1
|
Schwarz EM, Noon JB, Chicca JD, Garceau C, Li H, Antoshechkin I, Ilík V, Pafčo B, Weeks AM, Homan EJ, Ostroff GR, Aroian RV. Hookworm genes encoding intestinal excreted-secreted proteins are transcriptionally upregulated in response to the host's immune system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636063. [PMID: 39975173 PMCID: PMC11838427 DOI: 10.1101/2025.02.01.636063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hookworms are intestinal parasitic nematodes that chronically infect ~500 million people, with reinfection common even after clearance by drugs. How infecting hookworms successfully overcome host protective mechanisms is unclear, but it may involve hookworm proteins that digest host tissues, or counteract the host's immune system, or both. To find such proteins in the zoonotic hookworm Ancylostoma ceylanicum, we identified hookworm genes encoding excreted-secreted (ES) proteins, hookworm genes preferentially expressed in the hookworm intestine, and hookworm genes whose transcription is stimulated by the host immune system. We collected ES proteins from adult hookworms harvested from hamsters; mass spectrometry identified 565 A. ceylanicum genes encoding ES proteins. We also used RNA-seq to identify A. ceylanicum genes expressed both in young adults (12 days post-infection) and in intestinal and non-intestinal tissues dissected from mature adults (19 days post-infection), with hamster hosts that either had normal immune systems or were immunosuppressed by dexamethasone. In adult A. ceylanicum, we observed 1,670 and 1,196 genes with intestine- and non-intestine-biased expression, respectively. Comparing hookworm gene activity in normal versus immunosuppressed hosts, we observed almost no changes of gene activity in 12-day young adults or non-intestinal 19-day adult tissues. However, in intestinal 19-day adult tissues, we observed 1,951 positively immunoregulated genes (upregulated at least two-fold in normal hosts versus immunosuppressed hosts), and 137 genes that were negatively immunoregulated. Thus, immunoregulation was observed primarily in mature adult hookworm intestine directly exposed to host blood; it may include hookworm genes activated in response to the host immune system in order to neutralize the host immune system. We observed 153 ES genes showing positive immunoregulation in 19-day adult intestine; of these genes, 69 had ES gene homologs in the closely related hookworm Ancylostoma caninum, 24 in the human hookworm Necator americanus, and 24 in the more distantly related strongylid parasite Haemonchus contortus. Such a mixture of rapidly evolving and conserved genes could comprise virulence factors enabling infection, provide new targets for drugs or vaccines against hookworm, and aid in developing therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Erich M. Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jason B. Noon
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey D. Chicca
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Cellular and Molecular Biology Graduate Program, University of Wisconsin, 413 Bock Labs, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Carli Garceau
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Current address: Leveragen Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Amy M. Weeks
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - E. Jane Homan
- ioGenetics LLC, 301 South Bedford Street, Ste.1, Madison, WI, 53703, USA
| | - Gary R. Ostroff
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
2
|
Chile N, Bernal-Teran EG, Condori BJ, Clark T, Garcia HH, Gilman RH, Verastegui MR. Characterization of antigenic proteins of the Taenia solium postoncospheral form. Mol Biochem Parasitol 2024; 259:111621. [PMID: 38705360 PMCID: PMC11197303 DOI: 10.1016/j.molbiopara.2024.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Neurocysticercosis is the leading cause for acquired epilepsy worldwide, and it is caused by the larval stage of the parasite Taenia solium. Several proteins of this stage have been characterized and studied to understand the parasite-host interaction, however, the proteins from the early cysticercus stages (the postoncospheral form) have not yet been characterized. The study of the postoncospheral form proteins is important to understand the host-parasite relationship in the early stages of infection. The aim of this work was to identify postoncospheral form antigenic proteins using sera from neurocysticercosis patients. T. solium activated oncospheres were cultured in HCT-8 cells to obtain the postoncospheral form. Soluble total and excretory/secretory proteins were obtained from the postoncospheral form and were incubated with both pool sera and individual serum of neurocysticercosis positive human patients. Immunoblotting showed target antigenic proteins with apparent molecular weights of 23 kDa and 46-48 kDa. The 46-48 kDa antigen bands present in soluble total and excretory/secretory postoncospheral form proteins were analyzed by LC-MS/MS; proteins identified were: nuclear elongation factor 1 alpha, enolase, unnamed protein product/antigen diagnostic GP50, calcium binding protein calreticulin precursor and annexin. The postoncospheral form expresses proteins related to interaction with the host, some of these proteins are predicted to be exosomal proteins. In conclusion, postoncospheral proteins are consistent targets of the humoral immune response in human and may serve as targets for diagnosis and vaccines.
Collapse
Affiliation(s)
- Nancy Chile
- Laboratorio de Investigación de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú.
| | - Edson G Bernal-Teran
- Laboratorio de Investigación de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Beth J Condori
- Laboratorio de Investigación de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Taryn Clark
- Department of Emergency Medicine, SUNY Downstate Medical Center/Kings County Hospital Medical Center, Brooklyn, NY, USA; Department of International Health, Bloomberg School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Hector H Garcia
- Instituto Nacional de Ciencias Neurológicas. Unidad de Cisticercosis. Lima, Perú
| | - Robert H Gilman
- Department of International Health, Bloomberg School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Manuela R Verastegui
- Laboratorio de Investigación de Enfermedades Infecciosas. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
3
|
O'Kelly E, Cwiklinski K, De Marco Verissimo C, Calvani NED, López Corrales J, Jewhurst H, Flaus A, Lalor R, Serrat J, Dalton JP, González-Miguel J. Moonlighting on the Fasciola hepatica tegument: Enolase, a glycolytic enzyme, interacts with the extracellular matrix and fibrinolytic system of the host. PLoS Negl Trop Dis 2024; 18:e0012069. [PMID: 39213442 PMCID: PMC11392403 DOI: 10.1371/journal.pntd.0012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Enolase is a 47 kDa enzyme that functions within the glycolysis and gluconeogenesis pathways involved in the reversible conversion of D-2-phosphoglycerate (2PGA) to phosphoenolpyruvate (PEP). However, in the context of host-pathogen interactions, enolase from different species of parasites, fungi and bacteria have been shown to contribute to adhesion processes by binding to proteins of the host extracellular matrix (ECM), such as fibronectin (FN) or laminin (LM). In addition, enolase is a plasminogen (PLG)-binding protein and induces its activation to plasmin, the main protease of the host fibrinolytic system. These secondary 'moonlighting' functions of enolase are suggested to facilitate pathogen migration through host tissues. This study aims to uncover the moonlighting role of enolase from the parasite Fasciola hepatica, shedding light on its relevance to host-parasite interactions in fasciolosis, a global zoonotic disease of increasing concern. A purified recombinant form of F. hepatica enolase (rFhENO), functioning as an active homodimeric glycolytic enzyme of ~94 kDa, was successfully obtained, fulfilling its canonical role. Immunoblotting studies on adult worm extracts showed that the enzyme is present in the tegument and the excretory/secretory products of the parasite, which supports its key role at the host-parasite interface. Confocal immunolocalisation studies of the protein in newly excysted juveniles and adult worms also localised its expression within the parasite tegument. Finally, we showed by ELISA that rFhENO can act as a parasitic adhesin by binding host LM, but not FN. rFhENO also binds PLG and enhances its conversion to plasmin in the presence of the tissue-type and urokinase-type PLG activators (t-PA and u-PA). This moonlighting adhesion-like function of the glycolytic protein enolase could contribute to the mechanisms by which F. hepatica efficiently invades and migrates within its host and encourages further research efforts that are designed to impede this function by vaccination or drug design.
Collapse
Affiliation(s)
- Eve O'Kelly
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | | | | | - Jesús López Corrales
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Heather Jewhurst
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Andrew Flaus
- Centre for Chromosome Biology, School of Natural Science, University of Galway, H91 TK33 Galway, Ireland
| | - Richard Lalor
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - John P Dalton
- Molecular Parasitology Laboratory, University of Galway, Galway, Republic of Ireland
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
4
|
Tiberti N, Manfredi M, Piubelli C, Buonfrate D. Progresses and challenges in Strongyloides spp. proteomics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220447. [PMID: 38008115 PMCID: PMC10676815 DOI: 10.1098/rstb.2022.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 11/28/2023] Open
Abstract
The availability of high-quality data of helminth genomes provided over the past two decades has supported and accelerated large-scale 'omics studies and, consequently, the achievement of a more in-depth molecular characterization of a number of pathogens. This has also involved Strongyloides spp. and since their genome was made available transcriptomics has been rather frequently applied to investigate gene expression regulation across their life cycle. Strongyloides proteomics characterization has instead been somehow neglected, with only a few reports performing high-throughput or targeted analyses associated with protein identification by tandem mass spectrometry. Such investigations are however necessary in order to discern important aspects associated with human strongyloidiasis, including understanding parasite biology and the mechanisms of host-parasite interaction, but also to identify novel diagnostic and therapeutic targets. In this review article, we will give an overview of the published proteomics studies investigating strongyloidiasis at different levels, spanning from the characterization of the somatic proteome and excretory/secretory products of different parasite stages to the investigation of potentially immunogenic proteins. Moreover, in the effort to try to start filling the current gap in host-proteomics, we will also present the first serum proteomics analysis in patients suffering from human strongyloidiasis. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| | - Dora Buonfrate
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| |
Collapse
|
5
|
Ancarola ME, Maldonado LL, García LCA, Franchini GR, Mourglia-Ettlin G, Kamenetzky L, Cucher MA. A Comparative Analysis of the Protein Cargo of Extracellular Vesicles from Helminth Parasites. Life (Basel) 2023; 13:2286. [PMID: 38137887 PMCID: PMC10744797 DOI: 10.3390/life13122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Helminth parasites cause debilitating-sometimes fatal-diseases in humans and animals. Despite their impact on global health, mechanisms underlying host-parasite interactions are still poorly understood. One such mechanism involves the exchange of extracellular vesicles (EVs), which are membrane-enclosed subcellular nanoparticles. To date, EV secretion has been studied in helminth parasites, including EV protein content. However, information is highly heterogeneous, since it was generated in multiple species, using varied protocols for EV isolation and data analysis. Here, we compared the protein cargo of helminth EVs to identify common markers for each taxon. For this, we integrated published proteomic data and performed a comparative analysis through an orthology approach. Overall, only three proteins were common in the EVs of the seven analyzed species. Additionally, varied repertoires of proteins with moonlighting activity, vaccine antigens, canonical and non-canonical proteins related to EV biogenesis, taxon-specific proteins of unknown function and RNA-binding proteins were observed in platyhelminth and nematode EVs. Despite the lack of consensus on EV isolation protocols and protein annotation, several proteins were shown to be consistently detected in EV preparations from organisms at different taxa levels, providing a starting point for a selective biochemical characterization.
Collapse
Affiliation(s)
- María Eugenia Ancarola
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Lucas L. Maldonado
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073, Argentina
| | - Lucía C. A. García
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Gisela R. Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), La Plata B1900, Argentina;
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| | - Laura Kamenetzky
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina;
| | - Marcela A. Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| |
Collapse
|
6
|
Haque MS, Islam MS, You MJ. Efficacy of recombinant enolase as a candidate vaccine against Haemaphysalis longicornis tick infestation in mice. PARASITES, HOSTS AND DISEASES 2023; 61:439-448. [PMID: 38043539 PMCID: PMC10693968 DOI: 10.3347/phd.23075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
Tick infestation causes a significant threat to human and animal health, requiring effective immunological control methods. This study aimed to investigate the potential of recombinant Haemaphysalis longicornis enolase protein for tick vaccine development. The exact mechanism of the recently identified enolase protein from the H. longicornis Jeju strain remains poorly understood. Enolase plays a crucial role in glycolysis, the metabolic process that converts glucose into energy, and is essential for the motility, adhesion, invasion, growth, and differentiation of ticks. In this study, mice were immunized with recombinant enolase, and polyclonal antibodies were generated. Western blot analysis confirmed the specific recognition of enolase by the antiserum. The effects of immunization on tick feeding and attachment were assessed. Adult ticks attached to the recombinant enolase-immunized mice demonstrated longer attachment time, increased blood-sucking abilities, and lower engorgement weight than the controls. The nymphs and larvae had a reduced attachment rate and low engorgement rate compared to the controls. Mice immunized with recombinant enolase expressed in Escherichia coli displayed 90% efficacy in preventing tick infestation. The glycolytic nature of enolase and its involvement in crucial physiological processes makes it an attractive target for disrupting tick survival and disease transmission. Polyclonal antibodies recognize enolase and significantly reduce attachment rates, tick feeding, and engorgement. Our findings indicate that recombinant enolase may be a valuable vaccine candidate for H. longicornis infection in experimental murine model.
Collapse
Affiliation(s)
- Md. Samiul Haque
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Center, Jeonbuk National University, Specialized Campus, Iksan 54596, Korea
| | - Mohammad Saiful Islam
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Center, Jeonbuk National University, Specialized Campus, Iksan 54596, Korea
- Department of Medicine Surgery & Obstetrics, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200,
Bangladesh
| | - Myung-Jo You
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Center, Jeonbuk National University, Specialized Campus, Iksan 54596, Korea
| |
Collapse
|
7
|
In silico design of a polypeptide as a vaccine candidate against ascariasis. Sci Rep 2023; 13:3504. [PMID: 36864139 PMCID: PMC9981566 DOI: 10.1038/s41598-023-30445-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Ascariasis is the most prevalent zoonotic helminthic disease worldwide, and is responsible for nutritional deficiencies, particularly hindering the physical and neurological development of children. The appearance of anthelmintic resistance in Ascaris is a risk for the target of eliminating ascariasis as a public health problem by 2030 set by the World Health Organisation. The development of a vaccine could be key to achieving this target. Here we have applied an in silico approach to design a multi-epitope polypeptide that contains T-cell and B-cell epitopes of reported novel potential vaccination targets, alongside epitopes from established vaccination candidates. An artificial toll-like receptor-4 (TLR4) adjuvant (RS09) was added to improve immunogenicity. The constructed peptide was found to be non-allergic, non-toxic, with adequate antigenic and physicochemical characteristics, such as solubility and potential expression in Escherichia coli. A tertiary structure of the polypeptide was used to predict the presence of discontinuous B-cell epitopes and to confirm the molecular binding stability with TLR2 and TLR4 molecules. Immune simulations predicted an increase in B-cell and T-cell immune response after injection. This polypeptide can now be validated experimentally and compared to other vaccine candidates to assess its possible impact in human health.
Collapse
|
8
|
Wong MTJ, Anuar NS, Noordin R, Tye GJ. Soil-transmitted helminthic vaccines: Where are we now? Acta Trop 2023; 239:106796. [PMID: 36586174 DOI: 10.1016/j.actatropica.2022.106796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
It has been tested and proven that vaccination is still the best strategy to combat infectious diseases. However, to date, there are still no vaccines against human soil-transmitted helminthic diseases, despite their high prevalence globally, particularly in developing countries and rural areas with tropical climates and poor sanitation. The development of vaccines against helminths is riddled with obstacles. Helminths have a complex life cycle, multiple stages within the same host with stage-specific antigen expression, and the ability to regulate host immune reactions to evade the immune response. These elements contribute to the main challenge of helminthic vaccines: the identification of effective vaccine candidates. Therefore, this article reviews the current progress and potential future direction of soil-transmitted helminthic vaccines, particularly against Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. The study design employed was a systematic review, using qualitative meta-summary synthesis. Preclinical studies and clinical trials on the development of protein subunit vaccines against the five soil-transmitted helminths were searched on PubMed and Scopus. Effectiveness was indicated by a reduction in worm burden or larval output, an increase in specific IgG levels, or an increase in cytokine production. Our findings show that only the hookworm vaccine against N. americanus is in the clinical trial phase, while the rest is still in exploratory research and pre-clinical development phase.
Collapse
Affiliation(s)
- Matthew Tze Jian Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Nor Suhada Anuar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia.
| |
Collapse
|
9
|
Tandon R, Reyaz E, Roshanara, Jadhav M, Gandhi M, Dey R, Salotra P, Nakhasi HL, Selvapandiyan A. Identification of protein biomarkers of attenuation and immunogenicity of centrin or p27 gene deleted live vaccine candidates of Leishmania against visceral leishmaniasis. Parasitol Int 2022; 92:102661. [PMID: 36049661 DOI: 10.1016/j.parint.2022.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/08/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Currently, no licensed vaccine is available for human visceral leishmaniasis (VL), a fatal disease caused by the protozoan parasite Leishmania donovani. Two of our live attenuated L. donovani vaccine candidates, either deleted for Centrin1 (LdCen1-/-) or p27 gene (Ldp27-/-), that display reduced growth in macrophages were studied to be safe, immunogenic and protective against VL in various animal models. This report involves the identification of differentially expressed proteins, their related pathways and its underlying mechanism in the intracellular stage of these parasites, using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) methods. Out of 50-60 proteins, found to be differentially expressed in these mutant parasites, 36 were found to be common in both the parasites. Such proteins mainly belong to the functional categories viz. metabolic enzymes, chaperones and stress proteins, proteins involved in translation, processing and transport and proteins involved in nucleic acid processing. Proteins known to be host protective, like Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cytochrome c, calreticulin and those responsible for inducing immune response, namely tubulins, DEAD box RNA helicases, HSP70 and tryparedoxin, have been detected to be modulated in these parasites. Such proteins could be predicted as biomarkers, with further scope of study for their role in growth attenuation. SIGNIFICANCE: This study aims at predicting proteomic biomarkers of Leishmania parasite growth attenuation, that have immunomodulatory role in the disease leishmaniasis. Advanced studies could be helpful in establishing the role of these identified proteins in parasitic virulence and to predict the host interaction at molecular level. Also, these proteins could be exploited as attenuation markers during the development of genetically modified live attenuated parasites as vaccine candidates. These could be cross validated in varied species of Leishmania and other tyrpanosomatids for similar response towards identifying them as universal biomarkers of attenuation.
Collapse
Affiliation(s)
- Rati Tandon
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Enam Reyaz
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Roshanara
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Manali Jadhav
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mayuri Gandhi
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Poonam Salotra
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi 110029, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Angamuthu Selvapandiyan
- JH-Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Diaz-Hernandez A, Gonzalez-Vazquez MC, Arce-Fonseca M, Rodríguez-Morales O, Cedillo-Ramirez ML, Carabarin-Lima A. Consensus Enolase of Trypanosoma Cruzi: Evaluation of Their Immunogenic Properties Using a Bioinformatics Approach. Life (Basel) 2022; 12:life12050746. [PMID: 35629412 PMCID: PMC9148029 DOI: 10.3390/life12050746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
There is currently no vaccine against American trypanosomiasis, caused by the parasite Trypanosoma cruzi. This is due to the genomic variation observed in the six DTUs of T. cruzi. This work aims to propose a consensus sequence of the enolase protein from different strains of T. cruzi and mainly evaluate its immunogenic properties at the bioinformatic level. From specialized databases, 15 sequences of the enolase gene were aligned to obtain a consensus sequence, where this sequence was modeled and then evaluated and validated through different bioinformatic programs to learn their immunogenic potential. Finally, chimeric peptides were designed with the most representative epitopes. The results showed high immunogenic potential with six epitopes for MHC-I, and seven epitopes for MHC-II, all of which were highly representative of the enolase present in strains from the American continent as well as five epitopes for B cells. Regarding the computational modeling, molecular docking with Toll-like receptors showed a high affinity and low constant of dissociation, which could lead to an innate-type immune response that helps to eliminate the parasite. In conclusion, the consensus sequence proposed for enolase is capable of providing an ideal immune response; however, the experimental evaluation of this enolase consensus and their chimeric peptides should be a high priority to develop a vaccine against Chagas disease.
Collapse
Affiliation(s)
- Alejandro Diaz-Hernandez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 14 Sury Avenida San Claudio, Ciudad Universitaria, Puebla 72570, Mexico; (A.D.-H.); (M.L.C.-R.)
| | - Maria Cristina Gonzalez-Vazquez
- Herbario y Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico;
| | - Minerva Arce-Fonseca
- Departamento de Biología Molecular, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, México City 14080, Mexico; (M.A.-F.); (O.R.-M.)
| | - Olivia Rodríguez-Morales
- Departamento de Biología Molecular, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, México City 14080, Mexico; (M.A.-F.); (O.R.-M.)
| | - Maria Lilia Cedillo-Ramirez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 14 Sury Avenida San Claudio, Ciudad Universitaria, Puebla 72570, Mexico; (A.D.-H.); (M.L.C.-R.)
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 14 Sury Avenida San Claudio, Ciudad Universitaria, Puebla 72570, Mexico; (A.D.-H.); (M.L.C.-R.)
- Correspondence: ; Tel.: +52-222-2295-500 (ext. 3965)
| |
Collapse
|
11
|
Gazzinelli-Guimarães AC, Nogueira DS, Amorim CCO, Oliveira FMS, Coqueiro-Dos-Santos A, Carvalho SAP, Kraemer L, Barbosa FS, Fraga VG, Santos FV, de Castro JC, Russo RC, Akamatsu MA, Ho PL, Bottazzi ME, Hotez PJ, Zhan B, Bartholomeu DC, Bueno LL, Fujiwara RT. ASCVac-1, a Multi-Peptide Chimeric Vaccine, Protects Mice Against Ascaris suum Infection. Front Immunol 2021; 12:788185. [PMID: 34992603 PMCID: PMC8724438 DOI: 10.3389/fimmu.2021.788185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
Control of human ascariasis, the most prevalent neglected tropical disease globally affecting 450 million people, mostly relies on mass drug administration of anthelmintics. However, chemotherapy alone is not efficient due to the high re-infection rate for people who live in the endemic area. The development of a vaccine that reduces the intensity of infection and maintains lower morbidity should be the primary target for infection control. Previously, our group demonstrated that immunization with crude Ascaris antigens in mice induced an IgG-mediated protective response with significant worm reduction. Here, we aimed to develop a multipeptide chimera vaccine based on conserved B-cell epitopes predicted from 17 common helminth proteomes using a bioinformatics algorithm. More than 480 B-cell epitopes were identified that are conserved in all 17 helminths. The Ascaris-specific epitopes were selected based on their reactivity to the pooled sera of mice immunized with Ascaris crude antigens or infected three times with A. suum infective eggs. The top 35 peptides with the strongest reactivity to Ascaris immune serum were selected to construct a chimeric antigen connected in sequence based on conformation. This chimera, called ASCVac-1, was produced as a soluble recombinant protein in an Escherichia coli expression system and, formulated with MPLA, was used to immunize mice. Mice immunized with ASCVac-1/MPLA showed around 50% reduced larvae production in the lungs after being challenged with A. suum infective eggs, along with significantly reduced inflammation and lung tissue/function damage. The reduced parasite count and pathology in infected lungs were associated with strong Th2 immune responses characterized by the high titers of antigen-specific IgG and its subclasses (IgG1, IgG2a, and IgG3) in the sera and significantly increased IL-4, IL-5, IL-13 levels in lung tissues. The reduced IL-33 titers and stimulated eosinophils were also observed in lung tissues and may also contribute to the ASCVac-1-induced protection. Taken together, the preclinical trial with ASCVac-1 chimera in a mouse model demonstrated its significant vaccine efficacy associated with strong IgG-based Th2 responses, without IgE induction, thus reducing the risk of an allergic response. All results suggest that the multiepitope-based ASCVac-1 chimera is a promising vaccine candidate against Ascaris sp. infections.
Collapse
Affiliation(s)
| | - Denise Silva Nogueira
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | - Lucas Kraemer
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Vanessa Gomes Fraga
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira Santos
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Remo Castro Russo
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Milena Apetito Akamatsu
- BioIndustrial Division, Butantan Institute, Sao Paulo Secretary of Health, São Paulo, Brazil
| | - Paulo Lee Ho
- BioIndustrial Division, Butantan Institute, Sao Paulo Secretary of Health, São Paulo, Brazil
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Lilian Lacerda Bueno
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Ricardo Toshio Fujiwara,
| |
Collapse
|
12
|
Kischkel B, Boniche-Alfaro C, Menezes IDG, Rossi SA, Angeli CB, de Almeida SR, Palmisano G, Lopes-Bezerra L, Nosanchuk JD, Taborda CP. Immunoproteomic and Immunopeptidomic Analyses of Histoplasma capsulatum Reveal Promiscuous and Conserved Epitopes Among Fungi With Vaccine Potential. Front Immunol 2021; 12:764501. [PMID: 34880863 PMCID: PMC8645968 DOI: 10.3389/fimmu.2021.764501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
As there are more than 6 million human deaths due to mycoses each year, there is an urgent need to develop fungal vaccines. Moreover, given the similarities among pathogenic fungi, it may be possible to create a multi-fungi vaccine. In this study, we combined immunoproteomic and immunopeptidomic methods, for which we have adapted a technique based on co-immunoprecipitation (Co-IP) that made it possible to map Histoplasma capsulatum epitopes for the first time in a natural context using murine dendritic cells (DCs) and macrophages (Mφ). Although polysaccharide epitopes exist, this research focused on mapping protein epitopes as these are more immunogenic. We used different algorithms to screen proteins and peptides identified by two-dimensional electrophoresis (2-D) and Co-IP. Seventeen proteins were revealed by 2-D gels, and 45 and 24 peptides from distinct proteins were presented by DCs and Mφ, respectively. We then determined which epitopes were restricted to MHC-I and II from humans and mice and showed high promiscuity, but lacked identity with human proteins. The 4 most promising peptides were synthesized, and the peptides with and without incorporation into glucan particles induced CD4+ and CD8+ T cell proliferation and produced a Th1 and Th17 response marked by the secretion of high levels of IFN-γ, IL-17 and IL-2. These epitopes were from heat shock protein 60, enolase, and the ATP-dependent molecular chaperone HSC82, and they each have a high degree of identity with proteins expressed by other medically important pathogenic fungi. Thus, the epitopes described in this study have the potential for use in the development of vaccines that could result in cross-protection among fungal species.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Camila Boniche-Alfaro
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Isabela de Godoy Menezes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suelen Andreia Rossi
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.,Department of Dermatology, Tropical Medicine Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Leila Lopes-Bezerra
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.,Department of Dermatology, Tropical Medicine Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Gazzinelli-Guimarães AC, Gazzinelli-Guimarães P, Weatherhead JE. A historical and systematic overview of Ascaris vaccine development. Parasitology 2021; 148:1795-1805. [PMID: 35586777 PMCID: PMC9109942 DOI: 10.1017/s0031182021001347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/06/2022]
Abstract
Ascariasis is the most prevalent helminth infection in the world and leads to significant, life-long morbidity, particularly in young children. Current efforts to control and eradicate ascariasis in endemic regions have been met with significant challenges including high-rates of re-infection and potential development of anthelminthic drug resistance. Vaccines against ascariasis are a key tool that could break the transmission cycle and lead to disease eradication globally. Evolution of the Ascaris vaccine pipeline has progressed, however no vaccine product has been brought to human clinical trials to date. Advancement in recombinant protein technology may provide the first step in generating an Ascaris vaccine as well as a pan-helminthic vaccine ready for human trials. However, several roadblocks remain and investment in new technologies will be important to develop a successful human Ascaris vaccine that is critically needed to prevent significant morbidity in Ascaris-endemic regions around the world.
Collapse
Affiliation(s)
| | | | - Jill E. Weatherhead
- Department of Medicine, Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Cloning and Characterization of Immunological Properties of Haemophilus influenzae Enolase. J Immunol Res 2021; 2021:6629824. [PMID: 34222496 PMCID: PMC8225457 DOI: 10.1155/2021/6629824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae is a common organism of the human upper respiratory tract; this bacterium is responsible of a wide spectrum for respiratory infections and can generate invasive diseases such as meningitis and septicemia. These infections are associated with H. influenzae encapsulated serotype b. However, the incidence of invasive disease caused by nontypeable H. influenzae (NTHi) has increased in the post-H. influenzae serotype b (Hib) vaccine era. Currently, an effective vaccine against NTHi is not available; due to this, it is important to find an antigen capable to confer protection against NTHi infection. In this study, 10 linear B cell epitopes and 13 CTL epitopes and a putative plasminogen-binding motif (252FYNKENGMY260) and the presence of enolase on the surface of different strains of H. influenzae were identified in the enolase sequence of H. influenzae. Both in silico and experimental results showed that recombinant enolase from H. influenzae is immunogenic that could induce a humoral immune response; this was observed mediating the generation of specific polyclonal antibodies anti-rNTHiENO that recognize typeable and nontypeable H. influenzae strains. The immunogenic properties and the superficial localization of enolase in H. influenzae, important characteristics to be considered as a new candidate for the development of a vaccine, were demonstrated.
Collapse
|
15
|
Montaño KJ, Cuéllar C, Sotillo J. Rodent Models for the Study of Soil-Transmitted Helminths: A Proteomics Approach. Front Cell Infect Microbiol 2021; 11:639573. [PMID: 33968800 PMCID: PMC8100317 DOI: 10.3389/fcimb.2021.639573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Soil-transmitted helminths (STH) affect hundreds of millions worldwide and are some of the most important neglected tropical diseases in terms of morbidity. Due to the difficulty in studying STH human infections, rodent models have become increasingly used, mainly because of their similarities in life cycle. Ascaris suum and Trichuris muris have been proven appropriate and low maintenance models for the study of ascariasis and trichuriasis. In the case of hookworms, despite most of the murine models do not fully reproduce the life cycle of Necator americanus, their proteomic similarity makes them highly suitable for the development of novel vaccine candidates and for the study of hookworm biological features. Furthermore, these models have been helpful in elucidating some basic aspects of our immune system, and are currently being used by numerous researchers to develop novel molecules with immunomodulatory proteins. Herein we review the similarities in the proteomic composition between Nippostrongylus brasiliensis, Heligmosomoides polygyrus bakeri and Trichuris muris and their respective human counterpart with a focus on the vaccine candidates and immunomodulatory proteins being currently studied.
Collapse
Affiliation(s)
- Karen J Montaño
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Gazzinelli-Guimaraes PH, Bennuru S, de Queiroz Prado R, Ricciardi A, Sciurba J, Kupritz J, Moser M, Kamenyeva O, Nutman TB. House dust mite sensitization drives cross-reactive immune responses to homologous helminth proteins. PLoS Pathog 2021; 17:e1009337. [PMID: 33651853 PMCID: PMC7924806 DOI: 10.1371/journal.ppat.1009337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The establishment of type 2 responses driven by allergic sensitization prior to exposure to helminth parasites has demonstrated how tissue-specific responses can protect against migrating larval stages, but, as a consequence, allow for immune-mediated, parasite/allergy-associated morbidity. In this way, whether helminth cross-reacting allergen-specific antibodies are produced and play a role during the helminth infection, or exacerbate the allergic outcome awaits elucidation. Thus, the main objective of the study was to investigate whether house dust mite (HDM) sensitization triggers allergen-specific antibodies that interact with Ascaris antigens and mediate antibody-dependent deleterious effects on these parasites as well as, to assess the capacity of cross-reactive helminth proteins to trigger allergic inflammation in house dust mite presensitized mice. Here, we show that the sensitization with HDM-extract drives marked IgE and IgG1 antibody responses that cross-react with Ascaris larval antigens. Proteomic analysis of Ascaris larval antigens recognized by these HDM-specific antibodies identified Ascaris tropomyosin and enolase as the 2 major HDM homologues based on high sequence and structural similarity. Moreover, the helminth tropomyosin could drive Type-2 associated pulmonary inflammation similar to HDM following HDM tropomyosin sensitization. The HDM-triggered IgE cross-reactive antibodies were found to be functional as they mediated immediate hypersensitivity responses in skin testing. Finally, we demonstrated that HDM sensitization in either B cells or FcγRIII alpha-chain deficient mice indicated that the allergen driven cell-mediated larval killing is not antibody-dependent. Taken together, our data suggest that aeroallergen sensitization drives helminth reactive antibodies through molecular and structural similarity between HDM and Ascaris antigens suggesting that cross-reactive immune responses help drive allergic inflammation. Epidemiological studies related to the interaction between allergies and helminth infection led to the observations that helped shape the so-called hygiene hypothesis, which generally states that chronic exposure to helminths diminishes the risk of the development of allergic disease. However, there are conflicting studies that have called this particular hypothesis into question, such as, the studies that suggest that infection with the helminth Ascaris lumbricoides is a risk factor for wheezing and atopy or can aggravate the clinical symptoms of asthma. A hypothetical explanation for such phenomenon is the fact that there is a high degree of molecular and structural similarities among helminth antigens with many common allergens, including the house dust mite (HDM). This high degree of homology of certain epitopes shared between helminths and allergens generate cross-react antibodies which may play a role in the pathogenesis or regulation of both conditions. Thus, this study aimed to understand the structural basis for cross-reactive antibodies induced by HDM sensitization. Here, we demonstrate that HDM sensitization drives helminth cross-reactive antibodies through molecular and structural homology between tropomyosins and enolases. This study highlights the pro-allergenic properties of HDM and helminth proteins that share homologous epitopes.
Collapse
Affiliation(s)
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Rafael de Queiroz Prado
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Alessandra Ricciardi
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Joshua Sciurba
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Jonah Kupritz
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Matthew Moser
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Olena Kamenyeva
- Biological Imaging Section of Research Technologies Branch, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health; Bethesda, Maryland, United States of America
- * E-mail: (PHGG); (TBN)
| |
Collapse
|
17
|
Girasol MJ, Grecia LR, Fabi JC, Fernandez AJ, Isabela Fernandez JN, Flores G, Flores R, Fontanilla EL, Fragante PJ, Genuino VC, Go SC, Gotico I, Gregorio ME, Griño MA, Guevarra PM, Guinal S, Guldam R, Infante GC, Jalandoni JP, Juyad IG, Valencia C, Makalinao I, Tongol-Rivera P, Manglicmot-Yabes A. Evaluation of crude adult Ascaris suum intestinal tract homogenate in inducing protective IgG production against A. suum larvae in BALB/c mice. Exp Parasitol 2020; 221:108049. [PMID: 33307097 DOI: 10.1016/j.exppara.2020.108049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/25/2020] [Accepted: 11/29/2020] [Indexed: 01/11/2023]
Abstract
Globally, ascariasis ranks as the second leading intestinal helminth infection. However, progress in developing better control strategies, such as vaccines, remains slow-paced. This study aims to measure antibody production and parasite load in male BALB/c mice immunized with crude Ascaris suum intestinal tract homogenate. Thirty-two (32) mice were randomized into: (1) unvaccinated, uninfected (UU); (2) unvaccinated, infected (UI); (3) vaccinated, uninfected (VU); and (4) vaccinated, infected (VI) groups. A 100-μL vaccine containing 50 μg of homogenized A. suum intestines and Complete Freund's Adjuvant (1:1) were introduced intraperitoneally. Immunizations were done on days 0, 10, and 20. Oral gavage with 1000 embryonated eggs was done on day 30. Blood was obtained at day 40. To measure serum IgG levels, indirect ELISA was done. Microtiter plates were coated with 100 μg larval homogenate, and HRP-conjugated anti-mouse IgG was used as secondary antibody. Parasite load was measured in lung and liver tissues. Tukey's HSD of signal to cut-off ratios of absorbance readings obtained in indirect ELISA procedure for the 1:200 serum dilution showed statistically significant difference between the UU and VI (p = 0.026) as well as between UI and VI (p = 0.003) groups. No statistically significant difference in parasite load was observed in the lungs (p = 0.074), liver (p = 0.130), and both lungs and liver (p = 0.101). Immunization elicited a significant larva-directed IgG production. However, there is no significant difference in parasite loads in either lung or liver tissues across all treatment groups as the larval counts obtained from the study were very low and may not be indicative of the actual parasite load in mice.
Collapse
Affiliation(s)
- Mark John Girasol
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines.
| | - Lordom Reno Grecia
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Jillean Camille Fabi
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Andro Jibreel Fernandez
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | | | - Gabrielle Flores
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Rafael Flores
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Enrique Luis Fontanilla
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Paolo Joaquin Fragante
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Virgilio Clemente Genuino
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Stacey Caryl Go
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Israel Gotico
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Mary Eurielle Gregorio
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Manuel Angelo Griño
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Patricia Marie Guevarra
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Safrollah Guinal
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Raissa Guldam
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Gian Carlo Infante
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - John Paul Jalandoni
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Ian Gabriel Juyad
- College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Cynthia Valencia
- Department of Pharmacology and Toxicology, College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Irma Makalinao
- Department of Pharmacology and Toxicology, College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Pilarita Tongol-Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| | - Ailyn Manglicmot-Yabes
- Department of Pharmacology and Toxicology, College of Medicine, University of the Philippines Manila, Pedro Gil Street, Malate, Manila, 1000, Philippines
| |
Collapse
|
18
|
de Castro JC, de Almeida LV, Cardoso MS, Oliveira FMS, Nogueira DS, Reis-Cunha JL, Magalhaes LMD, Zhan B, Bottazzi ME, Hotez PJ, Bueno LL, Bartholomeu DC, Fujiwara RT. Vaccination with chimeric protein induces protection in murine model against ascariasis. Vaccine 2020; 39:394-401. [PMID: 33248854 DOI: 10.1016/j.vaccine.2020.11.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 11/14/2020] [Indexed: 01/30/2023]
Abstract
An estimated 400 million people are infected by parasites of the genus Ascaris and the existing control measures are inefficient. Vaccine development using B cell antigens is a promising strategy for increased protection against this parasite. The present study aimed at developing a chimeric protein capable of conferring protection against infection by Ascaris sp. For this purpose, we performed B-cell epitope predictions on previously described vaccine candidate proteins from Ascaris suum and the corresponding peptides were used to construct a chimeric protein. Female BALB / c mice were immunized subcutaneously in three doses at 10 day intervals with a vaccine formulation comprised of the chimeric protein together with monophosphoryl lipid A (MPLA). Control groups included protein alone, MPLA, or PBS. After challenge infection, animals vaccinated with chimeric protein plus MPLA showed a reduction of 73.54% of larval load in the lung compared to control group animals. Animals immunized with chimeric protein plus MPLA also display higher IgG response and a reduction in lung inflammation. Our study highlights how chimeric proteins containing more than one B cell epitope can enhance immune protection against helminthic infection and offer new approaches to the development of Ascaris vaccines.
Collapse
Affiliation(s)
- Joseane C de Castro
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Laila V de Almeida
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Santos Cardoso
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Fabricio M Silva Oliveira
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Denise S Nogueira
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - João Luis Reis-Cunha
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luisa M D Magalhaes
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Bin Zhan
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Lilian L Bueno
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Castanheira Bartholomeu
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T Fujiwara
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Bloco E4, Sala 168, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Zawawi A, Else KJ. Soil-Transmitted Helminth Vaccines: Are We Getting Closer? Front Immunol 2020; 11:576748. [PMID: 33133094 PMCID: PMC7565266 DOI: 10.3389/fimmu.2020.576748] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Abstract
Parasitic helminths infect over one-fourth of the human population resulting in significant morbidity, and in some cases, death in endemic countries. Despite mass drug administration (MDA) to school-aged children and other control measures, helminth infections are spreading into new areas. Thus, there is a strong rationale for developing anthelminthic vaccines as cost-effective, long-term immunological control strategies, which, unlike MDA, are not haunted by the threat of emerging drug-resistant helminths nor limited by reinfection risk. Advances in vaccinology, immunology, and immunomics include the development of new tools that improve the safety, immunogenicity, and efficacy of vaccines; and some of these tools have been used in the development of helminth vaccines. The development of anthelminthic vaccines is fraught with difficulty. Multiple lifecycle stages exist each presenting stage-specific antigens. Further, helminth parasites are notorious for their ability to dampen down and regulate host immunity. One of the first significant challenges in developing any vaccine is identifying suitable candidate protective antigens. This review explores our current knowledge in lead antigen identification and reports on recent pre-clinical and clinical trials in the context of the soil-transmitted helminths Trichuris, the hookworms and Ascaris. Ultimately, a multivalent anthelminthic vaccine could become an essential tool for achieving the medium-to long-term goal of controlling, or even eliminating helminth infections.
Collapse
Affiliation(s)
- Ayat Zawawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Ayat Zawawi
| | - Kathryn J. Else
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine, and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom,Kathryn J. Else
| |
Collapse
|
20
|
Li H, Huang Y, Wang J, Yu H, Zhao J, Wan Q, Qi X, Li H, Wang C, Pan B. Molecular and biochemical characterization of enolase from Dermanyssus gallinae. Gene 2020; 756:144911. [PMID: 32574756 DOI: 10.1016/j.gene.2020.144911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
Enolase, a multifunctional glycolytic enzyme, is known to act as a plasminogen receptor in many species, involved in the pivotal processes such as motility, adhesion, invasion, growth, and differentiation of the parasites. Knowledge on the function of enolase from Dermanyssus gallinae is very limited. Here we report on the molecular cloning, enzymatic activity, tissue distribution and plasminogen binding activity of enolase from D. gallinae (DgENO). The full-length of cDNA was 1305 bp, specifying a peptide of 434 amino acids. Bioinformatics analysis showed that DgENO was highly conserved compared with a range of organisms, indicating the potentially similar functions in D. gallinae. A recombinant DgENO (rDgENO) protein was produced and characterized, it catalyzed the dehydration of 2-phospho-D-glycerate to phosphoenolpyruvate, the optimal pH was 7.5. Polyclonal antibodies were generated in mice and western blotting indicated that antiserum specifically recognized the native enolase in the somatic extracts from D. gallinae. Immunohistochemical staining of mite sections revealed that the distribution of DgENO was ubiquitous with high level in salivary gland, mite digestive tissues and fat bodies in D. gallinae. Expression level of DgENO was observed mostly in engorged adult mites. Moreover, ELISA binding assay showed that rDgENO could bind plasminogen, and lysine analog ε-aminocaproic acid significantly inhibited this binding activity, indicating that D. gallinae enolase is a receptor of plasminogen. The present study provided foundation for understanding of the biological functions of DgENO and its application in development of vaccines against D. gallinae.
Collapse
Affiliation(s)
- Huan Li
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Yu Huang
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Jingwei Wang
- Zhejiang Chinese Medical University, Bin Jiang District, Hangzhou 310053, China
| | - He Yu
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Jiayi Zhao
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Qiang Wan
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Xiaoxiao Qi
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Chuanwen Wang
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
21
|
Thu Nguyen TT, Nguyen HT, Wang YT, Wang PC, Chen SC. α-Enolase as a novel vaccine candidate against Streptococcus dysgalactiae infection in cobia (Rachycentron canadum L.). FISH & SHELLFISH IMMUNOLOGY 2020; 98:899-907. [PMID: 31765793 DOI: 10.1016/j.fsi.2019.11.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus dysgalactiae is an important pathogenic bacterium that has caused economic loss for the cobia industry in Taiwan, ROC. This study presents a highly effective subunit vaccine composed of a moonlight protein, α-enolase, for the prevention of S. dysgalactiae infection. First, α-enolase was cloned, transformed, and expressed in E. coli for production of recombinant protein. Then, the protective efficacies of α-enolase recombinant protein were evaluated in combination with either a pro-inflammatory cytokine, TNF-α, or an oil adjuvant, ISA 763 AVG. The results showed that the combination of α-enolase and ISA 763 AVG was highly protective (RPS = 88.89%), while a negative effect was found in the group immunised with α-enolase adjuvanted with TNF-α (RPS = 22.22%). A further study was conducted with double dose of ISA 763 AVG, which led to an increased RPS value of 97.37%. Moreover, immunised cobia exhibited significantly greater lysozyme activity, antibody responses, and expression of certain immune-related genes post-challenge. Altogether, our results demonstrated that a combination of α-enolase recombinant protein with ISA 763 AVG adjuvant is a promising vaccine that can be employed for protection of cobia against S. dysgalactiae infection.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| | - Hai Trong Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| | - Yi-Ting Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Research Center for Fish Vaccines and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Research Center for Animal Biologics, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Research Center for Fish Vaccines and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
22
|
Versteeg L, Wei J, Liu Z, Keegan B, Fujiwara RT, Jones KM, Asojo O, Strych U, Bottazzi ME, Hotez PJ, Zhan B. Protective immunity elicited by the nematode-conserved As37 recombinant protein against Ascaris suum infection. PLoS Negl Trop Dis 2020; 14:e0008057. [PMID: 32053593 PMCID: PMC7017989 DOI: 10.1371/journal.pntd.0008057] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Background Ascaris lumbricoides is one of the three major soil-transmitted gastrointestinal helminths (STHs) that infect more than 440 million people in the world, ranking this neglected tropical disease among the most common afflictions of people living in poverty. Children infected with this roundworm suffer from malnutrition, growth stunting as well as cognitive and intellectual deficits. An effective vaccine is urgently needed to complement anthelmintic deworming as a better approach to control helminth infections. As37 is an immunodominant antigen of Ascaris suum, a pig roundworm closely related to the human A. lumbricoides parasite, recognized by protective immune sera from A. suum infected mice. In this study, the immunogenicity and vaccine efficacy of recombinant As37 were evaluated in a mouse model. Methodology/Principal findings As37 was cloned and expressed as a soluble recombinant protein (rAs37) in Escherichia coli. The expressed rAs37 was highly recognized by protective immune sera from A. suum egg-infected mice. Balb/c mice immunized with 25 μg rAs37 formulated with AddaVax™ adjuvant showed significant larval worm reduction after challenge with A. suum infective eggs when compared with a PBS (49.7%) or adjuvant control (48.7%). Protection was associated with mixed Th1/2-type immune responses characterized by high titers of serological IgG1 and IgG2a and stimulation of the production of cytokines IL-4, IL-5, IL-10 and IL-13. In this experiment, the AddaVax™ adjuvant induced better protection than the Th1-type adjuvant MPLA (38.9%) and the Th2-type adjuvant Alhydrogel (40.7%). Sequence analysis revealed that As37 is a member of the immunoglobulin superfamily (IgSF) and highly conserved in other human STHs. Anti-As37 antibodies strongly recognized homologs in hookworms (Necator americanus, Ancylostoma ceylanicum, A. caninum) and in the whipworm Trichuris muris, but there was no cross-reaction with human spleen tissue extracts. These results suggest that the nematode-conserved As37 could serve as a pan-helminth vaccine antigen to prevent all STH infections without cross-reaction with human IgSF molecules. Conclusions/Significance As37 is an A. suum expressed immunodominant antigen that elicited significant protective immunity in mice when formulated with AddaVax™. As37 is highly conserved in other STHs, but not in humans, suggesting it could be further developed as a pan-helminth vaccine against STH co-infections. Ascaris infection is the most common infection of humans living in poverty worldwide and can result in malnutrition and stunted physical and mental development in children. A preventive vaccine is urgently needed as a complementary approach to anthelmintic deworming to increase the efficiency of STH infection control. To develop a vaccine against Ascaris infection, an immunodominant antigen, As37 of A. suum, was cloned and expressed as a soluble recombinant protein in E. coli. The recombinant As37 protein (rAs37) was highly recognized by protective immune sera from A. suum infected mice. Balb/c mice immunized with 25 μg rAs37 formulated with the adjuvant AddaVax™ showed significant larval worm reduction against challenge with A. suum infective eggs when compared to a PBS (49.7%) or adjuvant control (48.7%). Protection was associated with a mixed Th1/2-type immune response characterized by high titers of serological IgG1 and IgG2a and stimulation of the production of cytokines IL-4, IL-5, IL-10 and IL-13. The AddaVax™ adjuvant induced better protection than the Th1-type adjuvant MPLA (38.9%) and the Th2-type adjuvant Alhydrogel (40.7%). Sequence analysis revealed that As37 was a member of the immunoglobulin superfamily (IgSF) and highly conserved in other human STHs. Anti-As37 antibodies strongly recognized homologs in hookworms (Necator americanus, A. ceylanicum, A. caninum) and in the whipworm T. muris, but there was no cross-reaction with human spleen tissue extracts. These results indicate that the nematode-conserved As37 protein could be developed as a pan-helminth vaccine antigen to prevent all STH infections without reacting with human IgSF molecules.
Collapse
Affiliation(s)
- Leroy Versteeg
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junfei Wei
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhuyun Liu
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brian Keegan
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kathryn M. Jones
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Oluwatoyin Asojo
- Department of Chemistry and Biochemistry, Hampton University, Hampton, Virginia, United States of America
| | - Ulrich Strych
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, Texas
| | - Peter J. Hotez
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, Texas
| | - Bin Zhan
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Immunization with recombinant enolase of Sporothrix spp. (rSsEno) confers effective protection against sporotrichosis in mice. Sci Rep 2019; 9:17179. [PMID: 31748544 PMCID: PMC6868355 DOI: 10.1038/s41598-019-53135-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/26/2019] [Indexed: 01/19/2023] Open
Abstract
In recent years, research has focused on the immunoreactive components of the Sporothrix schenckii cell wall that can be relevant targets for preventive and therapeutic vaccines against sporotrichosis, an emergent worldwide mycosis. In a previous study, we identified a 47-kDa enolase as an immunodominant antigen in mice vaccinated with an adjuvanted mixture of S. schenckii cell wall proteins. Here, we sought to assess the protective potential of a Sporothrix spp. recombinant enolase (rSsEno) formulated with or without the adjuvant Montanide Pet-GelA (PGA) against the S. brasiliensis infection in mice. Mice that were immunized with rSsEno plus PGA showed increased antibody titters against rSsEno and increased median survival time when challenged with S. brasiliensis as compared with mice that had not been immunized or that were immunized with rSsEno alone. Immunization with rSsEno plus PGA induced a predominantly T-helper 1 cytokine pattern after in vitro stimulation of splenic cells with rSsEno: elevated levels of IFN-γ and IL-2, as well as of other cytokines involved in host defense against sporotrichosis, such as TNF-alpha, IL-6, and IL-4. Furthermore, we show for the first time the presence of enolase in the cell wall of both S. schenckii and S. brasiliensis. As a whole, our results suggest that enolase could be used as a potential antigenic target for vaccinal purposes against sporotrichosis.
Collapse
|
24
|
Ning M, Xiu Y, Yuan M, Bi J, Hou L, Gu W, Wang W, Meng Q. Spiroplasma eriocheiris Invasion Into Macrobrachium rosenbergii Hemocytes Is Mediated by Pathogen Enolase and Host Lipopolysaccharide and β-1, 3-Glucan Binding Protein. Front Immunol 2019; 10:1852. [PMID: 31440244 PMCID: PMC6694788 DOI: 10.3389/fimmu.2019.01852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
Spiroplasma eriocheiris is a crustacean pathogen, without a cell wall, that causes enormous economic loss. Macrobrachium rosenbergii hemocytes are the major targets during S. eriocheiris infection. As wall-less bacteria, S. eriocheiris, its membrane protein should interact with host membrane protein directly and firstly when invaded in host cell. In this investigation, six potential hemocyte receptor proteins were identified firstly that mediate interaction between S. eriocheiris and M. rosenbergii. Among these proteins, lipopolysaccharide and β-1, 3-glucan binding protein (MrLGBP) demonstrated to bind to S. eriocheiris using bacterial binding assays and confocal microscopy. Four spiroplasma ligand proteins for MrLGBP were isolated and identified. But, competitive assessment demonstrated that only enolase of S. eriocheiris (SeEnolase) could be a candidate ligand for MrLGBP. Subsequently, the interaction between MrLGBP and SeEnolase was confirmed by co-immunoprecipitation and co-localization in vitro. After the interaction between MrLGBP and SeEnolase was inhibited by antibody neutralization test, the virulence ability of S. eriocheiris was effectively reduced. The quantity of S. eriocheiris decreased in Drosophila S2 cells after overexpression of MrLGBP, compared with the controls. In addition, RNA interference (RNAi) knockdown of MrLGBP made M. rosenbergii more sensitive to S. eriocheiris infection. Further studies found that the immune genes, including MrLGBP and prophenoloxidase (MrproPO), MrRab7A, and Mrintegrin α1 were significantly up-regulated by SeEnolase stimulation. After SeEnolase pre-stimulation, the ability of M. rosenbergii resistance to S. eriocheiris was significantly improved. Collectively, this investigation demonstrated that MrLGBP and pathogen SeEnolase involved in mediating S. eriocheiris invasion into M. rosenbergii hemocytes.
Collapse
Affiliation(s)
- Mingxiao Ning
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yunji Xiu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China.,Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Meijun Yuan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Libo Hou
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China.,Co-innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, China
| | - Wen Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China.,Co-innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, China
| |
Collapse
|
25
|
Sousa DM, Cunha NMFD, Silva DRD, Aragão PDTTDD, Aguiar MVDA, Lobo MDP, Moreira ACDOM, Cunha RMSD, Miranda RRCD, Bevilaqua CML. Differences in protein expression associated with ivermectin resistance in Caenorhabditis elegans. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2019; 28:105-112. [PMID: 30916256 DOI: 10.1590/s1984-29612019013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The indiscriminate administration of synthetic anthelmintics such as ivermectin contributes to the selection of subpopulations capable of resisting the drugs' effects. To understand the mechanisms of ivermectin resistance in Caenorhabditis elegans, this study attempted to identify molecular targets. C. elegans lineages that were sensitive and resistant to ivermectin were used. Collected nematodes were added to an extraction buffer and macerated in liquid nitrogen for protein extraction. The extracted proteins were separated according to molecular weight by SDS-PAGE to verify their integrity. Subsequently, proteins from both lineages were separated using two-dimensional electrophoresis. The gels were analyzed and the relevant spots were excised and identified by mass spectrometry (NanoESI-Q-TOF and MASCOT®) and subsequently assessed by GO enrichment and STRING® analyses. The increased expression of proteins associated with high metabolic activity, such as ATP-2 and ENOL-1, which are responsible for ATP synthesis, was observed. Furthermore, proteins with involvement in mediating muscular function (MLC-1, ACT-1, and PDI-2), signaling (FAR-1 and FAR-2), and embryo development (VHA-2) were identified. Protein interaction analysis indicated that the majority of the identified proteins in the resistant lineages participated in the same reaction triggered by ivermectin.
Collapse
Affiliation(s)
- Dauana Mesquita Sousa
- Laboratório de Doenças Parasitárias, Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará - UECE, Fortaleza, CE, Brasil
| | - Nivea Maria Ferreira da Cunha
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | - Deisianne Rodrigues da Silva
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | - Paulo de Tarso Teles Dourado de Aragão
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Programa de Pós-graduação em Biotecnologia, Universidade Federal do Ceará - UFC, Sobral, CE, Brasil
| | - Mônica Valéria de Almeida Aguiar
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | | | | | - Rodrigo Maranguape Silva da Cunha
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia de Sobral, Universidade Estadual Vale do Acaraú - UVA, Sobral, CE, Brasil
| | | | - Claudia Maria Leal Bevilaqua
- Laboratório de Doenças Parasitárias, Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará - UECE, Fortaleza, CE, Brasil
| |
Collapse
|
26
|
Gazzinelli-Guimarães AC, Gazzinelli-Guimarães PH, Nogueira DS, Oliveira FMS, Barbosa FS, Amorim CCO, Cardoso MS, Kraemer L, Caliari MV, Akamatsu MA, Ho PL, Jones KM, Weatherhead J, Bottazzi ME, Hotez PJ, Zhan B, Bartholomeu DC, Russo RC, Bueno LL, Fujiwara RT. IgG Induced by Vaccination With Ascaris suum Extracts Is Protective Against Infection. Front Immunol 2018; 9:2535. [PMID: 30473693 PMCID: PMC6238660 DOI: 10.3389/fimmu.2018.02535] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023] Open
Abstract
Human ascariasis has a global and cosmopolitan distribution, and has been characterized as the most prevalent neglected tropical disease worldwide. The development of a preventive vaccine is highly desirable to complement current measures required for this parasitic infection control and to reduce chronic childhood morbidities. In the present study, we describe the mechanism of protection elicited by a preventive vaccine against ascariasis. Vaccine efficacy was evaluated after immunization with three different Ascaris suum antigen extracts formulated with monophosphoryl lipid A (MPLA) as an adjuvant: crude extract of adult worm (ExAD); crude extract of adult worm cuticle (CUT); and crude extract of infective larvae (L3) (ExL3). Immunogenicity elicited by immunization was assessed by measuring antibody responses, cytokine production, and influx of tissue inflammatory cells. Vaccine efficacy was evaluated by measuring the reductions in the numbers of larvae in the lungs of immunized BALB/c mice that were challenged with A. suum eggs. Moreover, lung physiology and functionality were tested by spirometry to determine clinical efficacy. Finally, the role of host antibody mediated protection was determined by passive transfer of serum from immunized mice. Significant reductions in the total number of migrating larvae were observed in mice immunized with ExL3 61% (p < 0.001), CUT 59% (p < 0.001), and ExAD 51% (p < 0.01) antigens in comparison with non-immunized mice. For the Ascaris antigen-specific IgG antibody levels, a significant and progressive increase was observed with each round of immunization, in association with a marked increase of IgG1 and IgG3 subclasses. Moreover, a significant increase in concentration of IL-5 and IL-10 (pre-challenge) in the blood and IL-10 in the lung tissue (post-challenge) was induced by CUT immunization. Finally, ExL3 and CUT-immunized mice showed a marked improvement in lung pathology and tissue fibrosis as well as reduced pulmonary dysfunction induced by Ascaris challenge, when compared to non-immunized mice. Moreover, the passive transfer of specific IgG antibodies from ExL3, CUT, and ExAD elicited a protective response in naïve mice, with significant reductions in parasite burdens in lungs of 65, 64, and 64%, respectively. Taken together, these studies indicated that IgG antibodies contribute to protective immunity.
Collapse
Affiliation(s)
| | | | - Denise Silva Nogueira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fernando Sérgio Barbosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Mariana Santos Cardoso
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milena Apetito Akamatsu
- BioIndustrial Division, Butantan Institute, Sao Paulo Secretary of Health, São Paulo, Brazil
| | - Paulo Lee Ho
- BioIndustrial Division, Butantan Institute, Sao Paulo Secretary of Health, São Paulo, Brazil
| | - Kathryn Marie Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jill Weatherhead
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Remo Castro Russo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
27
|
Zhang X, Xu L, Song X, Li X, Yan R. Molecular cloning of enolase from Trichinella spiralis and the protective immunity in mice. Acta Parasitol 2018; 63:252-260. [PMID: 29654687 DOI: 10.1515/ap-2018-0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Trichinella spiralis, the main pathogen of trichinosis, infects a wide range of mammalian hosts and is one of the most widespread parasites worldwide. For parasites, glycolysis is the most important way to generate energy. Previous studies showed that some enzymes involved in the glycolytic pathway play roles in regulation the host immunity. In this paper, enolase from T. spiralis was cloned and the protective potentials were studied. One hundred and sixty ICR mice were divided into four groups and vaccinated with recombinant enolase (pET-ENO), eukaryotic recombinant plasmid encoding enolase (pVAX1-ENO) and negative controls (pVAXl and PBS), respectively. Two weeks after the second immunization, each mouse was challenged orally with 200 muscle larvae (MLs) of T. spiralis. Results showed that mice vaccinated with pET-ENO and pVAX1-ENO induced specific antibodies of IgG, IgA, IgM, but no IgE. Subclasses of IgG antibodies showed that mice immunized with recombinant protein and recombinant plasmids induced a Th1/Th2 immune response. Concentrations of serum cytokines were detected and showed significant increase of IFN-γ, IL-4 and TGFβ1, while IL-17 in each group was not significantly different. Flow cytometric analysis showed significant increase of CD4+ and CD8+ T lymphocytes in the groups immunized with recombinant protein and recombinant plasmids. Challenge infection demonstrated that immunized groups had a reduced number of worm burdens. The reductions of larvae per gram muscle (LPG) in pET-ENO and pVAX1-ENO group were 17.7% and 15.8% when compared with PBS control.
Collapse
MESH Headings
- Animals
- Antibodies, Helminth/blood
- Antigens, Helminth/administration & dosage
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Cloning, Molecular
- Cytokines/immunology
- Female
- Larva/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred ICR
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/immunology
- Phosphopyruvate Hydratase/isolation & purification
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Trichinella spiralis/enzymology
- Trichinella spiralis/genetics
- Trichinella spiralis/immunology
- Trichinellosis/prevention & control
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Xuliang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
28
|
da Silva MB, Urrego A JR, Oviedo Y, Cooper PJ, Pacheco LGC, Pinheiro CS, Ferreira F, Briza P, Alcantara-Neves NM. The somatic proteins of Toxocara canis larvae and excretory-secretory products revealed by proteomics. Vet Parasitol 2018; 259:25-34. [PMID: 30056980 DOI: 10.1016/j.vetpar.2018.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/02/2018] [Accepted: 06/23/2018] [Indexed: 12/31/2022]
Abstract
Toxocariasis is a widespread helminth infection of dogs and cats, caused by Toxocara canis and Toxocara cati larvae, respectively. Toxocara spp. can cause zoonotic infections in humans by invading tissues and organs causing pathology. Toxocara spp. larvae release excretory-secretory molecules (TES) into the body of their host that are fundamental to the host-parasite interaction and could be used as targets for novel diagnostics and vaccines. In the present study, we identified 646 T. canis proteins from TES and larval extract using 1D-SDS PAGE followed by mass spectrometry. A wide range of proteins was identified that may play a role both in the induction of the host immune response and host pathology, and in parasite metabolism and survival. Among these proteins there are potential candidates for novel diagnostics and vaccines for dogs and cats toxocariases.
Collapse
Affiliation(s)
- Márcia B da Silva
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Juan R Urrego A
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Department of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia.
| | - Yisela Oviedo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Philip J Cooper
- Facultad de Ciencias Médicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador; Insitute of Infection and Immunity, St George's University of London, London, United Kingdom.
| | - Luis G C Pacheco
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Carina S Pinheiro
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| | - Fátima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
29
|
Ponce R, León-Janampa N, Gilman RH, Liendo R, Roncal E, Luis S, Quiñones-Garcia S, Silverstein Z, García HH, Gonzales A, Sheen P, Zimic M, Pajuelo MJ. A novel enolase from Taenia solium metacestodes and its evaluation as an immunodiagnostic antigen for porcine cysticercosis. Exp Parasitol 2018; 191:44-54. [PMID: 29885292 DOI: 10.1016/j.exppara.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/06/2017] [Accepted: 06/05/2018] [Indexed: 11/19/2022]
Abstract
Cysticercosis is a worldwide parasitic disease of humans and pigs principally caused by infection with the larvae of the pork tapeworm Taenia solium. Through the use of the recently-made-available T. solium genome, we identified a gene within a novel 1448 bp ORF that theoretically encodes for a 433 amino acid-long protein and predicted to be an α-enolase closely related to enolases of other flatworms. Additional bioinformatic analyses revealed a putative plasminogen-binding region on this protein, suggesting a potential role for this protein in pathogenesis. On this basis, we isolated the mRNA encoding for this presumptive enolase from T. solium metacestodes and reverse-transcribed it into cDNA before subsequently cloning and expressing it in both E. coli (rEnoTs) and insect cells (rEnoTsBac), in a 6xHis tagged manner. The molecular weights of these two recombinant proteins were ∼48 and ∼50 kDa, respectively, with the differences likely attributable to differential glycosylation. We used spectrophotometric assays to confirm the enolase nature of rEnoTs as well as to measure its enzymatic activity. The resulting estimates of specific activity (60.000 U/mg) and Km (0.091 mM) are quite similar to the catalytic characteristics of enolases of other flatworms. rEnoTs also exhibited high immunogenicity, eliciting a strong polyclonal antibody response in immunized rabbits. We subsequently employed rEnoTsBac for use in an ELISA aimed at discriminating between healthy pigs and those infected with T. solium. This diagnostic assay exhibited a sensitivity of 88.4% (95% CI, 74.92%-96.11%) and a specificity of 83.7% (95% CI: 69.29%-93.19%). In conclusión, this study reports on and enzymatically characterizes a novel enolase from T. solium metacestode, and shows a potential use as an immunodiagnostic for porcine cysticercosis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Helminth/biosynthesis
- Antigens, Helminth/chemistry
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Antigens, Helminth/metabolism
- Computational Biology
- Confidence Intervals
- Cysticercosis/diagnosis
- Cysticercosis/veterinary
- DNA, Complementary/genetics
- Enzyme-Linked Immunosorbent Assay/veterinary
- Female
- Genetic Vectors
- Phosphopyruvate Hydratase/chemistry
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/immunology
- Phosphopyruvate Hydratase/metabolism
- Phylogeny
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- ROC Curve
- Rabbits
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Sensitivity and Specificity
- Sequence Alignment
- Sf9 Cells
- Spectrophotometry/veterinary
- Swine
- Swine Diseases/diagnosis
- Swine Diseases/parasitology
- Taenia solium/classification
- Taenia solium/enzymology
- Taenia solium/genetics
- Taenia solium/immunology
Collapse
Affiliation(s)
- Reynaldo Ponce
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nancy León-Janampa
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ruddy Liendo
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Elisa Roncal
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sueline Luis
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stefany Quiñones-Garcia
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Zach Silverstein
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hector H García
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru; Cysticercosis Unit, Instituto de Ciencias Neurológicas, Lima, Peru
| | - Armando Gonzales
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mónica J Pajuelo
- Laboratorio de Bioinformática y Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
30
|
Ayón-Núñez DA, Fragoso G, Espitia C, García-Varela M, Soberón X, Rosas G, Laclette JP, Bobes RJ. Identification and characterization of Taenia solium enolase as a plasminogen-binding protein. Acta Trop 2018; 182:69-79. [PMID: 29466706 DOI: 10.1016/j.actatropica.2018.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
Abstract
The larval stage of Taenia solium (cysticerci) is the causal agent of human and swine cysticercosis. When ingested by the host, T. solium eggs are activated and hatch in the intestine, releasing oncospheres that migrate to various tissues and evolve into cysticerci. Plasminogen (Plg) receptor proteins have been reported to play a role in migration processes for several pathogens. This work is aimed to identify Plg-binding proteins in T. solium cysticerci and determine whether T. solium recombinant enolase (rTsEnoA) is capable of specifically binding and activating human Plg. To identify Plg-binding proteins, a 2D-SDS-PAGE ligand blotting was performed, and recognized spots were identified by MS/MS. Seven proteins from T. solium cysticerci were found capable of binding Plg: fascicilin-1, fasciclin-2, enolase, MAPK, annexin, actin, and cytosolic malate dehydrogenase. To determine whether rTsEnoA binds human Plg, a ligand blotting was performed and the results were confirmed by ELISA both in the presence and absence of εACA, a competitive Plg inhibitor. Finally, rTsEnoA-bound Plg was activated to plasmin in the presence of tPA. To better understand the evolution of enolase isoforms in T. solium, a phylogenetic inference analysis including 75 enolase amino acid sequences was conducted. The origin of flatworm enolase isoforms, except for Eno4, is independent of their vertebrate counterparts. Therefore, herein we propose to designate tapeworm protein isoforms as A, B, C, and 4. In conclusion, recombinant enolase showed a strong plasminogen binding and activating activity in vitro. T. solium enolase could play a role in parasite invasion along with other plasminogen-binding proteins.
Collapse
|
31
|
Xu J, Huang X, Dong X, Ren Y, Wu M, Shen N, Xie Y, Gu X, Lai W, Jing B, Peng X, Yang G. Serodiagnostic Potential of Alpha-Enolase From Sarcoptes scabiei and Its Possible Role in Host-Mite Interactions. Front Microbiol 2018; 9:1024. [PMID: 29887838 PMCID: PMC5981165 DOI: 10.3389/fmicb.2018.01024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Infestation of the epidermis with the highly contagious ectoparasite, Sarcoptes scabiei, causes scabies, which is characterized by intense itching, pruritus, and secondary infection. This condition affects humans, livestock, and wildlife worldwide, incurring large economic losses and reducing the quality of human life. In the present study, we cloned the alpha-enolase, a key enzyme in the glycolytic and gluconeogenesis pathways, from S. scabiei var. cuniculi, characterized it and produced soluble recombinant enolase protein (rSsc-eno). We determined the localization of Ssc-eno in isolated mites and mites in lesioned skin. The results showed that native enolase was intensely localized in the tegument of the mouthparts, the entire legs, and the whole mites' body, as well as in the gut and reproduction system. Interestingly, we found that native enolase was widely distributed in mites in lesioned skin, with obvious high protein intensity compared with isolated mites. Building on good immunoreactivity, an indirect enzyme-linked immunosorbent assay (ELISA) based on rSsc-eno showed 92% sensitivity and 95.8% specificity, compared with other indirect ELISA in this study, rSsc-eno based ELISA is better in detecting scabies in rabbits. Besides, this method can detect S. scabiei infection as early as 1 week post infection. Compared with other detection methods, such as traditional microscopic examination and recently published universal conventional PCR, rSsc-eno ELISA was more effective to detect early infection in rabbits. Additionally, in vitro incubation experiments demonstrated the concentration-dependent acaricidal activity of rabbit anti-rSsc-eno sera against larval mites, suggested its potential as a vaccine candidate.
Collapse
Affiliation(s)
- Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xing Huang
- Chengdu Agricultural College, Chengdu, China
| | - Xiaowei Dong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yongjun Ren
- Sichuan Animal Sciences Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Maodi Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weiming Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Recombinant Enolase of Trypanosoma cruzi as a Novel Vaccine Candidate against Chagas Disease in a Mouse Model of Acute Infection. J Immunol Res 2018; 2018:8964085. [PMID: 29854848 PMCID: PMC5964559 DOI: 10.1155/2018/8964085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 01/18/2023] Open
Abstract
Trypanosoma cruzi is the protozoan parasite that causes Chagas disease, which is considered by the World Health Organization to be a neglected tropical disease. Two drugs exist for the treatment of Chagas disease, nifurtimox and benznidazole; they are only effective in the acute phase, and a vaccine is currently not available. In this study, we used the recombinant enolase from T. cruzi H8 strain (MHOM/MX/1992/H8 Yucatán) (rTcENO) and its encoding DNA (pBKTcENO) to immunize mice and evaluate their protective effects in an experimental murine model of acute phase infection. Our results showed that mice vaccinated with rTcENO or its encoding DNA were able to generate typical specific antibodies (IgG1, IgG2a, and IgG2b), suggesting that a mixed Th1/Th2 immune response was induced. The parasite burden in the blood was reduced to 69.8% and 71% in mice vaccinated with rTcENO and pBKTcENO, respectively. The group vaccinated with rTcENO achieved 75% survival, in contrast to the group vaccinated with pBKTcENO that showed no survival in comparison to the control groups. Moreover, rTcENO immunization elevated the production of IFN-γ and IL-2 after the parasite challenge, suggesting that the Th1-type immune response was polarized. These results indicated that rTcENO could be used as a vaccine against Chagas disease.
Collapse
|
33
|
Mekonnen GG, Pearson M, Loukas A, Sotillo J. Extracellular vesicles from parasitic helminths and their potential utility as vaccines. Expert Rev Vaccines 2018; 17:197-205. [PMID: 29353519 DOI: 10.1080/14760584.2018.1431125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helminths are multicellular parasites affecting nearly three billion people worldwide. To orchestrate a parasitic existence, helminths secrete different molecules, either in soluble form or contained within extracellular vesicles (EVs). EVs are secreted by most cell types and organisms, and have varied roles in intercellular communication, including immune modulation and pathogenesis. AREAS COVERED In this review, we describe the nucleic acid and proteomic composition of EVs from helminths, with a focus on the protein vaccine candidates present on the EV surface membrane, and discuss the potential utility of helminth EVs and their constituent proteins in the fight against helminth infections. EXPERT COMMENTARY A significant number of proteins present in helminth-secreted EVs are known vaccine candidates. The characterization of helminth EV proteomes will shed light on host-pathogen interactions, facilitate the discovery of new diagnostic biomarkers, and provide a novel approach for the development of new control measures against helminth infections.
Collapse
Affiliation(s)
- Gebeyaw Getnet Mekonnen
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia.,b Department of Medical Parasitology , School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar , Gondar , Ethiopia
| | - Mark Pearson
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Alex Loukas
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Javier Sotillo
- a Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| |
Collapse
|
34
|
Abstract
Soil-transmitted helminths (STHs) collectively infect one fourth of all human beings, and the majority of livestock in the developing world. These gastrointestinal nematodes are the most important parasites on earth with regard to their prevalence in humans and livestock. Current anthelmintic drugs are losing their efficacies due to increasing drug resistance, particularly in STHs of livestock and drug treatment is often followed by rapid reinfection due to failure of the immune system to develop a protective response. Vaccines against STHs offer what drugs cannot accomplish alone. Because such vaccines would have to be produced on such a large scale, and be cost effective, recombinant subunit vaccines that include a minimum number of proteins produced in relatively simple and inexpensive expression systems are required. Here, we summarize all of the previous studies pertaining to recombinant subunit vaccines for STHs of humans and livestock with the goal of both informing the public of just how critical these parasites are, and to help guide future developments. We also discuss several key areas of vaccine development, which we believe to be critical for developing more potent recombinant subunit vaccines with broad-spectrum protection.
Collapse
|
35
|
Yeast-expressed recombinant As16 protects mice against Ascaris suum infection through induction of a Th2-skewed immune response. PLoS Negl Trop Dis 2017; 11:e0005769. [PMID: 28708895 PMCID: PMC5529013 DOI: 10.1371/journal.pntd.0005769] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/26/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Background Ascariasis remains the most common helminth infection in humans. As an alternative or complementary approach to global deworming, a pan-anthelminthic vaccine is under development targeting Ascaris, hookworm, and Trichuris infections. As16 and As14 have previously been described as two genetically related proteins from Ascaris suum that induced protective immunity in mice when formulated with cholera toxin B subunit (CTB) as an adjuvant, but the exact protective mechanism was not well understood. Methodology/Principal findings As16 and As14 were highly expressed as soluble recombinant proteins (rAs16 and rAs14) in Pichia pastoris. The yeast-expressed rAs16 was highly recognized by immune sera from mice infected with A. suum eggs and elicited 99.6% protection against A. suum re-infection. Mice immunized with rAs16 formulated with ISA720 displayed significant larva reduction (36.7%) and stunted larval development against A. suum eggs challenge. The protective immunity was associated with a predominant Th2-type response characterized by high titers of serological IgG1 (IgG1/IgG2a > 2000) and high levels of IL-4 and IL-5 produced by restimulated splenocytes. A similar level of protection was observed in mice immunized with rAs16 formulated with alum (Alhydrogel), known to induce mainly a Th2-type immune response, whereas mice immunized with rAs16 formulated with MPLA or AddaVax, both known to induce a Th1-type biased response, were not significantly protected against A. suum infection. The rAs14 protein was not recognized by A. suum infected mouse sera and mice immunized with rAs14 formulated with ISA720 did not show significant protection against challenge infection, possibly due to the protein’s inaccessibility to the host immune system or a Th1-type response was induced which would counter a protective Th2-type response. Conclusions/Significance Yeast-expressed rAs16 formulated with ISA720 or alum induced significant protection in mice against A. suum egg challenge that associates with a Th2-skewed immune response, suggesting that rAS16 could be a feasible vaccine candidate against ascariasis. Roundworms (Ascaris) infect more than 700 million people living in poverty worldwide and cause malnutrition and physical and mental developmental delays in children. As an alternative or complementary approach to global deworming, a pan-anthelminthic vaccine is under development that targets ascariasis in addition to other human intestinal nematode infections. Towards this goal, two Ascaris suum antigens, As16 and As14, were expressed in Pichia pastoris as recombinant proteins. Mice immunized with rAs16 formulated with ISA720 adjuvant produced significant larva reduction (36.7%) and stunted larval development against A. suum egg challenge. The protection was associated with predominant Th2-type responses characterized by high levels of serological IgG1 (IgG1/IgG2a > 2,000) and Th2 cytokines, IL-4 and IL-5. A similar level of protection was observed in mice immunized with rAs16 formulated with alum that induces mainly a Th2-type immune response, whereas mice immunized with rAs16 formulated with MPLA or AddaVax, both inducing major Th1-type responses, were not significantly protected against A. suum infection. High-yield expression of rAs16 in yeast will allow for large-scale manufacture, and its protective efficacy when formulated with alum suggests its suitability as a vaccine candidate.
Collapse
|
36
|
Rodpai R, Intapan PM, Thanchomnang T, Sanpool O, Janwan P, Laummaunwai P, Wongkham C, Insawang T, Maleewong W. Identification of antigenic proteins in Strongyloides stercoralis by proteomic analysis. Parasitol Res 2017; 116:1687-1693. [PMID: 28455628 DOI: 10.1007/s00436-017-5443-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022]
Abstract
Strongyloides stercoralis is an intestinal helminth that infects people worldwide. Hyperinfection or disseminated human strongyloidiasis can involve vital organs, leading to lethal outcomes. We analyzed immunoproteomics of antigenic spots, derived from S. stercoralis third-stage larvae and reacted with human strongyloidiasis sera, by two-dimensional gel electrophoresis and immunoblotting. Of 26 excised antigenic spots analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry, 20 proteins were identified. Most proteins were associated with enzymes involved in the metabolic process, energy generation, and oxidation-reduction. The proteins relate to promotion of worm development, cell division, cell signaling and transportation, and regulation of muscular contraction. Identification of antigenic proteins shows promise in helping to discover potential diagnostic protein markers or vaccine candidates for S. stercoralis infection.
Collapse
Affiliation(s)
- Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Pewpan M Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Tongjit Thanchomnang
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Penchom Janwan
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Medical Technology, School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Porntip Laummaunwai
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tonkla Insawang
- Khon Kaen University Research Instrument Center, Research Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases, Mekong Health Science Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
37
|
Li X, Meng X, Luo K, Luan S, Cao B, Kong J. cDNA cloning and expression analysis of a phosphopyruvate hydratase gene from the chinese shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2017; 63:173-180. [PMID: 28216323 DOI: 10.1016/j.fsi.2017.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
In the present study a cDNA encoding a phosphopyruvate hydratase (enolase) was cloned from the muscle of the Chinese shrimp (Fenneropenaeus chinensis) and named as FcEnolase. The cDNA of FcEnolase encoded a protein of 434 amino acid residues with a molecular mass 47.22 kDa. The residues 342-355 constituted the signature motif "LLLKVNQIGSVTES". A SNP locus (C96T) in the ORF at 96 bp was identified. The results showed that the FcEnolase was a conserved gene. In the normal F. chinensis, the mRNA level in the muscle was much higher (P < 0.05) than the mRNA level in the gill and hepatopancreas. To verify the mRNA level of FcEnolase in the F. chinensis post WSSV infection, a real-time RT-PCR was performed. In the WSSV-infected F. chinensis, the FcEnolase mRNA level was significantly (P < 0.05) up-regulated in the muscle at 12 and 24 h post challenge (hpc) to approximately 2.7-fold and 2.7-fold the mRNA level in the controls, respectively. The FcEnolase mRNA level in the gill was significantly (P < 0.05) down-regulated at 6 hpc to approximately 0.3-fold the mRNA level in the control, followed by a significant (P < 0.05) up-regulation at 12 hpc to approximately 2.8-fold the mRNA level in the control. There was no obvious change of FcEnolase mRNA level in the hepatopancreas during the infection process. The expression profile coincided with the fact that WSSV primarily infects the tissues of muscle and gill, but hardly infects hepatopancreas. To verify the protein level of FcEnolase post WSSV infection, a Western blot was performed. The FcEnolase protein level in the muscle at 24 hpc significantly (P < 0.05) increased to approximately 2.1-fold the level in the control. These results showed the characterization of FcEnolase and suggested that the FcEnolase might be involved in the response of F. chinensis to WSSV infection.
Collapse
Affiliation(s)
- Xupeng Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Xianhong Meng
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Kun Luo
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Sheng Luan
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266300, PR China
| | - Baoxiang Cao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China
| | - Jie Kong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266300, PR China.
| |
Collapse
|
38
|
Versteeg L, Le Guezennec X, Zhan B, Liu Z, Angagaw M, Woodhouse JD, Biswas S, Beaumier CM. Transferring Luminex® cytokine assays to a wall-less plate technology: Validation and comparison study with plasma and cell culture supernatants. J Immunol Methods 2017; 440:74-82. [DOI: 10.1016/j.jim.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
|
39
|
Jiang H, Chen T, Sun H, Tang Z, Yu J, Lin Z, Ren P, Zhou X, Huang Y, Li X, Yu X. Immune response induced by oral delivery of Bacillus subtilis spores expressing enolase of Clonorchis sinensis in grass carps (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2017; 60:318-325. [PMID: 27729275 DOI: 10.1016/j.fsi.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Clonorchiasis, caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensisis (C.sinensis), remains a common public health problem. New effective prevention strategies are still urgent to control this food-borne infectious disease. The previous studies suggested Bacillus subtilis (B. subtilis) spores was an ideal vaccines delivery system, and the C.sinensis enolase (CsENO) was a potential vaccine candidate against clonorchiasis. In the current study, we detected CsENO-specific IgM levels by ELISA in sera, intestinal mucus and skin mucus in grass carps (Ctenopharyngodon idella) through oral administration with B. subtilis spores surface expressing CsENO. In addition, immune-related genes expression was also measured by qRT-PCR. Grass carps orally treated with B. subtilis spores or normal forages were used as controls. The results of ELISA manifested that specific IgM levels of grass carps in CsENO group in sera, intestine mucus and skin mucus almost significantly increased from week 4 post the first oral administration when compared to the two control groups. The levels of specific IgM reached its peak in intestine mucus firstly, then in sera, and last in skin mucus. qRT-PCR results showed that 5 immune-related genes expression had different degree of rising trend in CsENO group when compared to the two control groups. Our study demonstrated that orally administrated with B. subtilis spores expressing CsENO induced innate and adaptive immunity, systemic and local mucosal immunity, and humoral and cellular immunity. Our work may pave the way to clarify the exact mechanisms of protective efficacy elicited by B. subtilis spores expressing CsENO and provide new ideas for vaccine development against C. sinensis infection.
Collapse
Affiliation(s)
- Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jinyun Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Pengli Ren
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xinyi Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
40
|
Usefulness of gel filtration fraction as potential biomarker for neurocysticercosis in serum: towards a new diagnostic tool. Parasitology 2016; 144:426-435. [DOI: 10.1017/s0031182016001839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYThere is an increasing interest in improving neurocysticercosis (NCC) diagnosis through the search of new and alternative antigenic sources, as those obtained from heterologous antigens. The aim of this study was to obtain potential biomarkers for NCC diagnosis after gel filtration chromatography [gel filtration fraction (GFF)] from the total saline extract (SE) from Taenia saginata metacestodes, followed by protein identification and application in immunodiagnostic. SE and GFF proteic profiles were characterized in gel electrophoresis, and diagnostic performance was verified by testing 160 serum samples through enzyme-linked immunosorbent assay and immunoblotting. Sensitivity (Se), specificity (Sp) and other diagnostic parameters were calculated. Polypeptides of interest in the diagnosis of human NCC present at GFF were analysed by mass spectrometry (MS) and B-cell epitopes were predicted. GFF had the best diagnostic parameters: Se 93·3%; Sp 93%; AUC 0·990; LR+ = 13·42 and LR− = 0·07, and proved to be useful reacting with serum samples in immunoblotting. Proteic profile ranged from 64 to 68 kDa and enolase and calcium binding protein calreticulin precursor were identified after MS. The enolase and calcium-binding protein calreticulin precursor showed 18 and 10 predicted B-cell epitopes, respectively. In conclusion we identified important markers in the GFF with high efficiency to diagnose NCC.
Collapse
|
41
|
Ravidà A, Cwiklinski K, Aldridge AM, Clarke P, Thompson R, Gerlach JQ, Kilcoyne M, Hokke CH, Dalton JP, O'Neill SM. Fasciola hepatica Surface Tegument: Glycoproteins at the Interface of Parasite and Host. Mol Cell Proteomics 2016; 15:3139-3153. [PMID: 27466253 PMCID: PMC5054340 DOI: 10.1074/mcp.m116.059774] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica. Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Collapse
Affiliation(s)
- Alessandra Ravidà
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Krystyna Cwiklinski
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Allison M Aldridge
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul Clarke
- ¶Glycoselect, Dublin City University, Glasnevin, Dublin 9
| | | | - Jared Q Gerlach
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; **Regenerative Medicine Institute, NUI Galway, Ireland
| | - Michelle Kilcoyne
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; ‡‡Carbohydrate Signalling Group, Microbiology, NUI Galway, Ireland
| | - Cornelis H Hokke
- §§Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - John P Dalton
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sandra M O'Neill
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland;
| |
Collapse
|
42
|
Joshi S, Yadav NK, Rawat K, Tripathi CDP, Jaiswal AK, Khare P, Tandon R, Baharia RK, Das S, Gupta R, Kushawaha PK, Sundar S, Sahasrabuddhe AA, Dube A. Comparative Analysis of Cellular Immune Responses in Treated Leishmania Patients and Hamsters against Recombinant Th1 Stimulatory Proteins of Leishmania donovani. Front Microbiol 2016; 7:312. [PMID: 27047452 PMCID: PMC4801884 DOI: 10.3389/fmicb.2016.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022] Open
Abstract
Our prior studies demonstrated that cellular response of T helper 1 (Th1) type was generated by a soluble antigenic fraction (ranging from 89.9 to 97.1 kDa) of Leishmania donovani promastigote, in treated Leishmania patients as well as hamsters and showed significant prophylactic potential against experimental visceral leishmaniasis (VL). Eighteen Th1 stimulatory proteins were identified through proteomic analysis of this subfraction, out of which 15 were developed as recombinant proteins. In the present work, we have evaluated these 15 recombinant proteins simultaneously for their comparative cellular responses in treated Leishmania patients and hamsters. Six proteins viz. elongation factor-2, enolase, aldolase, triose phosphate isomerase, protein disulfide isomerase, and p45 emerged as most immunogenic as they produced a significant lymphoproliferative response, nitric oxide generation and Th1 cytokine response in PBMCs and lymphocytes of treated Leishmania patients and hamsters respectively. The results suggested that these proteins may be exploited for developing a successful poly-protein and/or poly-epitope vaccine against VL.
Collapse
Affiliation(s)
- Sumit Joshi
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Narendra K Yadav
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Keerti Rawat
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Chandra Dev P Tripathi
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Anil K Jaiswal
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Prashant Khare
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rati Tandon
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rajendra K Baharia
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Sanchita Das
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Reema Gupta
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Pramod K Kushawaha
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University Varanasi, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Anuradha Dube
- Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| |
Collapse
|
43
|
Zou Y, Wu F, Guo YX, Wang HB, Fang YQ, Kang M, Lin Q. Determining geographical variations in Ascaris suum isolated from different regions in northwest China through sequences of three mitochondrial genes. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:411-415. [PMID: 26730765 DOI: 10.3109/19401736.2015.1129404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sequence diversities in three mitochondrial DNA (mtDNA) regions, namely portions of NADH dehydrogenase subunit 1 (pnad1), cytochrome c oxidase subunit 1 (pcox1), and NADH dehydrogenase subunit 4 (pnad4), were investigated in all Ascaris suum samples isolated from four regions in northwestern China. Those genes were amplified by PCR method and the lengths of pnad1, pcox1, and pnad4 were 419 bp, 711 bp, and 723 bp, respectively. The intraspecific sequence variations within A. suum samples were 0-2.9% for pnad1, 0-2.1% for pcox1, and 0-3.1% for pnad4. Phylogenetic analysis combined with three sequences of mtDNA fragments showed that all A. suum samples were monophyletic groups, but samples from the same geographical origin did not always cluster together. The results suggested that the three mtDNA fragments could not be used as molecular markers to identify the A. suum isolates from four regions, and have important implications for studying molecular epidemiology and population genetics of A. suum.
Collapse
Affiliation(s)
- Yong Zou
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi Province , People's Republic of China
| | - Fei Wu
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi Province , People's Republic of China
| | - Ya-Xu Guo
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi Province , People's Republic of China
| | - Hui-Bao Wang
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi Province , People's Republic of China
| | - Yan-Qin Fang
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi Province , People's Republic of China
| | - Ming Kang
- b College of Agriculture and Animal Husbandry, Qinghai University , Xining , Qinghai Province , People's Republic of China
| | - Qing Lin
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi Province , People's Republic of China
| |
Collapse
|
44
|
Timm T, Grabitzki J, Severcan C, Muratoglu S, Ewald L, Yilmaz Y, Lochnit G. The PCome of Ascaris suum as a model system for intestinal nematodes: identification of phosphorylcholine-substituted proteins and first characterization of the PC-epitope structures. Parasitol Res 2016; 115:1263-74. [PMID: 26728072 DOI: 10.1007/s00436-015-4863-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022]
Abstract
In multicellular parasites (e.g., nematodes and protozoa), proteins and glycolipids have been found to be decorated with phosphorylcholine (PC). PC can provoke various effects on immune cells leading to an immunomodulation of the host's immune system. This immunomodulation allows long-term persistence but also prevents severe pathology due to downregulation of cellular immune responses. PC-containing antigens have been found to interfere with key proliferative signaling pathways in B and T cells, development of dendritic cells and macrophages, and mast cell degranulation. These effects contribute to the observed modulated cytokine levels and impairment of lymphocyte proliferation. In contrast to glycosphingolipids, little is known about the PC-epitopes of proteins. So far, only a limited number of PC-modified proteins from nematodes have been identified. In this project, PC-substituted proteins and glycolipids in Ascaris suum have been localized by immunohistochemistry in specific tissues of the body wall, intestine, and reproductive tract. Subsequently, we investigated the PCome of A. suum by 2D gel-based proteomics and detection by Western blotting using the PC-specific antibody TEPC-15. By peptide-mass-fingerprint matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), we could identify 59 PC-substituted proteins, which are in involved multiple cellular processes. In addition to membrane proteins like vitellogenin-6, we found proteins with structural (e.g., tubulins) and metabolic (e.g., pyruvate dehydrogenase) functions or which can act in the defense against the host's immune response (e.g., serpins). Initial characterization of the PC-epitopes revealed a predominant linkage of PC to the proteins via N-glycans. Our data form the basis for more detailed investigations of the PC-epitope structures as a prerequisite for comprehensive understanding of the molecular mechanisms of immunomodulation.
Collapse
Affiliation(s)
- Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Julia Grabitzki
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Cinar Severcan
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Suzan Muratoglu
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Lisa Ewald
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Yavuz Yilmaz
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Guenter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
45
|
Liu LL, Chen ZG, Mi RS, Zhang KY, Liu YC, Jiang W, Fei CZ, Xue FQ, Li T. Effect of Acetamizuril on enolase in second-generation merozoites of Eimeria tenella. Vet Parasitol 2016; 215:88-91. [DOI: 10.1016/j.vetpar.2015.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/28/2022]
|
46
|
Li WH, Qu ZG, Zhang NZ, Yue L, Jia WZ, Luo JX, Yin H, Fu BQ. Molecular characterization of enolase gene from Taenia multiceps. Res Vet Sci 2015; 102:53-8. [PMID: 26412520 DOI: 10.1016/j.rvsc.2015.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 11/28/2022]
Abstract
Taenia multiceps is a cestode parasite with its larval stage, known as Coenurus cerebralis, mainly encysts in the central nervous system of sheep and other livestocks. Enolase is a key glycolytic enzyme and represents multifunction in most organisms. In the present study, a 1617bp full-length cDNA encoding enolase was cloned from T. multiceps and designated as TmENO. A putative encoded protein of 433 amino acid residues that exhibited high similarity to helminth parasites. The recombinant TmENO protein (rTmENO) showed the catalytic and plasminogen-binding characteristics after the TmENO was subcloned and expressed in the pET30a(+) vector. The TmENO gene was transcribed during the adult and larval stages and was also identified in both cyst fluid and as a component of the adult worms and the metacestode by western blot analysis. Taken together, our results will facilitate further structural characterization for TmENO and new potential control strategies for T. multiceps.
Collapse
Affiliation(s)
- W H Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Z G Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - N Z Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - L Yue
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - W Z Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China
| | - J X Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China
| | - H Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China
| | - B Q Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China.
| |
Collapse
|
47
|
Cloning and Characterization of Surface-Localized α-Enolase of Streptococcus iniae, an Effective Protective Antigen in Mice. Int J Mol Sci 2015; 16:14490-510. [PMID: 26121302 PMCID: PMC4519854 DOI: 10.3390/ijms160714490] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022] Open
Abstract
Streptococcus iniae is a major fish pathogen that can also cause human bacteremia, cellulitis and meningitis. Screening for and identification of protective antigens plays an important role in developing therapies against S. iniae infections. In this study, we indicated that the α-enolase of S. iniae was not only distributed in the cytoplasm and associated to cell walls, but was also secreted to the bacterial cell surface. The functional identity of the purified recombinant α-enolase protein was verified by its ability to catalyze the conversion of 2-phosphoglycerate (2-PGE) to phosphoenolpyruvate (PEP), and both the recombinant and native proteins interacted with human plasminogen. The rabbit anti-rENO serum blockade assay shows that α-enolase participates in S. iniae adhesion to and invasion of BHK-21 cells. In addition, the recombinant α-enolase can confer effective protection against S. iniae infection in mice, which suggests that α-enolase has potential as a vaccine candidate in mammals. We conclude that S. iniae α-enolase is a moonlighting protein that also associates with the bacterial outer surface and functions as a protective antigen in mice.
Collapse
|
48
|
Mai YZ, Li YW, Li RJ, Li W, Huang XZ, Mo ZQ, Li AX. Proteomic analysis of differentially expressed proteins in the marine fish parasitic ciliate Cryptocaryon irritans. Vet Parasitol 2015; 211:1-11. [PMID: 25997646 DOI: 10.1016/j.vetpar.2015.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/26/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Abstract
Cryptocaryoniasis is a severe disease of farmed marine fish caused by the parasitic ciliate Cryptocaryon irritans. This disease can lead to considerable economic loss, but studies on proteins linked to disease development and antigenic proteins for vaccine development have been relatively scarce to date. In this study, 53 protein spots with differential abundance, representing 12 proteins, were identified based on a pair-wise comparison among theronts, trophonts, and tomonts. Meanwhile, 33 protein spots that elicited serological responses in rabbits were identified, representing 9 proteins. In addition, 27 common antigenic protein spots reacted with grouper anti-sera, representing 10 proteins. Most of the identified proteins were involved in cytoskeletal and metabolic pathways. Among these proteins, actin and α-tubulin appeared in all three developmental stages with differences in molecular weights and isoelectric points; 4 proteins (vacuolar ATP synthase catalytic subunit α, mcm2-3-5 family protein, 26S proteasome subunit P45 family protein and dnaK protein) were highly expressed only in theronts; while protein kinase domain containing protein and heat shock protein 70 showed high levels of expression only in trophonts and tomonts, respectively. Moreover, actin was co-detected with 3 rabbit anti-sera while β-tubulin, V-type ATPase α subunit family protein, heat shock protein 70, mitochondrial-type hsp70, and dnaK proteins showed immunoreactivity with corresponding rabbit anti-sera in theronts, trophonts, and tomonts. Furthermore, β-tubulin, the metabolic-related protein enolase, NADH-ubiquinone oxidoreductase 75 kDa subunit, malate dehydrogenase, as well as polypyrimidine tract-binding protein, glutamine synthetase, protein kinase domain containing protein, TNFR/NGFR cysteine-rich region family protein, and vacuolar ATP synthase catalytic subunit α, were commonly detected by grouper anti-sera. Therefore, these findings could contribute to an understanding of the differences in gene expression and phenotypes among the different stages of parasitic infection, and might be considered as a source of candidate proteins for disease diagnosis and vaccine development.
Collapse
Affiliation(s)
- Yong-Zhan Mai
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Wei Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rui-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xia-Zi Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ze-Quan Mo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
49
|
Comparative immunoprophylactic efficacy of Haemonchus contortus recombinant enolase (rHcENO) and Con A purified native glycoproteins in sheep. Exp Parasitol 2015; 154:98-107. [PMID: 25913090 DOI: 10.1016/j.exppara.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 04/07/2015] [Accepted: 04/19/2015] [Indexed: 01/13/2023]
Abstract
Haemonchus contortus is the most economically important blood feeding nematode parasite of sheep and goats all over the world. Enolase in helminth parasites is a multi-functional enzyme which involves in glycolysis and host tissue invasion. In this study, the recombinant H. contortus enolase (rHcENO) was evaluated for its immunoprophylactic efficacy in sheep along with Con A purified native glycoproteins in a vaccine challenge trial. Group I and Group II experimental sheep were immunized thrice with rHcENO and Con A purified native glycoproteins along with Montanide ISA 61 VG adjuvant. The animals were challenged with 5000 L3 stage active H. contortus larvae after 21 days of third immunization. A significant increase in the IgG titre was observed in rHcENO and Con A purified native glycoproteins immunized animals as compared to the control animals. Immunoprotective efficacy of Con A purified native glycoproteins was comparatively higher than rHcENO antigen.
Collapse
|
50
|
Zhang S, Guo A, Zhu X, You Y, Hou J, Wang Q, Luo X, Cai X. Identification and functional characterization of alpha-enolase from Taenia pisiformis metacestode. Acta Trop 2015; 144:31-40. [PMID: 25623259 DOI: 10.1016/j.actatropica.2015.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 01/05/2023]
Abstract
Enolase belongs to glycolytic enzymes with moonlighting functions. The role of enolase in Taenia species is still poorly understood. In this study, the full length of cDNA encoding for Taenia pisiformis alpha-enolase (Tpeno) was cloned from larval parasites and soluble recombinant Tpeno protein (rTpeno) was produced. Western blot indicated that both rTpeno and the native protein in excretion-secretion antigens from the larvae were recognized by anti-rTpeno monoclonal antibodies (MAbs). The primary structure of Tpeno showed the presence of a highly conserved catalytic site for substrate binding and an enolase signature motif. rTpeno enzymatic activities of catalyzing the reversible dehydration of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP) and vice versa were shown to be 30.71 ± 2.15 U/mg (2-PGA to PEP) and 11.29 ± 2.38 U/mg (PEP to 2-PGA), respectively. Far-Western blotting showed that rTpeno could bind to plasminogen, however its binding ability was inhibited by ϵ-aminocaproic acid (ϵACA) in a competitive ELISA test. Plasminogen activation assay showed that plasminogen bound to rTpeno could be converted into active plasmin using host-derived activators. Immunohistochemistry and immunofluorescence indicated that Tpeno was distributed in the bladder wall of the metacestode and the periphery of calcareous corpuscles. In addition, a vaccine trial showed that the enzyme could produce a 36.4% protection rate in vaccinated rabbits against experimental challenges from T. pisiformis eggs. These results suggest that Tpeno with multiple functions may play significant roles in the migration, growth, development and adaptation of T. pisiformis for survival in the host environment.
Collapse
Affiliation(s)
- Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yanan You
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Junling Hou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Qiuxia Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|