1
|
Sivakumar B, Kurian GA. Sodium thiosulfate mitigates PM 2.5-induced cardiotoxicity by preservation of mitochondrial function. Fundam Clin Pharmacol 2025; 39:e70010. [PMID: 40298298 DOI: 10.1111/fcp.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Exposure to PM2.5 triggers changes in myocardial structure and function, leading to a decline in the ability of heart to withstand further oxidative stress. This manuscript addresses the absence of a endogenous agent capable of counteracting the cardiac toxicity associated with PM2.5 exposure. Consequently, we investigated the potential of sodium thiosulfate (STS) to elevate thiosulfate levels, given its known antioxidant, anti-inflammatory, metal chelation, and mitochondrial preservation properties, in order to mitigate PM2.5 induced cardiac damage. METHODS Female Wistar rats were exposed to PM2.5 (250 μg/m3) for 3 hours daily for 21 days, after which their hearts were excised and mounted on Langendorff apparatus for ischemia-reperfusion (IR) induction. We implemented both preventive and curative investigation protocols for STS: the preventive group received STS thrice weekly for 3 weeks during the exposure regimen, while the curative group received STS after 21 days of PM2.5 exposure for 3 weeks (thrice per week). RESULTS Treatment with STS exhibited cardioprotective potential against the detrimental effects of PM2.5 exposure, as evidenced by improved cardiac hemodynamic performance, reduced tissue damage, attenuation of structural remodeling associated with hypertrophy and fibrosis, and a significant reduction in metal deposition. Moreover, it demonstrated an ability to enhance the resilience against IR. Cellular and subcellular level analyses revealed improved mitochondrial function. The protective efficacy of STS was more significant when administered as a preventive measure compared to its curative application. CONCLUSION In summary, our results indicate that STS effectively alleviates PM2.5-induced toxicity due to its antioxidative, metal-chelating, and preservation of mitochondrial function capabilities.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Cardiovascular Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Gino A Kurian
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| |
Collapse
|
2
|
Jin M, Li C, Wu Z, Tang Z, Xie J, Wei G, Yang Z, Huang S, Chen Y, Li X, Chen Y, Liao W, Liao Y, Chen G, Zheng H, Bin J. Inhibiting the Histone Demethylase Kdm4a Restrains Cardiac Fibrosis After Myocardial Infarction by Promoting Autophagy in Premature Senescent Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414830. [PMID: 40231733 DOI: 10.1002/advs.202414830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/26/2025] [Indexed: 04/16/2025]
Abstract
Premature senescent fibroblasts (PSFs) play an important role in regulating the fibrotic process after myocardial infarction (MI), but their effect on cardiac fibrosis remains unknown. Here, the investigation is aimed to determine whether PSFs contribute to cardiac fibrosis and the underlying mechanisms involved. It is observed that premature senescence of fibroblasts is strongly activated in the injured myocardium at 7 days after MI and identified that Kdm4a is located in PSFs by the analysis of scRNA-seq data and immunostaining staining. Moreover, fibroblast specific gain- and loss-of-function assays showed that Kdm4a promoted the premature senescence of fibroblasts and cardiac interstitial fibrosis, contributing to cardiac remodeling in the advanced stage after MI, without influencing early cardiac rupture. ChIP-seq and ChIP-PCR revealed that Kdm4a deficiency promoted autophagy in PSFs by reducing Trim44 expression through increased levels of the H3K9me3 modification in the Trim44 promoter region. Furthermore, a coculture system revealed that Kdm4a overexpression increased the accumulation of PSFs and the secretion of senescence-associated secretory phenotype (SASP) factors, subsequently inducing cardiac fibrosis, which could be reversed by Trim44 interference. Kdm4a induces the premature senescence of fibroblasts through Trim44-mediated autophagy and then facilitates interstitial fibrosis after MI, ultimately resulting in cardiac remodeling, but not affecting ventricular rupture.
Collapse
Affiliation(s)
- Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Chuling Li
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Zhaoyi Wu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Jingfang Xie
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Zhiwen Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| |
Collapse
|
3
|
Cardona-Timoner M, Gomes RN, Nascimento DS. Dressed in Collagen: 2D and 3D Cardiac Fibrosis Models. Int J Mol Sci 2025; 26:3038. [PMID: 40243696 PMCID: PMC11988687 DOI: 10.3390/ijms26073038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular diseases (CVD), the leading cause of death worldwide, and their strong association with fibrosis highlight the pressing need for innovative antifibrotic therapies. In vitro models have emerged as valuable tools for replicating cardiac fibrosis 'in a dish', facilitating the study of disease mechanisms and serving as platforms for drug testing and development. These in vitro systems encompass 2D and 3D models, each with its own limitations and advantages. 2D models offer high reproducibility, cost-effectiveness, and high-throughput capabilities, but they oversimplify the complex fibrotic environment. On the other hand, 3D models provide greater biological relevance but are more complex, harder to reproduce, and less suited for high-throughput screening. The choice of model depends on the specific research question and the stage of drug development. Despite significant progress, challenges remain, including the integration of immune cells in cardiac fibrosis and optimizing the scalability and throughput of highly biomimetic systems. Herein, we review recent in vitro cardiac fibrosis models, with a focus on their shared characteristics and remaining challenges, and explore how in vitro fibrosis models of other organs could inspire novel approaches in cardiac research, showcasing potential strategies that could be adapted to refine myocardial fibrosis models.
Collapse
Affiliation(s)
- Maria Cardona-Timoner
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.C.-T.); (R.N.G.)
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), 4200-465 Porto, Portugal
| | - Rita N. Gomes
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.C.-T.); (R.N.G.)
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Diana S. Nascimento
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.C.-T.); (R.N.G.)
- Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Cao C, Yang L, Song J, Liu Z, Li H, Li L, Fu J, Liu J. Cardiomyocyte regeneration after infarction: changes, opportunities and challenges. Mol Cell Biochem 2025:10.1007/s11010-025-05251-w. [PMID: 40097887 DOI: 10.1007/s11010-025-05251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025]
Abstract
Myocardial infarction is a cardiovascular disease that poses a serious threat to human health. The traditional view is that adult mammalian cardiomyocytes have almost no regenerative ability, but recent studies have shown that they have regenerative potential under specific conditions. This article comprehensively describes the research progress of post-infarction cardiomyocyte regeneration, including the characteristics of cardiomyocytes and post-infarction changes, regeneration mechanisms, influencing factors, potential therapeutic strategies, challenges and future development directions, and deeply discusses the specific pathways and targets included in the regeneration mechanism, aiming to provide new ideas and methods for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Ce Cao
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lili Yang
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianshu Song
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Zixin Liu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Haoran Li
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lei Li
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianhua Fu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianxun Liu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China.
| |
Collapse
|
5
|
Støle TP, Romaine A, Kleiberg T, Høst V, Lunde M, Hasic A, Lintvedt TA, Sanden KW, Kolset SO, Wold JP, Pisconti A, Rønning SB, Carlson CR, Pedersen ME. Cardiac implications of chicken wooden breast myopathy. Front Physiol 2025; 16:1547661. [PMID: 40110183 PMCID: PMC11919848 DOI: 10.3389/fphys.2025.1547661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Wooden breast disease is a myopathy of the skeletal muscle in chickens of commercial breeding. Although the underlying pathophysiology remains unknown, we and others have previously shown that affected broilers display varying degrees of fibrosis, extracellular matrix (ECM) remodeling, inflammation, and alterations in various molecular signaling pathways. Other myopathy conditions, such as Duchenne muscular dystrophy, also affect the cardiac muscle and are associated with fibrosis and reduced cardiac function. To determine potential cardiac implications of wooden breast disease and identify whether molecular and fibrotic changes were similar to what we have previously found in the breast, we have investigated the hearts of commercial Ross 308 broilers. Methods Hearts from male Ross 308 broiler chickens from mildly and severely wooden breast-affected chickens categorized in previous studies were analyzed. Ventricles from the hearts were analyzed by immunoblotting, real-time qPCR, near-infrared spectroscopy, Raman spectroscopy, and Masson`s trichrome histology. RNA sequencing was also conducted to identify the molecular footprint of the mildly and severely wooden breast-affected chickens. Results Compared to mildly affected chickens, the severely wooden breast-affected chickens did not show an increase in heart weight, water-binding capacity, or macronutrient composition. The hearts did also not display any differences in fibrosis development, extracellular matrix gene expression, or typical cardiac and inflammatory markers. The severely affected chickens did, however, show a reduction in protein levels of biglycan and fibromodulin, as well as alterations in matrix metalloproteinase 2, Wnt ligands, mTOR signaling, heat shock protein 70, and muscle LIM protein. Functional enrichment analysis of RNA sequencing also suggested a different molecular footprint of biological processes and pathways between the two groups. Conclusion Hearts from wooden breast-affected chickens did not display the same fibrotic alterations as those previously found in the breast. Despite few alterations detected in the markers and signaling molecules tested, RNA sequencing indicated a different molecular footprint in the hearts of severely compared to mildly wooden breast-affected chickens.
Collapse
Affiliation(s)
- Thea Parsberg Støle
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thea Kleiberg
- Raw Materials and Optimalization, Nofima As, Ås, Norway
| | - Vibeke Høst
- Raw Materials and Optimalization, Nofima As, Ås, Norway
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | | | - Addolorata Pisconti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | | | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | |
Collapse
|
6
|
Xu H, Mao X, Wang Y, Zhu C, Liang B, Zhao Y, Zhou M, Ye L, Hong M, Shao H, Wang Y, Li H, Qi Y, Yang Y, Chen L, Guan Y, Zhang X. Targeting the E Prostanoid Receptor EP4 Mitigates Cardiac Fibrosis Induced by β-Adrenergic Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413324. [PMID: 39921269 PMCID: PMC11948031 DOI: 10.1002/advs.202413324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Indexed: 02/10/2025]
Abstract
Sustained β-adrenergic activation induces cardiac fibrosis characterized by excessive deposition of extracellular matrix (ECM). Prostaglandin E2 (PGE2) receptor EP4 is essential for cardiovascular homeostasis. This study aims to investigate the roles of cardiomyocyte (CM) and cardiac fibroblast (CF) EP4 in isoproterenol (ISO)-induced cardiac fibrosis. By crossing the EP4f/f mice with α-MyHC-Cre or S100A4-Cre mice, this work obtains the CM-EP4 knockout (EP4f/f-α-MyHCCre+) or CF-EP4 knockout (EP4f/f-S100A4Cre+) mice. The mice of both genders are subcutaneously injected with ISO (5 mg kg-1 day-1) for 7 days. Compared to the control mice, both EP4f/f-α-MyHCCre+ and EP4f/f-S100A4Cre+ mice show a significant improvement in cardiac diastolic function and fibrosis as assessed by echocardiography and histological staining, respectively. In the CMs, inhibition of EP4 suppresses ISO-induced TGF-β1 expression via blocking the cAMP/PKA pathway. In the CFs, inhibition of EP4 reversed TGF-β1-triggers production of ECM via preventing the formation of the TGF-β1/TGF-β receptor complex and blocks CF proliferation via suppressing the ERK1/2 pathway. Furthermore, double knockout of the CM- and CF-EP4 or administration of EP4 antagonist, grapiprant, markedly improves ISO-induced cardiac diastolic dysfunction and fibrosis. Collectively, this study demonstrates that both CM-EP4 and CF-EP4 contribute to β-adrenergic activation-induced cardiac fibrosis. Targeting EP4 may offer a novel therapeutic approach for cardiac fibrosis.
Collapse
Affiliation(s)
- Hu Xu
- Wuhu HospitalEast China Normal UniversityShanghai200241China
- Health Science CenterEast China Normal UniversityShanghai200241China
| | - Xiuhui Mao
- Health Science CenterEast China Normal UniversityShanghai200241China
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Yali Wang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Chunhua Zhu
- Health Science CenterEast China Normal UniversityShanghai200241China
| | - Bo Liang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Yihang Zhao
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Mengfei Zhou
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Lan Ye
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Mengting Hong
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Huishu Shao
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Yashuo Wang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Haonan Li
- MOE Key Laboratory of Bio‐Intelligent ManufacturingSchool of BioengineeringDalian University of TechnologyDalian116024China
| | - Yinghui Qi
- Department of NephrologyPudong New District Punan HospitalShanghai200125China
| | - Yongliang Yang
- MOE Key Laboratory of Bio‐Intelligent ManufacturingSchool of BioengineeringDalian University of TechnologyDalian116024China
| | - Lihong Chen
- Health Science CenterEast China Normal UniversityShanghai200241China
| | - Youfei Guan
- Health Science CenterEast China Normal UniversityShanghai200241China
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Xiaoyan Zhang
- Wuhu HospitalEast China Normal UniversityShanghai200241China
- Health Science CenterEast China Normal UniversityShanghai200241China
| |
Collapse
|
7
|
Feng R, Liu H, Chen Y. Baricitinib represses the myocardial fibrosis via blocking JAK/STAT and TGF-β1 pathways in vivo and in vitro. BMC Cardiovasc Disord 2025; 25:65. [PMID: 39891042 PMCID: PMC11783835 DOI: 10.1186/s12872-025-04517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND JAK/STAT pathway is closely involved in the organ fibrotic process. The current study aimed to investigate the impact of baricitinib, an oral selective JAK1/JAK2 inhibitor, on the myocardial fibrosis in vivo and the activation of cardiac fibroblasts in vitro. METHODS The mouse myocardial fibrosis model was established by isoproterenol (ISO) treatment, then was treated by baricitinib. The activation of mouse cardiac fibroblasts was established by TGF-β1 stimulation, then was treated by baricitinib with several concentrations. Besides, JAK2 was knocked down by small interfering RNA (siRNA) in TGF-β1-stimulated mouse cardiac fibroblasts. RESULTS Baricitinib not only attenuated myocardial cell widening, inflammatory infiltration, fibrous tissue, and heart index, but also reduced collagen volume fraction, the expressions of Col1, Col3, α-SMA, Fn, MMP9, and TIMP1 in ISO-induced myocardial fibrosis mice. Meanwhile, baricitinib decreased the expressions of p-STAT3 and TGF-βRII in these mice. Interestingly, in TGF-β1-stimulated cardiac fibroblasts, baricitinib decreased the expressions of Col1, Col3, α-SMA, Fn, MMP9, and TIMP1 in a dose-dependent manner (From 10 to 2000 nM), also exhibited a dose-dependent impact on the expressions of p-STAT3 and TGF-βRII. Finally, JAK2 knockdown by siRNA downregulated the expressions of Col1, Col3, α-SMA, and Fn in TGF-β1-stimulated cardiac fibroblasts. CONCLUSION Inhibition of JAK/STAT pathway by baricitinib represses the myocardial fibrosis in vivo and in vitro, indicating baricitinib may be a treatment option for myocardial fibrosis, while further validation is needed.
Collapse
Affiliation(s)
- Renlei Feng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Geriatrics, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Hongli Liu
- Department of Geriatrics, Chongqing Medical University, Chongqing, 400016, China
| | - Yunqing Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
8
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
9
|
Lin DW, Jiang YW, Wu C, Zhang H, Li YZ, Wang YS. Quercetin Alleviates Cardiac Fibrosis via Regulating the SIRT3 Signaling Pathway. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07658-x. [PMID: 39680328 DOI: 10.1007/s10557-024-07658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE Cardiovascular diseases, exacerbated by cardiac fibrosis, are the leading causes of mortality. We aimed to determine the role of quercetin (QU) in cardiac fibrosis and the underlying mechanism. METHODS In this study, 8-week-old mice were subjected to either transverse aortic constriction (TAC) or sham surgery, then they were administered QU or saline. Thereafter, cardiac function and cardiac hypertrophy were accessed. In vitro, cardiac fibroblasts (CFs) were treated with angiotensin II (Ang II) with or without QU. Western blot, qPCR, EdU incorporation assay, and immunofluorescence staining analysis were used to investigate the molecular and cellular features. RESULTS For the TAC mouse model, cardiac fibrosis was alleviated by QU. The study revealed that the trans-differentiation and proliferation of CFs promoted by Ang II would be reversed by QU in vitro. Mechanistically, QU exerted the anti-fibrotic effect by regulating the SIRT3/TGF-β/Smad3 signaling pathway. CONCLUSION Quercetin protects against cardiac fibrosis by mediating the SIRT3 signaling pathway.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Cardiology, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Wen Jiang
- Department of Cardiology, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wu
- Department of Cardiology, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Neurology, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ze Li
- Department of Cardiology, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Sheng Wang
- Department of Cardiology, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Clinical Research & Innovation Unit, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Islam R, Hong Z. YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis. MECHANOBIOLOGY IN MEDICINE 2024; 2:100085. [PMID: 39281415 PMCID: PMC11391866 DOI: 10.1016/j.mbm.2024.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.
Collapse
Affiliation(s)
- Rakibul Islam
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Zhongkui Hong
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
11
|
Liu C, Zhang D, Long K, Qi W, Pang L, Li J, Cheng KKY, Cai Y. From exosomes to mitochondria and myocardial infarction: Molecular insight and therapeutic challenge. Pharmacol Res 2024; 209:107468. [PMID: 39426469 DOI: 10.1016/j.phrs.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Myocardial infarction (MI) remains a leading cause of mortality worldwide. Despite patients with MI benefit from timely reperfusion therapies, the rates of mortality and morbidity remain substantial, suggesting an enduring need for the development of new approaches. Molecular mechanisms underlying myocardial ischemic injury are associated with both cardiomyocytes and non-cardiomyocytes. Exosomes are nano-sized extracellular vesicles released by almost all eukaryotic cells. They facilitate the communication between various cells by transferring information via their cargo and altering different biological activities in recipient cells. Studies have created great prospects for therapeutic applications of exosomes in MI, as demonstrated through their beneficial effect on heart function and reducing ventricular remodeling in association with fibrosis, angiogenesis, apoptosis, and inflammation. Of note, myocardial ischemic injury is primarily due to restricted blood flow, reducing oxygen availability, and causing inefficient utilization of energy substrates. However, the impact of exosomes on cardiac energy metabolism has not been adequately investigated. Although exosomes have been engineered for targeted delivery to enhance clinical efficacy, challenges must be overcome to utilize them reliably in the clinic. In this review, we summarize the research progress of exosomes for MI with a focus on the known and unknown regarding the role of exosomes in energy metabolism in cardiomyocytes and non-cardiomyocytes; as well as potential research avenues of exosome-mitochondrial energy regulation as well as therapeutic challenges. We aim to help identify more efficient molecular targets that may promote the clinical application of exosomes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dengwen Zhang
- Department of Anesthesiology, Heyuan People's Hospital, Guangdong, China; Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wensheng Qi
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Jia Li
- Department of Neurology, Wuhan No.1 Hospital, Hubei, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
12
|
Liao P, Han L, Tao R, Li D, Zhang P, Xiao H. Specific peptides targeting the myocardiocyte are prognostic markers for heart attack: Function of α-SMA protein. Int J Biol Macromol 2024; 280:135793. [PMID: 39304042 DOI: 10.1016/j.ijbiomac.2024.135793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease that often results in a significant decline in heart function and associated complications. α-SMA (α-smooth muscle cell actin) is an important biomarker in the process of cardiac remodeling and repair, and its expression level is closely related to myocardial remodeling and prognosis. Therefore, the purpose of this study was to investigate the potential of nanoparticles containing cardiomyocyte targeting peptides in predicting prognosis and α-SMA protein expression after myocardial infarction, with a view to providing new therapeutic strategies and clinical guidelines. In this study, a novel targeting nanoparticle was constructed, using cardiomyocyte specific peptides as targeting ligands, and characterized by loading different drugs. Subsequently, a mouse model of myocardial infarction was used to systematically evaluate the effect of nanoparticles on α-SMA protein expression and prognosis prediction ability after MI. The expression level of α-SMA was analyzed by Western blot and immunohistochemistry, and the prognosis was evaluated by cardiac function assessment. The study found that nanoparticles containing cardiomyocyte targeting peptides significantly increased α-SMA expression levels and improved heart function in animal models of myocardial infarction. Compared with the control group, the application of targeted nanoparticles was closely related to the level of myocardial cell repair and fibrosis, and could effectively predict the prognosis after myocardial infarction. Therefore, nanoparticles containing cardiomyocyte targeting peptides can not only effectively improve the expression of α-SMA, but also serve as an important prognostic tool after myocardial infarction.
Collapse
Affiliation(s)
- Pengfei Liao
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Lu Han
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Ran Tao
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Dandan Li
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China
| | - Peng Zhang
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China.
| | - Hongbing Xiao
- Department of Cardiology, Minhang Hospital, Fudan University, No.179 Xinsong Road, Minhang District, Shanghai 201199, China.
| |
Collapse
|
13
|
Ceci M, Bonvissuto D, Papetti F, Silvestri F, Sette C, Catalani E, Cervia D, Gornati R, Romano N. RACK1 contributes to the upregulation of embryonic genes in a model of cardiac hypertrophy. Sci Rep 2024; 14:25698. [PMID: 39465301 PMCID: PMC11514175 DOI: 10.1038/s41598-024-76138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Receptors for activated C kinases (RACKs) have been shown to coordinate PKC-mediated hypertrophic signalling in mice. However, little information is available on its participation in embryonic gene expression. This study investigated the involvement of RACK1 in the expression of embryonic genes in a zebrafish (ZF) ex vivo heart culture model by using phenylephrine (PE) or a growth factors cocktail (GFs) as a prohypertrophic/regeneration stimulus. Blebbistatin (BL) inhibition has also been studied for its ability to block the signal transduction actions of some PEs. qRT‒PCR and immunoblot analyses confirmed the upregulation of RACK1 in the PE- and GFs-treated groups. BL administration counteracted PE-induced hypertrophy and downregulated RACK1 expression. Immunohistochemical analyses of the heart revealed the colocalization of RACK1 and embryonic genes, namely, Gata4, Wt1, and Nfat2, under stimulation, whereas these genes were expressed at lower levels in the BL treatment group. Culturing ZF heart cells activated via GFs treatment increased the expression of RACK1. The overexpression of RACK1 induced by the transfection of recombinant RACK1 cDNA in ZF heart cells increased the expression of embryonic genes, especially after one week of GFs treatment. In summary, these results support the involvement of RACK1 in the induction of embryonic genes during cardiac hypertrophy/GFs stimulation in a fish heart model, which can be used as an alternative study model for mammals.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Sette
- DNHA, Catholic University of Sacred Heart, Rome, Italy
- IRCCS, Policlinico A. Gemelli Foundation, Rome, Italy
| | | | | | | | | |
Collapse
|
14
|
Li S, Yang M, Zhao Y, Zhai Y, Sun C, Guo Y, Zhang X, Zhang L, Tian T, Yang Y, Pei Y, Li J, Li C, Xuan L, Li X, Zhao D, Yang H, Zhang Y, Yang B, Zhang Z, Pan Z, Lu Y. Deletion of ASPP1 in myofibroblasts alleviates myocardial fibrosis by reducing p53 degradation. Nat Commun 2024; 15:8425. [PMID: 39341821 PMCID: PMC11439048 DOI: 10.1038/s41467-024-52739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
In the healing process of myocardial infarction, cardiac fibroblasts are activated to produce collagen, leading to adverse remodeling and heart failure. Our previous study showed that ASPP1 promotes cardiomyocyte apoptosis by enhancing the nuclear trafficking of p53. We thus explored the influence of ASPP1 on myocardial fibrosis and the underlying mechanisms. Here, we observed that ASPP1 was increased after 4 weeks of MI. Both global and myofibroblast knockout of ASPP1 in mice mitigated cardiac dysfunction and fibrosis after MI. Strikingly, ASPP1 produced the opposite influence on p53 level and cell fate in cardiac fibroblasts and cardiomyocytes. Knockdown of ASPP1 increased p53 levels and inhibited the activity of cardiac fibroblasts. ASPP1 accumulated in the cytoplasm of fibroblasts while the level of p53 was reduced following TGF-β1 stimulation; however, inhibition of ASPP1 increased the p53 level and promoted p53 nuclear translocation. Mechanistically, ASPP1 is directly bound to deubiquitinase OTUB1, thereby promoting the ubiquitination and degradation of p53, attenuating myofibroblast activity and cardiac fibrosis, and improving heart function after MI.
Collapse
Affiliation(s)
- Shangxuan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Meng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yinfeng Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yinghe Zhai
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Chongsong Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yang Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Xiaofang Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Lingmin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Tao Tian
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Ying Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Yao Pei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Jialiang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Chenhong Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Lina Xuan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Xingda Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China
| | - Deli Zhao
- Department of Medical Imaging, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, P.R. China
| | - Yang Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, P. R. China.
| | - Zhiren Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| | - Zhenwei Pan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
- Key Laboratory of Cell Transplantation, The First Affiliated Hospital, Harbin Medical University, Harbin, P. R. China.
- School of Basic Medical Sciences, Harbin Medical University, Harbin, P.R. China.
| | - Yanjie Lu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P.R. China.
| |
Collapse
|
15
|
Romero G, Martin B, Gabris B, Salama G. Relaxin suppresses atrial fibrillation, reverses fibrosis and reduces inflammation in aged hearts. Biochem Pharmacol 2024; 227:116407. [PMID: 38969298 DOI: 10.1016/j.bcp.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Healthy aging results in cardiac structural and electrical remodeling that increase susceptibility to cardiovascular diseases. Relaxin has shown broad cardioprotective effects including anti-fibrotic, anti-arrhythmic and anti-inflammatory outcomes in multiple models. This paper focuses on the cardioprotective effects of Relaxin in a rat model of aging. Sustained atrial or ventricular fibrillation are readily induced in the hearts of aged but not young control animals. Treatment with Relaxin suppressed this arrhythmogenic response by increasing conduction velocity, decreasing fibrosis and promoting substantial cardiac remodeling. Relaxin treatment resulted in a significant increase in the levels of: Nav1.5, Cx43, βcatenin and Wnt1 in rat hearts. In isolated cardiomyocytes, Relaxin increased Nav1.5 expression. These effects were mimicked by CHIR 99021, a pharmacological activator of canonical Wnt signaling, but blocked by the canonical Wnt inhibitor Dickkopf1. Relaxin prevented TGF-β-dependent differentiation of cardiac fibroblasts into myofibroblasts while increasing the expression of Wnt1; the effects of Relaxin on cardiac fibroblast differentiation were blocked by Dickkopf1. RNASeq studies demonstrated reduced expression of pro-inflammatory cytokines and an increase in the expression of α- and β-globin in Relaxin-treated aged males. Relaxin reduces arrhythmogenicity in the hearts of aged rats by reduction of fibrosis and increased conduction velocity. These changes are accompanied by substantial remodeling of the cardiac tissue and appear to be mediated by increased canonical Wnt signaling. Relaxin also exerts significant anti-inflammatory and anti-oxidant effects in the hearts of aged rodents. The mechanisms by which Relaxin increases the expression of Wnt ligands, promotes Wnt signaling and reprograms gene expression remain to be determined.
Collapse
Affiliation(s)
- Guillermo Romero
- Departments of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian Martin
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Beth Gabris
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guy Salama
- Departments of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Huang MJ, Xu J, Qiao H, Zhao W, Huang L. Design, Synthesis, and Evaluation of the Selective and Orally Active LSD1 Inhibitor with the Potential of Treating Heart Failure. J Med Chem 2024. [PMID: 39036880 DOI: 10.1021/acs.jmedchem.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
LSD1 has become an appealing target for the development of new pharmacologic agents to treat cardiovascular diseases, including heart failure. Herein, we reported the design, synthesis, and structure-activity relationship of a series of TCP-based derivatives targeting LSD1. Docking studies were employed to successfully elucidate the SAR. Particularly, compound 7d, characterized by low toxicity, demonstrated a high affinity for LSD1 at molecular and cellular levels. It also displayed favorable pharmacokinetic properties for oral dosing (e.g., F = 77.61%), effectively alleviating Ang II-induced NRCFs activation in vitro and reducing pathological myocardial remodeling in TAC-induced cardiac remodeling and heart failure in vivo. Additionally, mechanism studies revealed that suppression of myocardial dysfunction by compound 7d is related to LSD1 inhibition-induced TGFβ signaling pathway repressing. In summary, the current report presents compound 7d as a potent LSD1 inhibitor with the potential for further development as a therapeutic agent for pressure overload-related heart failure.
Collapse
Affiliation(s)
- Ming-Jie Huang
- College of Chemistry, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Jiale Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Lihua Huang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials; College of Chemistry, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
17
|
Tarchi SM, Salvatore M, Lichtenstein P, Sekar T, Capaccione K, Luk L, Shaish H, Makkar J, Desperito E, Leb J, Navot B, Goldstein J, Laifer S, Beylergil V, Ma H, Jambawalikar S, Aberle D, D'Souza B, Bentley-Hibbert S, Marin MP. Radiology of fibrosis. Part I: Thoracic organs. J Transl Med 2024; 22:609. [PMID: 38956586 PMCID: PMC11218337 DOI: 10.1186/s12967-024-05244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/27/2024] [Indexed: 07/04/2024] Open
Abstract
Sustained injury from factors such as hypoxia, infection, or physical damage may provoke improper tissue repair and the anomalous deposition of connective tissue that causes fibrosis. This phenomenon may take place in any organ, ultimately leading to their dysfunction and eventual failure. Tissue fibrosis has also been found to be central in both the process of carcinogenesis and cancer progression. Thus, its prompt diagnosis and regular monitoring is necessary for implementing effective disease-modifying interventions aiming to reduce mortality and improve overall quality of life. While significant research has been conducted on these subjects, a comprehensive understanding of how their relationship manifests through modern imaging techniques remains to be established. This work intends to provide a comprehensive overview of imaging technologies relevant to the detection of fibrosis affecting thoracic organs as well as to explore potential future advancements in this field.
Collapse
Affiliation(s)
- Sofia Maria Tarchi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA.
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Philip Lichtenstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Thillai Sekar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Kathleen Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hiram Shaish
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jasnit Makkar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Benjamin Navot
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Jonathan Goldstein
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sherelle Laifer
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Volkan Beylergil
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Dwight Aberle
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Stuart Bentley-Hibbert
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
18
|
Guo L, Li K, Ma Y, Niu H, Li J, Shao X, Li N, Sun Y, Wang H. MicroRNA-322-5p targeting Smurf2 regulates the TGF-β/Smad pathway to protect cardiac function and inhibit myocardial infarction. Hum Cell 2024; 37:972-985. [PMID: 38656742 DOI: 10.1007/s13577-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Acute coronary artery blockage leads to acute myocardial infarction (AMI). Cardiomyocytes are terminally differentiated cells that rarely divide. Treatments preventing cardiomyocyte loss during AMI have a high therapeutic benefit. Accumulating evidence shows that microRNAs (miRNAs) may play an essential role in cardiovascular diseases. This study aims to explore the biological function and underlying regulatory molecular mechanism of miR-322-5p on myocardial infarction (MI). This study's miR-322-5p is downregulated in MI-injured hearts according to integrative bioinformatics and experimental analyses. In the MI rat model, miR-322-5p overexpression partially eliminated MI-induced changes in myocardial enzymes and oxidative stress markers, improved MI-caused impairment on cardiac functions, inhibited myocardial apoptosis, attenuated MI-caused alterations in TGF-β, p-Smad2, p-Smad4, and Smad7 protein levels. In oxygen-glucose deprivation (OGD)-injured H9c2 cells, miR-322-5p overexpression partially rescued OGD-inhibited cell viability and attenuated OGD-caused alterations in the TGF-β/Smad signaling. miR-322-5p directly targeted Smurf2 and inhibited Smurf2 expression. In OGD-injured H9c2 cells, Smurf2 knockdown exerted similar effects to miR-322-5p overexpression upon cell viability and TGF-β/Smad signaling; moreover, Smurf2 knockdown partially attenuated miR-322-5p inhibition effects on OGD-injured H9c2 cells. In conclusion, miR-322-5p is downregulated in MI rat heart and OGD-stimulated rat cardiomyocytes; the miR-322-5p/Smurf2 axis improves OGD-inhibited cardiomyocyte cell viability and MI-induced cardiac injuries and dysfunction through the TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Liping Guo
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Ke Li
- Department of Cardiology, The People's Hospital of Suzhou, Suzhou New District, Suzhou, 215129, Jiangsu, China
| | - Yan Ma
- Department of General Practice, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| | - Huaiming Niu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Jun Li
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Xin Shao
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Na Li
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Yuehui Sun
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Haixiong Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
19
|
Zhang M, Zhang J, Hu H, Zhou Y, Lin Z, Jing H, Sun B. Multiomic analysis of monocyte-derived alveolar macrophages in idiopathic pulmonary fibrosis. J Transl Med 2024; 22:598. [PMID: 38937806 PMCID: PMC11209973 DOI: 10.1186/s12967-024-05398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Monocyte-derived alveolar macrophages (Mo_AMs) are increasingly recognised as potential pathogenic factors for idiopathic pulmonary fibrosis (IPF). While scRNAseq analysis has proven valuable in the transcriptome profiling of Mo_AMs, the integration analysis of multi-omics may provide additional dimensions of understanding of these cellular populations. METHODS We performed multi-omics analysis on 116 scRNAseq, 119 bulkseq and five scATACseq lung tissue samples from IPF. We built a large-scale IPF scRNAseq atlas and conducted the Monocle 2/3 as well as the Cellchat to explore the developmental path and intercellular communication on Mo_AMs. We also reported the difference in metabolisms, tissue repair and phagocytosis between Mo_AMs and tissue-resident alveolar macrophages (TRMs). To determine whether Mo_AMs affected pulmonary function, we projected clinical phenotypes (FVC%pred) from the bulkseq dataset onto the scRNAseq atlas. Finally, we used scATATCseq to uncover the upstream regulatory mechanisms and determine key drivers in Mo_AMs. RESULTS We identified three Mo_AMs clusters and the trajectory analysis further validated the origin of these clusters. Moreover, via the Cellchat analysis, the CXCL12/CXCR4 axis was found to be involved in the molecular basis of reciprocal interactions between Mo_AMs and fibroblasts through the activation of the ERK pathway in Mo_AMs. SPP1_RecMacs (RecMacs, recruited macrophages) were higher in the low-FVC group than in the high-FVC group. Specifically, compared with TRMs, the functions of lipid and energetic metabolism as well as tissue repair were higher in Mo_AMs than TRMs. But, TRMs may have higher level of phagocytosis than TRMs. SPIB (PU.1), JUNB, JUND, BACH2, FOSL2, and SMARCC1 showed stronger association with open chromatin of Mo_AMs than TRMs. Significant upregulated expression and deep chromatin accessibility of APOE were observed in both SPP1_RecMacs and TRMs. CONCLUSION Through trajectory analysis, it was confirmed that SPP1_RecMacs derived from Monocytes. Besides, Mo_AMs may influence FVC% pred and aggravate pulmonary fibrosis through the communication with fibroblasts. Furthermore, distinctive transcriptional regulators between Mo_AMs and TRMs implied that they may depend on different upstream regulatory mechanisms. Overall, this work provides a global overview of how Mo_AMs govern IPF and also helps determine better approaches and intervention therapies.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Internal Medicine II, University Hospital Bonn, Section of Pneumology, Bonn, Germany
| | - Jinghao Zhang
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Haisheng Hu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuan Zhou
- Department of Medicine II, Heart Center Bonn, University Hospital Bonn, Bonn, Germany
| | - ZhiWei Lin
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Jing
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
20
|
Chen S, Wang K, Fan Z, Zhou T, Li R, Zhang B, Chen J, Chi J, Wei K, Liu J, Liu Z, Ma J, Dong N, Liu J. Modulation of anti-cardiac fibrosis immune responses by changing M2 macrophages into M1 macrophages. Mol Med 2024; 30:88. [PMID: 38879491 PMCID: PMC11179216 DOI: 10.1186/s10020-024-00858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Macrophages play a crucial role in the development of cardiac fibrosis (CF). Although our previous studies have shown that glycogen metabolism plays an important role in macrophage inflammatory phenotype, the role and mechanism of modifying macrophage phenotype by regulating glycogen metabolism and thereby improving CF have not been reported. METHODS Here, we took glycogen synthetase kinase 3β (GSK3β) as the target and used its inhibitor NaW to enhance macrophage glycogen metabolism, transform M2 phenotype into anti-fibrotic M1 phenotype, inhibit fibroblast activation into myofibroblasts, and ultimately achieve the purpose of CF treatment. RESULTS NaW increases the pH of macrophage lysosome through transmembrane protein 175 (TMEM175) and caused the release of Ca2+ through the lysosomal Ca2+ channel mucolipin-2 (Mcoln2). At the same time, the released Ca2+ activates TFEB, which promotes glucose uptake by M2 and further enhances glycogen metabolism. NaW transforms the M2 phenotype into the anti-fibrotic M1 phenotype, inhibits fibroblasts from activating myofibroblasts, and ultimately achieves the purpose of treating CF. CONCLUSION Our data indicate the possibility of modifying macrophage phenotype by regulating macrophage glycogen metabolism, suggesting a potential macrophage-based immunotherapy against CF.
Collapse
Affiliation(s)
- Shiqi Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingxia Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiangyang Chi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keke Wei
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jincheng Liu
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Junwei Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
21
|
Song MH, Yoo J, Kwon DA, Chepurko E, Cho S, Fargnoli A, Hajjar RJ, Park WJ, Zangi L, Jeong D. Modified mRNA-Mediated CCN5 Gene Transfer Ameliorates Cardiac Dysfunction and Fibrosis without Adverse Structural Remodeling. Int J Mol Sci 2024; 25:6262. [PMID: 38892449 PMCID: PMC11172546 DOI: 10.3390/ijms25116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Modified mRNAs (modRNAs) are an emerging delivery method for gene therapy. The success of modRNA-based COVID-19 vaccines has demonstrated that modRNA is a safe and effective therapeutic tool. Moreover, modRNA has the potential to treat various human diseases, including cardiac dysfunction. Acute myocardial infarction (MI) is a major cardiac disorder that currently lacks curative treatment options, and MI is commonly accompanied by fibrosis and impaired cardiac function. Our group previously demonstrated that the matricellular protein CCN5 inhibits cardiac fibrosis (CF) and mitigates cardiac dysfunction. However, it remains unclear whether early intervention of CF under stress conditions is beneficial or more detrimental due to potential adverse effects such as left ventricular (LV) rupture. We hypothesized that CCN5 would alleviate the adverse effects of myocardial infarction (MI) through its anti-fibrotic properties under stress conditions. To induce the rapid expression of CCN5, ModRNA-CCN5 was synthesized and administrated directly into the myocardium in a mouse MI model. To evaluate CCN5 activity, we established two independent experimental schemes: (1) preventive intervention and (2) therapeutic intervention. Functional analyses, including echocardiography and magnetic resonance imaging (MRI), along with molecular assays, demonstrated that modRNA-mediated CCN5 gene transfer significantly attenuated cardiac fibrosis and improved cardiac function in both preventive and therapeutic models, without causing left ventricular rupture or any adverse cardiac remodeling. In conclusion, early intervention in CF by ModRNA-CCN5 gene transfer is an efficient and safe therapeutic modality for treating MI-induced heart failure.
Collapse
Affiliation(s)
- Min Ho Song
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (M.H.S.)
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
| | - Do-A Kwon
- Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan-si 15588, Republic of Korea; (D.-A.K.); (S.C.)
| | - Elena Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
| | - Sunghye Cho
- Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan-si 15588, Republic of Korea; (D.-A.K.); (S.C.)
| | - Anthony Fargnoli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
| | - Roger J. Hajjar
- Mass General Brigham Gene and Cell Therapy Institute, Boston, MA 02139, USA;
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (M.H.S.)
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
| | - Dongtak Jeong
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
- Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan-si 15588, Republic of Korea; (D.-A.K.); (S.C.)
| |
Collapse
|
22
|
ZHANG Z, JIA Z, SONG Y, ZHANG X, WANG C, WANG S, ZHANG P, REN Q, WANG X, MAO J. Optimized new Shengmai powder inhibits myocardial fibrosis in heart failure by regulating the rat sarcoma/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase kinase/extracellular regulated protein kinases signaling pathway. J TRADIT CHIN MED 2024; 44:448-457. [PMID: 38767628 PMCID: PMC11077160 DOI: 10.19852/j.cnki.jtcm.20240402.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/25/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Exploring the effect of Optimized New Shengmai powder (, ONSMP) on myocardial fibrosis in heart failure (HF) based on rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. METHODS Randomized 70 Sprague-Dawley rats into sham (n = 10) and operation (n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low (L), medium (M), and high (H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen (COL) I and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the mRNA levels of COL I, COL Ⅲ, α-smooth muscle actin (α-SMA), and c-Fos proto-oncogene (c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor (p-ELK1), p-c-Fos, α-SMA, COL I, and COL Ⅲ by Western blot. RESULTS ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL I/Ⅲ content, down-regulate the mRNA of COL I/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/ 2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Zeyu ZHANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Zhuangzhuang JIA
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuwei SONG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xuan ZHANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Ci WANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Shuai WANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Peipei ZHANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Qiuan REN
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang WANG
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jingyuan MAO
- Department of Cardiovascular, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
23
|
Braidotti N, Demontis G, Conti M, Andolfi L, Ciubotaru CD, Sbaizero O, Cojoc D. The local mechanosensitive response of primary cardiac fibroblasts is influenced by the microenvironment mechanics. Sci Rep 2024; 14:10365. [PMID: 38710778 PMCID: PMC11074268 DOI: 10.1038/s41598-024-60685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Cardiac fibroblasts (CFs) are essential for preserving myocardial integrity and function. They can detect variations in cardiac tissue stiffness using various cellular mechanosensors, including the Ca2+ permeable mechanosensitive channel Piezo1. Nevertheless, how CFs adapt the mechanosensitive response to stiffness changes remains unclear. In this work we adopted a multimodal approach, combining the local mechanical stimulation (from 10 pN to 350 nN) with variations of culture substrate stiffness. We found that primary rat CFs cultured on stiff (GPa) substrates showed a broad Piezo1 distribution in the cell with particular accumulation at the mitochondria membrane. CFs displayed a force-dependent behavior in both calcium uptake and channel activation probability, showing a threshold at 300 nN, which involves both cytosolic and mitochondrial Ca2+ mobilization. This trend decreases as the myofibroblast phenotype within the cell population increases, following a possible Piezo1 accumulation at focal adhesion sites. In contrast, the inhibition of fibroblasts to myofibroblasts transition with soft substrates (kPa) considerably reduces both mechanically- and chemically-induced Piezo1 activation and expression. Our findings shed light on how Piezo1 function and expression are regulated by the substrate stiffness and highlight its involvement in the environment-mediated modulation of CFs mechanosensitivity.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Giorgia Demontis
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Martina Conti
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Laura Andolfi
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Catalin Dacian Ciubotaru
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127, Trieste, Italy
| | - Dan Cojoc
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5, Area Science Park Basovizza, 34149, Trieste, Italy.
| |
Collapse
|
24
|
Wang W, Li K, Bai D, Wu J, Xiao W. Pterostilbene: a potential therapeutic agent for fibrotic diseases. Inflammopharmacology 2024; 32:975-989. [PMID: 38429613 DOI: 10.1007/s10787-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024]
Abstract
Fibrosis is a prevailing pathology in chronic diseases and accounts for 45% of deaths in developed countries. This condition is primarily identified by the transformation of fibroblasts into myofibroblasts and the overproduction of extracellular matrix (ECM) by myofibroblasts. Pterostilbene (PTS) is a natural analogue of resveratrol and is most commonly found in blueberries. Research has shown that PTS exerts a wide range of pharmacological effects, such as antioxidant, anti-inflammatory, and anticancer effects. As a result, PTS has the potential to prevent and cure numerous diseases. Emerging evidence has indicated that PTS can alleviate myocardial fibrosis, renal fibrosis, pulmonary fibrosis, hepatic fibrosis, and colon fibrosis via the inhibition of inflammation, oxidative stress, and fibrogenesis effects in vivo and in vitro, and the potential mechanisms are linked to various pathways, including transforming growth factor-β1 (TGF-β1)/small mother against decapentaplegic proteins (Smads) signalling, the reactive oxygen species (ROS)-driven Pitx2c/mir-15b pathway, nuclear factor kappa B (NF-κB) signalling, Kelch-like epichlorohydrin-associated protein-1 (Keap-1)/NF-E2-related factor-2 (Nrf2) cascade, the NLR family pyridine structure domain 3 (NLRP3) pathway, the Janus kinase-2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, and the Src/STAT3 pathway. In this review, we comprehensively summarize the antifibrotic effects of PTS both in vivo and in vitro and the pharmacological mechanisms, pharmacokinetics, and toxicology of PTS and provide insights into and strategies for exploring promising agents for the treatment of fibrosis.
Collapse
Affiliation(s)
- Wenhong Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Ke Li
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Dandan Bai
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Jiabin Wu
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China.
| |
Collapse
|
25
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
26
|
Chinawa JM, Chinawa AT, Chukwu BF, Onyia JT. Assessment of descending aortic blood flow velocities with continuous wave Doppler echocardiography among healthy Children in South East Nigeria. Malawi Med J 2024; 36:1-6. [PMID: 39086365 PMCID: PMC11287811 DOI: 10.4314/mmj.v36i.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Background The descending aorta velocity is important predictor of aortic disease in children and can be very helpful in some clinical and surgical decision making. Aim The purpose of this study is to assess the normative values of descending aorta velocity among children from South-East Nigeria. It also aimed to assess the correlation between age, body surface area and mean velocity across the descending aorta. Methods This is a cross-sectional study where the descending aorta velocity of one hundred and eleven children were enrolled consecutively using digitized two-dimensional and Doppler echocardiography. Results A total of 111 children had echocardiography to study their cardiac structures and compute their mean scores of their descending aorta velocity. The mean velocity across the descending aorta was 1.3±0.2m/s with maximum and minimum velocities of 2.06 and 0.84cm respectively. The mean descending aorta velocity in males (1.37±0.24 m/s) was significantly higher than that in females (1.24±0.18); (Student T test 3.09, p = 0.03). There was no correlation between age and mean velocity across the descending aorta (Pearson correlation coefficient; -0.03, p = 0.7) nor between body surface area and descending aorta velocity (correlation coefficient 0.01, p= 0.8). Conclusions The presented normalized values of the descending aorta velocity using a digitized two-dimensional and Doppler echocardiography among healthy children will serve as a reference values for further studies and can be applied for clinical and surgical use in children with various cardiac anomalies.
Collapse
Affiliation(s)
- Josephat M Chinawa
- Department of Paediatrics, College of Medicine, University of Nigeria Ituku/Ozalla and University of Nigeria Teaching Hospital Ituku/Ozalla, Enugu, Enugu State, Nigeria
| | - Awoere T Chinawa
- Department of Community Medicine, ESUCOM, Parklane Enugu, Enugu State, Nigeria
| | | | - Jude T Onyia
- Department of Community Medicine, ESUCOM, Parklane Enugu, Enugu State, Nigeria
| |
Collapse
|
27
|
Dufeys C, Bodart J, Bertrand L, Beauloye C, Horman S. Fibroblasts and platelets: a face-to-face dialogue at the heart of cardiac fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H655-H669. [PMID: 38241009 DOI: 10.1152/ajpheart.00559.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
Myocardial fibrosis is a feature found in most cardiac diseases and a key element contributing to heart failure and its progression. It has therefore become a subject of particular interest in cardiac research. Mechanisms leading to pathological cardiac remodeling and heart failure are diverse, including effects on cardiac fibroblasts, the main players in cardiac extracellular matrix synthesis, but also on cardiomyocytes, immune cells, endothelial cells, and more recently, platelets. Although transforming growth factor-β (TGF-β) is a primary regulator of fibrosis development, the cellular and molecular mechanisms that trigger its activation after cardiac injury remain poorly understood. Different types of anti-TGF-β drugs have been tested for the treatment of cardiac fibrosis and have been associated with side effects. Therefore, a better understanding of these mechanisms is of great clinical relevance and could allow us to identify new therapeutic targets. Interestingly, it has been shown that platelets infiltrate the myocardium at an early stage after cardiac injury, producing large amounts of cytokines and growth factors. These molecules can directly or indirectly regulate cells involved in the fibrotic response, including cardiac fibroblasts and immune cells. In particular, platelets are known to be a major source of TGF-β1. In this review, we have provided an overview of the classical cellular effectors involved in the pathogenesis of cardiac fibrosis, focusing on the emergent role of platelets, while discussing opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Cécile Dufeys
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Julie Bodart
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Yaghoobi A, Rezaee M, Behnoush AH, Khalaji A, Mafi A, Houjaghan AK, Masoudkabir F, Pahlavan S. Role of long noncoding RNAs in pathological cardiac remodeling after myocardial infarction: An emerging insight into molecular mechanisms and therapeutic potential. Biomed Pharmacother 2024; 172:116248. [PMID: 38325262 DOI: 10.1016/j.biopha.2024.116248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Myocardial infarction (MI) is the leading cause of heart failure (HF), accounting for high mortality and morbidity worldwide. As a consequence of ischemia/reperfusion injury during MI, multiple cellular processes such as oxidative stress-induced damage, cardiomyocyte death, and inflammatory responses occur. In the next stage, the proliferation and activation of cardiac fibroblasts results in myocardial fibrosis and HF progression. Therefore, developing a novel therapeutic strategy is urgently warranted to restrict the progression of pathological cardiac remodeling. Recently, targeting long non-coding RNAs (lncRNAs) provided a novel insight into treating several disorders. In this regard, numerous investigations have indicated that several lncRNAs could participate in the pathogenesis of MI-induced cardiac remodeling, suggesting their potential therapeutic applications. In this review, we summarized lncRNAs displayed in the pathophysiology of cardiac remodeling after MI, emphasizing molecular mechanisms. Also, we highlighted the possible translational role of lncRNAs as therapeutic targets for this condition and discussed the potential role of exosomes in delivering the lncRNAs involved in post-MI cardiac remodeling.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farzad Masoudkabir
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
29
|
Boo YC. Therapeutic Potential and Mechanisms of Rosmarinic Acid and the Extracts of Lamiaceae Plants for the Treatment of Fibrosis of Various Organs. Antioxidants (Basel) 2024; 13:146. [PMID: 38397744 PMCID: PMC10886237 DOI: 10.3390/antiox13020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Fibrosis, which causes structural hardening and functional degeneration in various organs, is characterized by the excessive production and accumulation of connective tissue containing collagen, alpha-smooth muscle actin (α-SMA), etc. In traditional medicine, extracts of medicinal plants or herbal prescriptions have been used to treat various fibrotic diseases. The purpose of this narrative review is to discuss the antifibrotic effects of rosmarinic acid (RA) and plant extracts that contain RA, as observed in various experimental models. RA, as well as the extracts of Glechoma hederacea, Melissa officinalis, Elsholtzia ciliata, Lycopus lucidus, Ocimum basilicum, Prunella vulgaris, Salvia rosmarinus (Rosmarinus officinalis), Salvia miltiorrhiza, and Perilla frutescens, have been shown to attenuate fibrosis of the liver, kidneys, heart, lungs, and abdomen in experimental animal models. Their antifibrotic effects were associated with the attenuation of oxidative stress, inflammation, cell activation, epithelial-mesenchymal transition, and fibrogenic gene expression. RA treatment activated peroxisomal proliferator-activated receptor gamma (PPARγ), 5' AMP-activated protein kinase (AMPK), and nuclear factor erythroid 2-related factor 2 (NRF2) while suppressing the transforming growth factor beta (TGF-β) and Wnt signaling pathways. Interestingly, most plants that are reported to contain RA and exhibit antifibrotic activity belong to the family Lamiaceae. This suggests that RA is an active ingredient for the antifibrotic effect of Lamiaceae plants and that these plants are a useful source of RA. In conclusion, accumulating scientific evidence supports the effectiveness of RA and Lamiaceae plant extracts in alleviating fibrosis and maintaining the structural architecture and normal functions of various organs under pathological conditions.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
30
|
Meng Y, Xi T, Fan J, Yang Q, Ouyang J, Yang J. The inhibition of FTO attenuates the antifibrotic effect of leonurine in rat cardiac fibroblasts. Biochem Biophys Res Commun 2024; 693:149375. [PMID: 38128243 DOI: 10.1016/j.bbrc.2023.149375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Myocardial fibrosis (MF) is a common pathological condition in cardiovascular diseases that often causes severe cardiac dysfunction. MF is characterized by changes in cardiomyocytes, cardiac fibroblasts (CFs), levels of collagen (Col) -1, -3, and overdeposition of the extracellular matrix. Our previous research showed that leonurine (LE) effectively inhibits collagen synthesis and differentiation of CFs, but the mechanism is not fully elucidated. Recent evidence indicates that fat mass and obesity-associated proteins (FTO) regulates the occurrence and development of MF. This study aimed to explore the role of FTO in the antifibrotic effects of LE. METHODS Neonatal rat CFs were isolated, and induced using angiotensin II (Ang II) to establish a cell model of MF. Cell viability, wound healing and transwell assays were used to detect cell activity and migration ability. The protein and mRNA levels of MF-related factors were measured following stimulation with Ang II and LE under normal conditions or after FTO knockdown. The RNA methylation level was measured by dot blot assay. RESULTS The results showed that LE (20, 40 μM) was not toxic to normal CFs. LE reduced the proliferation, migration and collagen synthesis of Ang II-induced CFs. Further investigation showed that FTO was downregulated by Ang II stimulation, whereas LE reversed this effect. FTO knockdown facilitated the migration of CFs, upregulated the protein levels of Col-3, α-SMA and Col-1 in Ang II and LE-stimulated CFs, and enhanced the fluorescence intensity of α-SMA. Furthermore, LE reduced N6-methyladenosine (m6A) RNA methylation, which was partially blocked by FTO knockdown. FTO knockdown also reduced the expression levels of p53 protein in Ang II and LE-stimulated CFs. CONCLUSIONS Our findings suggest that the inhibition of FTO may attenuate the antifibrotic effect of LE in CFs, suggesting that FTO may serve as a key protein for anti-MF of LE.
Collapse
Affiliation(s)
- Yuwei Meng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Zhang P, Liu X, Yu X, Zhuo Y, Li D, Yang L, Lu Y. Protective Effects of Liriodendrin on Myocardial Infarction-Induced Fibrosis in Rats via the PI3K/Akt Autophagy Pathway: A Network Pharmacology Study. Comb Chem High Throughput Screen 2024; 27:1566-1575. [PMID: 37461344 DOI: 10.2174/1386207326666230717155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2024]
Abstract
BACKGROUND Liriodendrin (LIR) has been reported to improve cardiac function in rats following myocardial infarction. However, its role and mechanism in reparative myocardial fibrosis remain unclear. METHODS In this study, a rat model of myocardial fibrosis was established via left anterior descending artery ligation and randomly divided into three groups (n = 6 per group): sham-operated, myocardial infarction, and LIR intervention (100 mg/kg/day) groups. The pharmacological effects of LIR were assessed using echocardiography, hematoxylin, and eosin (H&E) staining, and Masson staining. Network pharmacology and bioinformatics were utilized to identify potential mechanisms of LIR, which were further validated via western blot analysis. RESULTS Our findings demonstrated that LIR improved cardiac function, histology scores, and col lagen volume fraction. Moreover, LIR downregulated the expression of Beclin-1, LC3-II/LC3-I while upregulating the expression of p62, indicating LIR-inhibited autophagy in the heart after myocardial infarction. Further analysis revealed that the PI3K/Akt signaling pathway was significantly enriched and validated by western blot. This analysis suggested that the ratios of p- PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR were significantly increased. CONCLUSION LIR may attenuate myocardial infarction-induced fibrosis in rats by inhibiting excessive myocardial autophagy, with the potential mechanism involving the activation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, 300100, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Xuanming Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Yu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Yanmin Lu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| |
Collapse
|
32
|
Du H, Huangfu W, Liu Z, Jia G, Zhao F, Cheng W. 5-Demethylnobiletin Ameliorates Isoproterenol-Induced Cardiac Fibrosis and Apoptosis by Repressing the Sirt1/FOXO3a/NF-κB and Wnt/β-Catenin Pathways. Biol Pharm Bull 2024; 47:1774-1785. [PMID: 39477471 DOI: 10.1248/bpb.b24-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Apoptosis and fibrosis are two main factors leading to heart failure. 5-Demethylnobiletin (5-OH-Nob) is a natural polymethoxyflavone derived from the peel of citrus fruits that has many biological effects, such as antioxidative stress and anti-inflammatory effects. Here, we aimed to probe the function and mechanism of 5-OH-Nob in myocardial damage. Primary rat cardiac fibroblasts were exposed to isoproterenol (ISO, 10 µM) to establish an in vitro model of cardiac damage, and ISO (30 mg/kg/d) was used to induce myocardial fibrosis in mice. 5-OH-Nob was used for treatment in vivo and ex vivo. Functional assays revealed that 5-OH-Nob alleviated the apoptosis and fibrosis of cardiac fibroblasts treated with ISO and increased cell viability (p < 0.05). In vivo, 5-OH-Nob treatment ameliorated cardiac injury in ISO-treated mice (p < 0.05). Mechanistically, 5-OH-Nob treatment enhanced Sirt1 expression and suppressed ISO-mediated activation of the FOXO3a/nuclear transcription factor-κB (NF-κB) and Wnt/β-catenin pathways. Furthermore, Sirt1 inhibition attenuated the protective effect of 5-OH-Nob on ISO-induced cardiac apoptosis and fibrosis. Overall, 5-demethylnobiletin mediates the Sirt1/FOXO3a/NF-κB and Wnt/β-catenin pathways to mitigate ISO-induced myocardial fibrosis and apoptosis.
Collapse
Affiliation(s)
- Haiyan Du
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Weizhong Huangfu
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Zhonghua Liu
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Gaopeng Jia
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Feng Zhao
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Wenjun Cheng
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| |
Collapse
|
33
|
Khalaji A, Mehrtabar S, Jabraeilipour A, Doustar N, Rahmani Youshanlouei H, Tahavvori A, Fattahi P, Alavi SMA, Taha SR, Fazlollahpour-Naghibi A, Shariat Zadeh M. Inhibitory effect of microRNA-21 on pathways and mechanisms involved in cardiac fibrosis development. Ther Adv Cardiovasc Dis 2024; 18:17539447241253134. [PMID: 38819836 PMCID: PMC11143841 DOI: 10.1177/17539447241253134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Cardiac fibrosis is a pivotal cardiovascular disease (CVD) process and represents a notable health concern worldwide. While the complex mechanisms underlying CVD have been widely investigated, recent research has highlighted microRNA-21's (miR-21) role in cardiac fibrosis pathogenesis. In this narrative review, we explore the molecular interactions, focusing on the role of miR-21 in contributing to cardiac fibrosis. Various signaling pathways, such as the RAAS, TGF-β, IL-6, IL-1, ERK, PI3K-Akt, and PTEN pathways, besides dysregulation in fibroblast activity, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs cause cardiac fibrosis. Besides, miR-21 in growth factor secretion, apoptosis, and endothelial-to-mesenchymal transition play crucial roles. miR-21 capacity regulatory function presents promising insights for cardiac fibrosis. Moreover, this review discusses numerous approaches to control miR-21 expression, including antisense oligonucleotides, anti-miR-21 compounds, and Notch signaling modulation, all novel methods of cardiac fibrosis inhibition. In summary, this narrative review aims to assess the molecular mechanisms of cardiac fibrosis and its essential miR-21 function.
Collapse
Affiliation(s)
- Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nadia Doustar
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Amir Tahavvori
- Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Payam Fattahi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Andarz Fazlollahpour-Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
34
|
Huang Y, Dai H. ATF3 affects myocardial fibrosis remodeling after myocardial infarction by regulating autophagy and its mechanism of action. Gene 2023; 885:147705. [PMID: 37572799 DOI: 10.1016/j.gene.2023.147705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND & OBJECTIVE Myocardial fibrosis remodeling is a key event in the development of heart anomalousness and dysfunction after myocardial infarction (MI). The purpose of this study was to explore the effect of activating transcription factor 3 (ATF3) on myocardial fibrosis remodeling after MI and its underlying mechanism, so as to provide a theoretical basis for the clinical development of new strategies for MI treatment. METHODS MI mouse formers were structured by hypodesmus of the left anterior descending (LAD) arteria coronaria of mice, and primary cardiac fibroblasts (CFs) were separated and cultivated to investigate the effect of ATF3 on myocardial fibrosis after MI and its mechanism. RESULTS Increased collagen content and autophagic flux were found in the left ventricle (LV) tissues of MI mice as shown by Sirius red staining and Western blotting (WB) analysis. Meanwhile, immunofluorescence staining and WB analysis showed that ATF3 was raised in response to MI damage. After remedy with angiotensin II (AngII), the activity and differentiation of CFs were significantly raised, the expression of collagens was increased, and the level of autophagy was notably increased. Furthermore, AngII stimulation remarkably raised the expression of ATF3. Interestingly, knockdown of ATF3 in AngII-CFs reversed the above changes. In addition, after intervention with 3-methyladenine (3-MA), an autophagy restrainer, the activity and differentiation of AngII-CFs, as well as the relative collagen levels and autophagic flux were reduced. However, up-regulation of ATF3 protein expression partially reversed the effect of 3-MA on AngII-CFs. CONCLUSION ATF3 can regulate the proliferation of CFs and collagen production by affecting autophagy, thus affecting myocardial fibrosis remodeling after MI.
Collapse
Affiliation(s)
- Yiwei Huang
- Department of Cardiovascular Medicine, The Dingli Clinical College of Wenzhou Medical University, Laboratory of Wenzhou Pan Vascular Disease Management Center, 252 Bailidong Road, Lucheng District, Wenzhou 325000, Zhejiang Province, China
| | - Haiyue Dai
- Department of Cardiovascular Medicine, The Dingli Clinical College of Wenzhou Medical University, Laboratory of Wenzhou Pan Vascular Disease Management Center, 252 Bailidong Road, Lucheng District, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
35
|
Zhang Y, Cheng X, Wang Y, Guo H, Song Y, Wang H, Ma D. Phlorizin ameliorates myocardial fibrosis by inhibiting pyroptosis through restraining HK1-mediated NLRP3 inflammasome activation. Heliyon 2023; 9:e21217. [PMID: 38027628 PMCID: PMC10658207 DOI: 10.1016/j.heliyon.2023.e21217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The specific role of phlorizin (PHL), which has antioxidant, anti-inflammatory, hypoglycemic, antiarrhythmic and antiaging effects, on myocardial fibrosis (MF) and the related pharmacological mechanisms remain unknown. The objective of this study was to determine the protective actions of PHL on isoprenaline (ISO)-induced MF and its molecular mechanisms in mice. PHL was administered at 100 and 200 mg/kg for 15 consecutive days with a subcutaneous injection of ISO (10 mg/kg). MF was induced by ISO and alleviated by treatment with PHL, as shown by reduced fibrin accumulation in the myocardial interstitium and decreased levels of myocardial enzymes, such as creatinine kinase-MB, lactate dehydrogenase, and aspartate transaminase. In addition, PHL significantly decreased the expression of the fibrosis-related factors alpha smooth muscle actin, collagen I, and collagen III induced by ISO. The generation of intracellular reactive oxygen species induced by ISO was attenuated after PHL treatment. The malondialdehyde level was reduced, whereas the levels of superoxide dismutase, catalase, and glutathione were elevated with PHL administration. Moreover, compared to ISO, the level of Bcl-2 was increased and the level of Bax protein was decreased in the PHL groups. PHL relieved elevated TNF-α, IL-1β, and IL-18 levels as well as cardiac mitochondrial damage resulting from ISO. Further studies showed that PHL downregulated the high expression of hexokinase 1 (HK1), NLRP3, ASC, Caspase-1, and GSDMD-N caused by ISO. In conclusion, our findings suggest that PHL protects against ISO-induced MF due to its antioxidant, anti-apoptotic, and anti-inflammatory activities and via inhibition of pyroptosis mediated by the HK1/NLRP3 signaling pathway in vivo.
Collapse
Affiliation(s)
- Yuling Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Xizhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yanan Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Haochuan Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yongxing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050091, Hebei, China
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, 050200, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050091, Hebei, China
| |
Collapse
|
36
|
Zhang Y, He Y, Liu S, Deng L, Zuo Y, Huang K, Liao B, Li G, Feng J. SGLT2 Inhibitors in Aging-Related Cardiovascular Disease: A Review of Potential Mechanisms. Am J Cardiovasc Drugs 2023; 23:641-662. [PMID: 37620652 DOI: 10.1007/s40256-023-00602-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Population aging combined with higher susceptibility to cardiovascular diseases in older adults is increasing the incidence of conditions such as atherosclerosis, myocardial infarction, heart failure, myocardial hypertrophy, myocardial fibrosis, arrhythmia, and hypertension. sodium-glucose cotransporter 2 inhibitors (SGLT2i) were originally developed as a novel oral drug for patients with type 2 diabetes mellitus. Unexpectedly, recent studies have shown that, beyond their effect on hyperglycemia, SGLT2i also have a variety of beneficial effects on cardiovascular disease. Experimental models of cardiovascular disease have shown that SGLT2i ameliorate the process of aging-related cardiovascular disease by inhibiting inflammation, reducing oxidative stress, and reversing endothelial dysfunction. In this review, we discuss the role of SGLT2i in aging-related cardiovascular disease and propose the use of SGLT2i to prevent and treat these conditions in older adults.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiac Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
37
|
Cui Y, Shi B, Zhou Z, Chen B, Zhang X, Li C, Luo K, Zhu Z, Zheng J, He X. LncRNA CFRL aggravates cardiac fibrosis by modulating both miR-3113-5p/CTGF and miR-3473d/FN1 axis. iScience 2023; 26:108039. [PMID: 37954142 PMCID: PMC10638480 DOI: 10.1016/j.isci.2023.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 09/21/2023] [Indexed: 11/14/2023] Open
Abstract
Cardiac fibrosis is a major type of adverse remodeling, predisposing the disease progression to ultimate heart failure. However, the complexity of pathogenesis has hampered the development of therapies. One of the key mechanisms of cardiac diseases has recently been identified as long non-coding RNA (lncRNA) dysregulation. Through in vitro and in vivo studies, we identified an lncRNA NONMMUT067673.2, which is named as a cardiac fibrosis related lncRNA (CFRL). CFRL was significantly increased in both mouse model and cell model of cardiac fibrosis. In vitro, CFRL was proved to promote the proliferation and migration of cardiac fibroblasts by competitively binding miR-3113-5p and miR-3473d and indirectly up-regulating both CTGF and FN1. In vivo, silencing CFRL significantly mitigated cardiac fibrosis and improved left ventricular function. In short, CFRL may exert an essential role in cardiac fibrosis and interfering with CFRL might be considered as a multitarget strategy for cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Yue Cui
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zijie Zhou
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Bo Chen
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaoyang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Cong Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Kai Luo
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Jinghao Zheng
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| |
Collapse
|
38
|
Yang W, Zhuang Y, Wu H, Su S, Li Y, Wang C, Tian Z, Peng L, Zhang X, Liu J, Pei X, Yuan W, Hu X, Meng B, Li D, Zhang Y, Shan H, Pan Z, Lu Y. Substrate-dependent interaction of SPOP and RACK1 aggravates cardiac fibrosis following myocardial infarction. Cell Chem Biol 2023; 30:1248-1260.e4. [PMID: 37442135 DOI: 10.1016/j.chembiol.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Speckle-type pox virus and zinc finger (POZ) protein (SPOP), a substrate recognition adaptor of cullin-3 (CUL3)/RING-type E3 ligase complex, is investigated for its role in cardiac fibrosis in our study. Cardiac fibroblasts (CFs) activation was achieved with TGF-β1 (20 ng/mL) and MI mouse model was established by ligation of the left anterior descending coronary, and lentivirus was employed to mediate interference of SPOP expression. SPOP was increased both in fibrotic post-MI mouse hearts and TGF-β1-treated CFs. The gain-of-function of SPOP promoted myofibroblast transformation in CFs, and exacerbated cardiac fibrosis and cardiac dysfunction in MI mice, while the loss-of-function of SPOP exhibited the opposite effects. Mechanistically, SPOP bound to the receptor of activated protein C kinase 1 (RACK1) and induced its ubiquitination and degradation by recognizing Ser/Thr-rich motifs on RACK1, leading to Smad3-mediated activation of CFs. Forced RACK1 expression canceled the effects of SPOP on cardiac fibrosis. The study reveals therapeutic targets for fibrosis-related cardiac diseases.
Collapse
Affiliation(s)
- Wanqi Yang
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuting Zhuang
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China; Scientific Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Hao Wu
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shuang Su
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuyang Li
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chaoqun Wang
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhongrui Tian
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lili Peng
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaowen Zhang
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Junwu Liu
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xinyu Pei
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wei Yuan
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoxi Hu
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Bo Meng
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Danyang Li
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yang Zhang
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, P.R. China.
| | - Zhenwei Pan
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.
| | - Yanjie Lu
- Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics reof China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.
| |
Collapse
|
39
|
Sun W, Mi H, He DY, Li W, Songyang YY. Liraglutide Suppresses Myocardial Fibrosis Progression by Inhibiting the Smad Signaling Pathway. Curr Med Sci 2023; 43:955-960. [PMID: 37594676 DOI: 10.1007/s11596-023-2776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Liraglutide is a commonly used hypoglycemic agent in clinical practice, and has been demonstrated to have protective effects against the development of cardiovascular disease. However, its potential role in myocardial fibrosis remains unexplored. The present study aims to assess the impact of liraglutide on the activation of cardiac fibroblasts. METHODS Primary rat adult fibroblasts were isolated, cultured, and randomly allocated into 4 groups: control group, transforming growth factor beta1 (TGFβ1) stimulation group, liraglutide group, and TGFβ1+liraglutide group. Fibroblast activation was induced by TGFβ1. Cell proliferation activity was assessed using the CKK-8 kit, and cellular activity was determined using the MTT kit. Reverse transcrition-quantitative polymerase chain reaction (RT-qPCR) was utilized to quantify the level of collagen transcription, immunofluorescence staining was performed to detect the expression level of type III collagen and α-smooth muscle protein (α-SMA), and immunoblotting was conducted to monitor alterations in signal pathways. RESULTS The addition of 10, 25, 50 and 100 nmol/L of liraglutide did not induce any significant impact on the viability of fibroblasts (P>0.05). The rate of cellular proliferation was significantly higher in the TGFβl stimulation group than in the control group. However, the treatment with 50 and 100 nmol/L of liraglutide resulted in the reduction of TGFβl-induced cell proliferation (P<0.05). The RT-qPCR results revealed that the transcription levels of type I collagen, type III collagen, and α-SMA were significantly upregulated in the TGFβl stimulation group, when compared to the control group (P<0.05). However, the expression levels of these aforementioned factors significantly decreased in the TGFβl+liraglutide group (P<0.05). The immunofluorescence staining results revealed a significant increase in the expression levels of type III collagen and α-SMA in the TGFβl stimulation group, when compared to the control group (P<0.05). However, these expression levels significantly decreased in the TGFβl+liraglutide group, when compared to the TGFβl stimulation group (P<0.05). The Western blotting results revealed that the expression levels of phosphorylated smad2 and smad3 significantly increased in the TGFβl stimulation group, when compared to the control group (P<0.05), while these decreased in the TGFβl+liraglutide group (P<0.05). CONCLUSION Liraglutide inhibits myocardial fibrosis development by suppressing the smad signaling pathway, reducing the activation and secretion of cardiac fibroblasts.
Collapse
Affiliation(s)
- Wen Sun
- Department of Geriatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Hong Mi
- Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - De-Ying He
- Department of Geriatrics, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Wen Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yi-Yan Songyang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
40
|
Chu L, Xie D, Xu D. Epigenetic Regulation of Fibroblasts and Crosstalk between Cardiomyocytes and Non-Myocyte Cells in Cardiac Fibrosis. Biomolecules 2023; 13:1382. [PMID: 37759781 PMCID: PMC10526373 DOI: 10.3390/biom13091382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts and the extracellular matrix composition by modulating gene expression, thereby orchestrating the progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further research is warranted to unravel the precise molecular mechanisms underpinning these processes and to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 315 Yanchang Middle Road, Shanghai 200072, China; (L.C.); (D.X.)
| |
Collapse
|
41
|
Li H, Li C, Zheng T, Wang Y, Wang J, Fan X, Zheng X, Tian G, Yuan Z, Chen T. Cardiac Fibroblast Activation Induced by Oxygen-Glucose Deprivation Depends on the HIF-1α/miR-212-5p/KLF4 Pathway. J Cardiovasc Transl Res 2023; 16:778-792. [PMID: 37284939 DOI: 10.1007/s12265-023-10360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 06/08/2023]
Abstract
It is widely accepted that miRNAs play an important role in the pathogenesis of myocardial fibrosis. This study aimed to identify a new pathway of miR-212-5p in the activation of human cardiac fibroblasts (HCFs) induced by oxygen-glucose deprivation (OGD). First, we found that KLF4 protein was markedly decreased in OGD-induced HCFs. Then, bioinformatics analysis and verification experiments were used to identify the existence of an interaction of KLF4 with miR-212-5p. Functional experiments indicated that OGD significantly upregulated the expression of hypoxia inducible factor-1 alpha (HIF-1α) in HCFs, which positively regulated miR-212-5p transcription by binding to its promoter. MiR-212-5p inhibited the expression of Krüppel-like factor 4 (KLF4) protein by binding to the 3' untranslated coding regions (UTRs) of KLF4 mRNA. Inhibition of miR-212-5p effectively inhibited the activation of OGD-induced HCFs by upregulating KLF4 expression and inhibited cardiac fibrosis in vivo and in vitro.
Collapse
Affiliation(s)
- Hongbing Li
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Chenxing Li
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Tao Zheng
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Yaning Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Jin Wang
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Xiaojuan Fan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Xueyang Zheng
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai, 200001, China.
| | - Gang Tian
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Tao Chen
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|
42
|
Majid A, Hassan FO, Hoque MM, Gbadegoye JO, Lebeche D. Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect. J Cardiovasc Dev Dis 2023; 10:313. [PMID: 37504569 PMCID: PMC10380727 DOI: 10.3390/jcdd10070313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiac fibrosis is a pathological condition characterized by excessive deposition of collagen and other extracellular matrix components in the heart. It is recognized as a major contributor to the development and progression of heart failure. Despite significant research efforts in characterizing and identifying key molecular mechanisms associated with myocardial fibrosis, effective treatment for this condition is still out of sight. In this regard, bioactive compounds have emerged as potential therapeutic antifibrotic agents due to their anti-inflammatory and antioxidant properties. These compounds exhibit the ability to modulate fibrogenic processes by inhibiting the production of extracellular matrix proteins involved in fibroblast to myofibroblast differentiation, or by promoting their breakdown. Extensive investigation of these bioactive compounds offers new possibilities for preventing or reducing cardiac fibrosis and its detrimental consequences. This comprehensive review aims to provide a thorough overview of the mechanisms underlying cardiac fibrosis, address the limitations of current treatment strategies, and specifically explore the potential of bioactive compounds as therapeutic interventions for the treatment and/or prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fasilat Oluwakemi Hassan
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Md Monirul Hoque
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joy Olaoluwa Gbadegoye
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
43
|
Velikiy DA, Osoblivaya MA, Shevchenko OP. Galectin-3 in solid organ recipients: role in graft pathology and prospects for use. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2023; 25:129-139. [DOI: 10.15825/1995-1191-2023-2-129-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Galectin-3 (Gal-3) is an important regulator of cell adhesion, migration, proliferation, differentiation and apoptosis under pathophysiological conditions. It plays a crucial role in diseases associated with chronic inflammation and fibrosis. In recent years, there have been reports indicating changes in serum Gal-3 levels in solid organ transplant recipients in the verification of kidney, liver, heart and lung transplant pathologies. Studies on Gal-3 levels and dynamics in solid organ recipients may serve to assess graft conditions using new minimally invasive methods and to identify therapeutic targets for personalized therapy. The first clinical trial data on Gal-3 pharmacological inhibition are emerging. This review summarizes the current understanding of the role of Gal-3 in transplant pathology and the prospects for its use as a diagnostic marker and therapeutic target in solid organ recipients.
Collapse
Affiliation(s)
- D. A. Velikiy
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - M. A. Osoblivaya
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - O. P. Shevchenko
- Shumakov National Medical Research Center of Transplantology and Artificial Organs; Sechenov University
| |
Collapse
|
44
|
Hume RD, Deshmukh T, Doan T, Shim WJ, Kanagalingam S, Tallapragada V, Rashid F, Marcuello M, Blessing D, Selvakumar D, Raguram K, Pathan F, Graham D, Ounzain S, Kizana E, Harvey RP, Palpant NJ, Chong JJ. PDGF-AB Reduces Myofibroblast Differentiation Without Increasing Proliferation After Myocardial Infarction. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
45
|
Beleño Acosta B, Advincula RC, Grande-Tovar CD. Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules 2023; 28:1920. [PMID: 36838907 PMCID: PMC9962426 DOI: 10.3390/molecules28041920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases (CVD), such as myocardial infarction (MI), constitute one of the world's leading causes of annual deaths. This cardiomyopathy generates a tissue scar with poor anatomical properties and cell necrosis that can lead to heart failure. Necrotic tissue repair is required through pharmaceutical or surgical treatments to avoid such loss, which has associated adverse collateral effects. However, to recover the infarcted myocardial tissue, biopolymer-based scaffolds are used as safer alternative treatments with fewer side effects due to their biocompatibility, chemical adaptability and biodegradability. For this reason, a systematic review of the literature from the last five years on the production and application of chitosan scaffolds for the reconstructive engineering of myocardial tissue was carried out. Seventy-five records were included for review using the "preferred reporting items for systematic reviews and meta-analyses" data collection strategy. It was observed that the chitosan scaffolds have a remarkable capacity for restoring the essential functions of the heart through the mimicry of its physiological environment and with a controlled porosity that allows for the exchange of nutrients, the improvement of the electrical conductivity and the stimulation of cell differentiation of the stem cells. In addition, the chitosan scaffolds can significantly improve angiogenesis in the infarcted tissue by stimulating the production of the glycoprotein receptors of the vascular endothelial growth factor (VEGF) family. Therefore, the possible mechanisms of action of the chitosan scaffolds on cardiomyocytes and stem cells were analyzed. For all the advantages observed, it is considered that the treatment of MI with the chitosan scaffolds is promising, showing multiple advantages within the regenerative therapies of CVD.
Collapse
Affiliation(s)
- Bryan Beleño Acosta
- Grupo de Investigación de Fotoquímica y Fotobiología, Química, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Rigoberto C. Advincula
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- Center for Nanophase Materials Sciences (CNMS), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Química, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
46
|
Ferrer-Curriu G, Soler-Botija C, Charvatova S, Motais B, Roura S, Galvez-Monton C, Monguió-Tortajada M, Iborra-Egea O, Emdin M, Lupón J, Aimo A, Bagó JR, Bayés-Genís A. Preclinical scenario of targeting myocardial fibrosis with chimeric antigen receptor (CAR) immunotherapy. Biomed Pharmacother 2023; 158:114061. [PMID: 36495661 DOI: 10.1016/j.biopha.2022.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Fibrosis is present in an important proportion of myocardial disorders. Injury activates cardiac fibroblasts, which deposit excess extracellular matrix, increasing tissue stiffness, impairing cardiac function, and leading to heart failure. Clinical therapies that directly target excessive fibrosis are limited, and more effective treatments are needed. Immunotherapy based on chimeric antigen receptor (CAR) T cells is a novel technique that redirects T lymphocytes toward specific antigens to eliminate the target cells. It is currently used in haematological cancers but has demonstrated efficacy in mouse models of hypertensive cardiac fibrosis, with activated fibroblasts as the target cells. CAR T cell therapy is associated with significant toxicities, but CAR natural killer cells can overcome efficacy and safety limitations. The use of CAR immunotherapy offers a potential alternative to current therapies for fibrosis reduction and restoration of cardiac function in patients with myocardial fibrosis.
Collapse
Affiliation(s)
- Gemma Ferrer-Curriu
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Carolina Soler-Botija
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Charvatova
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava, 708 00 Ostrava, Czech Republic; Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Benjamin Motais
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava, 708 00 Ostrava, Czech Republic; Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona 08500, Spain
| | - Carolina Galvez-Monton
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Michele Emdin
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Interdisciplinary Center of Health Science, Scuola Superiore Sant'Anna, Pisa, Italy, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Josep Lupón
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Alberto Aimo
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Interdisciplinary Center of Health Science, Scuola Superiore Sant'Anna, Pisa, Italy, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Juli R Bagó
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava, 708 00 Ostrava, Czech Republic; Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Antoni Bayés-Genís
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain; Department of Medicine, UAB, Barcelona, Spain; Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
| |
Collapse
|
47
|
Miao S, Wang L, Guan S, Gu T, Wang H, Shangguan W, Wang W, Liu Y, Liang X. Integrated whole transcriptome analysis for the crucial regulators and functional pathways related to cardiac fibrosis in rats. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:5413-5429. [PMID: 36896551 DOI: 10.3934/mbe.2023250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cardiac fibrosis has gradually gained significance in the field of cardiovascular disease; however, its specific pathogenesis remains unclear. This study aims to establish the regulatory networks based on whole-transcriptome RNA sequencing analyses and reveal the underlying mechanisms of cardiac fibrosis. METHODS An experimental model of myocardial fibrosis was induced using the chronic intermittent hypoxia (CIH) method. Expression profiles of long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) were acquired from right atrial tissue samples of rats. Differentially expressed RNAs (DERs) were identified, and functional enrichment analysis was performed. Moreover, a protein-protein interaction (PPI) network and competitive endogenous RNA (ceRNA) regulatory network that are related to cardiac fibrosis were constructed, and the relevant regulatory factors and functional pathways were identified. Finally, the crucial regulators were validated using qRT-PCR. RESULTS DERs, including 268 lncRNAs, 20 miRNAs, and 436 mRNAs, were screened. Further, 18 relevant biological processes, such as "chromosome segregation, " and 6 KEGG signaling pathways, such as "cell cycle, " were significantly enriched. The regulatory relationship of miRNA-mRNA-KEGG pathways showed eight overlapping disease pathways, including "pathways in cancer." In addition, crucial regulatory factors, such as Arnt2, WNT2B, GNG7, LOC100909750, Cyp1a1, E2F1, BIRC5, and LPAR4, were identified and verified to be closely related to cardiac fibrosis. CONCLUSION This study identified the crucial regulators and related functional pathways in cardiac fibrosis by integrating the whole transcriptome analysis in rats, which might provide novel insights into the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Shuai Miao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lijun Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Siyu Guan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tianshu Gu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hualing Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Weiding Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yu Liu
- Taikang Ningbo Hospital, Ningbo 315100, Zhejiang, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
48
|
Liu J, Lu J, Zhang L, Liu Y, Zhang Y, Gao Y, Yuan X, Xiang M, Tang Q. The combination of exercise and metformin inhibits TGF-β1/Smad pathway to attenuate myocardial fibrosis in db/db mice by reducing NF-κB-mediated inflammatory response. Biomed Pharmacother 2023; 157:114080. [PMID: 36481406 DOI: 10.1016/j.biopha.2022.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Persistent hyperglycemia increases inflammation response, promoting the development of myocardial fibrosis. Based on our previous research that exercise and metformin alone or their combination intervention could attenuate myocardial fibrosis in db/db mice, this study aimed to further explore the underlying mechanisms by which these interventions attenuate myocardial fibrosis in early diabetic cardiomyopathy. Forty BKS db/db mice were randomly divided into four groups. Diabetic db/db mice without intervention were in the C group. Aerobic exercise (7-12 m/min, 30-40 min/day, 5 days/week) was performed in the E group. Metformin (300 mg·kg-1·day-1) was administered in the M group. Exercise combined with metformin was performed in the EM group. Ten wild-type mice were in the WT group. All interventions were administered for 8 weeks. Results showed that the expression levels of α-SMA, Collagen I, and Collagen III were increased in 16-week-old db/db mice, which were reversed by exercise and metformin alone or their combination intervention. All interventions attenuated the level of TGF-β1/Smad2/3 pathway-related proteins and reduced the expression of inflammatory signaling pathway-regulated proteins TNF-α, p-IκBα/IκBα, and p-NF-κB p65/NF-κB p65 in db/db mice. Furthermore, metformin intervention inhibited HNF4α expression via AMPK activation, whereas exercise intervention increased the expression of IL-6 instead of activating AMPK. In conclusion, exercise and metformin alone or their combination intervention inhibited the TGF-β1/Smad pathway to attenuate myocardial fibrosis by reducing NF-κB-mediated inflammatory response. The anti-fibrotic effects were regulated by metformin-activated AMPK or exercise-induced elevation of IL-6, whereas their combination intervention showed no synergistic effects.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Jiao Lu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing 210014, China.
| | - Liumei Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Yuting Liu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Yuan Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Yaran Gao
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Xinmeng Yuan
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Mengqi Xiang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.
| | - Qiang Tang
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing 210014, China.
| |
Collapse
|
49
|
Wu X, Qian L, Zhao H, Lei W, Liu Y, Xu X, Li J, Yang Z, Wang D, Zhang Y, Zhang Y, Tang R, Yang Y, Tian Y. CXCL12/CXCR4: An amazing challenge and opportunity in the fight against fibrosis. Ageing Res Rev 2023; 83:101809. [PMID: 36442720 DOI: 10.1016/j.arr.2022.101809] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis is a pathological process caused by abnormal wound healing response, which often leads to excessive deposition of extracellular matrix, distortion of organ architecture, and loss of organ function. Aging is an important risk factor for the development of organ fibrosis. C-X-C receptor 4 (CXCR4) is the predominant chemokine receptor on fibrocytes, C-X-C motif ligand 12 (CXCL12) is the only ligand of CXCR4. Accumulated evidence have confirmed that CXCL12/CXCR4 can be involved in multiple pathological mechanisms in fibrosis, such as inflammation, immunity, epithelial-mesenchymal transition, and angiogenesis. In addition, CXCL12/CXCR4 have also been shown to improve fibrosis levels in many organs including the heart, liver, lung and kidney; thus, they are promising targets for anti-fibrotic therapy. Notably, inhibitors of CXCL12 or CXCR4 also play an important role in various fibrosis-related diseases. In summary, this review systematically summarizes the role of CXCL12/CXCR4 in fibrosis, and this information is of great significance for understanding CXCL12/CXCR4. This will also contribute to the design of further studies related to CXCL12/CXCR4 and fibrosis, and shed light on potential therapies for fibrosis.
Collapse
Affiliation(s)
- Xue Wu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Wangrui Lei
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaoling Xu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiawen Li
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Du Wang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuchen Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| | - Ye Tian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
50
|
miR-96-5p regulates myocardial infarction-induced cardiac fibrosis via Smad7/Smad3 pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1874-1888. [PMID: 36789690 PMCID: PMC10157616 DOI: 10.3724/abbs.2022175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fibrotic remodelling contributes to heart failure in myocardial infarction. MicroRNAs (miRNAs) play a crucial role in myocardial fibrosis. However, current antifibrotic therapeutic strategies using miRNAs are far from effective. In this study, we aim to investigate the effect of miR-96-5p on cardiac fibrosis. Our work reveals a significant upregulation of miR-96-5p level in the ventricular tissues of myocardial infarction mice, as well as in neonatal rat cardiac fibroblasts stimulated with TGF-β or Ang II as shown by qPCR assay. In myocardial infarction mice, miR-96-5p knockdown using antagomir alleviates the aggravated cardiac fibrosis and exacerbated myocardial function caused by myocardial infarction surgery as shown by the echocardiography and Masson's staining analysis. In contrast, immunofluorescence staining results reveal that miR-96-5p overexpression in neonatal rat cardiac fibroblasts contributes to an increase in the expressions of fibrosis-associated genes and promotes the proliferation and differentiation of cardiac fibroblasts. Conversely, miR-96-5p downregulation using inhibitor presents adverse consequences. Furthermore, Smad7 expression is downregulated in fibrotic cardiac tissues, and the Smad7 gene is identified as a direct target of miR-96-5p by dual luciferase assay. Indeed, Smad7 knockdown weakens the anti-fibrotic effect of the miR-96-5p inhibitor on cardiac fibroblasts. Moreover, Smad3 phosphorylation is elevated in fibrotic cardiac tissues, and interestingly, the Smad3 inhibitor suppresses the profibrotic effect of the miR-96-5p mimic. Taken together, our findings demonstrate that the Smad7/Smad3 signaling pathway mediates the profibrotic effect of miR-96-5p in cardiac fibrosis.
Collapse
|