1
|
Lim S, Chung HJ, Oh YJ, Hinterdorfer P, Myung SC, Seo Y, Ko K. Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:960-982. [PMID: 39724301 PMCID: PMC11869200 DOI: 10.1111/pbi.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS-PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8+ cytotoxic T cells, CD4+ helper T cells and B cells, particularly with EpCAM-FcKP and EpCAM-FcP (FcKP) × JP (JKP). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial-mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that N. tabacum can produce effective vaccine candidates to induce anti-cancer immune responses.
Collapse
Affiliation(s)
- Sohee Lim
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Hyun Joo Chung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Yoo Jin Oh
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Peter Hinterdorfer
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Soon Chul Myung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Young‐Jin Seo
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kisung Ko
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
2
|
Agarwal D, Sharma G, Khadwal A, Toor D, Malhotra P. Advances in Vaccines, Checkpoint Blockade, and Chimeric Antigen Receptor-Based Cancer Immunotherapeutics. Crit Rev Immunol 2025; 45:65-80. [PMID: 39612278 DOI: 10.1615/critrevimmunol.2024053025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Increase in cancer cases and research driven by understanding its causes, facilitated development of novel targeted immunotherapeutic strategies to overcome nonspecific cytotoxicity associated with conventional chemotherapy and radiotherapy. These target specific immunotherapeutic regimens have been evaluated for their efficacy, including: (1) vaccines harnessing tumor specific/associated antigens, (2) checkpoint blockade therapy using monoclonal antibodies against PD1, CTLA-4 and others, and (3) adoptive cell transfer approaches viz. chimeric antigen receptor (CAR)-cell-based therapies. Here, we review recent advancements on these target specific translational immunotherapeutic strategies against cancer/s and concerned limitations.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Translational & Regenerative Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
3
|
Chekaoui A, Garofalo M, Gad B, Staniszewska M, Chiaro J, Pancer K, Gryciuk A, Cerullo V, Salmaso S, Caliceti P, Masny A, Wieczorek M, Pesonen S, Kuryk L. Cancer vaccines: an update on recent achievements and prospects for cancer therapy. Clin Exp Med 2024; 25:24. [PMID: 39720956 DOI: 10.1007/s10238-024-01541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines. Using the latest research technologies has also enabled scientists to interpret complex and multiomics data of the tumour mutanome, thus identifying new tumour-specific antigens to design new generations of cancer vaccines with high specificity and long-term efficacy. Furthermore, combinatorial regimens of cancer vaccines with immune checkpoint inhibitors have offered new therapeutic approaches and demonstrated impressive efficacy in cancer patients over the last few years. In the present review, we summarize the current state of cancer vaccines, including their potential therapeutic effects and the limitations that hinder their effectiveness. We highlight the current efforts to mitigate these limitations and highlight ongoing clinical trials. Finally, a special focus will be given to the latest milestones expected to transform the landscape of cancer therapy and nurture hope among cancer patients.
Collapse
Affiliation(s)
- Arezki Chekaoui
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| | - Beata Gad
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Jacopo Chiaro
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Katarzyna Pancer
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Aleksander Gryciuk
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Vincenzo Cerullo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, University Federico II of Naples, Naples, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Aleksander Masny
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | | | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland.
- Valo Therapeutics Oy, Helsinki, Finland.
| |
Collapse
|
4
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
6
|
Schweiger P, Hamann L, Strobel J, Weisbach V, Wandersee A, Christ J, Kehl S, Weidenthaler F, Antoniadis S, Hackstein H, Cunningham S. Functional Heterogeneity of Umbilical Cord Blood Monocyte-Derived Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:115-124. [PMID: 38809115 PMCID: PMC11215632 DOI: 10.4049/jimmunol.2400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Human umbilical cord blood (UCB) represents a unique resource for hematopoietic stem cell transplantation for children and patients lacking suitable donors. UCB harbors a diverse set of leukocytes such as professional APCs, including monocytes, that could act as a novel source for cellular therapies. However, the immunological properties of UCB monocytes and monocyte-derived dendritic cells (MoDCs) are not fully characterized. In this study, we characterized the phenotype and functions of UCB-MoDCs to gauge their potential for future applications. UCB exhibited higher frequencies of platelets and lymphocytes as well as lower frequencies of neutrophils in comparison with adult whole blood. Leukocyte subset evaluation revealed significantly lower frequencies of granulocytes, NK cells, and CD14+CD16- monocytes. Surface marker evaluation revealed significantly lower rates of costimulatory molecules CD80 and CD83 while chemokine receptors CCR7 and CXCR4, as well as markers for Ag presentation, were similarly expressed. UCB-MoDCs were sensitive to TLR1-9 stimulation and presented quantitative differences in the release of proinflammatory cytokines. UCB-MoDCs presented functional CCR7-, CXCR4-, and CCR5-associated migratory behavior as well as adequate receptor- and micropinocytosis-mediated Ag uptake. When cocultured with allogeneic T lymphocytes, UCB-MoDCs induced weak CD4+ T lymphocyte proliferation, CD71 expression, and release of IFN-γ and IL-2. Taken together, UCB-MoDCs present potentially advantageous properties for future medical applications.
Collapse
Affiliation(s)
- Petra Schweiger
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Livia Hamann
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Alexandra Wandersee
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Julia Christ
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sven Kehl
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Filip Weidenthaler
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Sophia Antoniadis
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Haemostaseology, Friedrich–Alexander University of Erlangen–Nuremberg, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Burton C, Bitaraf A, Snyder K, Zhang C, Yoder SJ, Avram D, Du D, Yu X, Lau EK. The functional role of L-fucose on dendritic cell function and polarization. Front Immunol 2024; 15:1353570. [PMID: 38646527 PMCID: PMC11026564 DOI: 10.3389/fimmu.2024.1353570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 04/23/2024] Open
Abstract
Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.
Collapse
Affiliation(s)
- Chase Burton
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Amirreza Bitaraf
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Kara Snyder
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Chaomei Zhang
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Sean J. Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eric K. Lau
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
8
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
9
|
Foley CR, Swan SL, Swartz MA. Engineering Challenges and Opportunities in Autologous Cellular Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:188-198. [PMID: 38166251 PMCID: PMC11155266 DOI: 10.4049/jimmunol.2300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2024]
Abstract
The use of a patient's own immune or tumor cells, manipulated ex vivo, enables Ag- or patient-specific immunotherapy. Despite some clinical successes, there remain significant barriers to efficacy, broad patient population applicability, and safety. Immunotherapies that target specific tumor Ags, such as chimeric Ag receptor T cells and some dendritic cell vaccines, can mount robust immune responses against immunodominant Ags, but evolving tumor heterogeneity and antigenic downregulation can drive resistance. In contrast, whole tumor cell vaccines and tumor lysate-loaded dendritic cell vaccines target the patient's unique tumor antigenic repertoire without prior neoantigen selection; however, efficacy can be weak when lower-affinity clones dominate the T cell pool. Chimeric Ag receptor T cell and tumor-infiltrating lymphocyte therapies additionally face challenges related to genetic modification, T cell exhaustion, and immunotoxicity. In this review, we highlight some engineering approaches and opportunities to these challenges among four classes of autologous cell therapies.
Collapse
Affiliation(s)
- Colleen R. Foley
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Sheridan L. Swan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
- Committee on Immunology, University of Chicago, Chicago, Illinois
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Yang H, Xiong Z, Heng X, Niu X, Wang Y, Yao L, Sun L, Liu Z, Chen H. Click-Chemistry-Mediated Cell Membrane Glycopolymer Engineering to Potentiate Dendritic Cell Vaccines. Angew Chem Int Ed Engl 2024; 63:e202315782. [PMID: 38018480 DOI: 10.1002/anie.202315782] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Dendritic cell vaccine (DCV) holds great potential in tumor immunotherapy owing to its potent ability in eliciting tumor-specific immune responses. Aiming at engineering enhanced DCV, we report the first effort to construct a glycopolymer-engineered DC vaccine (G-DCV) via metabolicglycoengineering and copper-free click-chemistry. Model G-DCV was prepared by firstly delivering tumor antigens, ovalbumin (OVA) into dendritic cells (DC) with fluoroalkane-grafted polyethyleneimines, followed by conjugating glycopolymers with a terminal group of dibenzocyclooctyne (DBCO) onto dendritic cells. Compared to unmodified DCV, our G-DCV could induce stronger T cell activation due to the enhanced adhesion between DCs and T cells. Notably, such G-DCV could more effectively inhibit the growth of the mouse B16-OVA (expressing OVA antigen) tumor model after adoptive transfer. Moreover, by combination with an immune checkpoint inhibitor, G-DCV showed further increased anti-tumor effects in treating different tumor models. Thus, our work provides a novel strategy to enhance the therapeutic effectiveness of DC vaccines.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zijian Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xingyu Heng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiaomeng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lele Sun
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
11
|
McCormick AL, Anderson TS, Daugherity EA, Okpalanwaka IF, Smith SL, Appiah D, Lowe DB. Targeting the pericyte antigen DLK1 with an alpha type-1 polarized dendritic cell vaccine results in tumor vascular modulation and protection against colon cancer progression. Front Immunol 2023; 14:1241949. [PMID: 37849752 PMCID: PMC10578441 DOI: 10.3389/fimmu.2023.1241949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Despite the availability of various treatment options, colorectal cancer (CRC) remains a significant contributor to cancer-related mortality. Current standard-of-care interventions, including surgery, chemotherapy, and targeted agents like immune checkpoint blockade and anti-angiogenic therapies, have improved short-term patient outcomes depending on disease stage, but survival rates with metastasis remain low. A promising strategy to enhance the clinical experience with CRC involves the use of dendritic cell (DC) vaccines that incite immunity against tumor-derived blood vessels, which are necessary for CRC growth and progression. In this report, we target tumor-derived pericytes expressing DLK1 with a clinically-relevant alpha type-1 polarized DC vaccine (αDC1) in a syngeneic mouse model of colorectal cancer. Our pre-clinical data demonstrate the αDC1 vaccine's ability to induce anti-tumor effects by facilitating cytotoxic T lymphocyte activity and ablating the tumor vasculature. This work, overall, provides a foundation to further interrogate immune-mediated mechanisms of protection in order to help devise efficacious αDC1-based strategies for patients with CRC.
Collapse
Affiliation(s)
- Amanda L. McCormick
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Trevor S. Anderson
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Elizabeth A. Daugherity
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Izuchukwu F. Okpalanwaka
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Savanna L. Smith
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Duke Appiah
- Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Devin B. Lowe
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
12
|
Ding J, Zheng Y, Zhu F, Wang M, Fang L, Li H, Tian H, Liu Y, Wang G, Zheng J, Chai D. Adenovirus-assembled DC vaccine induces dual-targeting CTLs for tumor antigen and adenovirus to eradicate tumors. Int Immunopharmacol 2023; 123:110722. [PMID: 37573687 DOI: 10.1016/j.intimp.2023.110722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
The dendritic cell (DC) vaccine is a promising cancerimmunotherapy strategy, but its efficacy in treating the solid tumor is limited. To overcome this limitation, an oncolytic adenovirus (OAV-IL-12) was developed to enhance antigen targeting ability of adenovirus-assembled DC vaccine (DCs-CD137L/CAIX) for renal carcinoma treatment. Peritumoral administration of OAV-IL-12 increased the number of tumor-infiltrating DCs and their subsets (CD8+DCs and CD103+DCs). Combining OAV-IL-12 with DCs-CD137L/CAIX significantly inhibited the growth of subcutaneous tumors by inducing potent cytotoxic T lymphocyte (CTL) effect and improving the immune infiltration in tumor lesions. Interestingly, this treatment also reduced tumor growth distal to the OAV-IL-12 injecting side via eliciting a systemic CTL response. Furthermore, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment induced dual CTL responses against both CAIX and adenovirus antigens. The therapeutic benefits of this treatment approach mainly relied on multifunctional CD8+T cell immune responses, as indicated by the depletion assay. Moreover, OAV-IL-12 potentiated DCs-CD137L/CAIX treatment generated a long-lasting protective effect against tumors by inducing memory CD8+T cell immune responses. These results suggest that the effective tumor targeting of the adenovirus-based DC vaccine, boosted by OAV-IL-12, is a promising treatment approach for renal carcinoma and other solid tumors.
Collapse
Affiliation(s)
- Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fei Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Liu
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
13
|
Eralp Y, Ates U. Clinical Applications of Combined Immunotherapy Approaches in Gastrointestinal Cancer: A Case-Based Review. Vaccines (Basel) 2023; 11:1545. [PMID: 37896948 PMCID: PMC10610904 DOI: 10.3390/vaccines11101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant neoplasms arising from the gastrointestinal (GI) tract are among the most common types of cancer with high mortality rates. Despite advances in treatment in a small subgroup harboring targetable mutations, the outcome remains poor, accounting for one in three cancer-related deaths observed globally. As a promising therapeutic option in various tumor types, immunotherapy with immune checkpoint inhibitors has also been evaluated in GI cancer, albeit with limited efficacy except for a small subgroup expressing microsatellite instability. In the quest for more effective treatment options, energetic efforts have been placed to evaluate the role of several immunotherapy approaches comprising of cancer vaccines, adoptive cell therapies and immune checkpoint inhibitors. In this review, we report our experience with a personalized dendritic cell cancer vaccine and cytokine-induced killer cell therapy in three patients with GI cancers and summarize current clinical data on combined immunotherapy strategies.
Collapse
Affiliation(s)
- Yesim Eralp
- Maslak Acıbadem Hospital, Acıbadem University, Istanbul 34398, Turkey
| | - Utku Ates
- Biotech4life Tissue and Cell R&D Center, Stembio Cell and Tissue Technologies, Inc., Istanbul 34398, Turkey
| |
Collapse
|
14
|
Zheng Y, Ma X, Feng S, Zhu H, Chen X, Yu X, Shu K, Zhang S. Dendritic cell vaccine of gliomas: challenges from bench to bed. Front Immunol 2023; 14:1259562. [PMID: 37781367 PMCID: PMC10536174 DOI: 10.3389/fimmu.2023.1259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas account for the majority of brain malignant tumors. As the most malignant subtype of glioma, glioblastoma (GBM) is barely effectively treated by traditional therapies (surgery combined with radiochemotherapy), resulting in poor prognosis. Meanwhile, due to its "cold tumor" phenotype, GBM fails to respond to multiple immunotherapies. As its capacity to prime T cell response, dendritic cells (DCs) are essential to anti-tumor immunity. In recent years, as a therapeutic method, dendritic cell vaccine (DCV) has been immensely developed. However, there have long been obstacles that limit the use of DCV yet to be tackled. As is shown in the following review, the role of DCs in anti-tumor immunity and the inhibitory effects of tumor microenvironment (TME) on DCs are described, the previous clinical trials of DCV in the treatment of GBM are summarized, and the challenges and possible development directions of DCV are analyzed.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shouchang Feng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Lee KW, Yam JWP, Mao X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations. Cells 2023; 12:2147. [PMID: 37681880 PMCID: PMC10486560 DOI: 10.3390/cells12172147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
In the emerging era of cancer immunotherapy, immune checkpoint blockades (ICBs) and adoptive cell transfer therapies (ACTs) have gained significant attention. However, their therapeutic efficacies are limited due to the presence of cold type tumors, immunosuppressive tumor microenvironment, and immune-related side effects. On the other hand, dendritic cell (DC)-based vaccines have been suggested as a new cancer immunotherapy regimen that can address the limitations encountered by ICBs and ACTs. Despite the success of the first generation of DC-based vaccines, represented by the first FDA-approved DC-based therapeutic cancer vaccine Provenge, several challenges remain unsolved. Therefore, new DC vaccine strategies have been actively investigated. This review addresses the limitations of the currently most adopted classical DC vaccine and evaluates new generations of DC vaccines in detail, including biomaterial-based, immunogenic cell death-inducing, mRNA-pulsed, DC small extracellular vesicle (sEV)-based, and tumor sEV-based DC vaccines. These innovative DC vaccines are envisioned to provide a significant breakthrough in cancer immunotherapy landscape and are expected to be supported by further preclinical and clinical studies.
Collapse
Affiliation(s)
- Kyu-Won Lee
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (K.-W.L.); (J.W.P.Y.)
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| |
Collapse
|
16
|
Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest 2023; 133:e163449. [PMID: 36719372 PMCID: PMC9888388 DOI: 10.1172/jci163449] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
17
|
Lei X, Khatri I, de Wit T, de Rink I, Nieuwland M, Kerkhoven R, van Eenennaam H, Sun C, Garg AD, Borst J, Xiao Y. CD4 + helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment. Nat Commun 2023; 14:217. [PMID: 36639382 PMCID: PMC9839676 DOI: 10.1038/s41467-022-35615-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
Despite their low abundance in the tumor microenvironment (TME), classical type 1 dendritic cells (cDC1) play a pivotal role in anti-cancer immunity, and their abundance positively correlates with patient survival. However, their interaction with CD4+ T-cells to potentially enable the cytotoxic T lymphocyte (CTL) response has not been elucidated. Here we show that contact with activated CD4+ T-cells enables human ex vivo cDC1, but no other DC types, to induce a CTL response to cell-associated tumor antigens. Single cell transcriptomics reveals that CD4+ T-cell help uniquely optimizes cDC1 in many functions that support antigen cross-presentation and T-cell priming, while these changes don't apply to other DC types. We robustly identify "helped" cDC1 in the TME of a multitude of human cancer types by the overlap in their transcriptomic signature with that of recently defined, tumor-infiltrating DC states that prove to be positively prognostic. As predicted from the functional effects of CD4+ T-cell help, the transcriptomic signature of "helped" cDC1 correlates with tumor infiltration by CTLs and Thelper(h)-1 cells, overall survival and response to PD-1-targeting immunotherapy. These findings reveal a critical role for CD4+ T-cell help in enabling cDC1 function in the TME and may establish the helped cDC1 transcriptomic signature as diagnostic marker in cancer.
Collapse
Affiliation(s)
- Xin Lei
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom de Wit
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris de Rink
- Genomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron Kerkhoven
- Genomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Chong Sun
- Immune Regulation in Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands. .,Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| | - Yanling Xiao
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands. .,Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Lellahi SM, Azeem W, Hua Y, Gabriel B, Paulsen Rye K, Reikvam H, Kalland KH. GM-CSF, Flt3-L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2. Front Immunol 2023; 13:1058963. [PMID: 36713392 PMCID: PMC9880532 DOI: 10.3389/fimmu.2022.1058963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Conventional type 1 dendritic cells (cDC1) and conventional type 2 dendritic cells (cDC2) have attracted increasing attention as alternatives to monocyte-derived dendritic cells (moDCs) in cancer immunotherapy. Use of cDCs for therapy has been hindered by their low numbers in peripheral blood. In the present study, we found that extensive spontaneous apoptosis and cDC death in culture within 24hrs represent an additional challenge. Different media conditions that maintain cDC viability and function were investigated. CD141+ cDC1 and CD1c+ cDC2 were isolated from healthy blood donor buffy coats. Low viabilities were found with CellGenix DC, RPMI-1640, and X-VIVO 15 standard culture media and with several supplements at 24hrs and 48hrs. Among multiple factors it was found that GM-CSF improved both cDC1 and cDC2 viability, whereas Flt3-L and IL-4 only increased viability of cDC1 and cDC2, respectively. Combinations of these three cytokines improved viability of both cDCs further, both at 24hrs and 48hrs time points. Although these cytokines have been extensively investigated for their role in myeloid cell differentiation, and are also used clinically, their effects on mature cDCs remain incompletely known, in particular effects on pro-inflammatory or tolerogenic cDC features. HLA-DR, CD80, CD83, CD86, PD-L1 and PD-L2 cDC membrane expressions were relatively little affected by GM-CSF, IL-4 and Flt3-L cytokine supplements compared to the strong induction following Toll-like receptor (TLR) stimulation for 24hrs. With minor exceptions the three cytokines appeared to be permissive to the TLR-induced marker expression. Allogeneic mixed leukocyte reaction showed that the cytokines promoted T-cell proliferation and revealed a potential to boost both Th1 and Th2 polarizing cytokines. GM-CSF and Flt3-L and their combination improved the capability of cDC1 for dextran uptake, while in cDC2, dextran capture was improved by GM-CSF. The data suggest that GM-CSF, IL-4 and Flt3-L and combinations might be beneficial for DC viability and function in vitro. Limited viability of cDCs could be a confounding variable experimentally and in immunotherapy.
Collapse
Affiliation(s)
- Seyed Mohammad Lellahi
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Waqas Azeem
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Helse Bergen, Bergen, Norway
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Benjamin Gabriel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| |
Collapse
|
19
|
Lee SW, Lee H, Lee KW, Kim MJ, Kang SW, Lee YJ, Kim H, Kim YM. CD8α+ dendritic cells potentiate antitumor and immune activities against murine ovarian cancers. Sci Rep 2023; 13:98. [PMID: 36596856 PMCID: PMC9810613 DOI: 10.1038/s41598-022-27303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dendritic cell (DC)-based immunotherapies have been shown to be a potential treatment option for various cancers; however, the exact strategies in ovarian cancer remain unknown. Here, we report the effectiveness of mouse CD8α+ DCs derived from bone marrow hematopoietic stem cells (BM-HSCs), equivalent to human CD141+ DCs, which have proven to be a highly superior subset. Mono-DCs from monocytes and stem-DCs from HSCs were characterized by CD11c+ CD80+ CD86+ and CD8α+ Clec9a+ expression, respectively. Despite a lower dose compared with Mono-DCs, mice treated with pulsed Stem-DCs showed a reduced amount of ascitic fluid and lower body weights compared with those of vehicle-treated mice. These mice treated with pulsed stem-DCs appeared to have fewer tumor implants, which were usually confined in the epithelium of tumor-invaded organs. All mice treated with DCs showed longer survival than the vehicle group, especially in the medium/high dose pulsed Stem-DC treatment groups. Moreover, the stem-DC-treated group demonstrated a low proportion of myeloid-derived suppressor cells and regulatory T cells, high interleukin-12 and interferon-γ levels, and accumulation of several tumor-infiltrating lymphocytes. Together, these results indicate that mouse CD8α+ DCs derived from BM-HSCs decrease tumor progression and enhance antitumor immune responses against murine ovarian cancer, suggesting that better DC vaccines can be used as an effective immunotherapy in EOC treatment. Further studies are necessary to develop potent DC vaccines using human CD141+ DCs.
Collapse
Affiliation(s)
- Shin-Wha Lee
- grid.267370.70000 0004 0533 4667Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea
| | - Hyunah Lee
- grid.497660.aPharmicell Co., Seoul, Republic of Korea
| | - Kyung-Won Lee
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Min-Je Kim
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Sung Wan Kang
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Young-Jae Lee
- grid.267370.70000 0004 0533 4667Department of Obstetrics and Gynecology, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - HyunSoo Kim
- grid.497660.aPharmicell Co., Seoul, Republic of Korea
| | - Yong-Man Kim
- grid.267370.70000 0004 0533 4667Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea
| |
Collapse
|
20
|
Waad Sadiq Z, Brioli A, Al-Abdulla R, Çetin G, Schütt J, Murua Escobar H, Krüger E, Ebstein F. Immunogenic cell death triggered by impaired deubiquitination in multiple myeloma relies on dysregulated type I interferon signaling. Front Immunol 2023; 14:982720. [PMID: 36936919 PMCID: PMC10018035 DOI: 10.3389/fimmu.2023.982720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Proteasome inhibition is first line therapy in multiple myeloma (MM). The immunological potential of cell death triggered by defects of the ubiquitin-proteasome system (UPS) and subsequent perturbations of protein homeostasis is, however, less well defined. Methods In this paper, we applied the protein homeostasis disruptors bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and primary patient samples to investigate their ability to induce immunogenic cell death (ICD). Results Our data show that while BTZ treatment triggers sterile type I interferon (IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly immunologically silent. Interestingly, inhibition of protein de-ubiquitination by PR619 was associated with the acquisition of a strong type I IFN gene signature which relied on key components of the unfolded protein and integrated stress responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR) and general control nonderepressible 2 (GCN2). The immunological relevance of blocking de-ubiquitination in MM was further reflected by the ability of PR619-induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-dependent mechanisms. Conclusion Altogether, our findings identify de-ubiquitination inhibition as a promising strategy for inducing ICD of MM to expand current available treatments.
Collapse
Affiliation(s)
- Zeinab Waad Sadiq
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Annamaria Brioli
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Ruba Al-Abdulla
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Gonca Çetin
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jacqueline Schütt
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Saha C, Bojdo J, Dunne NJ, Duary RK, Buckley N, McCarthy HO. Nucleic acid vaccination strategies for ovarian cancer. Front Bioeng Biotechnol 2022; 10:953887. [PMID: 36420446 PMCID: PMC9677957 DOI: 10.3389/fbioe.2022.953887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
High grade serous carcinoma (HGSC) is one of the most lethal ovarian cancers that is characterised by asymptomatic tumour growth, insufficient knowledge of malignant cell origin and sub-optimal detection. HGSC has been recently shown to originate in the fallopian tube and not in the ovaries. Conventional treatments such as chemotherapy and surgery depend upon the stage of the disease and have resulted in higher rates of relapse. Hence, there is a need for alternative treatments. Differential antigen expression levels have been utilised for early detection of the cancer and could be employed in vaccination strategies using nucleic acids. In this review the different vaccination strategies in Ovarian cancer are discussed and reviewed. Nucleic acid vaccination strategies have been proven to produce a higher CD8+ CTL response alongside CD4+ T-cell response when compared to other vaccination strategies and thus provide a good arena for antitumour immune therapy. DNA and mRNA need to be delivered into the intracellular matrix. To overcome ineffective naked delivery of the nucleic acid cargo, a suitable delivery system is required. This review also considers the suitability of cell penetrating peptides as a tool for nucleic acid vaccine delivery in ovarian cancer.
Collapse
Affiliation(s)
- Chayanika Saha
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - James Bojdo
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Tezpur, India
| | - Niamh Buckley
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
22
|
Yan J, Zhang Y, Du S, Hou X, Li W, Zeng C, Zhang C, Cheng J, Deng B, McComb DW, Zhao W, Xue Y, Kang DD, Cheng X, Dong Y. Nanomaterials-Mediated Co-Stimulation of Toll-Like Receptors and CD40 for Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207486. [PMID: 36121735 PMCID: PMC9691606 DOI: 10.1002/adma.202207486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/1912] [Indexed: 05/15/2023]
Abstract
Toll-like receptors (TLRs) and CD40-related signaling pathways represent critical bridges between innate and adaptive immune responses. Here, an immunotherapy regimen that enables co-stimulation of TLR7/8- and CD40-mediated pathways is developed. TLR7/8 agonist resiquimod (R848) derived amino lipids, RAL1 and RAL2, are synthesized and formulated into RAL-derived lipid nanoparticles (RAL-LNPs). The RAL2-LNPs show efficient CD40 mRNA delivery to DCs both in vitro (90.8 ± 2.7%) and in vivo (61.3 ± 16.4%). When combined with agonistic anti-CD40 antibody, this approach can produce effective antitumor activities in mouse melanoma tumor models, thereby suppressing tumor growth, prolonging mouse survival, and establishing antitumor memory immunity. Overall, RAL2-LNPs provide a novel platform toward cancer immunotherapy by integrating innate and adaptive immunity.
Collapse
Affiliation(s)
- Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Wenqing Li
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chunxi Zeng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jeffrey Cheng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Department of Radiation Oncology, Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Center for Cancer Engineering, Center for Cancer Metabolism Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
23
|
Bhattacharjee R, Kumar L, Dhasmana A, Mitra T, Dey A, Malik S, Kim B, Gundamaraju R. Governing HPV-related carcinoma using vaccines: Bottlenecks and breakthroughs. Front Oncol 2022; 12:977933. [PMID: 36176419 PMCID: PMC9513379 DOI: 10.3389/fonc.2022.977933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Human papillomavirus (HPV) contributes to sexually transmitted infection, which is primarily associated with pre-cancerous and cancerous lesions in both men and women and is among the neglected cancerous infections in the world. At global level, two-, four-, and nine-valent pure L1 protein encompassed vaccines in targeting high-risk HPV strains using recombinant DNA technology are available. Therapeutic vaccines are produced by early and late oncoproteins that impart superior cell immunity to preventive vaccines that are under investigation. In the current review, we have not only discussed the clinical significance and importance of both preventive and therapeutic vaccines but also highlighted their dosage and mode of administration. This review is novel in its way and will pave the way for researchers to address the challenges posed by HPV-based vaccines at the present time.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Tamoghni Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Bonglee Kim, ; Rohit Gundamaraju,
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
- *Correspondence: Bonglee Kim, ; Rohit Gundamaraju,
| |
Collapse
|
24
|
Triiodothyronine-stimulated dendritic cell vaccination boosts antitumor immunity against murine colon cancer. Int Immunopharmacol 2022; 110:109016. [DOI: 10.1016/j.intimp.2022.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
|
25
|
Helmin-Basa A, Gackowska L, Balcerowska S, Ornawka M, Naruszewicz N, Wiese-Szadkowska M. The application of the natural killer cells, macrophages and dendritic cells in treating various types of cancer. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2019-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Innate immune cells such as natural killer (NK) cells, macrophages and dendritic cells (DCs) are involved in the surveillance and clearance of tumor. Intensive research has exposed the mechanisms of recognition and elimination of tumor cells by these immune cells as well as how cancers evade immune response. Hence, harnessing the immune cells has proven to be an effective therapy in treating a variety of cancers. Strategies aimed to harness and augment effector function of these cells for cancer therapy have been the subject of intense researches over the decades. Different immunotherapeutic possibilities are currently being investigated for anti-tumor activity. Pharmacological agents known to influence immune cell migration and function include therapeutic antibodies, modified antibody molecules, toll-like receptor agonists, nucleic acids, chemokine inhibitors, fusion proteins, immunomodulatory drugs, vaccines, adoptive cell transfer and oncolytic virus–based therapy. In this review, we will focus on the preclinical and clinical applications of NK cell, macrophage and DC immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Anna Helmin-Basa
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Lidia Gackowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Sara Balcerowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Marcelina Ornawka
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Natalia Naruszewicz
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| |
Collapse
|
26
|
Laureano RS, Sprooten J, Vanmeerbeerk I, Borras DM, Govaerts J, Naulaerts S, Berneman ZN, Beuselinck B, Bol KF, Borst J, Coosemans A, Datsi A, Fučíková J, Kinget L, Neyns B, Schreibelt G, Smits E, Sorg RV, Spisek R, Thielemans K, Tuyaerts S, De Vleeschouwer S, de Vries IJM, Xiao Y, Garg AD. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 2022; 11:2096363. [PMID: 35800158 PMCID: PMC9255073 DOI: 10.1080/2162402x.2022.2096363] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/01/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.
Collapse
Affiliation(s)
- Raquel S Laureano
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Daniel M Borras
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Zwi N Berneman
- Department of Haematology, Antwerp University Hospital, Edegem, Belgium
- Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | - Kalijn F Bol
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - an Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Ku Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jitka Fučíková
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Lisa Kinget
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
| | - Gerty Schreibelt
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Smits
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Wilrijk, Belgium
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology, UZ Brussel, Brussels, Belgium
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - I Jolanda M de Vries
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences; Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Kolostova K, Pospisilova E, Matkowski R, Szelachowska J, Bobek V. Immune activation of the monocyte-derived dendritic cells using patients own circulating tumor cells. Cancer Immunol Immunother 2022; 71:2901-2911. [PMID: 35471603 DOI: 10.1007/s00262-022-03189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dendritic cell (DC) therapy counts to the promising strategies how to weaken and eradicate cancer disease. We aimed to develop a good manufacturing practice (GMP) protocol for monocyte-derived DC (Mo-DC) maturation using circulating tumor cells lysates with subsequent experimental T-cell priming in vitro. METHODS DC differentiation was induced from a population of immunomagnetically enriched CD14 + monocytes out of the leukapheresis samples (n = 6). The separation was provided automatically, in a closed bag system, using CliniMACS Prodigy® separation protocols (Miltenyi Biotec). For differentiation and maturation of CD14 + cells, DendriMACs® growing medium with supplements (GM-CSF, IL-4, IL-6, IL-1B, TNFa, PGE) was used. Immature Mo-DCs were loaded with autologous circulating tumor cell (CTCs) lysates. Autologous CTCs were sorted out by size-based filtration (MetaCell®) of the leukapheresis CD14-negative fraction. A mixture of mature Mo-DCs and autologous non-target blood cells (NTBCs) was co-cultured and the activation effect of mature Mo-DCs on T-cell activation was monitored by means of multimarker gene expression profiling. RESULTS New protocols for mMo-DC production using automatization and CTC lysates were introduced including a feasible in vitro assay for mMo-DC efficacy evaluation. Gene expression analysis revealed elevation for following genes in NTBC (T cells) subset primed by mMo-DCs: CD8A, CD4, MKI67, MIF, TNFA, CD86, and CD80 (p ≤ 0.01). CONCLUSION Summarizing the presented data, we might conclude mMo-DCs were generated using CliniMACS Prodigy® machine and CTC lysates in a homogenous manner showing a potential to generate NTBC activation in co-cultures. Identification of the activation signals in T-cell population by simple multimarker-qPCRs could fasten the process of effective mMo-DC production.
Collapse
Affiliation(s)
- Katarina Kolostova
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Srobarova 50, 10034, Prague, Czech Republic
| | - Eliska Pospisilova
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Srobarova 50, 10034, Prague, Czech Republic
| | - Rafal Matkowski
- Department of Oncology, Wrocław Medical University, Wrocław, Poland.,Breast Cancer Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, Plac Hirszfelda 12, 54-413, Wrocław, Poland
| | - Jolanta Szelachowska
- Department of Oncology, Wrocław Medical University, Wrocław, Poland.,Breast Cancer Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, Plac Hirszfelda 12, 54-413, Wrocław, Poland
| | - Vladimir Bobek
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Srobarova 50, 10034, Prague, Czech Republic. .,3rd Department of Surgery University Hospital Motol and 1st Faculty of Medicine, Charles University, V Uvalu 84, 15006, Prague, Czech Republic. .,Department of Thoracic Surgery, Masaryk's Hospital, Krajska Zdravotni a.s., Socialni pece 3316/12A, 40113, Usti nad Labem, Czech Republic. .,Department of Thoracic Surgery, Lower Silesian Oncology, Pulmology and Hematology Center and Medical University Wroclaw, Grabiszynska 105, 53-413, Wrocław, Poland.
| |
Collapse
|
28
|
Aggarwal V, Rathod S, Vashishth K, Upadhyay A. Immune Cell Metabolites as Fuel for Cancer Cells. IMMUNO-ONCOLOGY CROSSTALK AND METABOLISM 2022:153-186. [DOI: 10.1007/978-981-16-6226-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Abusarah J, Khodayarian F, El-Hachem N, Salame N, Olivier M, Balood M, Roversi K, Talbot S, Bikorimana JP, Chen J, Jolicoeur M, Trudeau LE, Kamyabiazar S, Annabi B, Robert F, Pelletier J, El-Kadiry AEH, Shammaa R, Rafei M. Engineering immunoproteasome-expressing mesenchymal stromal cells: A potent cellular vaccine for lymphoma and melanoma in mice. Cell Rep Med 2021; 2:100455. [PMID: 35028603 PMCID: PMC8714858 DOI: 10.1016/j.xcrm.2021.100455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Dendritic cells (DCs) excel at cross-presenting antigens, but their effectiveness as cancer vaccine is limited. Here, we describe a vaccination approach using mesenchymal stromal cells (MSCs) engineered to express the immunoproteasome complex (MSC-IPr). Such modification instills efficient antigen cross-presentation abilities associated with enhanced major histocompatibility complex class I and CD80 expression, de novo production of interleukin-12, and higher chemokine secretion. This cross-presentation capacity of MSC-IPr is highly dependent on their metabolic activity. Compared with DCs, MSC-IPr hold the ability to cross-present a vastly different epitope repertoire, which translates into potent re-activation of T cell immunity against EL4 and A20 lymphomas and B16 melanoma tumors. Moreover, therapeutic vaccination of mice with pre-established tumors efficiently controls cancer growth, an effect further enhanced when combined with antibodies targeting PD-1, CTLA4, LAG3, or 4-1BB under both autologous and allogeneic settings. Therefore, MSC-IPr constitute a promising subset of non-hematopoietic antigen-presenting cells suitable for designing universal cell-based cancer vaccines.
Collapse
Affiliation(s)
- Jamilah Abusarah
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Fatemeh Khodayarian
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Nehme El-Hachem
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Natasha Salame
- Department of Biomedical Sciences, Université de Montréal, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Mohammad Balood
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Katiane Roversi
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jingkui Chen
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Mario Jolicoeur
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Samaneh Kamyabiazar
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Borhane Annabi
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | | | - Riam Shammaa
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Canadian Centers for Regenerative Therapy, Toronto, ON, Canada
- IntelliStem Technologies Inc., Toronto, ON, Canada
| | - Moutih Rafei
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
30
|
Caballero D, Abreu CM, Lima AC, Neves NN, Reis RL, Kundu SC. Precision biomaterials in cancer theranostics and modelling. Biomaterials 2021; 280:121299. [PMID: 34871880 DOI: 10.1016/j.biomaterials.2021.121299] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Despite significant achievements in the understanding and treatment of cancer, it remains a major burden. Traditional therapeutic approaches based on the 'one-size-fits-all' paradigm are becoming obsolete, as demonstrated by the increasing number of patients failing to respond to treatments. In contrast, more precise approaches based on individualized genetic profiling of tumors have already demonstrated their potential. However, even more personalized treatments display shortcomings mainly associated with systemic delivery, such as low local drug efficacy or specificity. A large amount of effort is currently being invested in developing precision medicine-based strategies for improving the efficiency of cancer theranostics and modelling, which are envisioned to be more accurate, standardized, localized, and less expensive. To this end, interdisciplinary research fields, such as biomedicine, material sciences, pharmacology, chemistry, tissue engineering, and nanotechnology, must converge for boosting the precision cancer ecosystem. In this regard, precision biomaterials have emerged as a promising strategy to detect, model, and treat cancer more efficiently. These are defined as those biomaterials precisely engineered with specific theranostic functions and bioactive components, with the possibility to be tailored to the cancer patient needs, thus having a vast potential in the increasing demand for more efficient treatments. In this review, we discuss the latest advances in the field of precision biomaterials in cancer research, which are expected to revolutionize disease management, focusing on their uses for cancer modelling, detection, and therapeutic applications. We finally comment on the needed requirements to accelerate their application in the clinic to improve cancer patient prognosis.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana C Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno N Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
31
|
Zhang R, Tang L, Li Q, Tian Y, Zhao B, Zhou B, Yang L. Cholesterol modified DP7 and pantothenic acid induce dendritic cell homing to enhance the efficacy of dendritic cell vaccines. MOLECULAR BIOMEDICINE 2021; 2:37. [PMID: 35006477 PMCID: PMC8643384 DOI: 10.1186/s43556-021-00058-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic cell (DC)-based cancer vaccines have so far achieved good therapeutic effects in animal experiments and early clinical trials for certain malignant tumors. However, the overall objective response rate in clinical trials rarely exceeds 15%. The poor efficiency of DC migration to lymph nodes (LNs) (< 5%) is one of the main factors limiting the effectiveness of DC vaccines. Therefore, increasing the efficiency of DC migration is expected to further enhance the efficacy of DC vaccines. Here, we used DP7-C (cholesterol modified VQWRIRVAVIRK), which can promote DC migration, as a medium. Through multiomics sequencing and biological experiments, we found that it is the metabolite pantothenic acid (PA) that improves the migration and effectiveness of DC vaccines. We clarified that both DP7-C and PA regulate DC migration by regulating the chemokine receptor CXCR2 and inhibiting miR-142a-3p to affect the NF-κB signaling pathway. This study will lay the foundation for the subsequent use of DP7-C as a universal substance to promote DC migration, further enhance the antitumor effect of DC vaccines, and solve the bottleneck problem of the low migration efficiency and unsatisfactory clinical response rate of DC vaccines.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Lin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Qing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Binyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
32
|
Subtil B, Cambi A, Tauriello DVF, de Vries IJM. The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer. Front Immunol 2021; 12:724883. [PMID: 34691029 PMCID: PMC8527179 DOI: 10.3389/fimmu.2021.724883] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and the second leading cause of cancer-related deaths worldwide. Locally advanced and metastatic disease exhibit resistance to therapy and are prone to recurrence. Despite significant advances in standard of care and targeted (immuno)therapies, the treatment effects in metastatic CRC patients have been modest. Untreatable cancer metastasis accounts for poor prognosis and most CRC deaths. The generation of a strong immunosuppressive tumor microenvironment (TME) by CRC constitutes a major hurdle for tumor clearance by the immune system. Dendritic cells (DCs), often impaired in the TME, play a critical role in the initiation and amplification of anti-tumor immune responses. Evidence suggests that tumor-mediated DC dysfunction is decisive for tumor growth and metastasis initiation, as well as for the success of immunotherapies. Unravelling and understanding the complex crosstalk between CRC and DCs holds promise for identifying key mechanisms involved in tumor progression and spread that can be exploited for therapy. The main goal of this review is to provide an overview of the current knowledge on the impact of CRC-driven immunosuppression on DCs phenotype and functionality, and its significance for disease progression, patient prognosis, and treatment response. Moreover, present knowledge gaps will be highlighted as promising opportunities to further understand and therapeutically target DC dysfunction in CRC. Given the complexity and heterogeneity of CRC, future research will benefit from the use of patient-derived material and the development of in vitro organoid-based co-culture systems to model and study DCs within the CRC TME.
Collapse
Affiliation(s)
- Beatriz Subtil
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daniele V. F. Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
33
|
Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel) 2021; 13:4610. [PMID: 34572836 PMCID: PMC8468887 DOI: 10.3390/cancers13184610] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
The tumour microenvironment plays a critical role in tumour progression and drug resistance processes. Non-malignant cell players, such as fibroblasts, endothelial cells, immune cells and others, interact with each other and with the tumour cells, shaping the disease. Though the role of each cell type and cell communication mechanisms have been progressively studied, the complexity of this cellular network and its role in disease mechanism and therapeutic response are still being unveiled. Animal models have been mainly used, as they can represent systemic interactions and conditions, though they face recognized limitations in translational potential due to interspecies differences. In vitro 3D cancer models can surpass these limitations, by incorporating human cells, including patient-derived ones, and allowing a range of experimental designs with precise control of each tumour microenvironment element. We summarize the role of each tumour microenvironment component and review studies proposing 3D co-culture strategies of tumour cells and non-malignant cell components. Moreover, we discuss the potential of these modelling approaches to uncover potential therapeutic targets in the tumour microenvironment and assess therapeutic efficacy, current bottlenecks and perspectives.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Giacomo Domenici
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
34
|
Hoteit M, Oneissi Z, Reda R, Wakim F, Zaidan A, Farran M, Abi-Khalil E, El-Sibai M. Cancer immunotherapy: A comprehensive appraisal of its modes of application. Oncol Lett 2021; 22:655. [PMID: 34386077 DOI: 10.3892/ol.2021.12916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional cancer treatments such as chemotherapy and radiation therapy have reached their therapeutic potential, leaving a gap for developing more effective cancer therapeutics. Cancer cells evade the immune system using various mechanisms of immune tolerance, underlying the potential impact of immunotherapy in the treatment of cancer. Immunotherapy includes several approaches such as activating the immune system in a cytokine-dependent manner, manipulating the feedback mechanisms involved in the immune response, enhancing the immune response via lymphocyte expansion and using cancer vaccines to elicit long-lasting, robust responses. These techniques can be used as monotherapies or combination therapies. The present review describes the immune-based mechanisms involved in tumor cell proliferation and maintenance and the rationale underlying various treatment methods. In addition, the present review provides insight into the potential of immunotherapy used alone or in combination with various types of therapeutics.
Collapse
Affiliation(s)
- Mira Hoteit
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Zeina Oneissi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ranim Reda
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Fadi Wakim
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Amar Zaidan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mohammad Farran
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Elie Abi-Khalil
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
35
|
Aldahlawi AM, Abdullah ST. Dendritic Cell-Based Immunotherapies and their Potential use in Colorectal Cancer Immunotherapy. J Microsc Ultrastruct 2021; 10:107-113. [PMID: 36504589 PMCID: PMC9728090 DOI: 10.4103/jmau.jmau_20_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, which are resident or proliferating in organs. Major histocompatibility complex (MHC) Class I and II on DCs in normal steady conditions process and present antigens including cancer antigens. Many approaches are used to enhance antigen presentation process of DCs and capture cancer cells. DCs are harvested from cancer patients and manipulated ex vivo in DC-based cancer immunotherapy. In addition, DCs' vaccines and other anticancer therapy combinations were discussed to optimize DCs' efficiency for cancer immunotherapy. This review addressed the use of the human conventional type-1 DCs, OX40+ plasmacytoid DCs, and DCs-derived exosomes. In addition, different combinations with DCs therapy such as combination with the monoclonal antibody, cytokine-induced killer cells, adjuvants, chemotherapy (DCs-based chemoimmunotherapy), and nanoparticles were listed and explored for their effectiveness against cancer, and mainly against colorectal cancer.
Collapse
Affiliation(s)
- Alia M. Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samaa Taha Abdullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Address for correspondence: Dr. Samaa Taha Abdullah, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia. E-mail:
| |
Collapse
|
36
|
Lin JC, Hsu CY, Chen JY, Fang ZS, Chen HW, Yao BY, Shiau GHM, Tsai JS, Gu M, Jung M, Lee TY, Hu CMJ. Facile Transformation of Murine and Human Primary Dendritic Cells into Robust and Modular Artificial Antigen-Presenting Systems by Intracellular Hydrogelation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101190. [PMID: 34096117 DOI: 10.1002/adma.202101190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The growing enthusiasm for cancer immunotherapies and adoptive cell therapies has prompted increasing interest in biomaterials development mimicking natural antigen-presenting cells (APCs) for T-cell expansion. In contrast to conventional bottom-up approaches aimed at layering synthetic substrates with T-cell activation cues, transformation of live dendritic cells (DCs) into artificial APCs (aAPCs) is demonstrated herein using a facile and minimally disruptive hydrogelation technique. Through direct intracellular permeation of poly(ethylene glycol) diacrylate (PEG-DA) hydrogel monomer and UV-activated radical polymerization, intracellular hydrogelation is rapidly accomplished on DCs with minimal influence on cellular morphology and surface antigen display, yielding highly robust and modular cell-gel hybrid constructs amenable to peptide antigen exchange, storable by freezing and lyophilization, and functionalizable with cytokine-releasing carriers for T-cell modulation. The DC-derived aAPCs are shown to induce prolonged T-cell expansion and improve anticancer efficacy of adoptive T-cell therapy in mice compared to nonexpanded control T cells, and the gelation technique is further demonstrated to stabilize primary DCs derived from human donors. The work presents a versatile approach for generating a new class of cell-mimicking biomaterials and opens new venues for immunological interrogation and immunoengineering.
Collapse
Affiliation(s)
- Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Jui-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Zih-Syun Fang
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei, Taiwan, 106, Republic of China
| | - Bing-Yu Yao
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Gwo Harn M Shiau
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Jeng-Shiang Tsai
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| | - Ming Gu
- Celtec Inc., One Broadway, Cambridge, MA, 02142, USA
- Celtec Inc., 15-7F, No 99, Sec 1, Xintai 5th Road, New Taipei City, Taiwan, 22175, Republic of China
| | - Meiying Jung
- Celtec Inc., One Broadway, Cambridge, MA, 02142, USA
- Celtec Inc., 15-7F, No 99, Sec 1, Xintai 5th Road, New Taipei City, Taiwan, 22175, Republic of China
| | - Tong-Young Lee
- Celtec Inc., One Broadway, Cambridge, MA, 02142, USA
- Celtec Inc., 15-7F, No 99, Sec 1, Xintai 5th Road, New Taipei City, Taiwan, 22175, Republic of China
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, Taiwan, 115, Republic of China
| |
Collapse
|
37
|
Fibroblasts Influence the Efficacy, Resistance, and Future Use of Vaccines and Immunotherapy in Cancer Treatment. Vaccines (Basel) 2021; 9:vaccines9060634. [PMID: 34200702 PMCID: PMC8230410 DOI: 10.3390/vaccines9060634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Tumors are composed of not only epithelial cells but also many other cell types that contribute to the tumor microenvironment (TME). Within this space, cancer-associated fibroblasts (CAFs) are a prominent cell type, and these cells are connected to an increase in tumor progression as well as alteration of the immune landscape present in and around the tumor. This is accomplished in part by their ability to alter the presence of both innate and adaptive immune cells as well as the release of various chemokines and cytokines, together leading to a more immunosuppressive TME. Furthermore, new research implicates CAFs as players in immunotherapy response in many different tumor types, typically by blunting their efficacy. Fibroblast activation protein (FAP) and transforming growth factor β (TGF-β), two major CAF proteins, are associated with the outcome of different immunotherapies and, additionally, have become new targets themselves for immune-based strategies directed at CAFs. This review will focus on CAFs and how they alter the immune landscape within tumors, how this affects response to current immunotherapy treatments, and how immune-based treatments are currently being harnessed to target the CAF population itself.
Collapse
|
38
|
Page L, Wallstabe J, Lother J, Bauser M, Kniemeyer O, Strobel L, Voltersen V, Teutschbein J, Hortschansky P, Morton CO, Brakhage AA, Topp M, Einsele H, Wurster S, Loeffler J. CcpA- and Shm2-Pulsed Myeloid Dendritic Cells Induce T-Cell Activation and Enhance the Neutrophilic Oxidative Burst Response to Aspergillus fumigatus. Front Immunol 2021; 12:659752. [PMID: 34122417 PMCID: PMC8192083 DOI: 10.3389/fimmu.2021.659752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Aspergillus fumigatus causes life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti-Aspergillus defense and have generated interest as a potential immunotherapeutic approach in IA. While monocyte-derived dendritic cells (moDCs) require ex vivo differentiation, antigen-pulsed primary myeloid dendritic cells (mDCs) may present a more immediate platform for immunotherapy. To that end, we compared the response patterns and cellular interactions of human primary mDCs and moDCs pulsed with an A. fumigatus lysate and two A. fumigatus proteins (CcpA and Shm2) in a serum-free, GMP-compliant medium. CcpA and Shm2 triggered significant upregulation of maturation markers in mDCs and, to a lesser extent, moDCs. Furthermore, both A. fumigatus proteins elicited the release of an array of key pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-8, and CCL3 from both DC populations. Compared to moDCs, CcpA- and Shm2-pulsed mDCs exhibited greater expression of MHC class II antigens and stimulated stronger proliferation and IFN-γ secretion from autologous CD4+ and CD8+ T-cells. Moreover, supernatants of CcpA- and Shm2-pulsed mDCs significantly enhanced the oxidative burst in allogeneic neutrophils co-cultured with A. fumigatus germ tubes. Taken together, our in vitro data suggest that ex vivo CcpA- and Shm2-pulsed primary mDCs have the potential to be developed into an immunotherapeutic approach to tackle IA.
Collapse
Affiliation(s)
- Lukas Page
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Julia Wallstabe
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute for Hygiene & Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Jasmin Lother
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany.,Centre for Image Guided Local Therapies, Otto von Guericke University, Magdeburg, Germany
| | - Maximilian Bauser
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Olaf Kniemeyer
- Leibniz-Institute for Natural Products Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Department of Molecular and Applied Microbiology, Friedrich Schiller University, Jena, Germany
| | - Lea Strobel
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Vera Voltersen
- Leibniz-Institute for Natural Products Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Department of Molecular and Applied Microbiology, Friedrich Schiller University, Jena, Germany
| | - Janka Teutschbein
- Leibniz-Institute for Natural Products Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Department of Molecular and Applied Microbiology, Friedrich Schiller University, Jena, Germany
| | - Peter Hortschansky
- Leibniz-Institute for Natural Products Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Department of Molecular and Applied Microbiology, Friedrich Schiller University, Jena, Germany
| | | | - Axel A Brakhage
- Leibniz-Institute for Natural Products Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Department of Molecular and Applied Microbiology, Friedrich Schiller University, Jena, Germany
| | - Max Topp
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sebastian Wurster
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
39
|
Oliveira C, Calmeiro J, Carrascal MA, Falcão A, Gomes C, Miguel Neves B, Teresa Cruz M. Exosomes as new therapeutic vectors for pancreatic cancer treatment. Eur J Pharm Biopharm 2021; 161:4-14. [PMID: 33561524 DOI: 10.1016/j.ejpb.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers with a very short rate of survival and commonly without symptoms in its early stage. This absence of symptoms can lead to a late diagnosis associated with an advanced metastasis process, for which therapy is not effective. Although with extensive research in this field, the 5-year survival rate has not increased significantly. Notwithstanding, novel insights on risk factors, genetic mutations and molecular mechanisms pave the way for novel therapeutics that urge with a significant part of PC patients presenting resistance to chemotherapy treatments. Exosomes are presented as a promising strategy, working as delivery systems, since they can transport and release their cargoes after fusing with the membrane of pancreatic cells. Exosomes present advantages over liposomes, being less toxic and reaching higher levels in the bloodstream, working as molecule carriers that can inhibit oncogenes, activating tumor suppressor genes and inducing immune responses as well as controlling cell growth. This review intends to provide an overview about the scientific and clinical studies regarding the entire process, from isolation and purification of exosomes, to their design and transformation into anti-oncogenic drug delivering systems, particularly to target PC cells.
Collapse
Affiliation(s)
- Constança Oliveira
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Calmeiro
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Mylène A Carrascal
- Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal; Tecnimede Group, 2710-089 Sintra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, 300-504 Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
40
|
Yan S, Liu K, Mu L, Liu J, Tang W, Liu B. Research and application of hydrostatic high pressure in tumor vaccines (Review). Oncol Rep 2021; 45:75. [PMID: 33760193 PMCID: PMC8020208 DOI: 10.3892/or.2021.8026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
It is well known that hydrostatic pressure (HP) is a physical parameter that is now regarded as an important variable for life. High hydrostatic pressure (HHP) technology has influenced biological systems for more than 100 years. Food and bioscience researchers have shown great interest in HHP technology over the past few decades. The development of knowledge related to this area can better facilitate the application of HHP in the life sciences. Furthermore, new applications for HHP may come from these current studies, particularly in tumor vaccines. Currently, cancer recurrence and metastasis continue to pose a serious threat to human health. The limited efficacy of conventional treatments has led to the need for breakthroughs in immunotherapy and other related areas. Research into tumor vaccines is providing new insights for cancer treatment. The purpose of this review is to present the main findings reported thus far in the relevant scientific literature, focusing on knowledge related to HHP technology and tumor vaccines, and to demonstrate the potential of applying HHP technology to tumor vaccine development.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin Mu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jianfeng Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wan Tang
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
41
|
Calmeiro J, Mendes L, Duarte IF, Leitão C, Tavares AR, Ferreira DA, Gomes C, Serra J, Falcão A, Cruz MT, Carrascal MA, Neves BM. In-Depth Analysis of the Impact of Different Serum-Free Media on the Production of Clinical Grade Dendritic Cells for Cancer Immunotherapy. Front Immunol 2021; 11:593363. [PMID: 33613517 PMCID: PMC7893095 DOI: 10.3389/fimmu.2020.593363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Dendritic cell (DC)-based antitumor vaccines have proven to be a safe approach, but often fail to generate robust results between trials. Translation to the clinic has been hindered in part by the lack of standard operation procedures for vaccines production, namely the definition of optimal culture conditions during ex-vivo DC differentiation. Here we sought to compare the ability of three clinical grade serum-free media, DendriMACS, AIM-V, and X-VIVO 15, alongside with fetal bovine serum-supplemented Roswell Park Memorial Institute Medium (RPMI), to support the differentiation of monocyte-derived DCs (Mo-DCs). Under these different culture conditions, phenotype, cell metabolomic profiles, response to maturation stimuli, cytokines production, allogenic T cell stimulatory capacity, as well as priming of antigen-specific CD8+ T cells and activation of autologous natural killer (NK) cells were analyzed. Immature Mo-DCs differentiated in AIM-V or X-VIVO 15 presented lower levels of CD1c, CD1a, and higher expression of CD11c, when compared to cells obtained with DendriMACS. Upon stimulation, only AIM-V or X-VIVO 15 DCs acquired a full mature phenotype, which supports their enhanced capacity to polarize T helper cell type 1 subset, to prime antigen-specific CD8+ T cells and to activate NK cells. CD8+ T cells and NK cells resulting from co-culture with AIM-V or X-VIVO 15 DCs also showed superior cytolytic activity. 1H nuclear magnetic resonance-based metabolomic analysis revealed that superior DC immunostimulatory capacities correlate with an enhanced catabolism of amino acids and glucose. Overall, our data highlight the impact of critically defining the culture medium used in the production of DCs for clinical application in cancer immunotherapy. Moreover, the manipulation of metabolic state during differentiation could be envisaged as a strategy to enhance desired cell characteristics.
Collapse
Affiliation(s)
- João Calmeiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Luís Mendes
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Iola F Duarte
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Catarina Leitão
- Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Adriana R Tavares
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Daniel Alexandre Ferreira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | | | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
42
|
Szczygieł A, Anger-Góra N, Węgierek-Ciura K, Mierzejewska J, Rossowska J, Goszczyński TM, Świtalska M, Pajtasz-Piasecka E. Immunomodulatory potential of anticancer therapy composed of methotrexate nanoconjugate and dendritic cell‑based vaccines in murine colon carcinoma. Oncol Rep 2021; 45:945-962. [PMID: 33432365 PMCID: PMC7859925 DOI: 10.3892/or.2021.7930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Chemotherapy with low-molecular weight compounds, despite elimination of cancer cells, entails adverse effects. To overcome this disadvantage, innovative drug delivery systems are being developed, including conjugation of macromolecular carriers with therapeutics, e.g. a nanoconjugate of hydroxyethyl starch and methotrexate (HES-MTX). The purpose of the present study was to determine whether HES-MTX, applied as a chemotherapeutic, is able to modulate the immune response and support the antitumor response generated by dendritic cells (DCs) used subsequently as immunotherapeutic vaccines. Therefore, MTX or HES-MTX was administered, as sole treatment or combined with DC-based vaccines, to MC38 colon carcinoma tumor-bearing mice. Alterations in antitumor immune response were evaluated by multiparameter flow cytometry analyses and functional assays. The results demonstrated that the nanoconjugate possesses greater immunomodulatory potential than MTX as reflected by changes in the landscape of immune cells infiltrating the tumor and increased cytotoxicity of splenic lymphocytes. In contrast to MTX, therapy with HES-MTX as sole treatment or combined with DC-based vaccines, contributed to significant tumor growth inhibition. However, only treatment with HES-MTX and DC-based vaccines activated the systemic specific antitumor response. In conclusion, due to its immunomodulatory properties, the HES-MTX nanoconjugate could become a potent anticancer agent used in both chemo- and chemoimmunotherapeutic treatment schemes.
Collapse
Affiliation(s)
- Agnieszka Szczygieł
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Natalia Anger-Góra
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Katarzyna Węgierek-Ciura
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Jagoda Mierzejewska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Tomasz M Goszczyński
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Marta Świtalska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Elżbieta Pajtasz-Piasecka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| |
Collapse
|
43
|
Fu C, Tian G, Duan J, Liu K, Zhang C, Yan W, Wang Y. Therapeutic Antitumor Efficacy of Cancer Stem Cell-Derived DRibble Vaccine on Colorectal Carcinoma. Int J Med Sci 2021; 18:3249-3260. [PMID: 34400894 PMCID: PMC8364449 DOI: 10.7150/ijms.61510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy has been a promising strategy for colon cancer therapy, but the efficacy of dendritic cell vaccines is in part limited by immunogenicity of loaded antigens. In this study, we aimed to identify a putative tumor antigen that can generate or enhance anti-tumor immune responses against colon cancer. CD44+ colon cancer stem cells (CCSCs) were isolated from mouse colorectal carcinoma CT-26 cell cultures and induced to form defective ribosomal products-containing autophagosome-rich blebs (DRibbles) by treatment with rapamycin, bortezomib, and ammonium chloride. DRibbles were characterized by western blot and transmission electron microscopy. DCs generated from the mice bone marrow monocytes were cocultured with DRibbles, then surface markers of DCs were analyzed by flow cytometry. Meanwhile, the efficacy of DRibble-DCs was examined in vivo. Our results showed that CCSC-derived DRibbles upregulated CD80, CD86, major histocompatibility complex (MHC)-I, and MHC-II on DCs and induced proliferation of mouse splenic lymphocytes and CD8+ T cells. In a model of colorectal carcinoma using BALB/c mice with robust tumor growth and mortality, DC vaccine pulsed with CCSC-derived DRibbles suppressed tumor growth and extended survival. A lactate dehydrogenase test indicated a strong cytolytic activity of cytotoxic T-cells derived from mice vaccinated with CCSC-derived DRibbles against CT-26 cells. Furthermore, flow cytometry analyses showed that the percentages of IFN-γ-producing CD8+ T-cells were increased in SD-DC group compare with the other groups. These findings provide a rationale for novel immunotherapeutic anti-tumor approaches based on DRibbles derived from colon cancer stem cells.
Collapse
Affiliation(s)
- Changhao Fu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Geer Tian
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jinyue Duan
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Chen Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Weiqun Yan
- Medical Institute of Regeneration Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
44
|
Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Cruz MT, Falcão A, Neves BM. Pharmacological combination of nivolumab with dendritic cell vaccines in cancer immunotherapy: An overview. Pharmacol Res 2020; 164:105309. [PMID: 33212291 DOI: 10.1016/j.phrs.2020.105309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
In the last decade, immunotherapy led to a paradigm shift in the treatment of numerous malignancies. Alongside with monoclonal antibodies blocking programmed cell death receptor-1 (PD-1)/PD-L1 and cytotoxic T- lymphocyte antigen 4 (CTLA-4) immune checkpoints, cell-based approaches such as CAR-T cells and dendritic cell (DC) vaccines have strongly contributed to pushing forward this thrilling field. While initial strategies were mainly focused on monotherapeutic regimens, it is now consensual that the combination of immunotherapies tackling multiple cancer hallmarks can result in superior clinical outcomes. Here, we review in depth the pharmacological combination of DC-based vaccines that boost tumour elimination by eliciting and expanding effector immune cells, with the PD-1 inhibitor Nivolumab that allows blocking key tumour immune escape mechanisms. This combination represents an important step in cancer therapy, with a significant enhancement in patient survival in several types of tumours, paving an important way in establishing combinatorial immunotherapeutic strategies as first-line treatments.
Collapse
Affiliation(s)
- João Calmeiro
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Mylène A Carrascal
- Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504, Coimbra, Portugal; Tecnimede Group, 2710-089, Sintra, Portugal
| | - Adriana Ramos Tavares
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Daniel Alexandre Ferreira
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, 300-504, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548, Coimbra, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, 3000-548, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
45
|
Pistulli R, Andreas E, König S, Drobnik S, Kretzschmar D, Rohm I, Lichtenauer M, Heidecker B, Franz M, Mall G, Yilmaz A, Schulze PC. Characterization of dendritic cells in human and experimental myocarditis. ESC Heart Fail 2020; 7:2305-2317. [PMID: 32619089 PMCID: PMC7524053 DOI: 10.1002/ehf2.12767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Aims Dendritic cells (DCs) are central mediators of adaptive immunity, and there is growing evidence of their role in myocardial inflammatory disease. We hypothesized that plasmacytoid and myeloid DCs are involved in the mechanisms of myocarditis and analysed these two main subtypes in human myocarditis subjects, as well as in a murine model of experimental autoimmune myocarditis (EAM). Methods and results Circulating DCs were analysed by flow cytometry in patients with acute myocarditis, dilated cardiomyopathy, and controls. Myocardial biopsies were immunostained for the presence of DCs and compared with non‐diseased controls. In a mouse model of acute myocarditis induced through synthetic cardiac myosine peptide injection, effects of immunomodulation including DC inhibition through MCS‐18 versus placebo treatment were tested at the peak of inflammation (Day 21), as well as 1 week later (partial recovery). Circulatory pDCs and mDCs were significantly reduced in myocarditis patients compared with controls (P < 0.01 for both) and remained so even after 6 months of follow‐up. Human myocarditis biopsies showed accumulation of pDCs (two‐fold CD304+/three‐fold CD123+, all P < 0.05) compared with controls. Myocardial pDCs and mDCs accumulated in EAM (P for both <0.0001). MCS‐18 treatment reduced pDC levels (P = 0.009), reduced myocardial inflammation (myocarditis score reduction from 2.6 to 1.8, P = 0.026), and improved ejection fraction (P = 0.03) in EAM at Day 21 (peak of inflammation). This effect was not observed during the partial recovery of inflammation on Day 28. Conclusions Circulating DCs are reduced in human myocarditis and accumulate in the inflamed myocardium. MCS‐18 treatment reduces DCs in EAM, leading to amelioration of inflammation and left ventricular remodelling during the acute phase of myocarditis. Our data further elucidate the role of DCs and their specific subsets in acute inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- Rudin Pistulli
- Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, Münster, 48149, Germany
| | - Elise Andreas
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Jena, Germany
| | | | - Stefanie Drobnik
- Institute of Forensic Medicine, University of Jena, Jena, Germany
| | - Daniel Kretzschmar
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Jena, Germany
| | - Ilonka Rohm
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Jena, Germany
| | | | - Bettina Heidecker
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Marcus Franz
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Jena, Germany
| | - Gita Mall
- Institute of Forensic Medicine, University of Jena, Jena, Germany
| | - Atilla Yilmaz
- Internal Medicine Clinic II, Elisabeth Hospital, Schmalkalden, Germany
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, Jena, Germany
| |
Collapse
|
46
|
Qian C, Yang LJ, Cui H. Recent Advances in Nanotechnology for Dendritic Cell-Based Immunotherapy. Front Pharmacol 2020; 11:960. [PMID: 32694998 PMCID: PMC7338589 DOI: 10.3389/fphar.2020.00960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are the most important antigen-presenting cells that determine cancer immune responses by regulating immune activation and tolerance, especially in the initiation stage of specific responses. Manipulation of DCs to enhance specific antitumor immune response is considered to be a powerful tool for tumor eradication. Nanotechnology, which can incorporate multifunction components and show spatiotemporal control properties, is of great interest and is widely investigated for its ability to improve immune response activity against cancer and even for prevention and avoiding recurrence. In this mini-review, we aim to provide a general view of DC-based immunotherapy, including that involving the promising nanotechnology. Particularly we discuss: (1) manipulation or engineering of DCs for adoptive vaccination, (2) employing DCs as a combination to more existing therapeutics in tumor treatment, and (3) direct modulation of DCs in vivo to enhance antigen presentation efficacy and priming T cells subsequently. We comprehensively discuss the updates on the application of nanotechnology in DC-based immunotherapy and provide some insights on the challenges and opportunities of DC-based immunotherapeutics, including the potential of nanotechnology, against cancers.
Collapse
Affiliation(s)
| | | | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Zhang R, Tang L, Tian Y, Ji X, Hu Q, Zhou B, Zhenyu D, Heng X, Yang L. Cholesterol-modified DP7 enhances the effect of individualized cancer immunotherapy based on neoantigens. Biomaterials 2020; 241:119852. [PMID: 32120313 DOI: 10.1016/j.biomaterials.2020.119852] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
Personalized cancer vaccines based on neoantigens have become an important research direction in cancer immunotherapy. However, their therapeutic effects are limited by the efficiency of antigen uptake and presentation by antigen presenting cells. Here, the low-toxicity cholesterol-modified antimicrobial peptide (AMP) DP7 (DP7-C), which has dual functions as a carrier and an immune adjuvant, improved the dendritic cell (DC)-based vaccine efficacy. As a delivery carrier, DP7-C can efficiently delivery various antigen peptides into 75-95% of DCs via caveolin- and clathrin-dependent pathways. As an immune adjuvant, DP7-C can induce DC maturation and proinflammatory cytokine release via the TLR2-MyD88-NF-κB pathway and effectively increase antigen presentation efficiency. In addition, DP7-C enhanced the efficacy of DC-based individualized cancer immunotherapy and achieved excellent antitumor effects on mouse tumor models using the OVA antigen peptides and LL2-neoantigens. Excitingly, after DP7-C stimulation, the antigen uptake efficiency of monocytes-derived DCs (MoDCs) in patients with advanced lung cancer increased from 14-40% to 88-98%, the presentation efficiency increased from approximately 15% to approximately 65%, and the proportion of mature MoDCs increased from approximately 20% to approximately 60%. These findings suggest that our approach may be a potentially alternative strategy to produce cancer vaccines designed for individual patients.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao Ji
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyue Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ding Zhenyu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Heng
- Precision Medicine Center, State Key Laboratory of Biotherapy, and Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
48
|
Zhang H, Wang Y, Wang QT, Sun SN, Li SY, Shang H, He YW. Enhanced Human T Lymphocyte Antigen Priming by Cytokine-Matured Dendritic Cells Overexpressing Bcl-2 and IL-12. Front Cell Dev Biol 2020; 8:205. [PMID: 32292785 PMCID: PMC7118208 DOI: 10.3389/fcell.2020.00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023] Open
Abstract
Dendritic cell (DC)-based vaccination is a promising immunotherapeutic strategy for cancer. However, clinical trials have shown only limited efficacy, suggesting the need to optimize protocols for human DC vaccine preparation. In this study, we systemically compared five different human DC vaccine maturation protocols used in clinical trials: (1) a four-cytokine cocktail (TNF-α, IL-6, IL-1β, and PGE2); (2) an α-DC-cytokine cocktail (TNF-α, IL-1β, IFN-α, IFN-γ, and poly I:C); (3) lipopolysaccharide (LPS)/IFN-γ; (4) TNF-α and PGE2; and (5) TriMix (mRNAs encoding CD40L, CD70, and constitutively active Toll-like receptor 4 electroporated into immature DCs). We found that the four-cytokine cocktail induced high levels of costimulatory and HLA molecules, as well as CCR7, in DCs. Mature DCs (mDCs) matured with the four-cytokine cocktail had higher viability than those obtained with the other protocols. Based on these features, we chose the four-cytokine cocktail protocol to further improve the immunizing capability of DCs by introducing exogenous genes. We showed that introducing exogenous Bcl-2 increased DC survival. Furthermore, introducing IL-12p70 rescued the inhibition of IL-12 secretion by PGE2 without impairing the DC phenotype. Introducing both Bcl-2 and IL-12p70 mRNAs into DCs induced enhanced cytomegalovirus pp65-specific CD8+ T cells secreting IFN-γ and TNF-α. Taken together, our data suggest that DC matured by the four-cytokine cocktail combined with exogenous Bcl-2 and IL-12p70 gene expression represents a promising approach for clinical applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Life Science Institute, Jinzhou Medical University, Jinzhou, China
| | | | - Sheng-Nan Sun
- Beijing Tricision Biotherapeutics Inc., Beijing, China
| | - Shi-You Li
- Beijing Tricision Biotherapeutics Inc., Beijing, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
49
|
Hashemi V, Farhadi S, Ghasemi Chaleshtari M, Seashore-Ludlow B, Masjedi A, Hojjat-Farsangi M, Namdar A, Ajjoolabady A, Mohammadi H, Ghalamfarsa G, Jadidi-Niaragh F. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int Immunopharmacol 2020; 83:106446. [PMID: 32244048 DOI: 10.1016/j.intimp.2020.106446] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has shown impressive outcomes, including the development of the first FDA-approved anti-cancer vaccine. However, the clinical application of DC-based cancer immunotherapy is associated with various challenges. Promising novel tools for the administration of cancer vaccines has emerged from recent developments in nanoscale biomaterials. One current strategy to enhance targeted drug delivery, while minimizing drug-related toxicities, is the use of nanoparticles (NPs). These can be utilized for antigen delivery into DCs, which have been shown to provide potent T cell-stimulating effects. Therefore, NP delivery represents one promising approach for creating an effective and stable immune response without toxic side effects. The current review surveys cancer immunotherapy with particular attention toward NP-based delivery methods that target DCs.
Collapse
Affiliation(s)
- Vida Hashemi
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shohreh Farhadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ali Masjedi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Namdar
- Department of Oncology, Cross Cancer Institute, The University of Alberta, Edmonton, Alberta, Canada
| | - Amir Ajjoolabady
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Falcão A, Cruz MT, Neves BM. Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells. Pharmaceutics 2020; 12:pharmaceutics12020158. [PMID: 32075343 PMCID: PMC7076373 DOI: 10.3390/pharmaceutics12020158] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy.
Collapse
Affiliation(s)
- João Calmeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.C.); (A.R.T.); (A.F.); (M.T.C.)
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Mylène A. Carrascal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal;
- Tecnimede Group, 2710-089 Sintra, Portugal
| | - Adriana Ramos Tavares
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.C.); (A.R.T.); (A.F.); (M.T.C.)
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Daniel Alexandre Ferreira
- Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (D.A.F.); (C.G.)
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (D.A.F.); (C.G.)
- Center for Innovation in Biomedicine and Biotechnology-CIBB, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.C.); (A.R.T.); (A.F.); (M.T.C.)
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (J.C.); (A.R.T.); (A.F.); (M.T.C.)
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-964182278
| |
Collapse
|