1
|
Jalalvand A, Fotouhi F, Bahramali G, Bambai B, Farahmand B. In silico design of a trivalent multi-epitope global-coverage vaccine-candidate protein against influenza viruses: evaluation by molecular dynamics and immune system simulation. J Biomol Struct Dyn 2025; 43:1522-1538. [PMID: 38088331 DOI: 10.1080/07391102.2023.2292293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2025]
Abstract
Hemagglutinin (HA), a variable viral surface protein, is essential for influenza vaccine development. Annually, traditional trivalent vaccines containing influenza A/H1N1, A/H3N2 and B viruses are administered globally, which are not very effective for the mutations in HA protein. The aim of this study was to design a multi-epitope vaccine containing epitopes of the HA protein of H1N1, H3N2 and B viruses using immunoinformatics methods. The HA protein epitope prediction was performed using Immune Epitope Database. Toxicity, antigenicity and conservancy of the epitopes were evaluated using ToxinPred, VaxiJen and Epitope Conservancy Analysis tools, respectively. Then, nontoxic, antigenic and high conserved epitopes with high prediction scores were selected. Their binding affinity was evaluated against human and mouse MHC class I and II molecules using the HPEPDOCK tool. Physicochemical properties and post-translational modifications were evaluated using ProtParam, SOLpro and MusiteDeep tools, respectively. Top selected epitopes were joined using linkers to produce the best effective recombinant trivalent vaccine candidate to elicit cellular and humoral immune responses in mouse and human host models. These sequences were modeled and verified. By evaluating the results of various analyses of all models and the most similarity to the native HA protein, model 5 was selected as the best model. Finally, in silico cloning of this model as vaccine candidate was performed in pET21. This study was a computer-aided analysis for a multi-epitope trivalent recombinant vaccine candidate against influenza viruses. The efficiency of our best model of vaccine candidates should be validated using in vitro and in vivo studies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Jalalvand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Bijan Bambai
- Department of Systems Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
3
|
van Bergen J, Camps MG, Pardieck IN, Veerkamp D, Leung WY, Leijs AA, Myeni SK, Kikkert M, Arens R, Zondag GC, Ossendorp F. Multiantigen pan-sarbecovirus DNA vaccines generate protective T cell immune responses. JCI Insight 2023; 8:e172488. [PMID: 37707962 PMCID: PMC10721273 DOI: 10.1172/jci.insight.172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
SARS-CoV-2 is the third zoonotic coronavirus to cause a major outbreak in humans in recent years, and many more SARS-like coronaviruses with pandemic potential are circulating in several animal species. Vaccines inducing T cell immunity against broadly conserved viral antigens may protect against hospitalization and death caused by outbreaks of such viruses. We report the design and preclinical testing of 2 T cell-based pan-sarbecovirus vaccines, based on conserved regions within viral proteins of sarbecovirus isolates of human and other carrier animals, like bats and pangolins. One vaccine (CoVAX_ORF1ab) encoded antigens derived from nonstructural proteins, and the other (CoVAX_MNS) encoded antigens from structural proteins. Both multiantigen DNA vaccines contained a large set of antigens shared across sarbecoviruses and were rich in predicted and experimentally validated human T cell epitopes. In mice, the multiantigen vaccines generated both CD8+ and CD4+ T cell responses to shared epitopes. Upon encounter of full-length spike antigen, CoVAX_MNS-induced CD4+ T cells were responsible for accelerated CD8+ T cell and IgG Ab responses specific to the incoming spike, irrespective of its sarbecovirus origin. Finally, both vaccines elicited partial protection against a lethal SARS-CoV-2 challenge in human angiotensin-converting enzyme 2-transgenic mice. These results support clinical testing of these universal sarbecovirus vaccines for pandemic preparedness.
Collapse
Affiliation(s)
| | - Marcel G.M. Camps
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Iris N. Pardieck
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Dominique Veerkamp
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Wing Yan Leung
- Immunetune BV, Leiden, Netherlands
- Synvolux BV, Leiden, Netherlands
| | - Anouk A. Leijs
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Sebenzile K. Myeni
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Gerben C. Zondag
- Immunetune BV, Leiden, Netherlands
- Synvolux BV, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
4
|
Zykova AA, Blokhina EA, Stepanova LA, Shuklina MA, Ozhereleva OO, Tsybalova LM, Kuprianov VV, Ravin NV. Nanoparticles Carrying Conserved Regions of Influenza A Hemagglutinin, Nucleoprotein, and M2 Protein Elicit a Strong Humoral and T Cell Immune Response and Protect Animals from Infection. Molecules 2023; 28:6441. [PMID: 37764217 PMCID: PMC10537994 DOI: 10.3390/molecules28186441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new influenza A strains. Efficient control of infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A combination of several such antigens, including the conserved region of the second subunit of the hemagglutinin (HA2), the extracellular domain of the M2 protein (M2e), and epitopes of nucleoprotein (NP), which together can elicit an antibody- and cell-mediated immune response, would be preferred for vaccine development. In this study, we obtained recombinant virus-like particles formed by an artificial self-assembling peptide (SAP) carrying two epitopes from NP, tandem copies of M2e and HA2 peptides, along with a T helper Pan DR-binding epitope (PADRE). Fusion proteins expressed in Escherichia coli self-assembled in vitro into spherical particles with a size of 15-35 nm. Immunization of mice with these particles induced strong humoral immune response against M2e and the entire virus, and lead to the formation of cytokine-secreting antigen-specific CD4+ and CD8+ effector memory T cells. Immunization provided high protection of mice against the lethal challenge with the influenza A virus. Our results show that SAP-based nanoparticles carrying conserved peptides from M2, HA, and NP proteins of the influenza A virus, as well as T helper epitope PADRE, can be used for the development of universal flu vaccines.
Collapse
Affiliation(s)
- Anna A. Zykova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Elena A. Blokhina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Liudmila A. Stepanova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg 197376, Russia
| | - Marina A. Shuklina
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg 197376, Russia
| | - Olga O. Ozhereleva
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg 197376, Russia
| | - Liudmila M. Tsybalova
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg 197376, Russia
| | - Victor V. Kuprianov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
5
|
Nishiyama A, Adachi Y, Tonouchi K, Moriyama S, Sun L, Aoki M, Asanuma H, Shirakura M, Fukushima A, Yamamoto T, Takahashi Y. Post-fusion influenza vaccine adjuvanted with SA-2 confers heterologous protection via Th1-polarized, non-neutralizing antibody responses. Vaccine 2023; 41:4525-4533. [PMID: 37330368 DOI: 10.1016/j.vaccine.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
Development of a universal influenza vaccine that can provide robust and long-lasting protection against heterologous infections is a global public health priority. A variety of vaccine antigens are designed to increase the antigenicity of conserved epitopes to elicit cross-protective antibodies that often lack virus-neutralizing activity. Given the contribution of antibody effector functions to cross-protection, adjuvants need to be added to modulate antibody effector functions as well as to enhance antibody quantity. We previously showed that post-fusion influenza vaccine antigens elicit non-neutralizing but cross-protective antibodies against conserved epitopes. Here, using a murine model, we comparably assessed the adjuvanticity of the newly developed SA-2 adjuvant containing a synthetic TLR7 agonist DSP-0546 and squalene-based MF59 analog as representative Th1- or Th2-type adjuvants, respectively. Both types of adjuvants in the post-fusion vaccine comparably enhanced cross-reactive IgG titers against heterologous strains. However, only SA-2 skewed the IgG subclass into the IgG2c subclass in association to its Th1-polarizing nature. SA-2-enhanced IgG2c responses exhibited antibody-dependent cellular cytotoxicity against heterologous virus strains, without cross-neutralizing activity. Eventually, the SA-2-adjuvanted vaccination provided protection against lethal infection by heterologous H3N2 and H1N1 viruses. Together, we conclude that the combination with a SA-2 is advantageous for enhancing the cross-protective capability of post-fusion HA vaccines that elicit non-neutralizing IgG antibodies.
Collapse
Affiliation(s)
- Ayae Nishiyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsucho Shinjuku, Tokyo 162-8480, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Lin Sun
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Masamitsu Aoki
- Sumitomo Pharma. Co., Ltd., 3-1-98, Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Hideki Asanuma
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Masayuki Shirakura
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Akihisa Fukushima
- Sumitomo Pharma. Co., Ltd., 3-1-98, Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| |
Collapse
|
6
|
Atmar RL, Bernstein DI, Winokur P, Frey SE, Angelo LS, Bryant C, Ben-Yedidia T, Roberts PC, El Sahly HM, Keitel WA. Safety and immunogenicity of Multimeric-001 (M-001) followed by seasonal quadrivalent inactivated influenza vaccine in young adults - A randomized clinical trial. Vaccine 2023; 41:2716-2722. [PMID: 36941155 PMCID: PMC10396309 DOI: 10.1016/j.vaccine.2023.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND The continuing evolution of influenza viruses poses a challenge to vaccine prevention, highlighting the need for a universal influenza vaccine. We evaluated the safety and immunogenicity of one such candidate, Multimeric-001 (M-001), when used as a priming vaccine prior to administration of quadrivalent inactivated influenza vaccine (IIV4). METHODS Healthy adults 18 to 49 years of age were enrolled in a phase 2 randomized, double-blind placebo-controlled trial. Participants received two doses of either 1.0-mg M-001 or saline placebo (60 per study arm) on Days 1 and 22 followed by a single dose of IIV4 on about Day 172. Safety, reactogenicity, cellular immune responses and influenza hemagglutination inhibition (HAI) and microneutralization (MN) were assessed. RESULTS The M-001 vaccine was safe and had an acceptable reactogenicity profile. Injection site tenderness (39% post-dose 1, 29% post-dose 2) was the most common reaction after M-001 administration. Polyfunctional CD4+ T cell responses (perforin-negative, CD107α-negative, TNF-α+, IFN-γ+, with or without IL-2) to the pool of M-001 peptides increased significantly from baseline to two weeks after the second dose of M-001, and this increase persisted through Day 172. However, there was no enhancement of HAI or MN antibody responses among M-001 recipients following IIV4 administration. CONCLUSIONS M-001 administration induced a subset of polyfunctional CD4+ T cells that persisted through 6 months of follow-up, but it did not improve HAI or MN antibody responses to IIV4. (clinicaltrials.gov NCT03058692).
Collapse
Affiliation(s)
- Robert L Atmar
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States.
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Patricia Winokur
- University of Iowa College of Medicine, Iowa City, IA, United States
| | - Sharon E Frey
- Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Laura S Angelo
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States
| | | | | | - Paul C Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hana M El Sahly
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Wendy A Keitel
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Li CJ, Jiang CL, Chao TL, Lin SY, Tsai YM, Chao CS, Su YT, Chen CJ, Chang SY, Lin FJ, Chang SC. Elicitation of potent neutralizing antibodies in obese mice by ISA 51-adjuvanted SARS-CoV-2 spike RBD-Fc vaccine. Appl Microbiol Biotechnol 2023; 107:2983-2995. [PMID: 36988669 PMCID: PMC10049902 DOI: 10.1007/s00253-023-12490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Vaccination is considered to be the most effective countermeasure to prevent and combat the global health threats of COVID-19. People with obesity are at a greater risk of hospitalization, life-threatening illness, and adverse outcomes after having COVID-19. Therefore, a safe and effective COVID-19 vaccine for obese individuals is urgently needed. In the study, the vaccine composed of the ISA 51 adjuvant and the SARS-CoV-2 spike (S) receptor-binding domain (RBD) in conjugation with the human IgG1 Fc fragment (named as ISA 51-adjuvanted RBD-Fc vaccine) was developed and inoculated in the regular chow diet (RCD) lean mice and the high-fat diet (HFD)-induced obese mice. The S protein-specific IgG titers were largely induced in an increasing manner along with three doses of ISA 51-adjuvanted RBD-Fc vaccine without causing any harmful side effect. In the HFD mice, the S protein-specific IgG titers can be quickly observed 2 weeks post the first inoculation. The antisera elicited by the ISA 51-adjuvanted RBD-Fc vaccine in the RCD and HFD mice exhibited potent SARS-CoV-2 neutralizing activities in the plaque reduction neutralization test (PRNT) assays and showed similar specificity for recognizing the key residues in the RBD which were involved in interacting with angiotensin-converting enzyme 2 (ACE2) receptor. The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine in the HFD mice can be sustainably maintained with the PRNT50 values of 1.80-1.91×10-3 for at least 8 weeks post the third inoculation. Collectively, the RBD-Fc-based immunogen and the ISA 51-adjuvanted formulation can be developed as an effective COVID-19 vaccine for obese individuals. KEY POINTS: • The ISA 51-adjuvanted RBD-Fc vaccine can induce potent SARS-CoV-2 neutralizing antibodies in the obese mouse • The antibodies elicited by the ISA 51-adjuvanted RBD-Fc vaccine can bind to the key RBD residues involved in interacting with ACE2 • The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine can be sustainably maintained for at least 8 weeks post the third inoculation.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chung-Lin Jiang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 106, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shiau-Yu Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Chong-Syun Chao
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Ting Su
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Jen Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 106, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 106, Taiwan.
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan.
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
8
|
Hu L, Lao G, Liu R, Feng J, Long F, Peng T. The race toward a universal influenza vaccine: Front runners and the future directions. Antiviral Res 2023; 210:105505. [PMID: 36574905 DOI: 10.1016/j.antiviral.2022.105505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Influenza virus is the pathogen of influenza (flu) and millions of people suffer from the infection worldwide, posing a significant health risk. The current influenza vaccines induce neutralizing antibodies against hemagglutinin (HA) to achieve strain-specific neutralization. The effectiveness of seasonal vaccines is usually low and unpredictable because of the antigenic variation and genetic plasticity of viruses, as well as the interference of preexisting immunity. A universal influenza vaccine is urgently needed to prevent a wide variety of influenza viruses. Nevertheless, reaching this difficult optimal goal requires a step-by-step approach. Innovative strategies and vaccine platforms are being developed in order to generate robust cross-protective immunity. In this review, we summarize candidate influenza vaccines that meet two criteria: first, they are designed to provide protection against multiple influenza viruses; second, they had passed regulatory evaluations and have entered various stages of clinical trials. We discuss these vaccine candidates based on the different vaccine-production platforms, with the focus on antigen selection, design, adjuvants, immunomodulators, and routes of vaccine delivery in the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Longbo Hu
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Geqi Lao
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Liu
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jin Feng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fei Long
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong South China Vaccine, Guangzhou, China; Greater Bay Area Innovative Vaccine Technology Development Center, Guangzhou International Bio-island Laboratory, Guangzhou, China.
| |
Collapse
|
9
|
Muraduzzaman AKM, Illing PT, Mifsud NA, Purcell AW. Understanding the Role of HLA Class I Molecules in the Immune Response to Influenza Infection and Rational Design of a Peptide-Based Vaccine. Viruses 2022; 14:2578. [PMID: 36423187 PMCID: PMC9695287 DOI: 10.3390/v14112578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza A virus is a respiratory pathogen that is responsible for regular epidemics and occasional pandemics that result in substantial damage to life and the economy. The yearly reformulation of trivalent or quadrivalent flu vaccines encompassing surface glycoproteins derived from the current circulating strains of the virus does not provide sufficient cross-protection against mismatched strains. Unlike the current vaccines that elicit a predominant humoral response, vaccines that induce CD8+ T cells have demonstrated a capacity to provide cross-protection against different influenza strains, including novel influenza viruses. Immunopeptidomics, the mass spectrometric identification of human-leukocyte-antigen (HLA)-bound peptides isolated from infected cells, has recently provided key insights into viral peptides that can serve as potential T cell epitopes. The critical elements required for a strong and long-living CD8+ T cell response are related to both HLA restriction and the immunogenicity of the viral peptide. This review examines the importance of HLA and the viral immunopeptidome for the design of a universal influenza T-cell-based vaccine.
Collapse
Affiliation(s)
| | | | - Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
10
|
Babayeva M, Tabynov K, Nurpeisov T, Fomin G, Renukaradhya GJ, Petrovsky N, Tabynov K. A recombinant Artemisia vulgaris pollen adjuvanted Art v 1 protein-based vaccine treats allergic rhinitis and bronchial asthma using pre- and co-seasonal ultrashort immunotherapy regimens in sensitized mice. Front Immunol 2022; 13:983621. [PMID: 36439113 PMCID: PMC9682083 DOI: 10.3389/fimmu.2022.983621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/24/2022] [Indexed: 06/23/2024] Open
Abstract
Allergic rhinitis is an important risk factor for bronchial asthma. Allergen-specific immunotherapy (ASIT) is the gold standard for treatment of allergic rhinitis, conjunctivitis, and asthma. A disadvantage of current ASIT methods is the length of therapy which requires numerous allergen administrations. The success of ASIT is determined by its schedule, which, depending on the vaccine and type of allergy, can be pre-seasonal (before the allergy season begins), combined pre/co-seasonal (during the allergy season) etc. The aim of the present study was to evaluate a vaccine based on recombinant Artemisia vulgaris pollen major Art v 1 protein formulated with ISA-51 adjuvant for therapy of allergic rhinitis and bronchial asthma in Artemisia-sensitized mice in an ultrashort (4 subcutaneous injections at weekly intervals) pre- and co-seasonal ASIT regimen. To simulate co-seasonal ASIT in mice, mice were regularly challenged with intranasal and nebulized Artemisia vulgaris pollen extract at the same time as receiving subcutaneous ASIT. For comparison, we used a previous Art v 1 protein vaccine formulated with SWE adjuvant, which in this study was modified by adding CpG oligonucleotide (Th1-biasing synthetic toll-like receptor 9 agonist), and a commercial vaccine containing a modified Artemisia vulgaris extract with aluminum hydroxide adjuvant. The therapeutic potential of Art v 1 based vaccine formulations with different ASIT regimens was evaluated in high and low (10 times lower) dose regimens. The ISA-51-adjuvanted vaccine formulations were the only ones among those studied in the ultrashort pre- and co-seasonal ASIT regimens to provide significant reduction in both signs of allergic rhinitis and bronchial asthma in sensitized mice (vs. positive control). In the ISA-51 adjuvanted group, immune response polarization toward Th1/Treg was observed in pre-seasonal ASIT, as reflected in a significant decrease in the serum level of total and Art v 1-specific IgE and increased ratios of allergen-specific IgG2a/IgG1 and IFN-γ/IL-4. The high dose SWE-CpG-adjuvanted vaccine had similar efficacy to the ISA-51 adjuvanted groups whereas the commercial vaccine showed significantly less effectiveness. The findings support further preclinical safety studies of the Art v 1-based vaccine formulated with ISA-51 adjuvant.
Collapse
Affiliation(s)
- Meruert Babayeva
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
- Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan
| | - Kairat Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
- Preclinical Research Laboratory with Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan
- T&TvaX LLC, Almaty, Kazakhstan
| | - Tair Nurpeisov
- Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan
| | - Gleb Fomin
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University (OSU), Wooster, OH, United States
| | | | - Kaissar Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
- T&TvaX LLC, Almaty, Kazakhstan
- Republican Allergy Center, Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| |
Collapse
|
11
|
Oftung F, Næss LM, Laake I, Stoloff G, Pleguezuelos O. FLU-v, a Broad-Spectrum Influenza Vaccine, Induces Cross-Reactive Cellular Immune Responses in Humans Measured by Dual IFN-γ and Granzyme B ELISpot Assay. Vaccines (Basel) 2022; 10:1528. [PMID: 36146606 PMCID: PMC9505334 DOI: 10.3390/vaccines10091528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
Previous reports demonstrated that FLU-v, a peptide-based broad-spectrum influenza vaccine candidate, induced antibody and cellular immune responses in humans. Here, we evaluate cellular effector functions and cross-reactivity. PBMC sampled pre- (day 0) and post-vaccination (days 42 and 180) from vaccine (n = 58) and placebo (n = 27) recipients were tested in vitro for responses to FLU-v and inactivated influenza strains (A/H3N2, A/H1N1, A/H5N1, A/H7N9, B/Yamagata) using IFN-γ and granzyme B ELISpot. FLU-v induced a significant increase in the number of IFN-γ- and granzyme-B-secreting cells responding to the vaccine antigens from pre-vaccination (medians: 5 SFU/106 cells for both markers) to day 42 (125 and 40 SFU/106 cells, p < 0.0001 for both) and day 180 (75 and 20 SFU/106 cells, p < 0.0001 and p = 0.0047). The fold increase from pre-vaccination to day 42 for IFN-γ-, granzyme-B-, and double-positive-secreting cells responding to FLU-v was significantly elevated compared to placebo (medians: 16.3-fold vs. 1.0-fold, p < 0.0001; 3.5-fold vs. 1.0-fold, p < 0.0001; 3.0-fold vs. 1.0-fold, p = 0.0012, respectively). Stimulation of PBMC with inactivated influenza strains showed significantly higher fold increases from pre-vaccination to day 42 in the vaccine group compared to placebo for IFN-γ-secreting cells reacting to H1N1 (medians: 2.3-fold vs. 0.8-fold, p = 0.0083), H3N2 (1.7-fold vs. 0.8-fold, p = 0.0178), and H5N1 (1.7-fold vs. 1.0-fold, p = 0.0441); for granzyme B secreting cells reacting to H1N1 (3.5-fold vs. 1.0-fold, p = 0.0075); and for double positive cells reacting to H1N1 (2.9-fold vs. 1.0-fold, p = 0.0219), H3N2 (1.7-fold vs. 0.9-fold, p = 0.0136), and the B strain (2.0-fold vs. 0.8-fold, p = 0.0227). The correlation observed between number of cells secreting IFN-γ or granzyme B in response to FLU-v and to the influenza strains supported vaccine-induced cross-reactivity. In conclusion, adjuvanted FLU-v vaccination induced cross-reactive cellular responses with cytotoxic capacity, further supporting the development of FLU-v as a broad-spectrum influenza vaccine.
Collapse
Affiliation(s)
- Fredrik Oftung
- Department of Method Development and Analytics, Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| | - Lisbeth M. Næss
- Department of Infection Control and Vaccines, Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| | - Ida Laake
- Department of Method Development and Analytics, Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| | - Gregory Stoloff
- SEEK, London Bioscience Innovation Centre, 2 Royal College St, London NW1 0NH, UK
| | | |
Collapse
|
12
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
13
|
Tsybalova LM, Stepanova LA, Ramsay ES, Vasin AV. Influenza B: Prospects for the Development of Cross-Protective Vaccines. Viruses 2022; 14:1323. [PMID: 35746794 PMCID: PMC9228933 DOI: 10.3390/v14061323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/04/2023] Open
Abstract
In this review, we analyze the epidemiological and ecological features of influenza B, one of the most common and severe respiratory infections. The review presents various strategies for cross-protective influenza B vaccine development, including recombinant viruses, virus-like particles, and recombinant proteins. We provide an overview of viral proteins as cross-protective vaccine targets, along with other updated broadly protective vaccine strategies. The importance of developing such vaccines lies not only in influenza B prevention, but also in the very attractive prospect of eradicating the influenza B virus in the human population.
Collapse
Affiliation(s)
- Liudmila M. Tsybalova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Liudmila A. Stepanova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Edward S. Ramsay
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Andrey V. Vasin
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
- Research Institute of Influenza named after A.A. Smorodintsev, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russia
| |
Collapse
|
14
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
15
|
Tabynov K, Babayeva M, Nurpeisov T, Fomin G, Nurpeisov T, Saltabayeva U, Renu S, Renukaradhya GJ, Petrovsky N, Tabynov K. Evaluation of a Novel Adjuvanted Vaccine for Ultrashort Regimen Therapy of Artemisia Pollen-Induced Allergic Bronchial Asthma in a Mouse Model. Front Immunol 2022; 13:828690. [PMID: 35371056 PMCID: PMC8965083 DOI: 10.3389/fimmu.2022.828690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022] Open
Abstract
Wormwood (Artemisia) pollen is among the top 10 aeroallergens globally that cause allergic rhinitis and bronchial asthma. Allergen-specific immunotherapy (ASIT) is the gold standard for treating patients with allergic rhinitis, conjunctivitis, and asthma. A significant disadvantage of today's ASIT methods is the long duration of therapy and multiplicity of allergen administrations. The goal of this study was to undertake a pilot study in mice of a novel ultrashort vaccine immunotherapy regimen incorporating various adjuvants to assess its ability to treat allergic bronchial asthma caused by wormwood pollen. We evaluated in a mouse model of wormwood pollen allergy candidates comprising recombinant Art v 1 wormwood pollen protein formulated with either newer (Advax, Advax-CpG, ISA-51) or more traditional [aluminum hydroxide, squalene water emulsion (SWE)] adjuvants administered by the intramuscular or subcutaneous route vs. intranasal administration of a mucosal vaccine formulation using chitosan-mannose nanoparticle entrapped with Art v 1 protein. The vaccine formulations were administered to previously wormwood pollen-sensitized animals, four times at weekly intervals. Desensitization was determined by measuring decreases in immunoglobulin E (IgE), cellular immunity, ear swelling test, and pathological changes in the lungs of animals after aeroallergen challenge. Art v 1 protein formulation with Advax, Advax-CpG, SWE, or ISA-51 adjuvants induced a significant decrease in both total and Art v 1-specific IgE with a concurrent increase in Art v 1-specific IgG compared to the positive control group. There was a shift in T-cell cytokine secretion toward a Th1 (Advax-CpG, ISA-51, and Advax) or a balanced Th1/Th2 (SWE) pattern. Protection against lung inflammatory reaction after challenge was seen with ISA-51, Advax, and SWE Art v 1 formulations. Overall, the ISA-51-adjuvanted vaccine group induced the largest reduction of allergic ear swelling and protection against type 2 and non-type 2 lung inflammation in challenged animals. This pilot study shows the potential to develop an ultrashort ASIT regimen for wormwood pollen-induced bronchial asthma using appropriately adjuvanted recombinant Art v 1 protein. The data support further preclinical studies with the ultimate goal of advancing this therapy to human clinical trials.
Collapse
Affiliation(s)
- Kairat Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan.,Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan.,T&TvaX LLC, Almaty, Kazakhstan
| | - Meruert Babayeva
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan.,Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan
| | - Tair Nurpeisov
- Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan.,Republican Allergy Center, Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Gleb Fomin
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
| | - Temirzhan Nurpeisov
- Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan
| | | | - Sankar Renu
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University (OSU), Wooster, OH, United States
| | - Gourapura J Renukaradhya
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University (OSU), Wooster, OH, United States
| | | | - Kaissar Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan.,T&TvaX LLC, Almaty, Kazakhstan.,Republican Allergy Center, Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| |
Collapse
|
16
|
Universal influenza vaccine technologies and recombinant virosome production. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Isakova-Sivak I, Stepanova E, Mezhenskaya D, Matyushenko V, Prokopenko P, Sychev I, Wong PF, Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines 2021; 20:1097-1112. [PMID: 34348561 DOI: 10.1080/14760584.2021.1964961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The licensed seasonal influenza vaccines predominantly induce neutralizing antibodies against immunodominant hypervariable epitopes of viral surface proteins, with limited protection against antigenically distant influenza viruses. Strategies have been developed to improve vaccines' performance in terms of broadly reactive and long-lasting immune response induction. AREAS COVERED We have summarized the advancements in the development of cross-protective influenza vaccines and discussed the challenges in evaluating them in preclinical and clinical trials. Here, the literature regarding the current stage of development of universal influenza vaccine candidates was reviewed. EXPERT OPINION Although various strategies aim to redirect adaptive immune responses from variable immunodominant to immunosubdominant antigens, more conserved epitopes are being investigated. Approaches that improve antibody responses to conserved B cell epitopes have increased the protective efficacy of vaccines within a subtype or phylogenetic group of influenza viruses. Vaccines that elicit significant levels of T cells recognizing highly conserved viral epitopes possess a high cross-protective potential and may cover most circulating influenza viruses. However, the development of T cell-based universal influenza vaccines is challenging owing to the diversity of MHCs in the population, unpredictable degree of immunodominance, lack of adequate animal models, and difficulty in establishing T cell immunity in humans. ABBREVIATIONS cHA: chimeric HA; HBc: hepatitis B virus core protein; HA: hemagglutinin; HLA: human leucocyte antigen; IIV: inactivated influenza vaccine; KLH: keyhole limpet hemocyanin; LAH: long alpha helix; LAIV: live attenuated influenza vaccine; M2e: extracellular domain of matrix 2 protein; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NA: neuraminidase; NS1: non-structural protein 1; qNIV: quadrivalent nanoparticle influenza vaccine; TRM: tissue-resident memory T cells; VE: vaccine effectiveness; VLP: virus-like particles; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina Stepanova
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ivan Sychev
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Pei-Fong Wong
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
18
|
Pollack KE, Meneveau MO, Melssen MM, Lynch KT, Koeppel AF, Young SJ, Turner S, Kumar P, Sol-Church K, Mauldin IS, Slingluff CL. Incomplete Freund's adjuvant reduces arginase and enhances Th1 dominance, TLR signaling and CD40 ligand expression in the vaccine site microenvironment. J Immunother Cancer 2021; 8:jitc-2020-000544. [PMID: 32350119 PMCID: PMC7213888 DOI: 10.1136/jitc-2020-000544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background Immunogenicity of cancer vaccines is impacted by adjuvants and schedule, but systematic assessments of their effects have not been performed. Montanide ISA-51, an incomplete Freund’s adjuvant (IFA), is used in many vaccine trials, but concerns have been raised about negative effects in murine studies. We found in humans that IFA enhances systemic immune responses and that repeat vaccination at one site (same site vaccination (SSV)) creates tertiary lymphoid structures (TLS) in the vaccine site microenvironment (VSME). We hypothesized that vaccination with peptides+IFA+pICLC or SSV×3 with peptides in IFA would create an immunogenic milieu locally at the VSME, with activated dendritic cells (DC), TLS-associated chemokines and a Th1-dominant VSME. Methods Biopsies of the VSME were obtained from participants on two clinical trials who were immunized with multiple melanoma peptides (MELITAC 12.1) in adjuvants comprising IFA and/or the TLR3-agonist pICLC. Biopsies were obtained either a week after one vaccine or a week after SSV×3. Controls included normal skin and skin injected with IFA without peptides. Gene expression analysis was performed by RNAseq. Results VSME samples were evaluated from 27 patients. One vaccine with peptides in pICLC+IFA enhanced expression of CD80, CD83, CD86 (p<0.01), CD40 and CD40L (p<0.0001) over normal skin; these effects were significantly enhanced for SSV with peptides+IFA. Vaccines containing pICLC increased expression of TBX21 (T-bet) but did not decrease GATA3 over normal skin, whereas SSV with peptides in IFA dramatically enhanced TBX21 and decreased GATA3, with high expression of IFNγ and STAT1. SSV with peptides in IFA also reduced arginase-1 (ARG1) expression and enhanced expression of TLR adapter molecules TICAM-1 (TRIF) and MYD88. Furthermore, SSV with IFA and peptides also enhanced expression of chemokines associated with TLS formation. Conclusions These findings suggest that SSV with peptides in IFA enhances CD40L expression by CD4 T cells, supports a Th1 microenvironment, with accumulation of activated and mature DC. Increased expression of TLR adaptor proteins after SSV with peptides in IFA might implicate effects of the skin microbiome. Reduced ARG1 may reflect diminished suppressive myeloid activity in the VSME. Trial registration number (NCT00705640, NCT01585350).
Collapse
Affiliation(s)
| | - Max O Meneveau
- Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Marit M Melssen
- Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Kevin T Lynch
- Surgery, University of Virginia, Charlottesville, Virginia, USA
| | | | - Samuel J Young
- Office of Research Cores Administration (ORCA), University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stephen Turner
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Pankaj Kumar
- Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Katia Sol-Church
- Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
19
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
20
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
21
|
Al-Azzam S, Ding Y, Liu J, Pandya P, Ting JP, Afshar S. Peptides to combat viral infectious diseases. Peptides 2020; 134:170402. [PMID: 32889022 PMCID: PMC7462603 DOI: 10.1016/j.peptides.2020.170402] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Viral infectious diseases have resulted in millions of deaths throughout history and have created a significant public healthcare burden. Tremendous efforts have been placed by the scientific communities, health officials and government organizations to detect, treat, and prevent viral infection. However, the complicated life cycle and rapid genetic mutations of viruses demand continuous development of novel medicines with high efficacy and safety profiles. Peptides provide a promising outlook as a tool to combat the spread and re-emergence of viral infection. This article provides an overview of five viral infectious diseases with high global prevalence: influenza, chronic hepatitis B, acquired immunodeficiency syndrome, severe acute respiratory syndrome, and coronavirus disease 2019. The current and potential peptide-based therapies, vaccines, and diagnostics for each disease are discussed.
Collapse
Affiliation(s)
- Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
22
|
Corder BN, Bullard BL, Poland GA, Weaver EA. A Decade in Review: A Systematic Review of Universal Influenza Vaccines in Clinical Trials during the 2010 Decade. Viruses 2020; 12:E1186. [PMID: 33092070 PMCID: PMC7589362 DOI: 10.3390/v12101186] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
On average, there are 3-5 million severe cases of influenza virus infections globally each year. Seasonal influenza vaccines provide limited protection against divergent influenza strains. Therefore, the development of a universal influenza vaccine is a top priority for the NIH. Here, we report a comprehensive summary of all universal influenza vaccines that were tested in clinical trials during the 2010-2019 decade. Of the 1597 studies found, 69 eligible clinical trials, which investigated 27 vaccines, were included in this review. Information from each trial was compiled for vaccine target, vaccine platform, adjuvant inclusion, clinical trial phase, and results. As we look forward, there are currently three vaccines in phase III clinical trials which could provide significant improvement over seasonal influenza vaccines. This systematic review of universal influenza vaccine clinical trials during the 2010-2019 decade provides an update on the progress towards an improved influenza vaccine.
Collapse
Affiliation(s)
- Brigette N. Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Brianna L. Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Gregory A. Poland
- Mayo Vaccine Research Group, General Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA;
| | - Eric A. Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| |
Collapse
|
23
|
Sant S, Quiñones-Parra SM, Koutsakos M, Grant EJ, Loudovaris T, Mannering SI, Crowe J, van de Sandt CE, Rimmelzwaan GF, Rossjohn J, Gras S, Loh L, Nguyen THO, Kedzierska K. HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. PLoS Pathog 2020; 16:e1008714. [PMID: 32750095 PMCID: PMC7428290 DOI: 10.1371/journal.ppat.1008714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/14/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Seasonal influenza virus infections cause 290,000–650,000 deaths annually and severe morbidity in 3–5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαβ clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαβ clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases. Annual influenza infections cause significant morbidity and morbidity globally. Established T-cell immunity directed at conserved viral regions provides some protection against influenza viruses and promotes rapid recovery, leading to better clinical outcomes. Killer CD8+ T-cells recognising viral peptides in a context of HLA-I glycoproteins, provide the broadest ever reported immunity across distinct influenza strains and subtypes. We asked whether the expression of certain HLA-I alleles affects CD8+ T cells responses. Our study clearly illustrates altered immunodominance hierarchies and immunodomination within broadly-cross-reactive influenza-specific CD8+ T-cells in individuals expressing two or more universal HLA-I alleles, key for T cell-directed vaccines and immunotherapies.
Collapse
Affiliation(s)
- Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Sergio M. Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Emma J. Grant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, Victoria, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Guus F. Rimmelzwaan
- National Influenza Center and Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| |
Collapse
|
24
|
Fukuyama H, Shinnakasu R, Kurosaki T. Influenza vaccination strategies targeting the hemagglutinin stem region. Immunol Rev 2020; 296:132-141. [PMID: 32542739 PMCID: PMC7323124 DOI: 10.1111/imr.12887] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Influenza is one of the best examples of highly mutable viruses that are able to escape immune surveillance. Indeed, in response to influenza seasonal infection or vaccination, the majority of the induced antibodies are strain‐specific. Current vaccine against the seasonal strains with the strategy of surveillance‐prediction‐vaccine does not cover an unmet virus strain leading to pandemic. Recently, antibodies targeting conserved epitopes on the hemagglutinin (HA) protein have been identified, albeit rarely, and they often showed broad protection. These antibody discoveries have brought the feasibility to develop a universal vaccine. Most of these antibodies bind the HA stem domain and accumulate in the memory B cell compartment. Broadly reactive stem‐biased memory responses were induced by infection with antigenically divergent influenza strains and were able to eradicate these viruses, together indicating the importance of generating memory B cells expressing high‐quality anti‐stem antibodies. Here, we emphasize recent progress in our understanding of how such memory B cells can be generated and discuss how these advances may be relevant to the quest for a universal influenza vaccine.
Collapse
Affiliation(s)
- Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Cellular Systems Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,INSERM EST, Strasbourg Cedex 2, France
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Romeli S, Hassan SS, Yap WB. Multi-Epitope Peptide-Based and Vaccinia-Based Universal Influenza Vaccine Candidates Subjected to Clinical Trials. Malays J Med Sci 2020; 27:10-20. [PMID: 32788837 PMCID: PMC7409566 DOI: 10.21315/mjms2020.27.2.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
In light of the limited protection conferred by current influenza vaccines, immunisation using universal influenza vaccines has been proposed for protection against all or most influenza sub-types. The fundamental principle of universal influenza vaccines is based on conserved antigens found in most influenza strains, such as matrix 2, nucleocapsid, matrix 1 and stem of hemagglutinin proteins. These antigens trigger cross-protective immunity against different influenza strains. Many researchers have attempted to produce the conserved epitopes of these antigens in the form of peptides in the hope of generating universal influenza vaccine candidates that can broadly induce cross-reactive protection against influenza viral infections. However, peptide vaccines are poorly immunogenic when applied individually owing to their small molecular sizes. Hence, strategies, such as combining peptides as multi-epitope vaccines or presenting peptides on vaccinia virus particles, are employed. This review discusses the clinical and laboratory findings of several multi-epitope peptide vaccine candidates and vaccinia-based peptide vaccines. The majority of these vaccine candidates have reached the clinical trial phase. The findings in this study will indeed shed light on the applicability of universal influenza vaccines to prevent seasonal and pandemic influenza outbreaks in the near future.
Collapse
Affiliation(s)
- Syazwani Romeli
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Wei Boon Yap
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Pleguezuelos O, Dille J, de Groen S, Oftung F, Niesters HGM, Islam MA, Næss LM, Hungnes O, Aldarij N, Idema DL, Perez AF, James E, Frijlink HW, Stoloff G, Groeneveld P, Hak E. Immunogenicity, Safety, and Efficacy of a Standalone Universal Influenza Vaccine, FLU-v, in Healthy Adults: A Randomized Clinical Trial. Ann Intern Med 2020; 172:453-462. [PMID: 32150750 DOI: 10.7326/m19-0735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND FLU-v is a broad-spectrum influenza vaccine that induces antibodies and cell-mediated immunity. OBJECTIVE To compare the safety, immunogenicity, and exploratory efficacy of different formulations and dosing regimens of FLU-v versus placebo. DESIGN Randomized, double-blind, placebo-controlled, single-center phase 2b clinical trial. (ClinicalTrials.gov: NCT02962908; EudraCT: 2015-001932-38). SETTING The Netherlands. PARTICIPANTS 175 healthy adults aged 18 to 60 years. INTERVENTION 0.5-mL subcutaneous injection of 500 µg of adjuvanted (1 dose) or nonadjuvanted (2 doses) FLU-v (A-FLU-v or NA-FLU-v) or adjuvanted or nonadjuvanted placebo (A-placebo or NA-placebo) (2:2:1:1 ratio). MEASUREMENTS Vaccine-specific cellular responses at days 0, 42, and 180 were assessed via flow cytometry and enzyme-linked immunosorbent assay. Solicited information on adverse events (AEs) was collected for 21 days after vaccination. Unsolicited information on AEs was collected throughout the study. RESULTS The AEs with the highest incidence were mild to moderate injection site reactions. The difference between A-FLU-v and A-placebo in the median fold increase in secreted interferon-γ (IFN-γ) was 38.2-fold (95% CI, 4.7- to 69.7-fold; P = 0.001) at day 42 and 25.0-fold (CI, 5.7- to 50.9-fold; P < 0.001) at day 180. The differences between A-FLU-v and A-placebo in median fold increase at day 42 were 4.5-fold (CI, 2.3- to 9.8-fold; P < 0.001) for IFN-γ-producing CD4+ T cells, 4.9-fold (CI, 1.3- to 40.0-fold; P < 0.001) for tumor necrosis factor-α (TNF-α), 7.0-fold (CI, 3.5- to 18.0-fold; P < 0.001) for interleukin-2 (IL-2), and 1.7-fold (CI, 0.1- to 4.0-fold; P = 0.004) for CD107a. At day 180, differences were 2.1-fold (CI, 0.0- to 6.0-fold; P = 0.030) for IFN-γ and 5.7-fold (CI, 2.0- to 15.0-fold; P < 0.001) for IL-2, with no difference for TNF-α or CD107a. No differences were seen between NA-FLU-v and NA-placebo. LIMITATION The study was not powered to evaluate vaccine efficacy against influenza infection. CONCLUSION Adjuvanted FLU-v is immunogenic and merits phase 3 development to explore efficacy. PRIMARY FUNDING SOURCE SEEK and the European Commission Directorate-General for Research and Innovation, European Member States within the UNISEC (Universal Influenza Vaccines Secured) project.
Collapse
Affiliation(s)
| | - Joep Dille
- Isala Hospital, Zwolle, the Netherlands (J.D., S.D., P.G.)
| | - Sofie de Groen
- Isala Hospital, Zwolle, the Netherlands (J.D., S.D., P.G.)
| | - Fredrik Oftung
- Norwegian Institute of Public Health, Oslo, Norway (F.O., L.M.N., O.H.)
| | - Hubert G M Niesters
- University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands (H.G.N.)
| | - Md Atiqul Islam
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands, and Shahjalal University of Science and Technology, Sylhet, Bangladesh (M.A.I.)
| | | | - Olav Hungnes
- Norwegian Institute of Public Health, Oslo, Norway (F.O., L.M.N., O.H.)
| | - Nuhoda Aldarij
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands (N.A., D.L.I., H.W.F., E.H.)
| | - Demi L Idema
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands (N.A., D.L.I., H.W.F., E.H.)
| | | | - Emma James
- SEEK, London, United Kingdom (O.P., A.F.P., E.J., G.S.)
| | - Henderik W Frijlink
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands (N.A., D.L.I., H.W.F., E.H.)
| | | | | | - Eelko Hak
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands (N.A., D.L.I., H.W.F., E.H.)
| |
Collapse
|
27
|
Pleguezuelos O, James E, Fernandez A, Lopes V, Rosas LA, Cervantes-Medina A, Cleath J, Edwards K, Neitzey D, Gu W, Hunsberger S, Taubenberger JK, Stoloff G, Memoli MJ. Efficacy of FLU-v, a broad-spectrum influenza vaccine, in a randomized phase IIb human influenza challenge study. NPJ Vaccines 2020; 5:22. [PMID: 32194999 PMCID: PMC7069936 DOI: 10.1038/s41541-020-0174-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/07/2020] [Indexed: 11/14/2022] Open
Abstract
FLU-v, developed by PepTcell (SEEK), is a peptide vaccine aiming to provide a broadly protective cellular immune response against influenza A and B. A randomized, double-blind, placebo-controlled, single-center, phase IIb efficacy and safety trial was conducted. One hundred and fifty-three healthy individuals 18-55 years of age were randomized to receive one or two doses of adjuvanted FLU-v or adjuvanted placebo subcutaneously on days -43 and -22, prior to intranasal challenge on day 0 with the A/California/04/2009/H1N1 human influenza A challenge virus. The primary objective of the study was to identify a reduction in mild to moderate influenza disease (MMID) defined as the presence of viral shedding and clinical influenza symptoms. Single-dose adjuvanted FLU-v recipients (n = 40) were significantly less likely to develop MMID after challenge vs placebo (n = 42) (32.5% vs 54.8% p = 0.035). FLU-v should continue to be evaluated and cellular immunity explored further as a possible important correlate of protection against influenza.
Collapse
Affiliation(s)
| | - Emma James
- SEEK Central Point, 45 Beech Street, London, EC2Y 8AD UK
| | - Ana Fernandez
- SEEK Central Point, 45 Beech Street, London, EC2Y 8AD UK
| | | | - Luz Angela Rosas
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Adriana Cervantes-Medina
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jason Cleath
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kristina Edwards
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Dana Neitzey
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Wenjuan Gu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892 USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892 USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | - Matthew J. Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
28
|
Chen JR, Liu YM, Tseng YC, Ma C. Better influenza vaccines: an industry perspective. J Biomed Sci 2020; 27:33. [PMID: 32059697 PMCID: PMC7023813 DOI: 10.1186/s12929-020-0626-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
Vaccination is the most effective measure at preventing influenza virus infections. However, current seasonal influenza vaccines are only protective against closely matched circulating strains. Even with extensive monitoring and annual reformulation our efforts remain one step behind the rapidly evolving virus, often resulting in mismatches and low vaccine effectiveness. Fortunately, many next-generation influenza vaccines are currently in development, utilizing an array of innovative techniques to shorten production time and increase the breadth of protection. This review summarizes the production methods of current vaccines, recent advances that have been made in influenza vaccine research, and highlights potential challenges that are yet to be overcome. Special emphasis is put on the potential role of glycoengineering in influenza vaccine development, and the advantages of removing the glycan shield on influenza surface antigens to increase vaccine immunogenicity. The potential for future development of these novel influenza vaccine candidates is discussed from an industry perspective.
Collapse
Affiliation(s)
| | - Yo-Min Liu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming University, Taipei, 112, Taiwan
| | | | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
29
|
Phillipson JE, Babecoff R, Ben-Yedidia T. Is a universal influenza vaccine feasible? Ther Adv Vaccines Immunother 2019; 7:2515135519885547. [PMID: 35174313 PMCID: PMC8842179 DOI: 10.1177/2515135519885547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022] Open
Abstract
The influenza virus causes significant human morbidity and mortality
annually and poses a pandemic threat. In addition, the virus
frequently mutates, contributing to thousands of identified strains.
Current influenza vaccine solutions are strain specific, target
existing strains, and achieve only approximately 40% vaccine
effectiveness (VE). The need for broadly protective Universal
Influenza Vaccines (UIVs) is clear. UIV research and development
efforts focus on widely conserved (i.e. not strain specific) influenza
epitopes. The most clinically advanced UIV candidate, the
Multimeric-001 (M-001), is currently undergoing a pivotal, clinical
efficacy, phase III trial. Completed clinical trials indicate M-001 is
safe, well tolerated, and immunogenic to a broad range of influenza
strains. Additional candidates are also under development, supported
by public and private funding. Research results suggest that it is
only a matter of time until a broadly protective influenza vaccine is
approved for licensure.
Collapse
Affiliation(s)
- Joshua E Phillipson
- BiondVax Pharmaceuticals Ltd., Jerusalam BioPark building, Floor 2, Jerusalem, Israel
| | - Ron Babecoff
- BiondVax Pharmaceuticals Ltd., Jerusalem, Israel
| | | |
Collapse
|
30
|
Zimmerman DH, Carambula RE, Ciemielewski J, Rosenthal KS. Lessons from next generation influenza vaccines for inflammatory disease therapies. Int Immunopharmacol 2019; 74:105729. [PMID: 31280056 DOI: 10.1016/j.intimp.2019.105729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Lessons can be learned for treating inflammatory diseases such as rheumatoid arthritis (RA) from next generation approaches for development of universal influenza vaccines. Immunomodulation of inflammatory diseases, rather than ablation of cytokine or cellular responses, can address the root cause of the disease and provide potential cure. Like influenza, there are different antigenic 'strains' and inflammatory T cell responses, Th1 or Th17, that drive each person's disease. As such, next generation vaccine-like antigen specific therapies for inflammatory diseases can be developed but will need to be customized to the patient depending upon the antigen and T cell response that is driving the disease.
Collapse
Affiliation(s)
| | | | | | - Ken S Rosenthal
- Roseman University of Health Sciences College of Medicine, 10530 Discovery Dr., Las Vegas, NV 89135, USA.
| |
Collapse
|
31
|
Auladell M, Jia X, Hensen L, Chua B, Fox A, Nguyen THO, Doherty PC, Kedzierska K. Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses. Front Immunol 2019; 10:1400. [PMID: 31312199 PMCID: PMC6614380 DOI: 10.3389/fimmu.2019.01400] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Persistent and durable immunological memory forms the basis of any successful vaccination protocol. Generation of pre-existing memory B cell and T cell pools is thus the key for maintaining protective immunity to seasonal, pandemic and avian influenza viruses. Long-lived antibody secreting cells (ASCs) are responsible for maintaining antibody levels in peripheral blood. Generated with CD4+ T help after naïve B cell precursors encounter their cognate antigen, the linked processes of differentiation (including Ig class switching) and proliferation also give rise to memory B cells, which then can change rapidly to ASC status after subsequent influenza encounters. Given that influenza viruses evolve rapidly as a consequence of antibody-driven mutational change (antigenic drift), the current influenza vaccines need to be reformulated frequently and annual vaccination is recommended. Without that process of regular renewal, they provide little protection against “drifted” (particularly H3N2) variants and are mainly ineffective when a novel pandemic (2009 A/H1N1 “swine” flu) strain suddenly emerges. Such limitation of antibody-mediated protection might be circumvented, at least in part, by adding a novel vaccine component that promotes cross-reactive CD8+ T cells specific for conserved viral peptides, presented by widely distributed HLA types. Such “memory” cytotoxic T lymphocytes (CTLs) can rapidly be recalled to CTL effector status. Here, we review how B cells and follicular T cells are elicited following influenza vaccination and how they survive into a long-term memory. We describe how CD8+ CTL memory is established following influenza virus infection, and how a robust CTL recall response can lead to more rapid virus elimination by destroying virus-infected cells, and recovery. Exploiting long-term, cross-reactive CTL against the continuously evolving and unpredictable influenza viruses provides a possible mechanism for preventing a disastrous pandemic comparable to the 1918-1919 H1N1 “Spanish flu,” which killed more than 50 million people worldwide.
Collapse
Affiliation(s)
- Maria Auladell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Brendon Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol 2019; 124:110632. [PMID: 31201918 DOI: 10.1016/j.exger.2019.110632] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Immunosenescence contributes to a decreased capacity of the immune system to respond effectively to infections or vaccines in the elderly. The full extent of the biological changes that lead to immunosenescence are unknown, but numerous cell types involved in innate and adaptive immunity exhibit altered phenotypes and function as a result of aging. These manifestations of immunosenescence at the cellular level are mediated by dysregulation at the genetic level, and changes throughout the immune system are, in turn, propagated by numerous cellular interactions. Environmental factors, such as nutrition, also exert significant influence on the immune system during aging. While the mechanisms that govern the onset of immunosenescence are complex, systems biology approaches allow for the identification of individual contributions from each component within the system as a whole. Although there is still much to learn regarding immunosenescence, systems-level studies of vaccine responses have been highly informative and will guide the development of new vaccine candidates, novel adjuvant formulations, and immunotherapeutic drugs to improve vaccine responses among the aging population.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
33
|
Qiu X, Duvvuri VR, Bahl J. Computational Approaches and Challenges to Developing Universal Influenza Vaccines. Vaccines (Basel) 2019; 7:E45. [PMID: 31141933 PMCID: PMC6631137 DOI: 10.3390/vaccines7020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
The traditional design of effective vaccines for rapidly-evolving pathogens, such as influenza A virus, has failed to provide broad spectrum and long-lasting protection. With low cost whole genome sequencing technology and powerful computing capabilities, novel computational approaches have demonstrated the potential to facilitate the design of a universal influenza vaccine. However, few studies have integrated computational optimization in the design and discovery of new vaccines. Understanding the potential of computational vaccine design is necessary before these approaches can be implemented on a broad scale. This review summarizes some promising computational approaches under current development, including computationally optimized broadly reactive antigens with consensus sequences, phylogenetic model-based ancestral sequence reconstruction, and immunomics to compute conserved cross-reactive T-cell epitopes. Interactions between virus-host-environment determine the evolvability of the influenza population. We propose that with the development of novel technologies that allow the integration of data sources such as protein structural modeling, host antibody repertoire analysis and advanced phylodynamic modeling, computational approaches will be crucial for the development of a long-lasting universal influenza vaccine. Taken together, computational approaches are powerful and promising tools for the development of a universal influenza vaccine with durable and broad protection.
Collapse
Affiliation(s)
- Xueting Qiu
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Venkata R Duvvuri
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30606, USA.
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| |
Collapse
|
34
|
Trucchi C, Paganino C, Amicizia D, Orsi A, Tisa V, Piazza MF, Icardi G, Ansaldi F. Universal influenza virus vaccines: what needs to happen next? Expert Opin Biol Ther 2019; 19:671-683. [PMID: 30957589 DOI: 10.1080/14712598.2019.1604671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Influenza occurs worldwide and causes significant disease burden in terms of morbidity, associated complications, hospitalizations, and deaths. Vaccination constitutes the primary approach for controlling influenza. Current influenza vaccines elicit a strain-specific response yet occasionally exhibit suboptimal effectiveness. This review describes the limits of available immunization tools and the future prospects and potentiality of universal influenza vaccines. AREAS COVERED New 'universal' vaccines, which are presently under development, are expected to overcome the problems related to the high variability of influenza viruses, such as the need for seasonal vaccine updates and re-vaccination. Here, we explore vaccines based on the highly conserved epitopes of the HA, NA, or extracellular domain of the influenza M2 protein, along with those based on the internal proteins such as NP and M1. EXPERT OPINION The development of a universal influenza vaccine that confers protection against homologous, drifted, and shifted influenza virus strains could obviate the need for annual reformulation and mitigate disease burden. The scientific community has long been awaiting the advent of universal influenza vaccines; these are currently under development in laboratories worldwide. If such vaccines are immunogenic, efficacious, and able to confer long-lasting immunity, they might be integrated with or supplant traditional influenza vaccines.
Collapse
Affiliation(s)
- Cecilia Trucchi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy
| | - Chiara Paganino
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy
| | - Daniela Amicizia
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Andrea Orsi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Valentino Tisa
- c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Maria Francesca Piazza
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Giancarlo Icardi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Filippo Ansaldi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| |
Collapse
|
35
|
Jain S, Baranwal M. Computational analysis in designing T cell epitopes enriched peptides of Ebola glycoprotein exhibiting strong binding interaction with HLA molecules. J Theor Biol 2019; 465:34-44. [DOI: 10.1016/j.jtbi.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/28/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023]
|
36
|
Highly conserved hemagglutinin peptides of H1N1 influenza virus elicit immune response. 3 Biotech 2018; 8:492. [PMID: 30498665 DOI: 10.1007/s13205-018-1509-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/09/2018] [Indexed: 01/24/2023] Open
Abstract
In the current study, two highly conserved (> 90%) H1N1 hemagglutinin peptides STDTVDTVLEKNVTVTHSVNL (H1) and KVNSVIEKMNTQFTAVGKEF (H2) containing multiple T-cell epitopes have been assessed for their immunogenic potential in vitro, subjecting peripheral blood mononuclear cells from healthy volunteers to repetitive stimulation of chemically synthesised H1 and H2 peptides, and measuring their interferon (IFN)-γ level (ELISA) and proliferation (MTT assay). Further, these peptides were analysed for their binding affinity with 18 different human leukocyte antigen (HLA) class I and II by means of molecular docking. All seven samples tested for H1- and H2-induced IFN-γ secretion were found to have enhanced IFN-γ production. Six (H1) and five (H2) samples have shown proliferative response compared to unstimulated cells. Peptide-induced IFN-γ secretion and proliferation in healthy samples represent the immunogenic potential of these peptides. Further, molecular docking results reveal that the peptides have comparable binding energy to that of native bound peptide for both HLA classes which indicates that these peptides have the capability to be presented by different HLA molecules required for T-cell response. Hence, these conserved immunogenic hemagglutinin peptides are potential candidates for influenza vaccine development.
Collapse
|
37
|
Looi QH, Foo JB, Lim MT, Le CF, Show PL. How far have we reached in development of effective influenza vaccine? Int Rev Immunol 2018; 37:266-276. [PMID: 30252547 DOI: 10.1080/08830185.2018.1500570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite of ongoing research programs and numerous clinical trials, seasonal influenza epidemics remain a major concern globally. Vaccination remains the most effective method to prevent influenza infection. However, current flu vaccines have several limitations, including limited vaccine capacity, long production times, inconsistence efficacy in certain populations, and lack of a "universal" solution. Different next-generation approaches such as cell line-based culture, reverse genetics, and virus expression technology are currently under development to address the aforementioned challenges in conventional vaccine manufacture pipeline. Such approaches hope for safe and scalable production, induce broad-spectrum immunity, create premade libraries of vaccine strains, and target nonvariable regions of antigenic proteins for "universal" vaccination. Here, we discuss the process and challenges of the current influenza vaccine platform as well as new approaches that are being investigated. These developments indicate that an exciting future lies ahead in the influenza vaccine field.
Collapse
Affiliation(s)
- Qi Hao Looi
- a Ming Medical Services Sdn. Bhd , Petaling Jaya , Selangor Darul Ehsan , Malaysia
| | - Jhi Biau Foo
- b School of Pharmacy, Faculty of Health & Medical Sciences , Taylor's University , Subang Jaya , Selangor Darul Ehsan , Malaysia
| | - May Teng Lim
- c Department of Chemical and Environmental Engineering, Faculty of Engineering , University of Nottingham Malaysia Campus , Jalan Braga , Semenyih, Selangor Darul Ehsan , Malaysia
| | - Cheng Foh Le
- d School of Biosciences, Faculty of Science , University of Nottingham Malaysia Campus , Jalan Broga , Semenyih , Selangor Darul Ehsan , Malaysia
| | - Pau Loke Show
- c Department of Chemical and Environmental Engineering, Faculty of Engineering , University of Nottingham Malaysia Campus , Jalan Braga , Semenyih, Selangor Darul Ehsan , Malaysia.,e Molecular Pharming and Bioproduction Research Group, Food and Pharmaceutical Engineering Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering , University of Nottingham Malaysia Campus , Jalan Broga, Semenyih , Selangor Darul Ehsan , Malaysia
| |
Collapse
|
38
|
Fox A, Quinn KM, Subbarao K. Extending the Breadth of Influenza Vaccines: Status and Prospects for a Universal Vaccine. Drugs 2018; 78:1297-1308. [PMID: 30088204 DOI: 10.1007/s40265-018-0958-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the widespread use of seasonal influenza vaccines, there is urgent need for a universal influenza vaccine to provide broad, long-term protection. A number of factors underpin this urgency, including threats posed by zoonotic and pandemic influenza A viruses, suboptimal effectiveness of seasonal influenza vaccines, and concerns surrounding the effects of annual vaccination. In this article, we discuss approaches that are being investigated to increase influenza vaccine breadth, which are near-term, readily achievable approaches to increase the range of strains recognized within a subtype, or longer-term more challenging approaches to produce a truly universal influenza vaccine. Adjuvanted and neuraminidase-optimized vaccines are emerging as the most feasible and promising approaches to extend protection to cover a broader range of strains within a subtype. The goal of developing a universal vaccine has also been advanced with the design of immunogenic influenza HA-stem constructs that induce broadly neutralizing antibodies. However, these constructs are not yet sufficiently immunogenic to induce lasting universal immunity in humans. Advances in understanding how T cells mediate protection, and how viruses are packaged, have facilitated the rationale design and delivery of replication-incompetent virus vaccines that induce broad protection mediated by lung-resident memory T cells. While the lack of clear mechanistic correlates of protection, other than haemagglutination-inhibiting antibodies, remains an impediment to further advancing novel influenza vaccines, the pressing need for such a vaccine is supporting development of highly innovative and effective strategies.
Collapse
Affiliation(s)
- Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, and the Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, Australia.
| |
Collapse
|
39
|
Weinberger B. Adjuvant strategies to improve vaccination of the elderly population. Curr Opin Pharmacol 2018; 41:34-41. [PMID: 29677646 DOI: 10.1016/j.coph.2018.03.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Immunosenescence contributes to increased incidence and severity of many infections in old age and is responsible for impaired immunogenicity and efficacy of vaccines. Adjuvants are one strategy to enhance immunogenicity of vaccines. The oil-in-water emulsions MF59TM and AS03, as well as a virosomal vaccine have been licensed in seasonal or pandemic influenza vaccines and are/were used successfully in the elderly. AS01, a liposome-based adjuvant comprising two immunostimulants has recently been approved in a recombinant protein vaccine for older adults, which showed very high efficacy against herpes zoster in clinical trials. Several adjuvants for use in the older population are in clinical and preclinical development and will hopefully improve vaccines for this age group in the future.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria.
| |
Collapse
|
40
|
Soema PC, Rosendahl Huber SK, Willems GJ, Jacobi R, Hendriks M, Soethout E, Jiskoot W, de Jonge J, van Beek J, Kersten GFA, Amorij JP. Whole-Inactivated Influenza Virus Is a Potent Adjuvant for Influenza Peptides Containing CD8 + T Cell Epitopes. Front Immunol 2018; 9:525. [PMID: 29593747 PMCID: PMC5861146 DOI: 10.3389/fimmu.2018.00525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Influenza peptide antigens coding for conserved T cell epitopes have the capacity to induce cross-protective influenza-specific immunity. Short peptide antigens used as a vaccine, however, often show poor immunogenicity. In this study, we demonstrate that whole-inactivated influenza virus (WIV) acts as an adjuvant for influenza peptide antigens, as shown by the induction of peptide-specific CD8+ T cells in HLA-A2.1 transgenic mice upon vaccination with the influenza-M1-derived GILGFVFTL peptide (GIL), formulated with WIV. By screening various concentrations of GIL and WIV, we found that both components contributed to the GIL-specific T cell response. Whereas co-localization of the peptide antigen and WIV adjuvant was found to be important, neither physical association between peptide and WIV nor fusogenic activity of WIV were relevant for the adjuvant effect of WIV. We furthermore show that WIV may adjuvate T cell responses to a variety of peptides, using pools of either conserved wild-type influenza peptides or chemically altered peptide ligands. This study shows the potential of WIV as an adjuvant for influenza peptides. The simple formulation process and the solid safety record of WIV make this an attractive adjuvant for T cell peptides, and may also be used for non-influenza antigens.
Collapse
Affiliation(s)
- Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands.,Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Sietske K Rosendahl Huber
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Geert-Jan Willems
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands
| | - Ronald Jacobi
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marion Hendriks
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Ernst Soethout
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands.,Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, Netherlands
| |
Collapse
|
41
|
Demicheli V, Jefferson T, Ferroni E, Rivetti A, Di Pietrantonj C, Cochrane Acute Respiratory Infections Group. Vaccines for preventing influenza in healthy adults. Cochrane Database Syst Rev 2018; 2:CD001269. [PMID: 29388196 PMCID: PMC6491184 DOI: 10.1002/14651858.cd001269.pub6] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The consequences of influenza in adults are mainly time off work. Vaccination of pregnant women is recommended internationally. This is an update of a review published in 2014. Future updates of this review will be made only when new trials or vaccines become available. Observational data included in previous versions of the review have been retained for historical reasons but have not been updated due to their lack of influence on the review conclusions. OBJECTIVES To assess the effects (efficacy, effectiveness, and harm) of vaccines against influenza in healthy adults, including pregnant women. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 12), MEDLINE (January 1966 to 31 December 2016), Embase (1990 to 31 December 2016), the WHO International Clinical Trials Registry Platform (ICTRP; 1 July 2017), and ClinicalTrials.gov (1 July 2017), as well as checking the bibliographies of retrieved articles. SELECTION CRITERIA Randomised controlled trials (RCTs) or quasi-RCTs comparing influenza vaccines with placebo or no intervention in naturally occurring influenza in healthy individuals aged 16 to 65 years. Previous versions of this review included observational comparative studies assessing serious and rare harms cohort and case-control studies. Due to the uncertain quality of observational (i.e. non-randomised) studies and their lack of influence on the review conclusions, we decided to update only randomised evidence. The searches for observational comparative studies are no longer updated. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and extracted data. We rated certainty of evidence for key outcomes (influenza, influenza-like illness (ILI), hospitalisation, and adverse effects) using GRADE. MAIN RESULTS We included 52 clinical trials of over 80,000 people assessing the safety and effectiveness of influenza vaccines. We have presented findings from 25 studies comparing inactivated parenteral influenza vaccine against placebo or do-nothing control groups as the most relevant to decision-making. The studies were conducted over single influenza seasons in North America, South America, and Europe between 1969 and 2009. We did not consider studies at high risk of bias to influence the results of our outcomes except for hospitalisation.Inactivated influenza vaccines probably reduce influenza in healthy adults from 2.3% without vaccination to 0.9% (risk ratio (RR) 0.41, 95% confidence interval (CI) 0.36 to 0.47; 71,221 participants; moderate-certainty evidence), and they probably reduce ILI from 21.5% to 18.1% (RR 0.84, 95% CI 0.75 to 0.95; 25,795 participants; moderate-certainty evidence; 71 healthy adults need to be vaccinated to prevent one of them experiencing influenza, and 29 healthy adults need to be vaccinated to prevent one of them experiencing an ILI). The difference between the two number needed to vaccinate (NNV) values depends on the different incidence of ILI and confirmed influenza among the study populations. Vaccination may lead to a small reduction in the risk of hospitalisation in healthy adults, from 14.7% to 14.1%, but the CI is wide and does not rule out a large benefit (RR 0.96, 95% CI 0.85 to 1.08; 11,924 participants; low-certainty evidence). Vaccines may lead to little or no small reduction in days off work (-0.04 days, 95% CI -0.14 days to 0.06; low-certainty evidence). Inactivated vaccines cause an increase in fever from 1.5% to 2.3%.We identified one RCT and one controlled clinical trial assessing the effects of vaccination in pregnant women. The efficacy of inactivated vaccine containing pH1N1 against influenza was 50% (95% CI 14% to 71%) in mothers (NNV 55), and 49% (95% CI 12% to 70%) in infants up to 24 weeks (NNV 56). No data were available on efficacy against seasonal influenza during pregnancy. Evidence from observational studies showed effectiveness of influenza vaccines against ILI in pregnant women to be 24% (95% CI 11% to 36%, NNV 94), and against influenza in newborns from vaccinated women to be 41% (95% CI 6% to 63%, NNV 27).Live aerosol vaccines have an overall effectiveness corresponding to an NNV of 46. The performance of one- or two-dose whole-virion 1968 to 1969 pandemic vaccines was higher (NNV 16) against ILI and (NNV 35) against influenza. There was limited impact on hospitalisations in the 1968 to 1969 pandemic (NNV 94). The administration of both seasonal and 2009 pandemic vaccines during pregnancy had no significant effect on abortion or neonatal death, but this was based on observational data sets. AUTHORS' CONCLUSIONS Healthy adults who receive inactivated parenteral influenza vaccine rather than no vaccine probably experience less influenza, from just over 2% to just under 1% (moderate-certainty evidence). They also probably experience less ILI following vaccination, but the degree of benefit when expressed in absolute terms varied across different settings. Variation in protection against ILI may be due in part to inconsistent symptom classification. Certainty of evidence for the small reductions in hospitalisations and time off work is low. Protection against influenza and ILI in mothers and newborns was smaller than the effects seen in other populations considered in this review.Vaccines increase the risk of a number of adverse events, including a small increase in fever, but rates of nausea and vomiting are uncertain. The protective effect of vaccination in pregnant women and newborns is also very modest. We did not find any evidence of an association between influenza vaccination and serious adverse events in the comparative studies considered in this review. Fifteen included RCTs were industry funded (29%).
Collapse
Affiliation(s)
- Vittorio Demicheli
- Azienda Sanitaria Locale ASL ALServizio Regionale di Riferimento per l'Epidemiologia, SSEpi‐SeREMIVia Venezia 6AlessandriaPiemonteItaly15121
| | - Tom Jefferson
- University of OxfordCentre for Evidence Based MedicineOxfordUKOX2 6GG
| | - Eliana Ferroni
- Regional Center for Epidemiology, Veneto RegionEpidemiological System of the Veneto RegionPassaggio Gaudenzio 1PadovaItaly35131
| | - Alessandro Rivetti
- ASL CN2 Alba BraDipartimento di Prevenzione ‐ S.Pre.S.A.LVia Vida 10AlbaPiemonteItaly12051
| | - Carlo Di Pietrantonj
- Local Health Unit Alessandria‐ ASL ALRegional Epidemiology Unit SeREMIVia Venezia 6AlessandriaAlessandriaItaly15121
| | | |
Collapse
|
42
|
Innate and adaptive T cells in influenza disease. Front Med 2018; 12:34-47. [DOI: 10.1007/s11684-017-0606-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
|
43
|
Lohia N, Baranwal M. Immune responses to highly conserved influenza A virus matrix 1 peptides. Microbiol Immunol 2017; 61:225-231. [PMID: 28429374 DOI: 10.1111/1348-0421.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023]
Abstract
Influenza vaccine development is considered to be complicated and challenging. Constantly evolving influenza viruses require continuous global monitoring and reformulation of the vaccine strains. Peptides that are conserved among different strains and subtypes of influenza A virus are strongly considered to be attractive targets for development of cross protective influenza vaccines that stimulate cellular responses. In this study, three highly conserved (>90%) matrix 1 peptides that contain multiple T cell epitopes, ILGFVFTLTVPSERGLQRRRF (PM 1), LIRHENRMVLASTTAKA (PM 2) and LQAYQKRMGVQMQR (PM 3), were assessed for their immunogenic potential in vitro by subjecting peripheral blood mononuclear cells from healthy volunteers to repetitive stimulation with these chemically synthesised peptides and measuring their IFN-γ concentrations, proliferation by ELISA, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, respectively. Seven samples were screened for immunogenicity of PM 1 and PM 2, and six for that of PM 3. All six samples had positive responses (IFN-γ secretion) to PM 3 stimulation, as did five and three for PM 2 and PM 1 respectively. In contrast, seven (PM 1 and PM 2) and four (PM 3) samples showed proliferative response as compared with unstimulated cells. The encouraging immunogenic response generated by these highly conserved matrix 1 peptides indicates they are prospective candidates for development of broadly reactive influenza vaccines.
Collapse
Affiliation(s)
- Neha Lohia
- Department of Biotechnology, Thapar University, Patiala147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar University, Patiala147004, India
| |
Collapse
|
44
|
Papadopoulos NG, Megremis S, Kitsioulis NA, Vangelatou O, West P, Xepapadaki P. Promising approaches for the treatment and prevention of viral respiratory illnesses. J Allergy Clin Immunol 2017; 140:921-932. [PMID: 28739285 PMCID: PMC7112313 DOI: 10.1016/j.jaci.2017.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 02/09/2023]
Abstract
Viral respiratory tract infections are the most common human ailments, leading to enormous health and economic burden. Hundreds of viral species and subtypes have been associated with these conditions, with influenza viruses, respiratory syncytial virus, and rhinoviruses being the most frequent and with the highest burden. When considering prevention or treatment of viral respiratory tract infections, potential targets include the causative pathogens themselves but also the immune response, disease transmission, or even just the symptoms. Strategies targeting all these aspects are developing concurrently, and several novel and promising approaches are emerging. In this perspective we overview the entire range of options and highlight some of the most promising approaches, including new antiviral agents, symptomatic or immunomodulatory drugs, the re-emergence of natural remedies, and vaccines and public health policies toward prevention. Wide-scale prevention through immunization appears to be within reach for respiratory syncytial virus and promising for influenza virus, whereas additional effort is needed in regard to rhinovirus, as well as other respiratory tract viruses.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom; Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, Athens, Greece.
| | - Spyridon Megremis
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Nikolaos A Kitsioulis
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, Athens, Greece
| | - Olympia Vangelatou
- Department of Nutritional Physiology & Feeding, Agricultural University of Athens, Athens, Greece
| | - Peter West
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
45
|
van Doorn E, Pleguezuelos O, Liu H, Fernandez A, Bannister R, Stoloff G, Oftung F, Norley S, Huckriede A, Frijlink HW, Hak E. Evaluation of the immunogenicity and safety of different doses and formulations of a broad spectrum influenza vaccine (FLU-v) developed by SEEK: study protocol for a single-center, randomized, double-blind and placebo-controlled clinical phase IIb trial. BMC Infect Dis 2017; 17:241. [PMID: 28376743 PMCID: PMC5379643 DOI: 10.1186/s12879-017-2341-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Background Current influenza vaccines, based on antibodies against surface antigens, are unable to provide protection against newly emerging virus strains which differ from the vaccine strains. Therefore the population has to be re-vaccinated annually. It is thus important to develop vaccines which induce protective immunity to a broad spectrum of influenza viruses. This trial is designed to evaluate the immunogenicity and safety of FLU-v, a vaccine composed of four synthetic peptides with conserved epitopes from influenza A and B strains expected to elicit both cell mediated immunity (CMI) and humoral immunity providing protection against a broad spectrum of influenza viruses. Methods In a single-center, randomized, double-blind and placebo-controlled phase IIb trial, 222 healthy volunteers aged 18–60 years will be randomized (2:2:1:1) to receive two injections of a suspension of 500 μg FLU-v in saline (arm 1), one dose of emulsified 500 μg FLU-v in Montanide ISA-51 and water for injection (WFI) followed by one saline dose (arm 2), two saline doses (arm 3), or one dose of Montanide ISA-51 and WFI emulsion followed by one saline dose (arm 4). All injections will be given subcutaneously. Primary endpoints are safety and FLU-v induced CMI, evaluated by cytokine production by antigen specific T cell populations (flow-cytometry and ELISA). Secondary outcomes are measurements of antibody responses (ELISA and multiplex), whereas exploratory outcomes include clinical efficacy and additional CMI assays (ELISpot) to show cross-reactivity. Discussion Broadly protective influenza vaccines able to provide protection against multiple strains of influenza are urgently needed. FLU-v is a promising vaccine which has shown to trigger the cell-mediated immune response. The dosages and formulations tested in this current trial are also estimated to induce antibody response. Therefore, both cellular and humoral immune responses will be evaluated. Trial registration EudraCT number 2015–001932-38; retrospectively registered clinicaltrials.gov NCT02962908 (November 7th 2016).
Collapse
Affiliation(s)
- Eva van Doorn
- University of Groningen, Unit of PharmacoTherapy- Epidemiology & -Economics, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
| | | | - Heng Liu
- University of Groningen, Unit of PharmacoTherapy- Epidemiology & -Economics, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Ana Fernandez
- SEEK, Central Point, 45 Beech Street, London, EC2Y 8AD, UK
| | | | | | - Fredrik Oftung
- Norwegian Institute of Public Health, Department of Infectious Disease Immunology, Oslo, Norway
| | | | - Anke Huckriede
- University Medical Center Groningen, Medical Microbiology, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Eelko Hak
- University of Groningen, Unit of PharmacoTherapy- Epidemiology & -Economics, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
46
|
Nachbagauer R, Krammer F. Universal influenza virus vaccines and therapeutic antibodies. Clin Microbiol Infect 2017; 23:222-228. [PMID: 28216325 PMCID: PMC5389886 DOI: 10.1016/j.cmi.2017.02.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Current influenza virus vaccines are effective when well matched to the circulating strains. Unfortunately, antigenic drift and the high diversity of potential emerging zoonotic and pandemic viruses make it difficult to select the right strains for vaccine production. This problem causes vaccine mismatches, which lead to sharp drops in vaccine effectiveness and long response times to manufacture matched vaccines in case of novel pandemic viruses. AIMS To provide an overview of universal influenza virus vaccines and therapeutic antibodies in preclinical and clinical development. SOURCES PubMed and clinicaltrials.gov were used as sources for this review. CONTENT Universal influenza virus vaccines that target conserved regions of the influenza virus including the haemagglutinin stalk domain, the ectodomain of the M2 ion channel or the internal matrix and nucleoproteins are in late preclinical and clinical development. These vaccines could confer broad protection against all influenza A and B viruses including drift variants and thereby abolish the need for annual re-formulation and re-administration of influenza virus vaccines. In addition, these novel vaccines would enhance preparedness against emerging influenza virus pandemics. Finally, novel therapeutic antibodies against the same conserved targets are in clinical development and could become valuable tools in the fight against influenza virus infection. IMPLICATIONS Both universal influenza virus vaccines and therapeutic antibodies are potential future options for the control of human influenza infections.
Collapse
Affiliation(s)
- R Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - F Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
47
|
Liu H, Frijlink HW, Huckriede A, van Doorn E, Schmidt E, Leroy O, Rimmelzwaan G, McCullough K, Whelan M, Hak E. Influenza Vaccine Research funded by the European Commission FP7-Health-2013-Innovation-1 project. Vaccine 2016; 34:5845-5854. [PMID: 27793486 DOI: 10.1016/j.vaccine.2016.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 11/26/2022]
Abstract
Due to influenza viruses continuously displaying antigenic variation, current seasonal influenza vaccines must be updated annually to include the latest predicted strains. Despite all the efforts put into vaccine strain selection, vaccine production, testing, and administration, the protective efficacy of seasonal influenza vaccines is greatly reduced when predicted vaccine strains antigenically mismatch with the actual circulating strains. Moreover, preparing for a pandemic outbreak is a challenge, because it is unpredictable which strain will cause the next pandemic. The European Commission has funded five consortia on influenza vaccine development under the Seventh Framework Programme for Research and Technological Development (FP7) in 2013. The call of the EU aimed at developing broadly protective influenza vaccines. Here we review the scientific strategies used by the different consortia with respect to antigen selection, vaccine delivery system, and formulation. The issues related to the development of novel influenza vaccines are discussed.
Collapse
Affiliation(s)
- Heng Liu
- Department of PharmacoTherapy, Epidemiology & Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anke Huckriede
- Department of Medical Microbiology, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Eva van Doorn
- Department of PharmacoTherapy, Epidemiology & Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ed Schmidt
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Odile Leroy
- European Vaccine Initiative (EEIG), Im Neuerheimer Feld 307, 69120 Heidelberg, Germany
| | - Guus Rimmelzwaan
- Erasmus University Medical Center Rotterdam (EMC), Dr. Molewaterplein 50, 3015 CE Rotterdam, The Netherlands
| | - Keneth McCullough
- The Institute of Virology and Immunology (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| | - Mike Whelan
- iQur Limited, London Bioscience Innovation Centre, 2 Royal College Street, NW1-0NH London, United Kingdom
| | - Eelko Hak
- Department of PharmacoTherapy, Epidemiology & Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
48
|
Influenza and Memory T Cells: How to Awake the Force. Vaccines (Basel) 2016; 4:vaccines4040033. [PMID: 27754364 PMCID: PMC5192353 DOI: 10.3390/vaccines4040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.
Collapse
|
49
|
Rosendahl Huber SK, Luimstra JJ, van Beek J, Hoppes R, Jacobi RHJ, Hendriks M, Kapteijn K, Ouwerkerk C, Rodenko B, Ovaa H, de Jonge J. Chemical Modification of Influenza CD8+ T-Cell Epitopes Enhances Their Immunogenicity Regardless of Immunodominance. PLoS One 2016; 11:e0156462. [PMID: 27333291 PMCID: PMC4917206 DOI: 10.1371/journal.pone.0156462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/13/2016] [Indexed: 11/19/2022] Open
Abstract
T cells are essential players in the defense against infection. By targeting the MHC class I antigen-presenting pathway with peptide-based vaccines, antigen-specific T cells can be induced. However, low immunogenicity of peptides poses a challenge. Here, we set out to increase immunogenicity of influenza-specific CD8+ T cell epitopes. By substituting amino acids in wild type sequences with non-proteogenic amino acids, affinity for MHC can be increased, which may ultimately enhance cytotoxic CD8+ T cell responses. Since preventive vaccines against viruses should induce a broad immune response, we used this method to optimize influenza-specific epitopes of varying dominance. For this purpose, HLA-A*0201 epitopes GILGFVFTL, FMYSDFHFI and NMLSTVLGV were selected in order of decreasing MHC-affinity and dominance. For all epitopes, we designed chemically enhanced altered peptide ligands (CPLs) that exhibited greater binding affinity than their WT counterparts; even binding scores of the high affinity GILGFVFTL epitope could be improved. When HLA-A*0201 transgenic mice were vaccinated with selected CPLs, at least 2 out of 4 CPLs of each epitope showed an increase in IFN-γ responses of splenocytes. Moreover, modification of the low affinity epitope NMLSTVLGV led to an increase in the number of mice that responded. By optimizing three additional influenza epitopes specific for HLA-A*0301, we show that this strategy can be extended to other alleles. Thus, enhancing binding affinity of peptides provides a valuable tool to improve the immunogenicity and range of preventive T cell-targeted peptide vaccines.
Collapse
Affiliation(s)
- Sietske K. Rosendahl Huber
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jolien J. Luimstra
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Institute for Chemical Immunology (ICI), Utrecht, the Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rieuwert Hoppes
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ronald H. J. Jacobi
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Marion Hendriks
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kim Kapteijn
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Casper Ouwerkerk
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Boris Rodenko
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Institute for Chemical Immunology (ICI), Utrecht, the Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- * E-mail:
| |
Collapse
|
50
|
Sridhar S. Heterosubtypic T-Cell Immunity to Influenza in Humans: Challenges for Universal T-Cell Influenza Vaccines. Front Immunol 2016; 7:195. [PMID: 27242800 PMCID: PMC4871858 DOI: 10.3389/fimmu.2016.00195] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
Influenza A virus (IAV) remains a significant global health issue causing annual epidemics, pandemics, and sporadic human infections with highly pathogenic avian or swine influenza viruses. Current inactivated and live vaccines are the mainstay of the public health response to influenza, although vaccine efficacy is lower against antigenically distinct viral strains. The first pandemic of the twenty-first century underlined the urgent need to develop new vaccines capable of protecting against a broad range of influenza strains. Such “universal” influenza vaccines are based on the idea of heterosubtypic immunity, wherein immune responses to epitopes conserved across IAV strains can confer protection against subsequent infection and disease. T-cells recognizing conserved antigens are a key contributor in reducing viral load and limiting disease severity during heterosubtypic infection in animal models. Recent studies undertaken during the 2009 H1N1 pandemic provided key insights into the role of cross-reactive T-cells in mediating heterosubtypic protection in humans. This review focuses on human influenza to discuss the epidemiological observations that underpin cross-protective immunity, the role of T-cells as key players in mediating heterosubtypic immunity including recent data from natural history cohort studies and the ongoing clinical development of T-cell-inducing universal influenza vaccines. The challenges and knowledge gaps for developing vaccines to generate long-lived protective T-cell responses is discussed.
Collapse
|