1
|
Grego A, Fernandes C, Fonseca I, Dias-Neto M, Costa R, Leite-Moreira A, Oliveira SM, Trindade F, Nogueira-Ferreira R. Endothelial dysfunction in cardiovascular diseases: mechanisms and in vitro models. Mol Cell Biochem 2025:10.1007/s11010-025-05289-w. [PMID: 40259179 DOI: 10.1007/s11010-025-05289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Endothelial cells (ECs) are arranged side-by-side to create a semi-permeable monolayer, forming the inner lining of every blood vessel (micro and macrocirculation). Serving as the first barrier for circulating molecules and cells, ECs represent the main regulators of vascular homeostasis being able to respond to environmental changes, either physical or chemical signals, by producing several factors that regulate vascular tone and cellular adhesion. Healthy endothelium has anticoagulant properties that prevent the adhesion of leukocytes and platelets to the vessel walls, contributing to resistance to thrombus formation, and regulating inflammation, and vascular smooth muscle cell proliferation. Many risk factors of cardiovascular diseases (CVDs) promote the endothelial expression of chemokines, cytokines, and adhesion molecules. The resultant endothelial activation can lead to endothelial cell dysfunction (ECD). In vitro models of ECD allow the study of cellular and molecular mechanisms of disease and provide a research platform for screening potential therapeutic agents. Even though alternative models are available, such as animal models or ex vivo models, in vitro models offer higher experimental flexibility and reproducibility, making them a valuable tool for the understanding of pathophysiological mechanisms of several diseases, such as CVDs. Therefore, this review aims to synthesize the currently available in vitro models regarding ECD, emphasizing CVDs. This work will focus on 2D cell culture models (endothelial cell lines and primary ECs), 3D cell culture systems (scaffold-free and scaffold-based), and 3D cell culture models (such as organ-on-a-chip). We will dissect the role of external stimuli-chemical and mechanical-in triggering ECD.
Collapse
Affiliation(s)
- Ana Grego
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cristiana Fernandes
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ivo Fonseca
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marina Dias-Neto
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Raquel Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adelino Leite-Moreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Cardiothoracic Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Marisa Oliveira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Fábio Trindade
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rita Nogueira-Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
2
|
Wang Y, Zhang Z, Qu X, Zhou G. Role of the endothelial cell glycocalyx in sepsis-induced acute kidney injury. Front Med (Lausanne) 2025; 12:1535673. [PMID: 40255592 PMCID: PMC12006053 DOI: 10.3389/fmed.2025.1535673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Sepsis-induced acute kidney injury (S-AKI) is a common complication of sepsis. It occurs at high incidence and is associated with a high level of mortality in the intensive care unit (ICU). The pathophysiologic mechanisms underlying S-AKI are complex, and include renal vascular endothelial cell dysfunction. The endothelial glycocalyx (EG) is a polysaccharide/protein complex located on the cell membrane at the luminal surface of vascular endothelial cells that has anti-inflammatory, anti-thrombotic, and endothelial protective effects. Recent studies have shown that glycocalyx damage plays a causal role in S-AKI progression. In this review, we first describe the structure, location, and basic function of the EG. Second, we analyze the underlying mechanisms of EG degradation in sepsis and S-AKI. Finally, we provide a summary of the potential therapeutic strategies that target the EG.
Collapse
Affiliation(s)
- Yixun Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
- Yichang Sepsis Clinical Research Center, Yichang, Hubei, China
| | - Zhaohui Zhang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
- Yichang Sepsis Clinical Research Center, Yichang, Hubei, China
| | - Xingguang Qu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
- Yichang Sepsis Clinical Research Center, Yichang, Hubei, China
| | - Gaosheng Zhou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Critical Care Medicine, Yichang Central People's Hospital, Yichang, China
- Yichang Sepsis Clinical Research Center, Yichang, Hubei, China
| |
Collapse
|
3
|
Ohmura K, Tomita H, Okada H, Nakayama N, Ohe N, Izumo T, Hara A. Visualizing the endothelial glycocalyx in human glioma vasculature. Brain Tumor Pathol 2025; 42:33-42. [PMID: 40035915 PMCID: PMC11993481 DOI: 10.1007/s10014-025-00498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Gliomas are the most common primary brain tumors in adults. However, glioblastoma is especially difficult to treat despite advancements in treatment. Therefore, new and more effective treatments are needed. The endothelial glycocalyx covers the luminal surface of the endothelium and plays an important role in vascular homeostasis. Tumor blood vessels normally have increased permeability, but some of them mimic normal cerebral blood vessels constituting the blood-brain barrier and retain drug-barrier function. Therefore, brain tumor vessels are considered to constitute the blood-tumor barrier. There are few reports on the endothelial glycocalyx in human brain tumor vessels. We aimed to visualize the endothelial glycocalyx in human brain tumor vessels and evaluate its microstructural differences in glioma vessels and normal capillaries. Surgical specimens from patients with glioma who underwent tumor resection at our institution were evaluated. We visualized the microstructures of the brain tumor vessels in human glioma specimens using electron microscopy with lanthanum nitrate. The endothelial glycocalyx was identified in the human glioma vasculature and its microstructure varied between the tumor margin and core. These variations may influence tumor angiogenesis and vascular remodeling, contributing to advancements in targeted therapies and diagnostics for human gliomas.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Hideshi Okada
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naoyuki Ohe
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
4
|
Prabhahar A, Batta A, Hatwal J, Kumar V, Ramachandran R, Batta A. Endothelial dysfunction in the kidney transplant population: Current evidence and management strategies. World J Transplant 2025; 15:97458. [PMID: 40104196 PMCID: PMC11612885 DOI: 10.5500/wjt.v15.i1.97458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The endothelium modulates vascular homeostasis owing to a variety of vasoconstrictors and vasodilators. Endothelial dysfunction (ED), characterized by impaired vasodilation, inflammation, and thrombosis, triggers future cardiovascular (CV) diseases. Chronic kidney disease, a state of chronic inflammation caused by oxidative stress, metabolic abnormalities, infection, and uremic toxins damages the endothelium. ED is also associated with a decline in estimated glomerular filtration rate. After kidney transplantation, endothelial functions undergo immediate but partial restoration, promising graft longevity and enhanced CV health. However, the anticipated CV outcomes do not happen due to various transplant-related and unrelated risk factors for ED, culminating in poor CV health and graft survival. ED in kidney transplant recipients is an under-recognized and poorly studied entity. CV diseases are the leading cause of death among kidney transplant candidates with functioning grafts. ED contributes to the pathogenesis of many of the CV diseases. Various biomarkers and vasoreactivity tests are available to study endothelial functions. With an increasing number of transplants happening every year, and improved graft rejection rates due to the availability of effective immunosuppressants, the focus has now shifted to endothelial protection for the prevention, early recognition, and treatment of CV diseases.
Collapse
Affiliation(s)
- Arun Prabhahar
- Department of Telemedicine (Internal Medicine and Nephrology), Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Akshey Batta
- Department of Urology and Renal Transplant, Neelam Hospital, Rajpura 140401, Punjab, India
| | - Juniali Hatwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India
| |
Collapse
|
5
|
Dai Z, Xie B, Jiang C, Peng Y, Lin J, Chen Q, Sun J. Aerosolized nicotine-free e-liquid base constituents exacerbates mitochondrial dysfunction and endothelial glycocalyx shedding via the AKT/GSK3β-mPTP pathway in lung injury models. Respir Res 2025; 26:82. [PMID: 40025534 PMCID: PMC11871641 DOI: 10.1186/s12931-025-03155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/13/2025] [Indexed: 03/04/2025] Open
Abstract
Smoking has been recognized as a risk factor of cancer, heart disease, stroke, diabetes, and lung diseases such as chronic obstructive pulmonary disease, and nicotine appears to be the responsible component of tobacco smoke that affects lung development. While nicotine-free electronic cigarettes (e-cigarettes) are often promoted as a safer alternative to traditional smoking, recent evidence suggests that they might pose significant health risks. This study investigates the effects of nicotine-free e-cigarette vapor (ECV) on lung tissue and endothelial function. A mouse model of ECV-induced lung injury and human pulmonary microvascular endothelial cells (HPMVECs) were utilized to evaluate the impact of ECV exposure on mitochondrial function, endothelial cell viability, and glycocalyx shedding. ECV exposure significantly damages lung tissue, characterized by alveolar enlargement, inflammation, and vascular remodeling, indicative of emphysematous changes. In vitro, HPMVECs exposed to nicotine-free e-cigarette extract (ECE) demonstrated dose-dependent increases in mitochondrial reactive oxygen species (ROS), mitochondrial membrane depolarization, mPTP opening, and reduced ATP production, leading to enhanced endothelial permeability and glycocalyx degradation. The inhibition of mPTP opening with Cyclosporin A (CsA) was found to mitigate the mitochondrial dysfunction and glycocalyx damage induced by ECE, indicating a protective role of mPTP inhibition in preserving endothelial integrity. The AKT/GSK3β signaling pathway was identified as a key regulator of these processes, with ECE exposure downregulating p-AKT and p-GSK3β, thereby promoting mPTP opening. Activation of AKT signaling partially reversed these effects, highlighting the potential of targeting the AKT/GSK3β-mPTP axis to mitigate the adverse effects of e-cigarette exposure on lung and endothelial function. These findings underscore the potential risks associated with nicotine-free e-cigarettes and suggest novel therapeutic targets for preventing lung injury progression.
Collapse
Affiliation(s)
- Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yun Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jianing Lin
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jingyi Sun
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Shah FH, Bang JY, Nam YS, Hwang IS, Kim DH, Ki M, Salman S, Lee HW. Understanding the Impact of SARS-CoV-2 on Lung Endothelial Cells: Brief Mechanisms Unveiled. Cell Biochem Biophys 2025; 83:221-227. [PMID: 39312156 DOI: 10.1007/s12013-024-01529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 03/03/2025]
Abstract
As the world grapples with the coronavirus-19 (COVID) pandemic, more reports are coming in regarding Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in endotheliopathy. It is a vascular condition in which endothelial cell injury or damage inflicts anatomical and functional changes in the endothelium, significantly impacting the physiological process and function. Previously, it was assumed that SARS-CoV-2 infects respiratory epithelial cells via spike glycoproteins present on the surface of the virus. However, severe cases and different autopsy studies described the clandestine role of this virus in infecting endothelial cells other than epithelial cells. It was observed that SARS-CoV-2 targets the pulmonary and extrapulmonary systems to damage the microvasculature and affect respiratory functioning, resulting in the onset of endotheliopathy, thrombosis, inflammation, pulmonary edema, and fibrosis. Such deleterious events are the consequence of the hyperactive immune response initiated by the SARS-CoV-2 infection, leading to pulmonary and extrapulmonary complications. However, the molecular mechanism behind endotheliopathy and other complications caused by this virus is elusive and will be unraveled by covering recent literature in this mini-review.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jun Young Bang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Yoon Seok Nam
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - In Seo Hwang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Dae Hong Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Minkyoung Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Saad Salman
- Department of Pharmacy, CECOS University of IT & Emerging Sciences, Peshawar, Pakistan
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
7
|
Shah W, Gong Y, Qiao X, Lu Y, Ding Y, Zhang Z, Gao Y. Exploring Endothelial Cell Dysfunction's Impact on the Brain-Retina Microenvironment Connection: Molecular Mechanisms and Implications. Mol Neurobiol 2025:10.1007/s12035-025-04714-x. [PMID: 39904964 DOI: 10.1007/s12035-025-04714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
The intricate linking between the health of blood vessels and the functioning of neurons has attracted growing attention in the context of disorders that affect the neurological environment. Endothelial cells, forming the blood-brain barrier and blood-retinal barrier, play a fundamental role in maintaining the integrity of the brain-retina microenvironment connection. This review explores the molecular foundations of endothelial cell dysfunction and its implications for the brain-retina interaction. A comprehensive analysis of the complex factors contributing to endothelial dysfunction is presented, including oxidative stress, inflammation, reduced nitric oxide signaling, and disrupted vascular autoregulation. The significance of endothelial dysfunction extends to neurovascular coupling, synaptic plasticity, and trophic support. To our knowledge, there is currently no existing literature review addressing endothelial microvascular dysfunction and its interplay with the brain-retina microenvironment. The review also explains bidirectional communication between the brain and retina, highlighting how compromised endothelial function can disrupt this vital crosstalk and inhibit normal physiological processes. As neurodegenerative diseases frequently exhibit vascular involvement, a deeper comprehension of the interaction between endothelial cells and neural tissue holds promise for innovative therapeutic strategies. By targeting endothelial dysfunction, we may enhance our ability to preserve the intricate dynamics of the brain-retina microenvironment connection and ameliorate the progression of neurological disorders.
Collapse
Affiliation(s)
- Wahid Shah
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxing Gong
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Qiao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Yaling Lu
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Yufei Ding
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Ziting Zhang
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Yuan Gao
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China.
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
8
|
Yamaji F, Fukuta T, Ichihashi M, Mizuno Y, Suzuki K, Miyake T, Kanda N, Okada H. Effectiveness of syndecan-1 as an adjunct diagnostic marker in small bowel injury: a report of two cases. Trauma Surg Acute Care Open 2025; 10:e001727. [PMID: 39897379 PMCID: PMC11784201 DOI: 10.1136/tsaco-2024-001727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Background Small bowel injuries are rare in trauma. Diagnosing these injuries is difficult owing to the lack of clear signs, and delays in diagnosis might increase complications and mortality. Trauma can damage the vascular endothelial glycocalyx, with syndecan-1 emerging as a marker of injury. Here, we describe two cases of small bowel injury due to traffic motor vehicle crash trauma. Case presentation The patients, one in their 40s and one teenaged, were transported to our hospital after a traffic motor vehicle crash. Both patients were wearing seat belts at the time of the motor vehicle crash, and the car's airbags deployed properly. Their vital signs were stable at admission, and non-operative treatment was selected. However, their abdominal pain did not improve, and based on posthospitalization CT reconstructive imaging, intra-abdominal hemorrhage was suspected. Surgery was performed, revealing small intestinal injuries. In both patients, a high serum syndecan-1 level in the blood test at admission was a common characteristic. Conclusion Increased serum syndecan-1 level was observed in blood tests during the initial treatment of small intestinal injuries in these patients, suggesting its potential utility in early diagnosis. However, further accumulation of cases and detailed studies are required to substantiate these results.
Collapse
Affiliation(s)
- Fuminori Yamaji
- Gifu University Hospital, Gifu, Japan
- Department of Emergency and Disaster Medicine, Gifu University School of Medicine Graduate School of Medicine, Gifu, Gifu Prefecture, Japan
| | - Tetsuya Fukuta
- Gifu University Hospital, Gifu, Japan
- Department of Emergency and Disaster Medicine, Gifu University School of Medicine Graduate School of Medicine, Gifu, Gifu Prefecture, Japan
| | - Masahiro Ichihashi
- Gifu University Hospital, Gifu, Japan
- Department of Emergency and Disaster Medicine, Gifu University School of Medicine Graduate School of Medicine, Gifu, Gifu Prefecture, Japan
| | - Yosuke Mizuno
- Gifu University Hospital, Gifu, Japan
- Department of Emergency and Disaster Medicine, Gifu University School of Medicine Graduate School of Medicine, Gifu, Gifu Prefecture, Japan
| | - Keiko Suzuki
- Gifu University Hospital, Gifu, Japan
- Gifu Pharmaceutical University, Gifu, Japan
| | - Takahito Miyake
- Gifu University Hospital, Gifu, Japan
- Department of Emergency and Disaster Medicine, Gifu University School of Medicine Graduate School of Medicine, Gifu, Gifu Prefecture, Japan
| | - Norihide Kanda
- Gifu University Hospital, Gifu, Japan
- Department of Emergency and Disaster Medicine, Gifu University School of Medicine Graduate School of Medicine, Gifu, Gifu Prefecture, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University School of Medicine Graduate School of Medicine, Gifu, Gifu Prefecture, Japan
| |
Collapse
|
9
|
Batinac T, Batičić L, Kršek A, Knežević D, Marcucci E, Sotošek V, Ćurko-Cofek B. Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality? J Cardiovasc Dev Dis 2024; 11:408. [PMID: 39728298 DOI: 10.3390/jcdd11120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health. The aim of this review was to comprehensively summarize the crucial role of the vascular endothelium and glycocalyx in cardiovascular health and associated thrombo-inflammatory conditions. It highlights how endothelial dysfunction, influenced by factors such as diabetes, chronic kidney disease, and obesity, leads to adverse cardiovascular outcomes, including heart failure. Recent evidence suggests that hyperbaric oxygen therapy (HBOT) may offer therapeutic benefits in the treatment of cardiovascular risk factors and disease. This review presents the current evidence on the mechanisms by which HBOT promotes angiogenesis, shows antimicrobial and immunomodulatory effects, enhances antioxidant defenses, and stimulates stem cell activity. The latest findings on important topics will be presented, including the effects of HBOT on endothelial dysfunction, cardiac function, atherosclerosis, plaque stability, and endothelial integrity. In addition, the role of HBOT in alleviating cardiovascular risk factors such as hypertension, aging, obesity, and glucose metabolism regulation is discussed, along with its impact on inflammation in cardiovascular disease and its potential benefit in ischemia-reperfusion injury. While HBOT demonstrates significant therapeutic potential, the review also addresses potential risks associated with excessive oxidative stress and oxygen toxicity. By combining information on the molecular mechanisms of HBOT and its effects on the maintenance of vascular homeostasis, this review provides valuable insights into the development of innovative therapeutic strategies aimed at protecting and restoring endothelial function to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Antea Kršek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Emanuela Marcucci
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
10
|
Zhang W, Jiang L, Tong X, He H, Zheng Y, Xia Z. Sepsis-Induced Endothelial Dysfunction: Permeability and Regulated Cell Death. J Inflamm Res 2024; 17:9953-9973. [PMID: 39628705 PMCID: PMC11612565 DOI: 10.2147/jir.s479926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Endothelial cells (ECs) are an important cell type typically affected in sepsis, resulting in compromised barrier function and various forms of regulated cell death (RCD). However, the precise mechanisms underlying sepsis-induced EC damage remain unclear. This review summarizes the recent research progress on factors and mechanisms that may affect the permeability and RCD of ECs under septic conditions, including glycocalyx, damage-associated molecular patterns, and various forms of RCD in ECs, such as apoptosis, pyroptosis, ferroptosis, and autophagy. This review offers important insights into the underlying mechanisms of endothelial dysfunction in sepsis, aiming to contribute to developing small-molecule targeted clinical therapies.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Luofeng Jiang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Xirui Tong
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Heng He
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
- Research Unit of Key Techniques for Treatment of burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
11
|
Kuno M, Tomita H, Endo M, Mori K, Hara A, Horaguchi T, Yokoi R, Matsumoto K, Hayashi H, Fukada M, Takao C, Sato Y, Asai R, Yasufuku I, Tajima JY, Kiyama S, Tanaka Y, Matsuhashi N. Evaluating glycocalyx morphology and composition in frozen and formalin-fixed liver tumor sections. Pathol Res Pract 2024; 263:155660. [PMID: 39423607 DOI: 10.1016/j.prp.2024.155660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The glycocalyx (GCX) is a glycan structure on the vascular endothelium and cancer cells. It is crucial for blood flow regulation, tumor invasion, and cancer drug resistance. Understanding the role of GCX in human tumors could help develop new cancer biomarkers and therapies. AIM This study aimed to demonstrate microstructural changes in human primary and metastatic liver tumors (henceforth termed liver tumors) by visualizing GCX using surgical specimens and comparing formalin-fixed paraffin-embedded sections (FFPEs) with frozen sections. The results of lectin staining were also compared between frozen and FFPE specimens to determine which was more useful for accurately assessing GCX structure and composition. METHODS Liver tumors and normal tissue samples from three patients were collected and processed into FFPEs and frozen sections, respectively. Lanthanum nitrate staining and scanning electron microscopy (SEM) were used to assess the GCX structures. Twenty lectins were analyzed for their glycan components in the samples. RESULTS SEM revealed significant differences in GCX morphology among the cancer specimens. Frozen sections provided a more accurate GCX evaluation than FFPEs, showing distinct glycan compositions in hepatocellular carcinoma, colorectal carcinoma liver metastases, and melanoma liver metastases. Hepatocellular carcinoma samples exhibited a loss of N-acetylgalactosamine-related lectins. CONCLUSION The results revealed that liver tumors have distinct and bulky GCX compared to normal liver tissue, while frozen sections are more reliable for GCX evaluation. These findings highlight glycan alterations in liver tumors and contribute to the development of new cancer therapies targeting GCX on tumor cell surfaces.
Collapse
Affiliation(s)
- Masashi Kuno
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan; Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Masahide Endo
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan; Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takeshi Horaguchi
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Ryoma Yokoi
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Keita Matsumoto
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Hirokatsu Hayashi
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Masahiro Fukada
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Chika Takao
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Yuta Sato
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Ryuichi Asai
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Itaru Yasufuku
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Jesse Yu Tajima
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Shigeru Kiyama
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Yoshihiro Tanaka
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| |
Collapse
|
12
|
Sallee CJ, Maddux AB, Hippensteel JA, Markovic D, Oshima K, Schwingshackl A, Mourani PM, Schmidt EP, Sapru A. CIRCULATING HEPARAN SULFATE PROFILES IN PEDIATRIC ACUTE RESPIRATORY DISTRESS SYNDROME. Shock 2024; 62:496-504. [PMID: 39331799 DOI: 10.1097/shk.0000000000002421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
ABSTRACT Introduction: Sepsis-induced degradation of endothelial glycocalyx heparan sulfate (HS) contributes to the pulmonary microvascular endothelial injury characteristic of acute respiratory distress syndrome (ARDS) pathogenesis. Our objectives were to (1) examine relationships between plasma indices of HS degradation and protein biomarkers of endothelial injury and (2) identify patient subgroups characterized by distinct profiles of HS degradation in children with ARDS. Methods: We analyzed prospectively collected plasma (2018-2020) from a cohort of invasively mechanically ventilated children (aged >1 month to <18 years) with ARDS. Mass spectrometry characterized and quantified patterns of HS disaccharide sulfation. Protein biomarkers reflective of endothelial injury (e.g., angiopoietin-2, vascular cell adhesion molecule-1, soluble thrombomodulin) were measured with a multiplex immunoassay. Pearson correlation coefficients were used to construct a biomarker correlation network. Centrality metrics detected influential biomarkers (i.e., network hubs). K-means clustering identified unique patient subgroups based on HS disaccharide profiles. Results: We evaluated 36 patients with pediatric ARDS. HS disaccharide sulfation patterns, 6S, NS, and NS2S, positively correlated with all biomarkers of endothelial injury (all P < 0.05) and were classified as network hubs. We identified three patient subgroups, with cluster 3 (n = 5) demonstrating elevated levels of 6S and N-sulfated HS disaccharides. In cluster 3, 60% of children were female and nonpulmonary sepsis accounted for 60% of cases. Relative to cluster 1 (n = 12), cluster 3 was associated with higher oxygen saturation index (P = 0.029) and fewer 28-day ventilator-free days (P = 0.016). Conclusions: Circulating highly sulfated HS fragments may represent emerging mechanistic biomarkers of endothelial injury and disease severity in pediatric ARDS.
Collapse
Affiliation(s)
- Colin J Sallee
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, California
| | - Aline B Maddux
- Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Joseph A Hippensteel
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniela Markovic
- Department of Medicine, Biostatistics Core, University of California Los Angeles, Los Angeles, California
| | - Kaori Oshima
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Andreas Schwingshackl
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, California
| | - Peter M Mourani
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Arkansas
| | - Eric P Schmidt
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Anil Sapru
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, California
| |
Collapse
|
13
|
Livzan MA, Bikbavova GR, Lisyutenko NS, Romanyuk AE, Drapkina OM. Cardiovascular Risk in Patients with Inflammatory Bowel Diseases-The Role of Endothelial Dysfunction. Diagnostics (Basel) 2024; 14:1722. [PMID: 39202210 PMCID: PMC11353271 DOI: 10.3390/diagnostics14161722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is associated with an increased risk of cardiovascular disease (CVD). Cardiovascular pathology in people with IBD has not been well studied to date, and a direct link between cardiovascular events and IBD has not been established. The mechanisms underlying this association include the parallel and dynamic interaction of inflammation, modulation of the composition of the gut microbiota, endothelial dysfunction, thrombogenicity, and increased endothelial and epithelial permeability. Endothelial dysfunction is a common aspect of the pathogenesis of IBD and atherosclerotic CVD and can be considered one of the most important factors leading to the development and progression of cardiovascular pathology in patients with IBD. The purpose of this literature review is to describe the mechanisms underlying the development of endothelial dysfunction and disorders of the structure and function of the gut-vascular barrier in the pathogenesis of the cardiovascular manifestation of IBD.
Collapse
Affiliation(s)
- Maria A. Livzan
- Department of Faculty Therapy, Omsk State Medical University, 644099 Omsk, Russia;
| | - Galiya R. Bikbavova
- Department of Internal Medicine and Endocrinology, Omsk State Medical University, 644099 Omsk, Russia;
| | - Natalya S. Lisyutenko
- Department of Internal Medicine and Endocrinology, Omsk State Medical University, 644099 Omsk, Russia;
| | - Alisa E. Romanyuk
- Faculty of Medicine, Omsk State Medical University, 644099 Omsk, Russia;
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia;
| |
Collapse
|
14
|
Dancy C, Heintzelman KE, Katt ME. The Glycocalyx: The Importance of Sugar Coating the Blood-Brain Barrier. Int J Mol Sci 2024; 25:8404. [PMID: 39125975 PMCID: PMC11312458 DOI: 10.3390/ijms25158404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The endothelial glycocalyx (GCX), located on the luminal surface of vascular endothelial cells, is composed of glycoproteins, proteoglycans, and glycosaminoglycans. It plays a pivotal role in maintaining blood-brain barrier (BBB) integrity and vascular health within the central nervous system (CNS), influencing critical processes such as blood flow regulation, inflammation modulation, and vascular permeability. While the GCX is ubiquitously expressed on the surface of every cell in the body, the GCX at the BBB is highly specialized, with a distinct composition of glycans, physical structure, and surface charge when compared to GCX elsewhere in the body. There is evidence that the GCX at the BBB is disrupted and partially shed in many diseases that impact the CNS. Despite this, the GCX has yet to be a major focus of therapeutic targeting for CNS diseases. This review examines diverse model systems used in cerebrovascular GCX-related research, emphasizing the importance of selecting appropriate models to ensure clinical relevance and translational potential. This review aims to highlight the importance of the GCX in disease and how targeting the GCX at the BBB specifically may be an effective approach for brain specific targeting for therapeutics.
Collapse
Affiliation(s)
- Candis Dancy
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (C.D.); (K.E.H.)
| | - Kaitlyn E. Heintzelman
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (C.D.); (K.E.H.)
- School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Moriah E. Katt
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (C.D.); (K.E.H.)
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| |
Collapse
|
15
|
Margaret MS, Melrose J. Impaired instructive and protective barrier functions of the endothelial cell glycocalyx pericellular matrix is impacted in COVID-19 disease. J Cell Mol Med 2024; 28:e70033. [PMID: 39180511 PMCID: PMC11344469 DOI: 10.1111/jcmm.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 08/26/2024] Open
Abstract
The aim of this study was to review the roles of endothelial cells in normal tissue function and to show how COVID-19 disease impacts on endothelial cell properties that lead to much of its associated symptomatology. This places the endothelial cell as a prominent cell type to target therapeutically in the treatment of this disorder. Advances in glycosaminoglycan analytical techniques and functional glycomics have improved glycosaminoglycan mimetics development, providing agents that can more appropriately target various aspects of the behaviour of the endothelial cell in-situ and have also provided polymers with potential to prevent viral infection. Thus, promising approaches are being developed to combat COVID-19 disease and the plethora of symptoms this disease produces. Glycosaminoglycan mimetics that improve endothelial glycocalyx boundary functions have promising properties in the prevention of viral infection, improve endothelial cell function and have disease-modifying potential. Endothelial cell integrity, forming tight junctions in cerebral cell populations in the blood-brain barrier, prevents the exposure of the central nervous system to circulating toxins and harmful chemicals, which may contribute to the troublesome brain fogging phenomena reported in cognitive processing in long COVID disease.
Collapse
Affiliation(s)
- M. Smith Margaret
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Arthropharm Australia Pharmaceuticals Pty LtdBondi JunctionSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical SchoolNorthern, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| |
Collapse
|
16
|
Masenga SK, Liweleya S, Kirabo A. High salt intake and HIV infection on endothelial glycocalyx shedding in salt-sensitive hypertension. Front Cell Dev Biol 2024; 12:1395885. [PMID: 39081863 PMCID: PMC11286502 DOI: 10.3389/fcell.2024.1395885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The endothelial glycocalyx is closely associated with various physiological and pathophysiological events. Significant modification of the endothelial glycocalyx is an early process in the pathogenesis of cardiovascular disease. High dietary salt and HIV infection damages the endothelial glycocalyx causing endothelial dysfunction and increasing the risk for salt-sensitive hypertension and cardiovascular disease. The two factors, HIV infection and dietary salt are critical independent predictors of hypertension and cardiovascular disease and often synergize to exacerbate and accelerate disease pathogenesis. Salt-sensitive hypertension is more common among people living with HIV and is associated with risk for cardiovascular disease, stroke, heart attack and even death. However, the underlying mechanisms linking endothelial glycocalyx damage to dietary salt and HIV infection are lacking. Yet, both HIV infection/treatment and dietary salt are closely linked to endothelial glycocalyx damage and development of salt-sensitive hypertension. Moreover, the majority of individuals globally, consume more salt than is recommended and the burden of HIV especially in sub-Sahara Africa is disproportionately high. In this review, we have discussed the missing link between high salt and endothelial glycocalyx shedding in the pathogenesis of salt-sensitive hypertension. We have further elaborated the role played by HIV infection and treatment in modifying endothelial glycocalyx integrity to contribute to the development of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Situmbeko Liweleya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Nashville, TN, United States
| |
Collapse
|
17
|
Kuroda T, Suzuki A, Okada H, Shimizu M, Watanabe D, Suzuki K, Mori K, Ohmura K, Niwa A, Imaizumi Y, Matsuo M, Ichihashi K, Okubo T, Taniguchi T, Kanayma T, Kobayashi R, Sugie S, Hara A, Tomita H. Endothelial Glycocalyx in the Peripheral Capillaries is Injured Under Oxaliplatin-Induced Neuropathy. THE JOURNAL OF PAIN 2024; 25:104462. [PMID: 38211844 DOI: 10.1016/j.jpain.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Oxaliplatin, a platinum-based anticancer drug, is associated with peripheral neuropathy (oxaliplatin-induced peripheral neuropathy, OIPN), which can lead to worsening of quality of life and treatment interruption. The endothelial glycocalyx, a fragile carbohydrate-rich layer covering the luminal surface of endothelial cells, acts as an endothelial gatekeeper and has been suggested to protect nerves, astrocytes, and other cells from toxins and substances released from the capillary vessels. Mechanisms underlying OIPN and the role of the glycocalyx remain unclear. This study aimed to define changes in the three-dimensional ultrastructure of capillary endothelial glycocalyx near nerve fibers in the hind paws of mice with OIPN. The mouse model of OPIN revealed disruption of the endothelial glycocalyx in the peripheral nerve compartment, accompanied by vascular permeability, edema, and damage to the peripheral nerves. To investigate the potential treatment interventions, nafamostat mesilate, a glycocalyx protective agent was used in tumor-bearing male mice. Nafamostat mesilate suppressed mechanical allodynia associated with neuropathy. It also prevented intra-epidermal nerve fiber loss and improved vascular permeability in the peripheral paws. The disruption of endothelial glycocalyx in the capillaries that lie within peripheral nerve bundles is a novel finding in OPIN. Furthermore, these findings point toward the potential of a new treatment strategy targeting endothelial glycocalyx to prevent vascular injury as an effective treatment of neuropathy as well as of many other diseases. PERSPECTIVE: OIPN damages the endothelial glycocalyx in the peripheral capillaries, increasing vascular permeability. In order to prevent OIPN, this work offers a novel therapy approach that targets endothelial glycocalyx.
Collapse
Affiliation(s)
- Takahiro Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| | - Masayoshi Shimizu
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daichi Watanabe
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Keiko Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazufumi Ohmura
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takafumi Okubo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiaki Taniguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Kanayma
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryo Kobayashi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| |
Collapse
|
18
|
Fukuda Y, Okada H, Tomita H, Suzuki K, Mori K, Takada C, Kawasaki Y, Fukuda H, Minamiyama T, Nishio A, Shimada T, Kuroda A, Uchida A, Suzuki K, Kamidani R, Kitagawa Y, Fukuta T, Miyake T, Yoshida T, Suzuki A, Tetsuka N, Yoshida S, Ogura S. Nafamostat mesylate decreases skin flap necrosis in a mouse model of type 2 diabetes by protecting the endothelial glycocalyx. Biochem Biophys Res Commun 2024; 710:149843. [PMID: 38593617 DOI: 10.1016/j.bbrc.2024.149843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
The success rate of flap tissue reconstruction has increased in recent years owing to advancements in microsurgical techniques. However, complications, such as necrosis, are still more prevalent in diabetic patients compared to non-diabetic individuals, presenting an ongoing challenge. To address this issue, many previous studies have examined vascular anastomoses dilation and stability, primarily concerning surgical techniques or drugs. In contrast, in the present study, we focused on microvascular damage of the peripheral microvessels in patients with diabetes mellitus and the preventative impact of nafamostat mesylate. Herein, we aimed to investigate the effects of hyperglycemia on glycocalyx (GCX) levels in mice with type 2 diabetes. We examined the endothelial GCX (eGCX) in skin flap tissue of 9-12-week-old type 2 diabetic mice (db/db mice) using a perforator skin flap and explored treatment with nafamostat mesylate. The growth rates were compared after 1 week. Heterotype (db/+) mice were used as the control group. Morphological examination of postoperative tissues was performed at 1, 3, 5, and 7 days post-surgery. In addition, db/db mice were treated with 30 mg/kg/day of nafamostat mesylate daily and were evaluated on postoperative day 7. Seven days after surgery, all db/db mice showed significant partial flap necrosis. Temporal observation of the skin flaps revealed a stasis-like discoloration and necrosis starting from the contralateral side of the remaining perforating branch. The control group did not exhibit flap necrosis, and the flap remained intact. In the quantitative assessment of endothelial glycans using lectins, intensity scoring showed that the eGCX in the db/db group was significantly thinner than that in the db/+ group. These results were consistent with the scanning electron microscopy findings. In contrast, treatment with nafamostat mesylate significantly improved the flap engraftment rate and suppressed eGCX injury. In conclusion, treatment with nafamostat mesylate improves the disrupted eGCX structure of skin flap tissue in db/db mice, potentially ameliorating the impaired capillary-to-venous return in the skin flap tissue.
Collapse
Affiliation(s)
- Yohei Fukuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan.
| | - Hiroyuki Tomita
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan; Department of Tumor Pathology, Gifu University Graduate School of Medicine, Japan.
| | - Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan; Department of Infection Control, Gifu University Graduate School of Medicine, Japan
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Japan
| | - Chihiro Takada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Yuki Kawasaki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Hirotsugu Fukuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Toru Minamiyama
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Ayane Nishio
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Takuto Shimada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Ayumi Kuroda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Akihiro Uchida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Keiko Suzuki
- Department of Infection Control, Gifu University Graduate School of Medicine, Japan; Department of Pharmacy, Gifu University Hospital, Japan
| | - Ryo Kamidani
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Yuichiro Kitagawa
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Tetsuya Fukuta
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Takahito Miyake
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Takahiro Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Japan
| | - Nobuyuki Tetsuka
- Department of Infection Control, Gifu University Graduate School of Medicine, Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan; Abuse Prevention Emergency Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Japan
| |
Collapse
|
19
|
Chooklin S, Chuklin S, Posivnych M, Krystopchuk S. Pathophysiological basis of hepatopulmonary syndrome. Gastroenterology 2024; 58:73-81. [DOI: 10.22141/2308-2097.58.1.2024.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Circulatory changes with increased blood flow and vasodilatation/vasoconstriction imbalance are an integral consequence of liver cirrhosis and portal hypertension and can affect the pulmonary circulation with the development of vascular disorders, with hepatopulmonary syndrome (HPS) being the most common. HPS is a serious pulmonary complication of progressive liver disease, resulting in a poor clinical prognosis. Vascular tone decrease, monocytic infiltration of pulmonary vessels, formation of intrapulmonary arteriovenous shunts, dysfunction of alveolar type II cells, destruction of the endothelial glycocalyx are important in the pathogenesis of HPS. Abnormalities of pulmonary capillaries lead to hypoxemia caused by a violation of the ventilation/perfusion ratio, diffusion disorders, and the development of arteriovenous anastomoses. Infiltration of the pulmonary vessels by monocytes is one of the key factors of HPS. This migration is facilitated by the intestinal microbiota translocation into the portal bloodstream with increased expression of proinflammatory cytokines (tumor necrosis factor α, interleukins 1, 6), leading to the activation of monocytes. Monocytes located in the pulmonary circulation promote the vasodilation through the activation of inducible nitric oxide (NO) synthase and thus NO production. This is also associated with endothelial dysfunction due to a decreased hepatic secretion of bone morphogenetic protein 9 and increased endothelin 1, endothelial overexpression of endothelin B receptors, and increased endothelial NO production. Proangiogenic factors such as vascular endothelial growth factor, platelet-derived growth factor, and placental growth factor play an important role in the proliferation of pulmonary capillaries. Circulation of tumor necrosis factor α, bile acids and monocyte infiltration in the pulmonary circulation lead to increased apoptosis of alveolar type II cells and decreased surfactant synthesis. Chronic inflammation in HPS disrupts the continuity of the endothelial glycocalyx layer. This article provides an overview of the current knowledge on the pathogenesis of HPS, summarizes many features of the disease based on the literature research in MEDLINE database on the PubMed platform.
Collapse
|
20
|
Yu Y, Zheng J, Li J, Li X, Liu Z, Yang R, Hong H, Zhang J. Serum uric acid level is associated with glomerular ischemic lesions in patients with primary membranous nephropathy: an analytical, cross-sectional study. Sci Rep 2024; 14:7457. [PMID: 38548844 PMCID: PMC10978902 DOI: 10.1038/s41598-024-57813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
To investigate the relationship between serum uric acid level and glomerular ischemic lesions (GIL) in patients with primary membranous nephropathy (PMN) and identify relevant risk factors. A total of 201 patients with PMN but normal renal function confirmed by renal biopsy executed in the Liaocheng People's Hospital, China, during January 2020-January 2023 were analyzed retrospectively. The enrolled patients were divided into a hyperuricemia group and a normal serum uric acid group (control group) according to their serum uric acid levels. Then, the participants were further divided into a non-GIL group or a GIL group based on the patient's renal biopsy results. The two groups' clinical and pathological data and meaningful indicators for differences were analyzed by binary logistic regression analysis. Additionally, the serum uric acid level prediction value on GIL was investigated using receiver operating characteristic (ROC) curves. Compared with the control group, the hyperuricemia group exhibited high serum uric acid, the prevalence of GIL, serum albumin, the prevalence of hypertension, and low-density lipoprotein cholesterol (LDL) levels (P < 0.05). Compared with the non-GIL group, the GIL group exhibited were older, had enhanced serum uric acid, serum albumin, and an increased prevalence of tubular atrophy/interstitial fibrosis (TA/IF), arteriolosclerosis, and low eGFR levels (P < 0.05). The binary logistic regression analysis revealed that the serum uric acid and the TA/IF are independent risk factors of GIL (P < 0.05). The AUC of ROC of GIL of PMN patients, predicted based on the serum uric acid concentration, was 0.736 (P < 0.05), wherein the threshold = 426.5 μmol/L and the Youden's index = 0.41. Serum uric acid concentration and the TA/IF are independent risk factors of GIL in patients with PMN, and the former exhibits prediction value on GIL in patients with PMN.
Collapse
Affiliation(s)
- Yamin Yu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Juan Zheng
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Jie Li
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Xiuzhen Li
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Zewei Liu
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Ruiheng Yang
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Hong Hong
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, People's Republic of China
| | - Junjun Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
21
|
Sallee CJ, Hippensteel JA, Miller KR, Oshima K, Pham AT, Richter RP, Belperio J, Sierra YL, Schwingshackl A, Mourani PM, Schmidt EP, Sapru A, Maddux AB. Endothelial Glycocalyx Degradation Patterns in Sepsis-Associated Pediatric Acute Respiratory Distress Syndrome: A Single Center Retrospective Observational Study. J Intensive Care Med 2024; 39:277-287. [PMID: 37670670 PMCID: PMC10845819 DOI: 10.1177/08850666231200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Sepsis-associated destruction of the pulmonary microvascular endothelial glycocalyx (EGCX) creates a vulnerable endothelial surface, contributing to the development of acute respiratory distress syndrome (ARDS). Constituents of the EGCX shed into circulation, glycosaminoglycans and proteoglycans, may serve as biomarkers of endothelial dysfunction. We sought to define the patterns of plasma EGCX degradation products in children with sepsis-associated pediatric ARDS (PARDS), and test their association with clinical outcomes. METHODS We retrospectively analyzed a prospective cohort (2018-2020) of children (≥1 month to <18 years of age) receiving invasive mechanical ventilation for acute respiratory failure for ≥72 h. Children with and without sepsis-associated PARDS were selected from the parent cohort and compared. Blood was collected at time of enrollment. Plasma glycosaminoglycan disaccharide class (heparan sulfate, chondroitin sulfate, and hyaluronan) and sulfation subtypes (heparan sulfate and chondroitin sulfate) were quantified using liquid chromatography tandem mass spectrometry. Plasma proteoglycans (syndecan-1) were measured through an immunoassay. RESULTS Among the 39 mechanically ventilated children (29 with and 10 without sepsis-associated PARDS), sepsis-associated PARDS patients demonstrated higher levels of heparan sulfate (median 639 ng/mL [interquartile range, IQR 421-902] vs 311 [IQR 228-461]) and syndecan-1 (median 146 ng/mL [IQR 32-315] vs 8 [IQR 8-50]), both p = 0.01. Heparan sulfate subtype analysis demonstrated greater proportions of N-sulfated disaccharide levels among children with sepsis-associated PARDS (p = 0.01). Increasing N-sulfated disaccharide levels by quartile were associated with severe PARDS (n = 9/29) with the highest quartile including >60% of the severe PARDS patients (test for trend, p = 0.04). Higher total heparan sulfate and N-sulfated disaccharide levels were independently associated with fewer 28-day ventilator-free days in children with sepsis-associated PARDS (all p < 0.05). CONCLUSIONS Children with sepsis-associated PARDS exhibited higher plasma levels of heparan sulfate disaccharides and syndecan-1, suggesting that EGCX degradation biomarkers may provide insights into endothelial dysfunction and PARDS pathobiology.
Collapse
Affiliation(s)
- Colin J. Sallee
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, CA, USA
| | - Joseph A. Hippensteel
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen R. Miller
- Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Kaori Oshima
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Andrew T. Pham
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert P. Richter
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - John Belperio
- Department of Medicine, Division of Pulmonary Critical Care and Sleep Medicine, David Geffen School of Medicine at University of California Los Angeles and Ronald Reagan Medical Center, Los Angeles, CA, USA
| | - Yamila L. Sierra
- Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Andreas Schwingshackl
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, CA, USA
| | - Peter M. Mourani
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Eric P. Schmidt
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Anil Sapru
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles and Mattel Children's Hospital, Los Angeles, CA, USA
| | - Aline B. Maddux
- Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
22
|
Enomoto T, Okada H, Tomita H, Iinuma K, Nakane K, Tobisawa Y, Hara A, Koie T. Glycocalyx analysis of bladder cancer: three-dimensional images in electron microscopy and vicia villosa lectin as a marker for invasiveness in frozen sections. Front Cell Dev Biol 2024; 11:1308879. [PMID: 38269087 PMCID: PMC10806140 DOI: 10.3389/fcell.2023.1308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: The abnormal glycocalyx (GCX) on the surface of cancer cells has been reported to be tall and aberrantly glycosylated and has been linked to the progression and spread of cancer-a finding also observed in bladder cancer. However, the characteristics of GCX in various types of human bladder cancer remain unknown, and herein, we aimed to provide information on the diversity of glycan components in the GCX of bladder cancers and to shed light on their characteristics. Methods: We used scanning electron microscopy and lanthanum staining to examine the surface GCX of human bladder carcinomas in three-dimensional images, showing the bulky GCX in some carcinomas. We also examined glycan alterations in early to progressive stages of bladder cancers using 20 distinct lectin stains on frozen sections from transurethral resection of bladder tumors. Results and discussion: Distinctive Vicia villosa lectin (VVL) staining was observed in invasive urothelial carcinomas, including those with muscle invasion and variant components. In the clinical setting, cancers with atypia of grades 2-3 had a significantly higher VVL scoring intensity than those with grade 1 atypia (p < 0.005). This study identified that a specific lectin, VVL, was more specific to invasive urothelial carcinomas. This lectin, which selectively binds to sites of cancer progression, is a promising target for drug delivery in future clinical investigations.
Collapse
Affiliation(s)
- Torai Enomoto
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Urology, Matsunami General Hospital, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| | - Hiroyuki Tomita
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koji Iinuma
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keita Nakane
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Tobisawa
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
23
|
Afsar B, Afsar RE. The role of glycosaminoglycans in blood pressure regulation. Microcirculation 2023; 30:e12832. [PMID: 37794746 DOI: 10.1111/micc.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Essential hypertension (HT) is the global health problem and is a major risk factor for the development of cardiovascular and kidney disease. High salt intake has been associated with HT and impaired kidney sodium excretion is considered to be a major mechanism for the development of HT. Although kidney has a very important role in regulation of BP, this traditional view of BP regulation was challenged by recent findings suggesting that nonosmotic tissue sodium deposition is very important for BP regulation. This new paradigm indicates that sodium can be stored and deposited nonosmotically in the interstitium without water retention and without increased BP. One of the major determinants of this deposition is glycosaminoglycans (GAGs). By binding to GAGs found in the endothelial surface layer (ESL) which contains glycocalyx, sodium is osmotically inactivated and not induce concurrent water retention. Thus, GAGs has important function for homeostatic BP and sodium regulation. In the current review, we summarized the role of GAGs in ESL and BP regulation.
Collapse
Affiliation(s)
- Baris Afsar
- School of Medicine, Department of Nephrology, Suleyman Demirel University, Isparta, Turkey
| | - Rengin Elsurer Afsar
- School of Medicine, Department of Nephrology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
24
|
Zhou HL, Jiang XZ, Ventikos Y. Role of blood flow in endothelial functionality: a review. Front Cell Dev Biol 2023; 11:1259280. [PMID: 37905167 PMCID: PMC10613523 DOI: 10.3389/fcell.2023.1259280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
Endothelial cells, located on the surface of blood vessel walls, are constantly stimulated by mechanical forces from the blood flow. The mechanical forces, i.e., fluid shear stress, induced by the blood flow play a pivotal role in controlling multiple physiological processes at the endothelium and in regulating various pathways that maintain homeostasis and vascular function. In this review, research looking at different blood fluid patterns and fluid shear stress in the circulation system is summarized, together with the interactions between the blood flow and the endothelial cells. This review also highlights the flow profile as a response to the configurational changes of the endothelial glycocalyx, which is less revisited in previous reviews. The role of endothelial glycocalyx in maintaining endothelium health and the strategies for the restoration of damaged endothelial glycocalyx are discussed from the perspective of the fluid shear stress. This review provides a new perspective regarding our understanding of the role that blood flow plays in regulating endothelial functionality.
Collapse
Affiliation(s)
- Hui Lin Zhou
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Xi Zhuo Jiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Yiannis Ventikos
- Department of Mechanical Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Frolov A, Lobov A, Kabilov M, Zainullina B, Tupikin A, Shishkova D, Markova V, Sinitskaya A, Grigoriev E, Markova Y, Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci 2023; 24:15032. [PMID: 37834480 PMCID: PMC10573276 DOI: 10.3390/ijms241915032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Major adverse cardiovascular events occurring upon coronary artery bypass graft surgery are typically accompanied by endothelial dysfunction. Total arterial revascularisation, which employs both left and right internal thoracic arteries instead of the saphenous vein to create a bypass, is associated with better mid- and long-term outcomes. We suggested that molecular profiles of human coronary artery endothelial cells (HCAECs) and human internal mammary artery endothelial cells (HITAECs) are coherent in terms of transcriptomic and proteomic signatures, which were then investigated by RNA sequencing and ultra-high performance liquid chromatography-mass spectrometry, respectively. Both HCAECs and HITAECs overexpressed molecules responsible for the synthesis of extracellular matrix (ECM) components, basement membrane assembly, cell-ECM adhesion, organisation of intercellular junctions, and secretion of extracellular vesicles. HCAECs were characterised by higher enrichment with molecular signatures of basement membrane construction, collagen biosynthesis and folding, and formation of intercellular junctions, whilst HITAECs were notable for augmented pro-inflammatory signaling, intensive synthesis of proteins and nitrogen compounds, and enhanced ribosome biogenesis. Despite HCAECs and HITAECs showing a certain degree of molecular heterogeneity, no specific markers at the protein level have been identified. Coherence of differentially expressed molecular categories in HCAECs and HITAECs suggests synergistic interactions between these ECs in a bypass surgery scenario.
Collapse
Affiliation(s)
- Alexey Frolov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Arseniy Lobov
- Laboratory for Regenerative Biomedicine, Research Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretskiy Prospekt, St. Petersburg 194064, Russia;
| | - Marsel Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Prospekt Akademika Lavrentieva, Novosibirsk 630090, Russia; (M.K.); (A.T.)
| | - Bozhana Zainullina
- Centre for Molecular and Cell Technologies, Research Park, Saint Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia;
| | - Alexey Tupikin
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 8 Prospekt Akademika Lavrentieva, Novosibirsk 630090, Russia; (M.K.); (A.T.)
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Anna Sinitskaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Evgeny Grigoriev
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia; (A.F.); (D.S.); (V.M.); (A.S.); (E.G.); (Y.M.)
| |
Collapse
|
26
|
Oiwa H, Okada H, Suzuki K, Sumi K, Yoshida S, Suzuki K, Ishihara T, Kitagaki H, Kimura K, Naito Y, Chiba N, Kuroda A, Uchida A, Fukuda H, Kawasaki Y, Minamiyama T, Nishio A, Shimada T, Kamidani R, Miura T, Tochibora R, Yamamoto S, Kinomura Y, Kitagawa Y, Fukuta T, Miyake T, Yoshida T, Suzuki A, Tetsuka N, Tomita H, Nawa T, Ogura S. Investigation of the relationship between intradialytic hypotension during hemodialysis and serum syndecan-1 concentration. Sci Rep 2023; 13:16753. [PMID: 37798324 PMCID: PMC10556083 DOI: 10.1038/s41598-023-44094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Intradialytic hypotension and arrhythmias are complications of hemodialysis. They are associated with decreased intravascular volume due to reduced ultrafiltration volume, cardiac function, and arterial tone. The vascular endothelial glycocalyx, which exists on the surface of healthy vascular endothelial cells and maintains vascular permeability, has been suggested to be impaired by hemodialysis. This single-center retrospective study evaluated the association between syndecan-1, an endothelial glycocalyx dysfunction marker, and complications of hemodialysis. We enrolled 92 patients who underwent outpatient hemodialysis at Gifu Seiryu Hospital from April to July 2022 (346 hemodialysis sessions). The median duration and time of hemodialysis were 40 months and 4.1 h, respectively. Median serum syndecan-1 levels were 67.7 ng/mL before and 98.3 ng/mL after hemodialysis. Hemodialysis complications were noted in 68 sessions, all of which were hypotension. No correlation between pre-hemodialysis syndecan-1 levels and the incidence of complications was observed. However, a positive correlation between the amount of change in syndecan-1 levels before and after hemodialysis and the incidence of hemodialysis complications was noted. Conversely, syndecan-1 levels did not correlate with brain or atrial natriuretic peptides, suggesting that impairment of the vascular endothelial glycocalyx may be a possible cause of intradialytic hypotension and may be useful in preventing intradialytic hypotension.
Collapse
Affiliation(s)
- Hideaki Oiwa
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Keiko Suzuki
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Kazuyuki Sumi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Abuse Prevention Emergency Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Hiroki Kitagaki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kaori Kimura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yoshihito Naito
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Naokazu Chiba
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Gifu Seiryu Hospital, Gifu, Japan
| | - Ayumi Kuroda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akihiro Uchida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Gifu Seiryu Hospital, Gifu, Japan
| | - Hirotsugu Fukuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yuki Kawasaki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toru Minamiyama
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Ayane Nishio
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takuto Shimada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Ryo Kamidani
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomotaka Miura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
- Gifu Seiryu Hospital, Gifu, Japan
| | - Ryota Tochibora
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Saori Yamamoto
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | | | - Yuichiro Kitagawa
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tetsuya Fukuta
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takahito Miyake
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takahiro Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akio Suzuki
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nobuyuki Tetsuka
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
27
|
Anand T, Reyes AA, Sjoquist MC, Magnotti L, Joseph B. Resuscitating the Endothelial Glycocalyx in Trauma and Hemorrhagic Shock. ANNALS OF SURGERY OPEN 2023; 4:e298. [PMID: 37746602 PMCID: PMC10513357 DOI: 10.1097/as9.0000000000000298] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/20/2023] [Indexed: 09/26/2023] Open
Abstract
The endothelium is lined by a protective mesh of proteins and carbohydrates called the endothelial glycocalyx (EG). This layer creates a negatively charged gel-like barrier between the vascular environment and the surface of the endothelial cell. When intact the EG serves multiple functions, including mechanotransduction, cell signaling, regulation of permeability and fluid exchange across the microvasculature, and management of cell-cell interactions. In trauma and/or hemorrhagic shock, the glycocalyx is broken down, resulting in the shedding of its individual components. The shedding of the EG is associated with increased systemic inflammation, microvascular permeability, and flow-induced vasodilation, leading to further physiologic derangements. Animal and human studies have shown that the greater the severity of the injury, the greater the degree of shedding, which is associated with poor patient outcomes. Additional studies have shown that prioritizing certain resuscitation fluids, such as plasma, cryoprecipitate, and whole blood over crystalloid shows improved outcomes in hemorrhaging patients, potentially through a decrease in EG shedding impacting downstream signaling. The purpose of the following paragraphs is to briefly describe the EG, review the impact of EG shedding and hemorrhagic shock, and begin entertaining the notion of directed resuscitation. Directed resuscitation emphasizes transitioning from macroscopic 1:1 resuscitation to efforts that focus on minimizing EG shedding and maximizing its reconstitution.
Collapse
Affiliation(s)
- Tanya Anand
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| | | | - Michael C. Sjoquist
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
| | - Louis Magnotti
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| | - Bellal Joseph
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| |
Collapse
|
28
|
Wang LJ, Feng F, Li JC, Chen TT, Liu LP. Role of heparanase in pulmonary hypertension. Front Pharmacol 2023; 14:1202676. [PMID: 37637421 PMCID: PMC10450954 DOI: 10.3389/fphar.2023.1202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a pathophysiological condition of increased pulmonary circulation vascular resistance due to various reasons, which mainly leads to right heart dysfunction and even death, especially in critically ill patients. Although drug interventions have shown some efficacy in improving the hemodynamics of PH patients, the mortality rate remains high. Hence, the identification of new targets and treatment strategies for PH is imperative. Heparanase (HPA) is an enzyme that specifically cleaves the heparan sulfate (HS) side chains in the extracellular matrix, playing critical roles in inflammation and tumorigenesis. Recent studies have indicated a close association between HPA and PH, suggesting HPA as a potential therapeutic target. This review examines the involvement of HPA in PH pathogenesis, including its effects on endothelial cells, inflammation, and coagulation. Furthermore, HPA may serve as a biomarker for diagnosing PH, and the development of HPA inhibitors holds promise as a targeted therapy for PH treatment.
Collapse
Affiliation(s)
- Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Li-Ping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
29
|
Fragkou PC, Ikonomidis I, Benas D, Kavatha D, Moschopoulos CD, Protopapas K, Kostelli G, Thymis J, Mpirmpa D, Galani I, Tsakona M, Oikonomopoulou C, Theocharous G, Gorgoulis VG, Gallos P, Tsiodras S, Antoniadou A, Papadopoulos A, Triantafyllidi H. Endothelial Glycocalyx Integrity in Treatment-Naïve People Living with HIV before and One Year after Antiretroviral Treatment Initiation. Viruses 2023; 15:1505. [PMID: 37515191 PMCID: PMC10383742 DOI: 10.3390/v15071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial glycocalyx (EG) derangement has been associated with cardiovascular disease (CVD). Studies on EG integrity among people living with HIV (PLWH), are lacking. We conducted a prospective cohort study among treatment-naïve PLWH who received emtricitabine/tenofovir alafenamide, combined with either an integrase strand transfer inhibitor (INSTI, dolutegravir, raltegravir or elvitegravir/cobicistat), or a protease inhibitor (PI, darunavir/cobicistat). We assessed EG at baseline, 24 (±4) and 48 (±4) weeks, by measuring the perfused boundary region (PBR, inversely proportional to EG thickness), in sublingual microvessels. In total, 66 consecutive PLWH (60 (90.9%) males) with a median age (interquartile range, IQR) of 37 (12) years, were enrolled. In total, 40(60.6%) received INSTI-based regimens. The mean (standard deviation) PBR decreased significantly from 2.17 (0.29) μm at baseline to 2.04 (0.26) μm (p = 0.019), and then to 1.93 (0.3) μm (p < 0.0001) at 24 (±4) and 48 (±4) weeks, respectively. PBR did not differ among treatment groups. PLWH on INSTIs had a significant PBR reduction at 48 (±4) weeks. Smokers and PLWH with low levels of viremia experienced the greatest PBR reduction. This study is the first to report the benefit of antiretroviral treatment on EG improvement in treatment-naïve PLWH and depicts a potential bedside biomarker and therapeutic target for CVD in PLWH.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care and Pulmonary Services, Evangelismos Hospital, Athens Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Ignatios Ikonomidis
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dimitrios Benas
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dimitra Kavatha
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Charalampos D Moschopoulos
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Protopapas
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Gavriella Kostelli
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - John Thymis
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dionysia Mpirmpa
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Irene Galani
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Tsakona
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Chrysanthi Oikonomopoulou
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Athens Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Athens Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Parisis Gallos
- Computational Biomedicine Laboratory, Department of Digital Systems, University of Piraeus, 18536 Piraeus, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Antonios Papadopoulos
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Helen Triantafyllidi
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
30
|
Timm S, Lettau M, Hegermann J, Rocha ML, Weidenfeld S, Fatykhova D, Gutbier B, Nouailles G, Lopez-Rodriguez E, Hocke A, Hippenstiel S, Witzenrath M, Kuebler WM, Ochs M. The unremarkable alveolar epithelial glycocalyx: a thorium dioxide-based electron microscopic comparison after heparinase or pneumolysin treatment. Histochem Cell Biol 2023:10.1007/s00418-023-02211-7. [PMID: 37386200 PMCID: PMC10387119 DOI: 10.1007/s00418-023-02211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.
Collapse
Affiliation(s)
- Sara Timm
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Marie Lettau
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany.
| | - Jan Hegermann
- Research Core Unit Electron Microscopy and Institute of Functional and Applied Anatomy, Hannover Medical School, 30625, Hannover, Germany
| | - Maria Linda Rocha
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
- Institute of Pathology, Vivantes Klinikum im Friedrichshain, 10249, Berlin, Germany
| | - Sarah Weidenfeld
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
| | - Andreas Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Matthias Ochs
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| |
Collapse
|
31
|
Lee B, Shin HJ, Kweon KH, Kim NY. Effect of sevoflurane-remifentanil and propofol-remifentanil anesthesia on glycocalyx shedding during deep inferior epigastric perforator flap breast reconstruction: a prospective randomized, controlled trial. Anesth Pain Med (Seoul) 2023; 18:148-158. [PMID: 37183283 PMCID: PMC10183613 DOI: 10.17085/apm.22240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/26/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND The endothelial glycocalyx (EG) is an important structure that regulates vascular homeostasis. Deep inferior epigastric perforator (DIEP) flap is expected to cause substantial EG breakdown owing to the long procedural duration and ischemia- reperfusion injury. This prospective, randomized, controlled study aimed to compare syndecan-1 levels during sevoflurane-remifentanil and propofol-remifentanil anesthesia in patients who underwent DIEP flap breast reconstruction. METHODS Fifty-one patients were randomized to either sevoflurane (n = 26) or propofol (n = 25) groups. Anesthesia was maintained with remifentanil in combination with either sevoflurane or propofol. The primary endpoint was the concentration of serum syndecan-1 measured at 1 h after surgery. RESULTS Fifty patients (98.0%) completed the study. Patients in the propofol group had significantly lower levels of syndecan-1 than patients in the sevoflurane group at 1 h after operation (23.8 ± 1.6 vs. 30.9 ± 1.7 ng/ml, respectively; Bonferroni corrected P = 0.012). There were no significant differences between groups in postoperative complications. The postoperative hospital stay was 8.4 ± 2.5 days in the sevoflurane group and 7.4 ± 1.0 days in the propofol group (P = 0.077). CONCLUSIONS Propofol-remifentanil anesthesia resulted in lesser increases in syndecan-1 levels compared to increases with sevoflurane-remifentanil anesthesia in patients who underwent DIEP flap reconstruction. Our results suggest that propofol-remifentanil anesthesia shows protective effects against EG damage during DIEP flap breast reconstruction in contrast to sevoflurane-remifentanil anesthesia.
Collapse
Affiliation(s)
- Bahn Lee
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jung Shin
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Hong Kweon
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Na Young Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Hanafy AS, Steinlein P, Pitsch J, Silva MH, Vana N, Becker AJ, Graham ME, Schoch S, Lamprecht A, Dietrich D. Subcellular analysis of blood-brain barrier function by micro-impalement of vessels in acute brain slices. Nat Commun 2023; 14:481. [PMID: 36717572 PMCID: PMC9886996 DOI: 10.1038/s41467-023-36070-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
The blood-brain barrier (BBB) is a tightly and actively regulated vascular barrier. Answering fundamental biological and translational questions about the BBB with currently available approaches is hampered by a trade-off between accessibility and biological validity. We report an approach combining micropipette-based local perfusion of capillaries in acute brain slices with multiphoton microscopy. Micro-perfusion offers control over the luminal solution and allows application of molecules and drug delivery systems, whereas the bath solution defines the extracellular milieu in the brain parenchyma. Here we show, that this combination allows monitoring of BBB transport at the cellular level, visualization of BBB permeation of cells and molecules in real-time and resolves subcellular details of the neurovascular unit. In combination with electrophysiology, it permits comparison of drug effects on neuronal activity following luminal versus parenchymal application. We further apply micro-perfusion to the human and mouse BBB of epileptic hippocampi highlighting its utility for translational research and analysis of therapeutic strategies.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Pia Steinlein
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Julika Pitsch
- Section for Translational Epilepsy Research, Dept. of Neuropathology, University Hospital Bonn, Bonn, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Mariella Hurtado Silva
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Natascha Vana
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Dept. of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Mark Evan Graham
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Sydney, Australia
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Dept. of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
33
|
Suzuki K, Miura T, Okada H. The endothelial glycocalyx-All the same? No, it is not. Acute Med Surg 2023; 10:e896. [PMID: 37808968 PMCID: PMC10551284 DOI: 10.1002/ams2.896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
The endothelial glycocalyx covers the lumen of blood vessels throughout the body and plays an important role in endothelial homeostasis. Advances in electron microscopy techniques have provided clues to better understand the structure and composition of identical vascular endothelial glycocalyx. The morphology and thickness of the endothelial glycocalyx differ from organ to organ. The content of the endothelial glycocalyx covering the vascular lumen differs even in the brain, heart, and lungs, which have the same continuous capillaries. Various types of inflammation are known to attenuate the endothelial glycocalyx; however, we found that the morphology of the glycocalyx damaged by acute inflammation differed from that damaged by chronic inflammation. Acute inflammation breaks the endothelial glycocalyx unevenly, whereas chronic inflammation leads to the overall shortening of the endothelial glycocalyx. The same drug has different effects on the endothelial glycocalyx, depending on the location of the target blood vessels. This difference in response may reflect not only the size and shape of the endothelial glycocalyx but also the different constituents. In the cardiac tissue, the expression of glypican-1, a core protein of the endothelial glycocalyx, was enhanced. By contrast, in the pulmonary tissue, the expression of heparan sulfate 6-O-sulfotransferase 1 and endothelial cell-specific molecule-1 significantly increased in the treatment group compared with that in the no-treatment group. In this review, we present the latest findings on the evolution of the vascular endothelial glycocalyx and consider the microstructural differences.
Collapse
Affiliation(s)
- Kodai Suzuki
- Department of Emergency and Disaster MedicineGifu University Graduate School of MedicineGifuJapan
- Department of Infection ControlGifu University Graduate School of MedicineGifuJapan
| | - Tomotaka Miura
- Department of Emergency and Disaster MedicineGifu University Graduate School of MedicineGifuJapan
| | - Hideshi Okada
- Department of Emergency and Disaster MedicineGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational ResearchGifu University Institute for Advanced StudyGifuJapan
| |
Collapse
|
34
|
Kakino Y, Doi T, Okada H, Suzuki K, Takada C, Tomita H, Asano H, Kano S, Wakayama Y, Okuda T, Fukuda H, Nishio A, Kawasaki Y, Kuroda A, Shimada T, Takashima S, Suzuki K, Yoshimura G, Kamidani R, Yasuda R, Fukuta T, Kitagawa Y, Okamoto H, Miyake T, Suzuki A, Yoshida T, Tetsuka N, Yoshida S, Ogura S. Recombinant thrombomodulin may protect cardiac capillary endothelial glycocalyx through promoting Glypican-1 expression under experimental endotoxemia. Heliyon 2022; 8:e11262. [PMID: 36353180 PMCID: PMC9637643 DOI: 10.1016/j.heliyon.2022.e11262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Myocardial dysfunction occurs in patients with sepsis due to vascular endothelial injury. Recombinant human thrombomodulin (rhTM) attenuates vascular endothelial injuries through endothelial glycocalyx (eGC) protection. Hypothesis We hypothesized that rhTM attenuates myocardial dysfunction via the inhibition of vascular endothelial injury during sepsis. Methods Ten-week-old male C57BL6 mice were injected intraperitoneally with 20 mg/kg of lipopolysaccharide (LPS). In rhTM-treated mice, rhTM was injected intraperitoneally at 3 and 24 h after LPS injection. Saline was injected intraperitoneally as control. To assess for eGC injury, intensity score was measured 48 h after the LPS injection. To confirm vascular endothelial injuries, ultrastructural analysis was performed using scanning (SEM) and transmission electron microscopy (TEM). Results The survival rate of the rhTM group at 48 h after LPS injection was significantly higher than that of the control group (68% vs. 17%, p < 0.05). The serum level of troponin I in the rhTM group was lower than that in the control (2.2 ± 0.4 ng/dL vs 9.4 ± 1.1 ng/dL, p < 0.05). The expression of interleukin-6 (IL-6) was attenuated in the rhTM-treated group than in the control (65.3 ± 15.3 ng/mL vs 226.3 ± 19.4 ng/mL, p < 0.05). The serum concentration of syndecan-1, a marker of glycocalyx damage, was significantly decreased 48 h post-administration of LPS in the rhTM-treated group than in the control group. In ultrastructural analysis using SEM and TEM, eGC peeled off from the surface of the capillary lumen in the control. Conversely, the eGC injury was attenuated in the rhTM group. Gene set enrichment analysis revealed that osteomodulin, osteoglycin proline/arginine-rich end leucine-rich repeat protein, and glypican-1, which are proteoglycans, were preserved by rhTM treatment. Their protein expression was retained in endothelial cells. Conclusion rhTM attenuates sepsis-induced myocardial dysfunction via eGC protection.
Collapse
Affiliation(s)
- Yoshinori Kakino
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Corresponding author.
| | - Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chihiro Takada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirotaka Asano
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Soichiro Kano
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yugo Wakayama
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoki Okuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirotsugu Fukuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayane Nishio
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Kawasaki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Kuroda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuto Shimada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Keiko Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Genki Yoshimura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryo Kamidani
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryu Yasuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tetsuya Fukuta
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuichiro Kitagawa
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Haruka Okamoto
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahito Miyake
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Takahiro Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nobuyuki Tetsuka
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Abuse Prevention Center, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
35
|
Suzuki K, Okada H, Sumi K, Tomita H, Kobayashi R, Ishihara T, Mizuno Y, Yamaji F, Kamidani R, Miura T, Yasuda R, Kitagawa Y, Fukuta T, Suzuki K, Miyake T, Kanda N, Doi T, Yoshida T, Yoshida S, Tetsuka N, Ogura S, Suzuki A. Syndecan-1 as a severity biomarker for patients with trauma. Front Med (Lausanne) 2022; 9:985955. [PMID: 36237551 PMCID: PMC9550865 DOI: 10.3389/fmed.2022.985955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Tissue injury and hemorrhage induced by trauma lead to degradation of the endothelial glycocalyx, causing syndecan-1 (SDC-1) to be shed into the blood. In this study, we investigated whether serum SDC-1 is useful for evaluating trauma severity in patients. A single-center, retrospective, observational study was conducted at Gifu University Hospital. Patients transported to the emergency room for trauma and subsequently admitted to the intensive care unit from January 2019 to December 2021 were enrolled. A linear regression model was constructed to evaluate the association of serum SDC-1 with injury severity score (ISS) and probability of survival (Ps). A total of 76 trauma patients (54 men and 22 women) were analyzed. ISS was significantly associated with serum SDC-1 level in trauma patients. Among the six body regions defined in the AIS used to calculate the ISS score, “chest” and “abdominal or pelvic contents” were significantly associated with serum SDC-1 level, and “extremities or pelvic girdle” also tended to show an association with serum SDC-1 level. Moreover, increasing serum SDC-1 level was significantly correlated with decreasing Ps. Serum SDC-1 may be a useful biomarker for monitoring the severity of trauma in patients. Further large-scale studies are warranted to verify these results.
Collapse
Affiliation(s)
- Keiko Suzuki
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Hideshi Okada
| | - Kazuyuki Sumi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryo Kobayashi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
- Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Yosuke Mizuno
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fuminori Yamaji
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryo Kamidani
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomotaka Miura
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryu Yasuda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuichiro Kitagawa
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tetsuya Fukuta
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahito Miyake
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Norihide Kanda
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiro Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shozo Yoshida
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Abuse Prevention Emergency Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Nobuyuki Tetsuka
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
- Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
- *Correspondence: Akio Suzuki
| |
Collapse
|
36
|
Tomita H, Suzuki K, Komatsu M, Okada H. Editorial: Vascular Endothelial Glycocalyx in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:952022. [PMID: 35845081 PMCID: PMC9284031 DOI: 10.3389/fcvm.2022.952022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
- *Correspondence: Hiroyuki Tomita /0000-0002-3291-0274
| | - Kodai Suzuki
- Department of Surgery, Columbia University, New York, NY, United States
| | - Masanobu Komatsu
- Department of Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Hideshi Okada /0000-0002-7775-4308
| |
Collapse
|