrial vertebrates. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13852. [PMID: 34668599 PMCID: PMC9299904 DOI: 10.1111/cobi.13852] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 05/13/2023]
Abstract
To determine the distribution and causes of extinction threat across functional groups of terrestrial vertebrates, we assembled an ecological trait data set for 18,016 species of terrestrial vertebrates and utilized phylogenetic comparative methods to test which categories of habitat association, mode of locomotion, and feeding mode best predicted extinction risk. We also examined the individual categories of the International Union for Conservation of Nature Red List extinction drivers (e.g., agriculture and logging) threatening each species and determined the greatest threats for each of the four terrestrial vertebrate groups. We then quantified the sum of extinction drivers threatening each species to provide a multistressor perspective on threat. Cave dwelling amphibians (p < 0.01), arboreal quadrupedal mammals (all of which are primates) (p < 0.01), aerial and scavenging birds (p < 0.01), and pedal (i.e., walking) squamates (p < 0.01) were all disproportionately threatened with extinction in comparison with the other assessed ecological traits. Across all threatened vertebrate species in the study, the most common risk factors were agriculture, threatening 4491 species, followed by logging, threatening 3187 species, and then invasive species and disease, threatening 2053 species. Species at higher risk of extinction were simultaneously at risk from a greater number of threat types. If left unabated, the disproportionate loss of species with certain functional traits and increasing anthropogenic pressures are likely to disrupt ecosystem functions globally. A shift in focus from species- to trait-centric conservation practices will allow for protection of at-risk functional diversity from regional to global scales.
Collapse
Affiliation(s)
- Maya J. Munstermann
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| | - Noel A. Heim
- Department of Earth & Ocean SciencesTufts UniversityMedfordMassachusettsUSA
| | - Douglas J. McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Jonathan L. Payne
- Department of Geological SciencesStanford UniversityStanfordCaliforniaUSA
| | - Nathan S. Upham
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Steve C. Wang
- Department of Mathematics and StatisticsSwarthmore CollegeSwarthmorePennsylvaniaUSA
| | - Matthew L. Knope
- Department of BiologyUniversity of Hawaii at HiloHiloHawaiiUSA
- Tropical Conservation Biology and Environmental Science Graduate ProgramUniversity of Hawaii at HiloHiloHawaiiUSA
| |
Collapse
|
18
|
Macedo TP, Zhao Q, Costa NV, Freire AS. Ocean temperature and density dependence as key drivers of the population dynamics of an intertidal crab at the Brazilian oceanic islands. POPUL ECOL 2022. [DOI: 10.1002/1438-390x.12126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thais P. Macedo
- Laboratório de Crustáceos e Plâncton, Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Qing Zhao
- School of Natural Resources University of Missouri Columbia Missouri USA
| | - Natasha V. Costa
- Departmento de Oceanografia Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Andrea S. Freire
- Laboratório de Crustáceos e Plâncton, Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Brazil
| |
Collapse
|
19
|
Knowledge Gaps and Missing Links in Understanding Mass Extinctions: Can Mathematical Modeling Help? Phys Life Rev 2022; 41:22-57. [DOI: 10.1016/j.plrev.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
|
20
|
Colonial history and global economics distort our understanding of deep-time biodiversity. Nat Ecol Evol 2022; 6:145-154. [PMID: 34969991 DOI: 10.1038/s41559-021-01608-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 11/09/2022]
Abstract
Sampling biases in the fossil record distort estimates of past biodiversity. However, these biases not only reflect the geological and spatial aspects of the fossil record, but also the historical and current collation of fossil data. We demonstrate how the legacy of colonialism and socioeconomic factors, such as wealth, education and political stability, impact the global distribution of fossil data over the past 30 years. We find that a global power imbalance persists in palaeontology, with researchers in high- or upper-middle-income countries holding a monopoly over palaeontological knowledge production by contributing to 97% of fossil data. As a result, some countries or regions tend to be better sampled than others, ultimately leading to heterogeneous spatial sampling across the globe. This illustrates how efforts to mitigate sampling biases to obtain a truly representative view of past biodiversity are not disconnected from the aim of diversifying and decolonizing our discipline.
Collapse
|
21
|
Dulvy NK, Pacoureau N, Rigby CL, Pollom RA, Jabado RW, Ebert DA, Finucci B, Pollock CM, Cheok J, Derrick DH, Herman KB, Sherman CS, VanderWright WJ, Lawson JM, Walls RHL, Carlson JK, Charvet P, Bineesh KK, Fernando D, Ralph GM, Matsushiba JH, Hilton-Taylor C, Fordham SV, Simpfendorfer CA. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr Biol 2021; 31:4773-4787.e8. [PMID: 34492229 DOI: 10.1016/j.cub.2021.08.062] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
The scale and drivers of marine biodiversity loss are being revealed by the International Union for Conservation of Nature (IUCN) Red List assessment process. We present the first global reassessment of 1,199 species in Class Chondrichthyes-sharks, rays, and chimeras. The first global assessment (in 2014) concluded that one-quarter (24%) of species were threatened. Now, 391 (32.6%) species are threatened with extinction. When this percentage of threat is applied to Data Deficient species, more than one-third (37.5%) of chondrichthyans are estimated to be threatened, with much of this change resulting from new information. Three species are Critically Endangered (Possibly Extinct), representing possibly the first global marine fish extinctions due to overfishing. Consequently, the chondrichthyan extinction rate is potentially 25 extinctions per million species years, comparable to that of terrestrial vertebrates. Overfishing is the universal threat affecting all 391 threatened species and is the sole threat for 67.3% of species and interacts with three other threats for the remaining third: loss and degradation of habitat (31.2% of threatened species), climate change (10.2%), and pollution (6.9%). Species are disproportionately threatened in tropical and subtropical coastal waters. Science-based limits on fishing, effective marine protected areas, and approaches that reduce or eliminate fishing mortality are urgently needed to minimize mortality of threatened species and ensure sustainable catch and trade of others. Immediate action is essential to prevent further extinctions and protect the potential for food security and ecosystem functions provided by this iconic lineage of predators.
Collapse
Affiliation(s)
- Nicholas K Dulvy
- Earth to Ocean Research Group, Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Nathan Pacoureau
- Earth to Ocean Research Group, Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Cassandra L Rigby
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Riley A Pollom
- IUCN SSC Global Center for Species Survival, Indianapolis Zoo, 1200 West Washington Street, Indianapolis, IN 46222, USA
| | - Rima W Jabado
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Elasmo Project, PO Box 29588, Dubai, United Arab Emirates
| | - David A Ebert
- Pacific Shark Research Center, Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA; South African Institute for Aquatic Biodiversity, Grahamstown, Eastern Cape 6140, South Africa
| | - Brittany Finucci
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Caroline M Pollock
- IUCN, The David Attenborough Building, Pembroke Street, Cambridge, Cambridgeshire CB2 3QZ, UK
| | - Jessica Cheok
- Earth to Ocean Research Group, Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Danielle H Derrick
- Earth to Ocean Research Group, Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | | | - C Samantha Sherman
- Earth to Ocean Research Group, Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Wade J VanderWright
- Earth to Ocean Research Group, Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Julia M Lawson
- Bren School of Environmental Science & Management, 2400 Bren Hall, Santa Barbara, CA 93106-5131, USA
| | - Rachel H L Walls
- Earth to Ocean Research Group, Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - John K Carlson
- National Marine Fisheries Service, Southeast Fisheries Science Center-Panama City Laboratory, 3500 Delwood Beach Road, Panama City, FL 32408, USA
| | - Patricia Charvet
- Programa de Pós-Graduação em Sistemática, Uso e Conservação da Biodiversidade, Universidade Federal do Ceará, Fortaleza, Ceará 60440-900, Brazil
| | - Kinattumkara K Bineesh
- Marine Biology Regional Centre, 130 Santhome High Road, Marine Biology Regional Centre, Tamil Nadu, Chennai, India
| | - Daniel Fernando
- Blue Resources Trust, 86 Barnes Place, Colombo 00700, Sri Lanka; Department of Biology and Environmental Science, Linnaeus University, SE 39182 Kalmar, Sweden
| | - Gina M Ralph
- International Union for Conservation of Nature Marine Biodiversity Unit, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Jay H Matsushiba
- Earth to Ocean Research Group, Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Craig Hilton-Taylor
- IUCN, The David Attenborough Building, Pembroke Street, Cambridge, Cambridgeshire CB2 3QZ, UK
| | - Sonja V Fordham
- Shark Advocates International c/o The Ocean Foundation, 1320 19th Street NW, Fifth Floor, Washington, DC 20036, USA
| | - Colin A Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
22
|
Greenberg DA, Pyron RA, Johnson LGW, Upham NS, Jetz W, Mooers AØ. Evolutionary legacies in contemporary tetrapod imperilment. Ecol Lett 2021; 24:2464-2476. [PMID: 34510687 PMCID: PMC9048422 DOI: 10.1111/ele.13868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
The Tree of Life will be irrevocably reshaped as anthropogenic extinctions continue to unfold. Theory suggests that lineage evolutionary dynamics, such as age since origination, historical extinction filters and speciation rates, have influenced ancient extinction patterns - but whether these factors also contribute to modern extinction risk is largely unknown. We examine evolutionary legacies in contemporary extinction risk for over 4000 genera, representing ~30,000 species, from the major tetrapod groups: amphibians, birds, turtles and crocodiles, squamate reptiles and mammals. We find consistent support for the hypothesis that extinction risk is elevated in lineages with higher recent speciation rates. We subsequently test, and find modest support for, a primary mechanism driving this pattern: that rapidly diversifying clades predominantly comprise range-restricted, and extinction-prone, species. These evolutionary patterns in current imperilment may have important consequences for how we manage the erosion of biological diversity across the Tree of Life.
Collapse
Affiliation(s)
- Dan A. Greenberg
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - R. Alexander Pyron
- Department of Biological Sciences, George Washington University, Washington, District of Columbia, USA
| | - Liam G. W. Johnson
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nathan S. Upham
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
| | - Arne Ø. Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
23
|
Abstract
Marine biodiversity is the essential foundation for the structure and functioning of ocean ecosystems and for providing the full range of ecosystem services that benefit humans on local, regional, and global scales. These benefits include many visible as well as unseen functions and services such as the oxygen we breathe, the seafood we eat, the support of local livelihoods, the marine plants storing 'blue' carbon and protecting our shorelines, the medical and biochemical compounds found in marine species, the coral reefs we explore when scuba diving, and the charismatic creatures inspiring our lives. All these benefits are provided by the diversity and interplay of ocean life, from tiny plankton and bacteria to 30 metre whales and giant kelp.
Collapse
|
24
|
Fogliarini CO, Ferreira CEL, Bornholdt J, Barbosa MC, Giglio VJ, Bender MG. Telling the same story: Fishers and landing data reveal changes in fisheries on the Southeastern Brazilian Coast. PLoS One 2021; 16:e0252391. [PMID: 34061860 PMCID: PMC8168859 DOI: 10.1371/journal.pone.0252391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
An understanding of the effects of fishing on marine ecosystems relies on information about the conserved state of these environments. Non-conventional approaches such as the use of historical data and local ecological knowledge can provide information and help adjust our references of changes in the environment. Also, the combination of different types of data can indicate a fisheries trend that would be undetectable when evaluated separately. Here we investigated changes in fisher's perceptions regarding overexploited and new target species in artisanal fisheries in a secular fishing village of the subtropical, southeastern Brazilian coast. We identified temporal changes in landings and in the mean trophic level (MTL) of high trophic level species (≥ 3.5 and >4) over 16 years. Fishers' knowledge revealed shifts in perception associated with years of fishing practice. More experienced fishers recognized a greater number of overexploited and new target species than fishers in the beginning of their careers. Landing data has revealed declining trends of 72% for five mesopredators species. Due to the overfishing of mesopredators, there was a shift in target species, towards fish that were previously discarded. Temporal changes in landings and in the MTL metric are concordant with previous reports on the overexploitation of species caught by local fishers. Our work reveals that multiple sources of information can be combined to establish historical baselines and improve the detection of change in marine ecosystems.
Collapse
Affiliation(s)
- Carine O. Fogliarini
- Departamento de Ecologia e Evolução, Marine Macroecology and Conservation Lab, Universidade Federal de Santa Maria, Bairro Camobi, Santa Maria, Rio Grande do Sul, Brazil
| | - Carlos E. L. Ferreira
- Departamento de Biologia Marinha, Reef Systems Ecology and Conservation Lab, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Jéssica Bornholdt
- Departamento de Ecologia e Evolução, Marine Macroecology and Conservation Lab, Universidade Federal de Santa Maria, Bairro Camobi, Santa Maria, Rio Grande do Sul, Brazil
| | - Moysés. C. Barbosa
- Departamento de Biologia Marinha, Reef Systems Ecology and Conservation Lab, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Vinicius J. Giglio
- Marine Conservation and Ecology Lab, Instituto do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Mariana G. Bender
- Departamento de Ecologia e Evolução, Marine Macroecology and Conservation Lab, Universidade Federal de Santa Maria, Bairro Camobi, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
Cole SR, Hopkins MJ. Selectivity and the effect of mass extinctions on disparity and functional ecology. SCIENCE ADVANCES 2021; 7:eabf4072. [PMID: 33952521 PMCID: PMC8099180 DOI: 10.1126/sciadv.abf4072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Selectivity of mass extinctions is thought to play a major role in coupling or decoupling of taxonomic, morphological, and ecological diversity, yet these measures have never been jointly evaluated within a single clade over multiple mass extinctions. We investigate extinction selectivity and changes in taxonomic diversity, morphological disparity, and functional ecology over the ~160-million-year evolutionary history of diplobathrid crinoids (Echinodermata), which spans two mass extinctions. Whereas previous studies documented extinction selectivity for crinoids during background extinction, we find no evidence for selectivity during mass extinctions. Despite no evidence for extinction selectivity, disparity remains strongly correlated with richness over extinction events, contradicting expected patterns of disparity given nonselective extinction. Results indicate that (i) disparity and richness can remain coupled across extinctions even when selective extinction does not occur, (ii) simultaneous decreases in taxonomic diversity and disparity are insufficient evidence for extinction selectivity, and (iii) selectivity differs between background and mass extinction regimes.
Collapse
Affiliation(s)
- Selina R Cole
- Department of Paleobiology, Smithsonian Institution, National Museum of Natural History, PO Box 37012, MRC 121, Washington, DC 20013-7012, USA.
- Division of Paleontology (Invertebrates), American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA
| | - Melanie J Hopkins
- Division of Paleontology (Invertebrates), American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA
| |
Collapse
|
26
|
Looby A, Ginsburg DW. Nearshore Species Biodiversity of a Marine Protected Area Off Santa Catalina Island, California. WEST N AM NATURALIST 2021. [DOI: 10.3398/064.081.0110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Audrey Looby
- Environmental Studies Program, University of Southern California, Los Angeles, CA 90089-0156
| | - David W. Ginsburg
- Environmental Studies Program, University of Southern California, Los Angeles, CA 90089-0156
| |
Collapse
|
27
|
Mathes GH, van Dijk J, Kiessling W, Steinbauer MJ. Extinction risk controlled by interaction of long-term and short-term climate change. Nat Ecol Evol 2021; 5:304-310. [PMID: 33462487 DOI: 10.1038/s41559-020-01377-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
Assessing extinction risk from climate drivers is a major goal of conservation science. Few studies, however, include a long-term perspective of climate change. Without explicit integration, such long-term temperature trends and their interactions with short-term climate change may be so dominant that they blur or even reverse the apparent direct relationship between climate change and extinction. Here we evaluate how observed genus-level extinctions of arthropods, bivalves, cnidarians, echinoderms, foraminifera, gastropods, mammals and reptiles in the geological past can be predicted from the interaction of long-term temperature trends with short-term climate change. We compare synergistic palaeoclimate interaction (a short-term change on top of a long-term trend in the same direction) to antagonistic palaeoclimate interaction such as long-term cooling followed by short-term warming. Synergistic palaeoclimate interaction increases extinction risk by up to 40%. The memory of palaeoclimate interaction including the climate history experienced by ancestral lineages can be up to 60 Myr long. The effect size of palaeoclimate interaction is similar to other key factors such as geographic range, abundance or clade membership. Insights arising from this previously unknown driver of extinction risk might attenuate recent predictions of climate-change-induced biodiversity loss.
Collapse
Affiliation(s)
- Gregor H Mathes
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany. .,Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
| | - Jeroen van Dijk
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wolfgang Kiessling
- Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel J Steinbauer
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Reddin CJ, Kocsis ÁT, Aberhan M, Kiessling W. Victims of ancient hyperthermal events herald the fates of marine clades and traits under global warming. GLOBAL CHANGE BIOLOGY 2021; 27:868-878. [PMID: 33230883 DOI: 10.1111/gcb.15434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Organismic groups vary non-randomly in their vulnerability to extinction. However, it is unclear whether the same groups are consistently vulnerable, regardless of the dominant extinction drivers, or whether certain drivers have their own distinctive and predictable victims. Given the challenges presented by anthropogenic global warming, we focus on changes in extinction selectivity trends during ancient hyperthermal events: geologically rapid episodes of global warming. Focusing on the fossil record of the last 300 million years, we identify clades and traits of marine ectotherms that were more prone to extinction under the onset of six hyperthermal events than during other times. Hyperthermals enhanced the vulnerability of marine fauna that host photosymbionts, particularly zooxanthellate corals, the reef environments they provide, and genera with actively burrowing or swimming adult life-stages. The extinction risk of larger sized fauna also increased relative to non-hyperthermal times, while genera with a poorly buffered internal physiology did not become more vulnerable on average during hyperthermals. Hyperthermal-vulnerable clades include rhynchonelliform brachiopods and bony fish, whereas resistant clades include cartilaginous fish, and ostreid and venerid bivalves. These extinction responses in the geological past mirror modern responses of these groups to warming, including range-shift magnitudes, population losses, and experimental performance under climate-related stressors. Accordingly, extinction mechanisms distinctive to rapid global warming may be indicated, including sensitivity to warming-induced seawater deoxygenation. In anticipation of modern warming-driven marine extinctions, the trends illustrated in the fossil record offer an expedient preview.
Collapse
Affiliation(s)
- Carl J Reddin
- GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ádám T Kocsis
- GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- MTA-MTM-ELTE Research Group for Paleontology, Budapest, Hungary
| | - Martin Aberhan
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Knowlton N. Ocean Optimism: Moving Beyond the Obituaries in Marine Conservation. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:479-499. [PMID: 32503374 DOI: 10.1146/annurev-marine-040220-101608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While the ocean has suffered many losses, there is increasing evidence that important progress is being made in marine conservation. Examples include striking recoveries of once-threatened species, increasing rates of protection of marine habitats, more sustainably managed fisheries and aquaculture, reductions in some forms of pollution, accelerating restoration of degraded habitats, and use of the ocean and its habitats to sequester carbon and provide clean energy. Many of these achievements have multiple benefits, including improved human well-being. Moreover, better understanding of how to implement conservation strategies effectively, new technologies and databases, increased integration of the natural and social sciences, and use of indigenous knowledge promise continued progress. Enormous challenges remain, and there is no single solution; successful efforts typically are neither quick nor cheap and require trust and collaboration. Nevertheless, a greater focus on solutions and successes will help them to become the norm rather than the exception.
Collapse
Affiliation(s)
- Nancy Knowlton
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| |
Collapse
|
30
|
Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. J Therm Biol 2020; 92:102692. [PMID: 32888577 DOI: 10.1016/j.jtherbio.2020.102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of mangrove crabs decreases towards the higher latitudes and tested the importance of environmental factors such as Sea Surface Temperature (SST) in creating the latitudinal gradients in species richness of mangrove crabs. A total of 8262 distribution records of 481 species belonging to six families of mangrove crabs including Camptandriidae, Dotillidae, Macrophthalmidae, Ocypodidae, Sesarmidae, and Oziidae were extracted from open-access databases or collected by the authors, quality controlled, cleaned, and analyzed. Species richness was plotted against 5° latitudinal bands in relation to environmental factors. The R software and ArcGIS 10.6.1 were used to analyze the species latitudinal range and richness as well as to map the distribution of mangrove forest, endemic species, species geographical distribution records, and biogeographic regions. The Indo-West Pacific showed the highest species richness of mangrove crabs where more than 65% of species were found in the Indian Ocean and along the western Pacific Ocean. Our results showed that there are 11 significantly different biogeographic regions of mangrove crabs. The highest endemicity rate was observed in the NW Pacific Ocean (29%). Latitudinal patterns of species richness in Macrophthalmidae, Ocypodidae, and Sesarmidae showed an increasing trend from the poles toward the intermediate latitudes including one dip near the equator. However, latitudinal gradients in Camptandriidae, Dotillidae, and Oziidae were unimodal increasing from the higher latitudes towards the equator. Species richness per 5° latitudinal bands significantly increased following mean SST mean (°C), calcite, euphotic depth (m), and mangrove area (km2) across all latitudes, and tide average within each hemisphere. Species richness significantly decreased with dissolved O2 (ml l-1) and nitrate (μmol l-1) over all latitudes and in the southern hemisphere. The climax of global latitudinal species richness for some mangrove was observed along latitudes 20° N and 15°-25° S, not at the equator. This can suggest that temperature is probably the key driver of latitudinal gradients of mangrove crabs' species richness. Species richness and mangrove area were also highly correlated.
Collapse
|
31
|
Condamine FL, Nel A, Grandcolas P, Legendre F. Fossil and phylogenetic analyses reveal recurrent periods of diversification and extinction in dictyopteran insects. Cladistics 2020; 36:394-412. [PMID: 34619806 DOI: 10.1111/cla.12412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 01/22/2023] Open
Abstract
Variations of speciation and extinction rates determine the fate of clades through time. Periods of high diversification and extinction (possibly mass-extinction events) can punctuate the evolutionary history of various clades, but they remain loosely defined for many biological groups, especially nonmarine invertebrates like insects. Here, we examine whether the cockroaches, mantises and termites (altogether included in Dictyoptera) have experienced episodic pulses of speciation or extinction and how these pulses may be associated with environmental fluctuations or mass extinctions. We relied on molecular phylogeny and fossil data to shed light on the times and rates at which dictyopterans diversified. The diversification of Dictyoptera has alternated between (i) periods of high diversification in the late Carboniferous, Early-Middle Triassic, Early Cretaceous and middle Palaeogene, and (ii) periods of high extinction rates particularly at the Permian-Triassic boundary, but not necessarily correlated with the major global biodiversity crises as in the mid-Cretaceous. This study advocates the importance of analyzing, when possible, both molecular phylogeny and fossil data to unveil diversification and extinction periods for a given group. The causes and consequences of extinction must be studied beyond mass-extinction events alone to gain a broader understanding of how clades wax and wane.
Collapse
Affiliation(s)
- Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Évolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095, Montpellier, France
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Philippe Grandcolas
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Frédéric Legendre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, 75231, Paris Cedex 05, France
| |
Collapse
|
32
|
Pimiento C, Bacon CD, Silvestro D, Hendy A, Jaramillo C, Zizka A, Meyer X, Antonelli A. Selective extinction against redundant species buffers functional diversity. Proc Biol Sci 2020; 287:20201162. [PMID: 32693723 PMCID: PMC7423665 DOI: 10.1098/rspb.2020.1162] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extinction of species can destabilize ecological processes. A way to assess the ecological consequences of species loss is by examining changes in functional diversity. The preservation of functional diversity depends on the range of ecological roles performed by species, or functional richness, and the number of species per role, or functional redundancy. However, current knowledge is based on short timescales and an understanding of how functional diversity responds to long-term biodiversity dynamics has been limited by the availability of deep-time, trait-based data. Here, we compile an exceptional trait dataset of fossil molluscs from a 23-million-year interval in the Caribbean Sea (34 011 records, 4422 species) and develop a novel Bayesian model of multi-trait-dependent diversification to reconstruct mollusc (i) diversity dynamics, (ii) changes in functional diversity, and (iii) extinction selectivity over the last 23 Myr. Our results identify high diversification between 23–5 Mya, leading to increases in both functional richness and redundancy. Conversely, over the last three million years, a period of high extinction rates resulted in the loss of 49% of species but only 3% of functional richness. Extinction rates were significantly higher in small, functionally redundant species suggesting that competition mediated the response of species to environmental change. Taken together, our results identify long-term diversification and selective extinction against redundant species that allowed functional diversity to grow over time, ultimately buffering the ecological functions of biological communities against extinction.
Collapse
Affiliation(s)
- Catalina Pimiento
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK.,Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancon, Republic of Panama
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Austin Hendy
- Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Carlos Jaramillo
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancon, Republic of Panama.,Equipe de Paléontologie, Institut des Sciences de l'Évolution de Montpellier, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.,Institut des Sciences de l'Évolution de Montpellier, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Alexander Zizka
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.,German Center for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, 04103 Leipzig, Germany
| | - Xavier Meyer
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.,Royal Botanical Gardens Kew, Richmond TW9 3AE, UK
| |
Collapse
|
33
|
Tian L, Benton MJ. Predicting biotic responses to future climate warming with classic ecogeographic rules. Curr Biol 2020; 30:R744-R749. [PMID: 32634410 DOI: 10.1016/j.cub.2020.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Models for future environmental change all involve global warming, whether slow or fast. Predicting how plants and animals will respond to such warming can be aided by using ecogeographic biological 'rules', some long-established, that make predictions based on observations in nature, as well as plausible physiological and ecological expectations. Bergmann's rule is well known, namely that warm-blooded animals are generally smaller in warm climates, but six further temperature-related rules - Allen's rule, Gloger's rule, Hesse's rule, Jordan's rule, Rapoport's rule and Thorson's rule - are also worth considering as predictive tools. These rules have been discussed in the recent ecological and physiological literature, and in some cases meta-analytical studies of multiple studies show how they are applicable across taxa and in particular physical environmental situations.
Collapse
Affiliation(s)
- Li Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Michael J Benton
- School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
34
|
Pimiento C, Leprieur F, Silvestro D, Lefcheck JS, Albouy C, Rasher DB, Davis M, Svenning JC, Griffin JN. Functional diversity of marine megafauna in the Anthropocene. SCIENCE ADVANCES 2020; 6:eaay7650. [PMID: 32494601 PMCID: PMC7164949 DOI: 10.1126/sciadv.aay7650] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/13/2020] [Indexed: 05/10/2023]
Abstract
Marine megafauna, the largest animals in the oceans, serve key roles in ecosystem functioning. Yet, one-third of these animals are at risk of extinction. To better understand the potential consequences of megafaunal loss, here we quantify their current functional diversity, predict future changes under different extinction scenarios, and introduce a new metric [functionally unique, specialized and endangered (FUSE)] that identifies threatened species of particular importance for functional diversity. Simulated extinction scenarios forecast marked declines in functional richness if current trajectories are maintained during the next century (11% globally; up to 24% regionally), with more marked reductions (48% globally; up to 70% at the poles) beyond random expectations if all threatened species eventually go extinct. Among the megafaunal groups, sharks will incur a disproportionate loss of functional richness. We identify top FUSE species and suggest a renewed focus on these species to preserve the ecosystem functions provided by marine megafauna.
Collapse
Affiliation(s)
- C. Pimiento
- Department of Biosciences, Swansea University, Wallace Building, Singleton Park, Swansea SA2 8PP, UK
- Smithsonian Tropical Research Institute, Box 2072, Balboa, Panama
- Corresponding author.
| | - F. Leprieur
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - D. Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg and Global Gothenburg Biodiversity Centre, 41319 Gothenburg, Sweden
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - J. S. Lefcheck
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| | - C. Albouy
- IFREMER, Unité Ecologie et Modèles pour l’Halieutique, Nantes Cedex 3, France
| | - D. B. Rasher
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME 04544, USA
| | - M. Davis
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA
| | - J.-C. Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - J. N. Griffin
- Department of Biosciences, Swansea University, Wallace Building, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
35
|
Mazzuco ACDA, Stelzer PS, Bernardino AF. Substrate rugosity and temperature matters: patterns of benthic diversity at tropical intertidal reefs in the SW Atlantic. PeerJ 2020; 8:e8289. [PMID: 32219015 PMCID: PMC7087490 DOI: 10.7717/peerj.8289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/24/2019] [Indexed: 01/15/2023] Open
Abstract
Modeling and forecasting ocean ecosystems in a changing world will require advances in observational efforts to monitor marine biodiversity. One of the observational challenges in coastal reef ecosystems is to quantify benthic and climate interactions which are key to community dynamics across habitats. Habitat complexity (i.e., substrate rugosity) on intertidal reefs can be an important variable explaining benthic diversity and taxa composition, but the association between substrate and seasonal variability is poorly understood on lateritic reefs in the South Atlantic. We asked if benthic assemblages on intertidal reefs with distinct substrate rugosity would follow similar seasonal patterns of succession following meteo-oceanographic variability in a tropical coastal area of Brazil. We combined an innovative 3D imaging for measuring substrate rugosity with satellite monitoring to monitor spatio-temporal patterns of benthic assemblages. The dataset included monthly in situ surveys of substrate cover and taxon diversity and richness, temporal variability in meteo-oceanographic conditions, and reef structural complexity from four sites on the Eastern Marine Ecoregion of Brazil. Additionally, correlation coefficients between temperature and both benthic diversity and community composition from one year of monitoring were used to project biodiversity trends under future warming scenarios. Our results revealed that benthic diversity and composition on intertidal reefs are strongly regulated by surface rugosity and sea surface temperatures, which control the dominance of macroalgae or corals. Intertidal reef biodiversity was positively correlated with reef rugosity which supports previous assertions of higher regional intertidal diversity on lateritic reefs that offer increased substrate complexity. Predicted warming temperatures in the Eastern Marine Ecoregion of Brazil will likely lead to a dominance of macroalgae taxa over the lateritic reefs and lower overall benthic diversity. Our findings indicate that rugosity is not only a useful tool for biodiversity mapping in reef intertidal ecosystems but also that spatial differences in rugosity would lead to very distinct biogeographic and temporal patterns. This study offers a unique baseline of benthic biodiversity on coastal marine habitats that is complementary to worldwide efforts to improve monitoring and management of coastal reefs.
Collapse
Affiliation(s)
| | | | - Angelo F Bernardino
- Department of Oceanography, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
36
|
Dishon G, Grossowicz M, Krom M, Guy G, Gruber DF, Tchernov D. Evolutionary Traits that Enable Scleractinian Corals to Survive Mass Extinction Events. Sci Rep 2020; 10:3903. [PMID: 32127555 PMCID: PMC7054358 DOI: 10.1038/s41598-020-60605-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/14/2020] [Indexed: 11/09/2022] Open
Abstract
Scleractinian “stony” corals are major habitat engineers, whose skeletons form the framework for the highly diverse, yet increasingly threatened, coral reef ecosystem. Fossil coral skeletons also present a rich record that enables paleontological analysis of coral origins, tracing them back to the Triassic (~241 Myr). While numerous invertebrate lineages were eradicated at the last major mass extinction boundary, the Cretaceous-Tertiary/K-T (66 Myr), a number of Scleractinian corals survived. We review this history and assess traits correlated with K-T mass extinction survival. Disaster-related “survival” traits that emerged from our analysis are: (1) deep water residing (>100 m); (2) cosmopolitan distributions, (3) non-symbiotic, (4) solitary or small colonies and (5) bleaching-resistant. We then compared these traits to the traits of modern Scleractinian corals, using to IUCN Red List data, and report that corals with these same survival traits have relatively stable populations, while those lacking them are presently decreasing in abundance and diversity. This shows corals exhibiting a similar dynamic survival response as seen at the last major extinction, the K-T. While these results could be seen as promising, that some corals may survive the Anthropocene extinction, they also highlight how our relatively-fragile Primate order does not possess analogous “survival” characteristics, nor have a record of mass extinction survival as some corals are capable.
Collapse
Affiliation(s)
- Gal Dishon
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel. .,Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | - Michael Krom
- Morris Kahn Marine Research Station, Environmental Geochemistry Lab., Leon H. Charney School of Marine Sciences, Haifa University, Mount Carmel, Israel.,School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Gilad Guy
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - David F Gruber
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, 10010, USA. .,PhD Program in Biology, The Graduate Center City University of New York, New York, NY, 10010, USA.
| | - Dan Tchernov
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel.,Morris Kahn Marine Research Station, Environmental Geochemistry Lab., Leon H. Charney School of Marine Sciences, Haifa University, Mount Carmel, Israel
| |
Collapse
|
37
|
Foster WJ, Garvie CL, Weiss AM, Muscente AD, Aberhan M, Counts JW, Martindale RC. Resilience of marine invertebrate communities during the early Cenozoic hyperthermals. Sci Rep 2020; 10:2176. [PMID: 32034228 PMCID: PMC7005832 DOI: 10.1038/s41598-020-58986-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
The hyperthermal events of the Cenozoic, including the Paleocene-Eocene Thermal Maximum, provide an opportunity to investigate the potential effects of climate warming on marine ecosystems. Here, we examine the shallow benthic marine communities preserved in the late Cretaceous to Eocene strata on the Gulf Coastal Plain (United States). In stark contrast to the ecological shifts following the end-Cretaceous mass extinction, our data show that the early Cenozoic hyperthermals did not have a long-term impact on the generic diversity nor composition of the Gulf Coastal Plain molluscan communities. We propose that these communities were resilient to climate change because molluscs are better adapted to high temperatures than other taxa, as demonstrated by their physiology and evolutionary history. In terms of resilience, these communities differ from other shallow-water carbonate ecosystems, such as reef communities, which record significant changes during the early Cenozoic hyperthermals. These data highlight the strikingly different responses of community types, i.e., the almost imperceptible response of molluscs versus the marked turnover of foraminifera and reef faunas. The impact on molluscan communities may have been low because detrimental conditions did not devastate the entire Gulf Coastal Plain, allowing molluscs to rapidly recolonise vacated areas once harsh environmental conditions ameliorated.
Collapse
Affiliation(s)
- William J Foster
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity, Invalidenstraße 43, Berlin, 10115, Germany. .,University of Potsdam, Institute for Geosciences, Karl-Liebknecht Straße 24-25, Potsdam-Golm, 14476, Germany. .,University College Dublin, School of Earth Sciences, Belfield, Dublin, 4, Ireland.
| | - Christopher L Garvie
- Non-Vertebrate Paleontology Laboratory, Texas Natural Science Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas, 78758, USA
| | - Anna M Weiss
- The University of Texas at Austin, Department of Geological Sciences, 2275 Speedway, Austin, Texas, 78712, USA
| | - A D Muscente
- The University of Texas at Austin, Department of Geological Sciences, 2275 Speedway, Austin, Texas, 78712, USA.,Cornell College, Department of Geology, Mount Vernon, Iowa, 600 First Street SW, 52314, USA
| | - Martin Aberhan
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity, Invalidenstraße 43, Berlin, 10115, Germany
| | - John W Counts
- University College Dublin, School of Earth Sciences, Belfield, Dublin, 4, Ireland
| | - Rowan C Martindale
- The University of Texas at Austin, Department of Geological Sciences, 2275 Speedway, Austin, Texas, 78712, USA
| |
Collapse
|
38
|
Liang L, Chen J, Li Y, Zhang H. Insights into high-pressure acclimation: comparative transcriptome analysis of sea cucumber Apostichopus japonicus at different hydrostatic pressure exposures. BMC Genomics 2020; 21:68. [PMID: 31964339 PMCID: PMC6974979 DOI: 10.1186/s12864-020-6480-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Global climate change is predicted to force the bathymetric migrations of shallow-water marine invertebrates. Hydrostatic pressure is proposed to be one of the major environmental factors limiting the vertical distribution of extant marine invertebrates. However, the high-pressure acclimation mechanisms are not yet fully understood. Results In this study, the shallow-water sea cucumber Apostichopus japonicus was incubated at 15 and 25 MPa at 15 °C for 24 h, and subjected to comparative transcriptome analysis. Nine samples were sequenced and assembled into 553,507 unigenes with a N50 length of 1204 bp. Three groups of differentially expressed genes (DEGs) were identified according to their gene expression patterns, including 38 linearly related DEGs whose expression patterns were linearly correlated with hydrostatic pressure, 244 pressure-sensitive DEGs which were up-regulated at both 15 and 25 MPa, and 257 high-pressure-induced DEGs which were up-regulated at 25 MPa but not up-regulated at 15 MPa. Conclusions Our results indicated that the genes and biological processes involving high-pressure acclimation are similar to those related to deep-sea adaptation. In addition to representative biological processes involving deep-sea adaptation (such as antioxidation, immune response, genetic information processing, and DNA repair), two biological processes, namely, ubiquitination and endocytosis, which can collaborate with each other and regulate the elimination of misfolded proteins, also responded to high-pressure exposure in our study. The up-regulation of these two processes suggested that high hydrostatic pressure would lead to the increase of misfolded protein synthesis, and this may result in the death of shallow-water sea cucumber under high-pressure exposure.
Collapse
Affiliation(s)
- Linying Liang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawei Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
39
|
Hohmann N, Jarochowska E. Enforced symmetry: the necessity of symmetric waxing and waning. PeerJ 2019; 7:e8011. [PMID: 31720120 PMCID: PMC6842294 DOI: 10.7717/peerj.8011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/08/2019] [Indexed: 12/02/2022] Open
Abstract
A fundamental question in ecology is how the success of a taxon changes through time and what drives this change. This question is commonly approached using trajectories averaged over a group of taxa. Using results from probability theory, we show analytically and using examples that averaged trajectories will be more symmetric as the number of averaged trajectories increases, even if none of the original trajectories they were derived from is symmetric. This effect is not only based on averaging, but also on the introduction of noise and the incorporation of a priori known origination and extinction times. This implies that averaged trajectories are not suitable for deriving information about the processes driving the success of taxa. In particular, symmetric waxing and waning, which is commonly observed and interpreted to be linked to a number of different paleobiological processes, does not allow drawing any conclusions about the nature of the underlying process.
Collapse
Affiliation(s)
- Niklas Hohmann
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
40
|
Smits P, Finnegan S. How predictable is extinction? Forecasting species survival at million-year timescales. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190392. [PMID: 31679499 DOI: 10.1098/rstb.2019.0392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A tenet of conservation palaeobiology is that knowledge of past extinction patterns can help us to better predict future extinctions. Although the future is unobservable, we can test the strength of this proposition by asking how well models conditioned on past observations would have predicted subsequent extinction events at different points in the geological past. To answer this question, we analyse the well-sampled fossil record of Cenozoic planktonic microfossil taxa (Foramanifera, Radiolaria, diatoms and calcareous nanoplankton). We examine how extinction probability varies over time as a function of species age, time of observation, current geographical range, change in geographical range, climate state and change in climate state. Our models have a 70-80% probability of correctly forecasting the rank order of extinction risk for a random out-of-sample species pair, implying that determinants of extinction risk have varied only modestly through time. We find that models which include either historical covariates or account for variation in covariate effects over time yield equivalent forecasts, but a model including both is overfit and yields biased forecasts. An important caveat is that human impacts may substantially disrupt range-risk dynamics so that the future will be less predictable than it has been in the past. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'
Collapse
Affiliation(s)
- Peter Smits
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Seth Finnegan
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
41
|
Kiessling W, Raja NB, Roden VJ, Turvey ST, Saupe EE. Addressing priority questions of conservation science with palaeontological data. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190222. [PMID: 31679490 DOI: 10.1098/rstb.2019.0222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Palaeontologists often ask identical questions to those asked by ecologists. Despite this, ecology is considered a core discipline of conservation biology, while palaeontologists are rarely consulted in the protection of species, habitats and ecosystems. The recent emergence of conservation palaeobiology presents a big step towards better integration of palaeontology in conservation science, although its focus on historical baselines may not fully capture the potential contributions of geohistorical data to conservation science. In this essay we address previously defined priority questions in conservation and consider which of these questions may be answerable using palaeontological data. Using a statistical assessment of surveys, we find that conservation biologists and younger scientists have a more optimistic view of potential palaeontological contributions to the field compared to experienced palaeontologists. Participants considered questions related to climate change and marine ecosystems to be the best addressable with palaeontological data. As these categories are also deemed most relevant by ecologists and receive the greatest research effort in conservation, they are the natural choice for future academic collaboration. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'
Collapse
Affiliation(s)
- Wolfgang Kiessling
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Nussaïbah B Raja
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Vanessa Julie Roden
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| |
Collapse
|
42
|
Sun S, Sha Z, Wang Y. Divergence history and hydrothermal vent adaptation of decapod crustaceans: A mitogenomic perspective. PLoS One 2019; 14:e0224373. [PMID: 31661528 PMCID: PMC6818795 DOI: 10.1371/journal.pone.0224373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/13/2019] [Indexed: 01/08/2023] Open
Abstract
Decapod crustaceans, such as alvinocaridid shrimps, bythograeid crabs and galatheid squat lobsters are important fauna in the hydrothermal vents and have well adapted to hydrothermal vent environments. In this study, eighteen mitochondrial genomes (mitogenomes) of hydrothermal vent decapods were used to explore the evolutionary history and their adaptation to the hydrothermal vent habitats. BI and ML algorithms produced consistent phylogeny for Decapoda. The phylogenetic relationship revealed more evolved positions for all the hydrothermal vent groups, indicating they migrated from non-vent environments, instead of the remnants of ancient hydrothermal vent species, which support the extinction/repopulation hypothesis. The divergence time estimation on the Alvinocarididae, Bythograeidae and Galatheoidea nodes are located at 75.20, 56.44 and 47.41–50.43 Ma, respectively, which refers to the Late Cretaceous origin of alvinocaridid shrimps and the Early Tertiary origin of bythograeid crabs and galatheid squat lobsters. These origin stories are thought to associate with the global deep-water anoxic/dysoxic events. Total eleven positively selected sites were detected in the mitochondrial OXPHOS genes of three lineages of hydrothermal vent decapods, suggesting a link between hydrothermal vent adaption and OXPHOS molecular biology in decapods. This study adds to the understanding of the link between mitogenome evolution and ecological adaptation to hydrothermal vent habitats in decapods.
Collapse
Affiliation(s)
- Shao’e Sun
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhongli Sha
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| | - Yanrong Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
43
|
Condamine FL, Rolland J, Morlon H. Assessing the causes of diversification slowdowns: temperature‐dependent and diversity‐dependent models receive equivalent support. Ecol Lett 2019; 22:1900-1912. [DOI: 10.1111/ele.13382] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/20/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Fabien L. Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier Place Eugène Bataillon 34095Montpellier France
- CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique) route de Saclay 91128Palaiseau France
| | - Jonathan Rolland
- CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique) route de Saclay 91128Palaiseau France
- Department of Computational Biology, Biophore University of Lausanne Lausanne 1015Switzerland
- Department of Zoology University of British Columbia University Blvd #4200‐6270Vancouver B.C Canada
| | - Hélène Morlon
- CNRS, UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique) route de Saclay 91128Palaiseau France
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University F‐75005Paris France
| |
Collapse
|
44
|
van Hengstum PJ, Cresswell JN, Milne GA, Iliffe TM. Development of anchialine cave habitats and karst subterranean estuaries since the last ice age. Sci Rep 2019; 9:11907. [PMID: 31417111 PMCID: PMC6695480 DOI: 10.1038/s41598-019-48058-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 12/02/2022] Open
Abstract
Extinction models generally predict that coastal and neritic fauna benefit during sea-level rise (transgression), whereas sea-level retreat (regression) diminishes their suitable habitat area and promotes evolutionary bottlenecks. Sea-level change also impacts terrestrial island biogeography, but it remains a challenge to evidence how sea-level rise impacts aquatic island biogeography, especially in the subterranean realm. Karst subterranean estuaries (KSEs) occur globally on carbonate islands and platforms, and they are populated by globally-dispersed, ancient ecosystems (termed anchialine). Anchialine fauna currently exhibit a disjunct biogeography that cannot be completely explained by plate tectonic-imposed vicariance. Here we provide evidence that anchialine ecosystems can experience evolutionary bottlenecks caused by habitat reduction during transgression events. Marine-adapted anchialine fauna benefit from habitat expansion during transgressions, but fresh- and brackish-adapted fauna must emigrate, evolve to accommodate local habitat changes, or are regionally eliminated. Phanerozoic transgressions relative to long-term changes in subsidence and relief of regional lithology must be considered for explaining biogeography, evolution, local extirpation or complete extinction of anchialine fauna. Despite the omission of this entire category of environments and animals in climate change risk assessments, the results indicate that anchialine fauna on low-lying islands and platforms that depend upon meteoric groundwater are vulnerable to habitat changes caused by 21st century sea-level rise.
Collapse
Affiliation(s)
- Peter J van Hengstum
- Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas, 77554, USA.
- Department of Oceanography, Texas A&M University, College Station, Texas, 77843, USA.
| | - Jacque N Cresswell
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, 77554, USA
| | - Glenn A Milne
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Thomas M Iliffe
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, 77554, USA
| |
Collapse
|
45
|
Havenhand JN, Filipsson HL, Niiranen S, Troell M, Crépin AS, Jagers S, Langlet D, Matti S, Turner D, Winder M, de Wit P, Anderson LG. Ecological and functional consequences of coastal ocean acidification: Perspectives from the Baltic-Skagerrak System. AMBIO 2019; 48:831-854. [PMID: 30506502 PMCID: PMC6541583 DOI: 10.1007/s13280-018-1110-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/21/2018] [Accepted: 10/03/2018] [Indexed: 05/03/2023]
Abstract
Ocean temperatures are rising; species are shifting poleward, and pH is falling (ocean acidification, OA). We summarise current understanding of OA in the brackish Baltic-Skagerrak System, focussing on the direct, indirect and interactive effects of OA with other anthropogenic drivers on marine biogeochemistry, organisms and ecosystems. Substantial recent advances reveal a pattern of stronger responses (positive or negative) of species than ecosystems, more positive responses at lower trophic levels and strong indirect interactions in food-webs. Common emergent themes were as follows: OA drives planktonic systems toward the microbial loop, reducing energy transfer to zooplankton and fish; and nutrient/food availability ameliorates negative impacts of OA. We identify several key areas for further research, notably the need for OA-relevant biogeochemical and ecosystem models, and understanding the ecological and evolutionary capacity of Baltic-Skagerrak ecosystems to respond to OA and other anthropogenic drivers.
Collapse
Affiliation(s)
- Jonathan N. Havenhand
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296 Gothenburg, Sweden
| | | | - Susa Niiranen
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
| | - Max Troell
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Science, Lilla Frescativägen 4, 10405 Stockholm, Sweden
| | - Anne-Sophie Crépin
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Science, Lilla Frescativägen 4, 10405 Stockholm, Sweden
| | - Sverker Jagers
- Department of Political Sciences, University of Gothenburg, Box 711, Sprängkullsgatan 19, 40530 Gothenburg, Sweden
| | - David Langlet
- Department of Law, University of Gothenburg, Box 650, 40530 Gothenburg, Sweden
| | - Simon Matti
- Department of Political Sciences, Luleå University of Technology, 97187 Luleå, Sweden
| | - David Turner
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Pierre de Wit
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296 Gothenburg, Sweden
| | - Leif G. Anderson
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| |
Collapse
|
46
|
Lin CH, De Gracia B, Pierotti MER, Andrews AH, Griswold K, O’Dea A. Reconstructing reef fish communities using fish otoliths in coral reef sediments. PLoS One 2019; 14:e0218413. [PMID: 31199853 PMCID: PMC6568422 DOI: 10.1371/journal.pone.0218413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/31/2019] [Indexed: 11/18/2022] Open
Abstract
Little is known about long-term changes in coral reef fish communities. Here we present a new technique that leverages fish otoliths in reef sediments to reconstruct coral reef fish communities. We found over 5,400 otoliths in 169 modern and mid-Holocene bulk samples from Caribbean Panama and Dominican Republic mid-Holocene and modern reefs, demonstrating otoliths are abundant in reef sediments. With a specially-built reference collection, we were able to assign over 4,400 otoliths to one of 56 taxa (35 families) though mostly at genus and family level. Many otoliths were from juvenile fishes for which identification is challenging. Richness (by rarefaction) of otolith assemblages was slightly higher in modern than mid-Holocene reefs, but further analyses are required to elucidate the underlying causes. We compared the living fish communities, sampled using icthyocide, with the sediment otolith assemblages on four reefs finding the otolith assemblages faithfully capture the general composition of the living fish communities. Radiocarbon dating performed directly on the otoliths suggests that relatively little mixing of sediment layers particularly on actively accreting branching coral reefs. All otolith assemblages were strongly dominated by small, fast-turnover fish taxa and juvenile individuals, and our exploration on taxonomy, functional ecology and taphonomy lead us to the conclusion that intense predation is likely the most important process for otolith accumulation in reef sediments. We conclude that otolith assemblages in modern and fossil reef sediments can provide a powerful tool to explore ecological changes in reef fish communities over time and space.
Collapse
Affiliation(s)
- Chien-Hsiang Lin
- Center for Ecology and Environment, Tunghai University, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | | | | | - Allen H. Andrews
- Department of Oceanography, University of Hawaii at Manoa, HI, United States of America
| | - Katie Griswold
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Aaron O’Dea
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
47
|
Edie SM, Huang S, Collins KS, Roy K, Jablonski D. Loss of Biodiversity Dimensions through Shifting Climates and Ancient Mass Extinctions. Integr Comp Biol 2019; 58:1179-1190. [PMID: 30204879 DOI: 10.1093/icb/icy111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many aspects of climate affect the deployment of biodiversity in time and space, and so changes in climate might be expected to drive regional and global extinction of both taxa and their ecological functions. Here we examine the association of past climate changes with extinction in marine bivalves, which are increasingly used as a model system for macroecological and macroevolutionary analysis. Focusing on the Cenozoic Era (66 Myr ago to the present), we analyze extinction patterns in shallow-water marine bivalve genera relative to temperature dynamics as estimated from isotopic data in microfossils. When the entire Cenozoic timeseries is considered, extinction intensity is not significantly associated with the mean temperature or the detrended variance in temperature within a given time interval (stratigraphic stage). However, extinction increases significantly with both the rate of temperature change within the stage of extinction and the absolute change in mean temperature from the preceding stage to the stage of extinction. Thus, several extinction events, particularly the extinction pulse near the Pliocene-Pleistocene boundary, do appear to have climatic drivers. Further, the latitudinal diversity gradient today and the Cenozoic history of polar faunas suggest that long-term, regional extinctions associated with cooling removed not just taxa but a variety of ecological functions from high-latitude seas. These dynamics of biodiversity loss contrast with the two mass extinctions bracketing the Mesozoic Era, which had negligible effects on the diversity of ecological functions despite removing nearly as many taxa as the latitudinal gradient does today. Thus, the fossil record raises a key issue: whether the biotic consequences of present-day stresses will more closely resemble the long-term effects of past climate changes or those that cascaded from the mass extinctions.
Collapse
Affiliation(s)
- Stewart M Edie
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Shan Huang
- Senckenberg Biodiversity and Climate Research Center (BiK-F), Senckenberganlage 25, Frankfurt (Main) 60325, Germany
| | - Katie S Collins
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| | - Kaustuv Roy
- Section of Ecology, Behavior and Evolution, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - David Jablonski
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| |
Collapse
|
48
|
Chen J, Liu H, Cai S, Zhang H. Comparative transcriptome analysis of Eogammarus possjeticus at different hydrostatic pressure and temperature exposures. Sci Rep 2019; 9:3456. [PMID: 30837550 PMCID: PMC6401005 DOI: 10.1038/s41598-019-39716-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hydrostatic pressure is an important environmental factor affecting the vertical distribution of marine organisms. Laboratory-based studies have shown that many extant shallow-water marine benthic invertebrates can tolerate hydrostatic pressure outside their known natural distributions. However, only a few studies have focused on the molecular mechanisms of pressure acclimatisation. In the present work, we examined the pressure tolerance of the shallow-water amphipod Eogammarus possjeticus at various temperatures (5, 10, 15, and 20 °C) and hydrostatic pressures (0.1–30 MPa) for 16 h. Six of these experimental groups were used for transcriptome analysis. We found that 100% of E. possjeticus survived under 20 MPa at all temperature conditions for 16 h. Sequence assembly resulted in 138, 304 unigenes. Results of differential expression analysis revealed that 94 well-annotated genes were up-regulated under high pressure. All these findings indicated that the pressure tolerance of E. possjeticus was related to temperature. Several biological processes including energy metabolism, antioxidation, immunity, lipid metabolism, membrane-related process, genetic information processing, and DNA repair are probably involved in the acclimatisation in deep-sea environments.
Collapse
Affiliation(s)
- Jiawei Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
49
|
Buckley SM, McClanahan TR, Quintana Morales EM, Mwakha V, Nyanapah J, Otwoma LM, Pandolfi JM. Identifying species threatened with local extinction in tropical reef fisheries using historical reconstruction of species occurrence. PLoS One 2019; 14:e0211224. [PMID: 30759107 PMCID: PMC6373906 DOI: 10.1371/journal.pone.0211224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/09/2019] [Indexed: 12/03/2022] Open
Abstract
Identifying the species that are at risk of local extinction in highly diverse ecosystems is a big challenge for conservation science. Assessments of species status are costly and difficult to implement in developing countries with diverse ecosystems due to a lack of species-specific surveys, species-specific data, and other resources. Numerous techniques are devised to determine the threat status of species based on the availability of data and budgetary limits. On this basis, we developed a framework that compared occurrence data of historically exploited reef species in Kenya from existing disparate data sources. Occurrence data from archaeological remains (750-1500CE) was compared with occurrence data of these species catch assessments, and underwater surveys (1991-2014CE). This comparison indicated that only 67 species were exploited over a 750 year period, 750-1500CE, whereas 185 species were landed between 1995 and 2014CE. The first step of our framework identified 23 reef species as threatened with local extinction. The second step of the framework further evaluated the possibility of local extinction with Bayesian extinction analyses using occurrence data from naturalists’ species list with the existing occurrence data sources. The Bayesian extinction analysis reduced the number of reef species threatened with local extinction from 23 to 15. We compared our findings with three methods used for assessing extinction risk. Commonly used extinction risk methods varied in their ability to identify reef species that we identified as threatened with local extinction by our comparative and Bayesian method. For example, 12 of the 15 threatened species that we identified using our framework were listed as either least concern, unevaluated, or data deficient in the International Union for the Conservation of Nature red list. Piscivores and macro-invertivores were the only functional groups found to be locally extinct. Comparing occurrence data from disparate sources revealed a large number of historically exploited reef species that are possibly locally extinct. Our framework addressed biases such as uncertainty in priors, sightings and survey effort, when estimating the probability of local extinction. Our inexpensive method showed the value and potential for disparate data to fill knowledge gaps that exist in species extinction assessments.
Collapse
Affiliation(s)
- Sarah M. Buckley
- Australia Research Council Centre of Excellence for Coral Reef Studies, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| | - Tim R. McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, New York, United States of America
| | | | - Victor Mwakha
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | - Jatieno Nyanapah
- Wildlife Conservation Society, Marine Programs, Bronx, New York, United States of America
| | - Levy M. Otwoma
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - John M. Pandolfi
- Australia Research Council Centre of Excellence for Coral Reef Studies, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
Bryndum-Buchholz A, Tittensor DP, Blanchard JL, Cheung WWL, Coll M, Galbraith ED, Jennings S, Maury O, Lotze HK. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. GLOBAL CHANGE BIOLOGY 2019; 25:459-472. [PMID: 30408274 DOI: 10.1111/gcb.14512] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 05/06/2023]
Abstract
Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio-economic impacts on ecosystem services, marine fisheries, and fishery-dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%-30% (±12%-17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%-80% (±35%-200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size-classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.
Collapse
Affiliation(s)
| | - Derek P Tittensor
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- United Nations Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Julia L Blanchard
- Institute for Marine and Antarctic Studies, Center for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - William W L Cheung
- Nippon Foundation-UBC Nereus Program and Changing Ocean Research Unite, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marta Coll
- Institute of Marine Science (ICM-CSIC) and Ecopath International Initiative, Barcelona, Spain
| | - Eric D Galbraith
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Mathematics, Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Simon Jennings
- Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK
- School of Environmental Sciences, University of East Anglia, Norwich, UK
- International Council for the Exploration of the Sea, København V, Denmark
| | - Olivier Maury
- Institut de Recherche pour le Développement (IRD), UMR 248 MARBEC, Sète Cedex, France
- International Lab. ICEMASA, University of Cape Town, Rondebosch, South Africa
| | - Heike K Lotze
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|