1
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Wang Y, Li Q, Peng P, Zhang Q, Huang Y, Hu J, Hu Z, Liu X. Dual N-linked glycosylation at residues 133 and 158 in the hemagglutinin are essential for the efficacy of H7N9 avian influenza virus like particle vaccine in chickens and mice. Vet Microbiol 2024; 294:110108. [PMID: 38729093 DOI: 10.1016/j.vetmic.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.
Collapse
Affiliation(s)
- Yufei Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qun Li
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Peipei Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yalan Huang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Badruzzaman ATM, Cheng YC, Sung WC, Lee MS. Insect Cell-Based Quadrivalent Seasonal Influenza Virus-like Particles Vaccine Elicits Potent Immune Responses in Mice. Vaccines (Basel) 2024; 12:667. [PMID: 38932396 PMCID: PMC11209530 DOI: 10.3390/vaccines12060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza viruses can cause highly infectious respiratory diseases, posing noteworthy epidemic and pandemic threats. Vaccination is the most cost-effective intervention to prevent influenza and its complications. However, reliance on embryonic chicken eggs for commercial influenza vaccine production presents potential risks, including reductions in efficacy due to HA gene mutations and supply delays due to scalability challenges. Thus, alternative platforms are needed urgently to replace egg-based methods and efficiently meet the increasing demand for vaccines. In this study, we employed a baculovirus expression vector system to engineer HA, NA, and M1 genes from seasonal influenza strains A/H1N1, A/H3N2, B/Yamagata, and B/Victoria, generating virus-like particle (VLP) vaccine antigens, H1N1-VLP, H3N2-VLP, Yamagata-VLP, and Victoria-VLP. We then assessed their functional and antigenic characteristics, including hemagglutination assay, protein composition, morphology, stability, and immunogenicity. We found that recombinant VLPs displayed functional activity, resembling influenza virions in morphology and size while maintaining structural integrity. Comparative immunogenicity assessments in mice showed that our quadrivalent VLPs were consistent in inducing hemagglutination inhibition and neutralizing antibody titers against homologous viruses compared to both commercial recombinant HA and egg-based vaccines (Vaxigrip). The findings highlight insect cell-based VLP vaccines as promising candidates for quadrivalent seasonal influenza vaccines. Further studies are worth conducting.
Collapse
Affiliation(s)
- A. T. M. Badruzzaman
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan 320, Taiwan
| | - Yu-Chieh Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan 350, Taiwan; (A.T.M.B.); (Y.-C.C.); (W.-C.S.)
| |
Collapse
|
4
|
Sun YX, Li ZR, Zhang PJ, Han JH, Di HY, Qin JY, Cong YL. A Single Vaccination of Chimeric Bivalent Virus-Like Particle Vaccine Confers Protection Against H9N2 and H3N2 Avian Influenza in Commercial Broilers and Allows a Strategy of Differentiating Infected from Vaccinated Animals. Front Immunol 2022; 13:902515. [PMID: 35874682 PMCID: PMC9304867 DOI: 10.3389/fimmu.2022.902515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
H9N2 and H3N2 are the two most important subtypes of low pathogenic avian influenza viruses (LPAIV) because of their ongoing threat to the global poultry industry and public health. Although commercially available inactivated H9N2 vaccines are widely used in the affected countries, endemic H9N2 avian influenza remains uncontrolled. In addition, there is no available avian H3N2 vaccine. Influenza virus-like particles (VLPs) are one of the most promising vaccine alternatives to traditional egg-based vaccines. In this study, to increase the immunogenic content of VLPs to reduce production costs, we developed chimeric bivalent VLPs (cbVLPs) co-displaying hemagglutinin (HA) and neuraminidase (NA) of H9N2 and H3N2 viruses with the Gag protein of bovine immunodeficiency virus (BIV) as the inner core using the Bac-to-Bac baculovirus expression system. The results showed that a single immunization of chickens with 40μg/0.3mL cbVLPs elicited an effective immune response and provided complete protection against H9N2 and H3N2 viruses. More importantly, cbVLPs with accompanying serological assays can successfully accomplish the strategy of differentiating infected animals from vaccinated animals (DIVA), making virus surveillance easier. Therefore, this cbVLP vaccine candidate would be a promising alternative to conventional vaccines, showing great potential for commercial development.
Collapse
Affiliation(s)
- Yi-xue Sun
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- Jilin Research and Development Center of Biomedical Engineering, Changchun University, Changchun, China
| | - Zheng-rong Li
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Peng-ju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Yan-long Cong, ; orcid.org/0000-0001-9497-4882
| | - Jin-hong Han
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Hai-yang Di
- Department of Disease Prevention and Control, Zoological and Botanical Garden of Changchun, Changchun, China
| | - Jia-yi Qin
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Yan-long Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Yan-long Cong, ; orcid.org/0000-0001-9497-4882
| |
Collapse
|
5
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. NATURE REVIEWS. MATERIALS 2022; 7:174-195. [PMID: 34603749 PMCID: PMC8477997 DOI: 10.1038/s41578-021-00372-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 05/02/2023]
Abstract
Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.
Collapse
Affiliation(s)
- Gillie A. Roth
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Vittoria C. T. M. Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Wei Luo
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Paediatrics — Endocrinology, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
7
|
Baculovirus-derived influenza virus-like particle confers complete protection against lethal H7N9 avian influenza virus challenge in chickens and mice. Vet Microbiol 2022; 264:109306. [DOI: 10.1016/j.vetmic.2021.109306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
|
8
|
Kim SH, Park YC, Song JM. Evaluation of the antigenic stability of influenza virus like particles after exposure to acidic or basic pH. Clin Exp Vaccine Res 2021; 10:252-258. [PMID: 34703808 PMCID: PMC8511596 DOI: 10.7774/cevr.2021.10.3.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose Virus-like particles (VLPs) are being developed as a promising vaccine platform and therapeutic delivery. Various strategies for effectively constructing VLPs have been studied, but relatively few studies have been done on various factors affecting storage. In this study, we investigated the antigenic changes of VLPs in an acidic or basic pH environment using influenza VLPs as an experimental model. Materials and Methods Influenza VLPs containing hemagglutination and M1 proteins were generated and their antigenicity and protective immunity in vitro and in vivo were evaluated after exposure to acidic (pH 4 and 5) or basic (pH 9 and 10) pH buffers. Results VLP exposed to basic pH showed similar levels of antigenicity to those stored in neutral pH, while antigenicity of VLP exposed to acidic pH was found to be significantly reduced compared to those expose neutral or basic pH. All groups of mice responded effectively to low concentrations of virus infections; however, VLP vaccine groups exposed to acid pH were found not to induce sufficient protective immune responses when a high concentration of influenza virus infection. Conclusion In order for VLP to be used as a more powerful vaccine platform, it should be developed in a strategic way to respond well to external changes such as acidic pH conditions.
Collapse
Affiliation(s)
- So Hwa Kim
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea
| | - Young Chan Park
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea
| | - Jae Min Song
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea.,School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
9
|
Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, Bi Y, Shi Y, Gao GF, Liu Y. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med 2021; 15:507-527. [PMID: 33860875 PMCID: PMC8190734 DOI: 10.1007/s11684-020-0814-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaopeng Qi
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
| |
Collapse
|
10
|
Zapata-Cuellar L, Gaona-Bernal J, Manuel-Cabrera CA, Martínez-Velázquez M, Sánchez-Hernández C, Elizondo-Quiroga D, Camacho-Villegas TA, Gutiérrez-Ortega A. Development of a Platform for Noncovalent Coupling of Full Antigens to Tobacco Etch Virus-Like Particles by Means of Coiled-Coil Oligomerization Motifs. Molecules 2021; 26:molecules26154436. [PMID: 34361589 PMCID: PMC8348948 DOI: 10.3390/molecules26154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
Virus-like particles are excellent inducers of the adaptive immune response of humans and are presently being used as scaffolds for the presentation of foreign peptides and antigens derived from infectious microorganisms for subunit vaccine development. The most common approaches for peptide and antigen presentation are translational fusions and chemical coupling, but some alternatives that seek to simplify the coupling process have been reported recently. In this work, an alternative platform for coupling full antigens to virus-like particles is presented. Heterodimerization motifs inserted in both Tobacco etch virus coat protein and green fluorescent protein directed the coupling process by simple mixing, and the obtained complexes were easily taken up by a macrophage cell line.
Collapse
Affiliation(s)
- Lorena Zapata-Cuellar
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
| | - Jorge Gaona-Bernal
- Centro Universitario de Ciencias de la Salud, Departamento de Microbiología y Patología, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Mexico;
| | - Carlos Alberto Manuel-Cabrera
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
| | - Moisés Martínez-Velázquez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
| | - Carla Sánchez-Hernández
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Departamento de Producción Agrícola, Universidad de Guadalajara, Carretera Guadalajara-Nogales km 15.5, Zapopan 45510, Mexico;
| | - Darwin Elizondo-Quiroga
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
| | - Tanya Amanda Camacho-Villegas
- CONACYT-CIATEJ, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico;
| | - Abel Gutiérrez-Ortega
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad de Biotecnología Médica y Farmacéutica, Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico; (L.Z.-C.); (C.A.M.-C.); (M.M.-V.); (D.E.-Q.)
- Correspondence:
| |
Collapse
|
11
|
Nguyen B, Tolia NH. Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines 2021; 6:70. [PMID: 33986287 PMCID: PMC8119681 DOI: 10.1038/s41541-021-00330-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Modern vaccine design has sought a minimalization approach, moving to the isolation of antigens from pathogens that invoke a strong neutralizing immune response. This approach has created safer vaccines but may limit vaccine efficacy due to poor immunogenicity. To combat global diseases such as COVID-19, malaria, and AIDS there is a clear urgency for more effective next-generation vaccines. One approach to improve the immunogenicity of vaccines is the use of nanoparticle platforms that present a repetitive array of antigen on its surface. This technology has been shown to improve antigen presenting cell uptake, lymph node trafficking, and B-cell activation through increased avidity and particle size. With a focus on design, we summarize natural platforms, methods of antigen attachment, and advancements in generating self-assembly that have led to new engineered platforms. We further examine critical parameters that will direct the usage and development of more effective platforms.
Collapse
Affiliation(s)
- Brian Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
13
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
14
|
Maegawa K, Sugita S, Arasaki Y, Nerome R, Nerome K. Interleukin 12-containing influenza virus-like-particle vaccine elevate its protective activity against heterotypic influenza virus infection. Heliyon 2020; 6:e04543. [PMID: 32802975 PMCID: PMC7417893 DOI: 10.1016/j.heliyon.2020.e04543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022] Open
Abstract
To produce monovalent and bivalent influenza vaccines composed of virus-like particles (VLPs) containing hemagglutinin (HA), we generated four recombinant Baculoviruses derived from Bombyx mori nuclear polyhedrosis virus (BmNPV) and Autographa california nuclear polyhedrosis virus (AcNPV). Monovalent Fukushima (A/tufted duck/Fukushima/16/2011 [H5N1]) (FkH5) and Anhui (A/Anhui/1/2013 [H7N9]) (AnH7) VLP influenza vaccines were produced in silkworm pupae infected with FkH5-BmNPV or AnH7-BmNPV. To produce a bivalent FkH5 and AnH7 vaccine, the pupae were simultaneously inoculated with FkH5-BmNPV and AnH7-BmNPV. Then, interleukin (IL)-containing bivalent vaccines were produced by Eri silkworm pupae following triple infection with FkH5-AcNPV, AnH7-AcNPV, and IL-12-AcNPV. Fluorescent antibody tests in Sf9 cells triple-infected with FkH5-AcNPV, AnH7-AcNPV, and IL-12-AcNPV showed coexpression of FkH5, AnH7, and IL-12 antigens, suggesting the presence of VLPs containing all three antigens. We then performed competitive hemagglutination inhibition (CHI) tests to calculate the VLP vaccine constituents. Inoculation with two recombinant viruses led to the production of bivalent vaccines containing very similar amounts of the H5 and H7 antigens, suggesting that our dual infection system can be used to produce bivalent VLP vaccines. Immunisation of mice with our developed monovalent and bivalent VLP vaccines induced the production of HI antibody, which protected against a sublethal dose of influenza virus. These IL-12-containing vaccines tended to display increased protection against hetero-subtype influenza viruses.
Collapse
Affiliation(s)
- Kenichi Maegawa
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Shigeo Sugita
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Youta Arasaki
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Reiko Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Kuniaki Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
- Corresponding author.
| |
Collapse
|
15
|
Ting-Hui-Lin, Chia MY, Lin CY, Yeh YQ, Jeng US, Wu WG, Lee MS. Improving immunogenicity of influenza virus H7N9 recombinant hemagglutinin for vaccine development. Vaccine 2020; 37:1897-1903. [PMID: 30857635 DOI: 10.1016/j.vaccine.2018.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022]
Abstract
Human infections of novel avian influenza A virus (H7N9) emerged in early 2013 and caused about 40% case-fatality through 2017. Therefore, development of influenza H7N9 vaccines is critical for pandemic preparedness. Currently, there are three means of production of commercial influenza vaccines: egg-based, mammalian cell-based, and insect cell-based platforms. The insect cell-based platform has the advantage of high speed in producing recombinant protein. In this study, we evaluate the stability and immunogenicity of two different influenza H7 HA expression constructs generated using the baculovirus system, including membrane-based full-length HA (mH7) and secreted ectodomain-based H7 (sH7). The mH7 construct could form an oligomer-rosette structure and had a high hemagglutinin (HA) titer 8192. In contrast to mH7, the sH7 construct could not form an oligomer-rosette structure and did not have HA titer before cross-linking with anti-His antibody. Thermal stability tests showed that the sH7 and mH7 constructs were unstable at 43 °C and 52 °C, respectively. In a mice immunization study, the mH7 construct but not the sH7 construct could induce robust HI and neutralizing antibody titers. In conclusion, further development of the mH7 vaccine candidate is desirable.
Collapse
Affiliation(s)
- Ting-Hui-Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Yuan Chia
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Yang Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Guey Wu
- College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| |
Collapse
|
16
|
Pushko P, Tretyakova I. Influenza Virus Like Particles (VLPs): Opportunities for H7N9 Vaccine Development. Viruses 2020; 12:v12050518. [PMID: 32397182 PMCID: PMC7291233 DOI: 10.3390/v12050518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 01/21/2023] Open
Abstract
In the midst of the ongoing COVID-19 coronavirus pandemic, influenza virus remains a major threat to public health due to its potential to cause epidemics and pandemics with significant human mortality. Cases of H7N9 human infections emerged in eastern China in 2013 and immediately raised pandemic concerns as historically, pandemics were caused by the introduction of new subtypes into immunologically naïve human populations. Highly pathogenic H7N9 cases with severe disease were reported recently, indicating the continuing public health threat and the need for a prophylactic vaccine. Here we review the development of recombinant influenza virus-like particles (VLPs) as vaccines against H7N9 virus. Several approaches to vaccine development are reviewed including the expression of VLPs in mammalian, plant and insect cell expression systems. Although considerable progress has been achieved, including demonstration of safety and immunogenicity of H7N9 VLPs in the human clinical trials, the remaining challenges need to be addressed. These challenges include improvements to the manufacturing processes, as well as enhancements to immunogenicity in order to elicit protective immunity to multiple variants and subtypes of influenza virus.
Collapse
|
17
|
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020; 19:239-252. [PMID: 32060419 PMCID: PMC7223957 DOI: 10.1038/s41573-019-0056-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi Global Research and Development, Cambridge, MA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Sanofi Global Research and Development, Cambridge, MA, USA.
| |
Collapse
|
18
|
Quan FS, Basak S, Chu KB, Kim SS, Kang SM. Progress in the development of virus-like particle vaccines against respiratory viruses. Expert Rev Vaccines 2020; 19:11-24. [PMID: 31903811 PMCID: PMC7103727 DOI: 10.1080/14760584.2020.1711053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Influenza virus, human respiratory syncytial virus (RSV), and human metapneumovirus (HMPV) are important human respiratory pathogens. Recombinant virus-like particle (VLP) vaccines are suggested to be potential promising platforms to protect against these respiratory viruses. This review updates important progress in the development of VLP vaccines against respiratory viruses.Areas Covered: This review summarizes progress in developing VLP and nanoparticle-based vaccines against influenza virus, RSV, and HMPV. The PubMed was mainly used to search for important research articles published since 2010 although earlier key articles were also referenced. The research area covered includes VLP and nanoparticle platform vaccines against seasonal, pandemic, and avian influenza viruses as well as RSV and HMPV respiratory viruses. The production methods, immunogenic properties, and vaccine efficacy of respiratory VLP vaccines in preclinical animal models and clinical studies were reviewed in this article.Expert opinion: Previous and current preclinical and clinical studies suggest that recombinant VLP and nanoparticle vaccines are expected to be developed as promising alternative platforms against respiratory viruses in future. Therefore, continued research efforts are warranted.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| | - Swarnendu Basak
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
19
|
Durous L, Rosa-Calatrava M, Petiot E. Advances in influenza virus-like particles bioprocesses. Expert Rev Vaccines 2019; 18:1285-1300. [DOI: 10.1080/14760584.2019.1704262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Durous
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
20
|
Lai CC, Cheng YC, Chen PW, Lin TH, Tzeng TT, Lu CC, Lee MS, Hu AYC. Process development for pandemic influenza VLP vaccine production using a baculovirus expression system. J Biol Eng 2019; 13:78. [PMID: 31666806 PMCID: PMC6813129 DOI: 10.1186/s13036-019-0206-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Influenza viruses cause hundreds of thousands of respiratory diseases worldwide each year, and vaccination is considered the most effective approach for preventing influenza annual epidemics or pandemics. Since 1950, chicken embryonated eggs have been used as the main method for producing seasonal influenza vaccines. However, this platform has the main drawback of a lack of scale-up flexibility, and thus, egg-based vaccine manufacturers cannot supply sufficient doses within a short period for use for pandemic prevention. As a result, strategies for reducing the manufacturing time and increasing production capacity are urgently needed. Non-virion vaccine methods have been considered an alternative strategy against an influenza pandemic, and the purpose of maintaining an immunogenic capsule structure with infectious properties appears to be met by the virus-like particle (VLP) platform. Results An influenza H7N9-TW VLP production platform using insect cells, which included the expression of hemagglutinin (HA), NA, and M1 proteins, was established. To scale up H7N9-TW VLP production, several culture conditions were optimized to obtain a higher production yield. A high level of dissolved oxygen (DO) could be critical to H7N9-TW VLP production. If the DO was maintained at a high level, the HA titer obtained in the spinner flask system with ventilation was similar to that obtained in a shake flask. In this study, the HA titer in a 5-L bioreactor with a well-controlled DO level was substantially improved by 128-fold (from 4 HA units (HAU)/50 μL to 512 HAU/50 μL). Conclusions In this study, a multigene expression platform and an effective upstream process were developed. Notably, a high H7N9-TW VLP yield was achieved using a two-step production strategy while a high DO level was maintained. The upstream process, which resulted in high VLP titers, could be further used for large-scale influenza VLP vaccine production.
Collapse
Affiliation(s)
- Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan.,2College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Yu-Chieh Cheng
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Pin-Wen Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Ting-Hui Lin
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan.,2College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Chia-Chun Lu
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| |
Collapse
|
21
|
Carvalho SB, Silva RJS, Moleirinho MG, Cunha B, Moreira AS, Xenopoulos A, Alves PM, Carrondo MJT, Peixoto C. Membrane‐Based Approach for the Downstream Processing of Influenza Virus‐Like Particles. Biotechnol J 2019; 14:e1800570. [DOI: 10.1002/biot.201800570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Sofia B. Carvalho
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República 2780‐157 Oeiras Portugal
| | | | | | - Bárbara Cunha
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República 2780‐157 Oeiras Portugal
| | - Ana S. Moreira
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
| | | | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República 2780‐157 Oeiras Portugal
| | | | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República 2780‐157 Oeiras Portugal
| |
Collapse
|
22
|
Carvalho SB, Silva RJ, Moreira AS, Cunha B, Clemente JJ, Alves PM, Carrondo MJ, Xenopoulos A, Peixoto C. Efficient filtration strategies for the clarification of influenza virus-like particles derived from insect cells. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
24
|
Affiliation(s)
- Jennifer E Schuster
- Department of Pediatrics, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA.
| | - John V Williams
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 9122 Rangos Research Building, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
25
|
Qin J, Zhang Y, Shen X, Gong L, Xue C, Cao Y. Biological characteristics and immunological properties in Muscovy ducks of H5N6 virus-like particles composed of HA-TM/HA-TM H3 and M1. Avian Pathol 2018; 48:35-44. [PMID: 30404538 DOI: 10.1080/03079457.2018.1546375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), including H5N6 strains, pose threats to the health of humans and poultry. Waterfowl play a crucial role as a reservoir of HPAIVs. Since current influenza vaccines induce poor antibody titres in waterfowl, there is an urgent need to develop an efficient vaccine against H5N6 infection. In this study, we constructed two H5N6 virus-like particles (VLPs) composed of matrix-1 (M1) and haemagglutinin of wildtype (HA-TM) or haemagglutinin with transmembrane domain replacement (HA-TMH3) (designated as H5N6 VLPs-TM and H5N6 VLPs-TMH3). Biological characteristics of the composed H5N6 VLPs were compared including localization, expression, contents of HA trimers, thermal stability, morphology and immunogenicity in Muscovy ducks. Our results indicate that the H5N6 VLPs-TMH3 contained more HA trimers and presented better thermal stability. Moreover, Muscovy ducks immunized with H5N6 VLPs-TMH3 produced higher titres of HI antibody and IFN-γ compared with those immunized with the same dose of H5N6 VLP-TM, thus providing a promising approach for the development of influenza virus vaccines for waterfowl. RESEARCH HIGHLIGHTS H5N6 VLPs-TMH3 had more HA trimers and resisted higher temperature than H5N6 VLPs-TM H5N6 VLPs-TMH3 induced higher titre of HI than H5N6 VLPs-TM in Muscovy ducks.
Collapse
Affiliation(s)
- Jianru Qin
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Yun Zhang
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Xiaoting Shen
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Lang Gong
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Chunyi Xue
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Yongchang Cao
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| |
Collapse
|
26
|
Overexpression of a virus-like particle influenza vaccine in Eri silkworm pupae, using Autographa californica nuclear polyhedrosis virus and host-range expansion. Arch Virol 2018; 163:2787-2797. [PMID: 30027487 DOI: 10.1007/s00705-018-3941-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022]
Abstract
Ecological investigations of silkworms have revealed that Eri silkworms (Samia cynthia ricini) possess useful morphological and ecological characteristics for virus-like particle (VLP) production, namely non-seasonal breeding, longer lengths, and heavier weights than Bombyx mori silkworms. Furthermore, when vector DNA from Bombyx mori nuclear polyhedrosis virus (BmNPV), which is unable to replicate in Sf9 cells from Eri silkworms, was replaced with the Autographa californica nuclear polyhedrosis virus (AcNPV) vector, three improved AcNPV influenza virus recombinants capable of replication in Sf9 cells were obtained. Although VLP antigens produced previously in silkworms were not evaluated individually, the present recombinant Fukushima (FkH5) and Anhui (AnH7) VLP antigens were detected in tissue fluids and fat bodies of Eri silkworms. Here, we aimed to determine the function of the AcNPV vector and P143 gene by expressing recombinants in Sf9 cells and eri silkworm pupae. The FkH5 recombinant produced high yields of haemagglutinin (HA)-positive VLPs, showing a mean HA titre of 1.2 million. Similarly, high production of H7 HA VLPs was observed in the fat bodies of eri silkworm pupae. Antigenic analysis and electron microscopy examination of Eri-silkworm-produced H5 HA VLPs showed characteristic antigenicity and morphology similar to those of the influenza virus. Although FkH5 recombinants possessing the AcNPV vector did not replicate in Bm-N cells, the introduction of the helicase p143 gene from BmNPV resulted in their production in Bm-N and Sf9 cells.
Collapse
|
27
|
B Carvalho S, Fortuna AR, Wolff MW, Peixoto C, M Alves P, Reichl U, JT Carrondo M. Purification of influenza virus-like particles using sulfated cellulose membrane adsorbers. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:1988-1996. [PMID: 30008506 PMCID: PMC6033026 DOI: 10.1002/jctb.5474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Vaccines based on virus-like particles (VLPs) are an alternative to inactivated viral vaccines that combine good safety profiles with strong immunogenicity. In order to be economically competitive, efficient manufacturing is required, in particular downstream processing, which often accounts for major production costs. This study describes the optimization and establishment of a chromatography capturing technique using sulfated cellulose membrane adsorbers (SCMA) for purification of influenza VLPs. RESULTS Using a design of experiments approach, the critical factors for SCMA performance were described and optimized. For optimal conditions (membrane ligand density: 15.4 µmol cm-2, salt concentration of the loading buffer: 24 mmol L-1 NaCl, and elution buffer: 920 mmol L-1 NaCl, as well as the corresponding flow rates: 0.24 and 1.4 mL min-1), a yield of 80% in the product fraction was obtained. No loss of VLPs was detected in the flowthrough fraction. Removal of total protein and DNA impurities were higher than 89% and 80%, respectively. CONCLUSION Use of SCMA represents a significant improvement compared with conventional ion exchanger membrane adsorbers. As the method proposed is easily scalable and reduces the number of steps required compared with conventional purification methods, SCMA could qualify as a generic platform for purification of VLP-based influenza vaccines. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - A Raquel Fortuna
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Michael W Wolff
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGießenGermany
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Otto von Guericke University MagdeburgMagdeburgGermany
| | - Manuel JT Carrondo
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
| |
Collapse
|
28
|
Ceballo Y, Tiel K, López A, Cabrera G, Pérez M, Ramos O, Rosabal Y, Montero C, Menassa R, Depicker A, Hernández A. High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza. Transgenic Res 2017; 26:775-789. [PMID: 28986672 DOI: 10.1007/s11248-017-0047-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/21/2017] [Indexed: 01/13/2023]
Abstract
Tobacco seeds can be used as a cost effective system for production of recombinant vaccines. Avian influenza is an important respiratory pathogen that causes a high degree of mortality and becomes a serious threat for the poultry industry. A safe vaccine against avian flu produced at low cost could help to prevent future outbreaks. We have genetically engineered tobacco plants to express extracellular domain of hemagglutinin protein from H5N1 avian influenza virus as an inexpensive alternative for production purposes. Two regulatory sequences of seed storage protein genes from Phaseolus vulgaris L. were used to direct the expression, yielding 3.0 mg of the viral antigen per g of seeds. The production and stability of seed-produced recombinant HA protein was characterized by different molecular techniques. The aqueous extract of tobacco seed proteins was used for subcutaneous immunization of chickens, which developed antibodies that inhibited the agglutination of erythrocytes after the second application of the antigen. The feasibility of using tobacco seeds as a vaccine carrier is discussed.
Collapse
Affiliation(s)
- Yanaysi Ceballo
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba.
| | - Kenia Tiel
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Alina López
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Gleysin Cabrera
- Department of Carbohydrate Chemistry, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Marlene Pérez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Osmany Ramos
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Yamilka Rosabal
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Carlos Montero
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ann Depicker
- Department Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department Plant Systems Biologie, VIB, Ghent, Belgium
| | - Abel Hernández
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| |
Collapse
|
29
|
Cho H, Excler JL, Kim JH, Yoon IK. Development of Middle East Respiratory Syndrome Coronavirus vaccines - advances and challenges. Hum Vaccin Immunother 2017; 14:304-313. [PMID: 29048984 DOI: 10.1080/21645515.2017.1389362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging pathogen with the potential to pose a threat to global public health. Sporadic cases and outbreaks continue to be reported in the Middle East, and case fatality rates remain high at approximately 36% globally. No specific preventive or therapeutic countermeasures currently exist. A safe and effective vaccine could play an important role in protecting against the threat from MERS-CoV. This review discusses human vaccine candidates currently under development, and explores viral characteristics, molecular epidemiology and immunology relevant to MERS-CoV vaccine development. At present, a DNA vaccine candidate has begun a human clinical trial, while two vector-based candidates will very soon begin human trials. Protein-based vaccines are still at pre-clinical stage. Challenges to successful development include incomplete understanding of viral transmission, pathogenesis and immune response (in particular at the mucosal level), no optimal animal challenge models, lack of standardized immunological assays, and insufficient sustainable funding.
Collapse
Affiliation(s)
- Heeyoun Cho
- a Department of Clinical Development and Regulatory , International Vaccine Institute , Seoul , Republic of Korea
| | - Jean-Louis Excler
- a Department of Clinical Development and Regulatory , International Vaccine Institute , Seoul , Republic of Korea
| | - Jerome H Kim
- a Department of Clinical Development and Regulatory , International Vaccine Institute , Seoul , Republic of Korea
| | - In-Kyu Yoon
- a Department of Clinical Development and Regulatory , International Vaccine Institute , Seoul , Republic of Korea
| |
Collapse
|
30
|
Ou H, Yao W, Yu D, Weng T, Wang FX, Wu X, Wu H, Cheng L, Lu X, Wu N, Chen H, Li L, Yao H. Longevity of protective immune responses induced by a split influenza A (H7N9) vaccine mixed with MF59 adjuvant in BALB/c mice. Oncotarget 2017; 8:91828-91840. [PMID: 29190879 PMCID: PMC5696145 DOI: 10.18632/oncotarget.20064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/29/2017] [Indexed: 02/06/2023] Open
Abstract
The influenza virus is a serious threat to public health worldwide. A novel avian influenza A (H7N9) virus with a mortality rate of approximately 30% has been identified as an unusually dangerous virus for humans by the World Health Organization. Pathogenic H7N9 continue to represent a public health concern, and several candidate vaccines are currently in development. We generated candidate H7N9 vaccine strains using reverse genetics, consisting of hemagglutinin and neuraminidase genes derived from a human H7N9 virus and the remaining genes from the PR8 (A/PuertoRico/8/34 (H1N1)) virus. This H7N9 vaccine exhibited superior efficacy when combined with MF59 compared to other adjuvants. Immunized BALB/c mice were followed to determine the duration of the protective immune response. Antibody levels decreased to between one-half and one-eighth of the peak values four months after the final dose of the vaccine. Previously vaccinated mice received an A/Zhejiang/DTID-ZJU01/2013 H7N9 challenge six months post-vaccination, and all remained protected. We also verified that MF59 enhanced the HI, MN, and IgG antibody titers to influenza antigens. The humoral immune response and Th2 cytokine production following influenza challenge was potently induced in the animals that received the split vaccine. Therefore, the split H7N9 influenza vaccine with the MF59 adjuvant could effectively induce antibody production and protect mice from H7N9 virus challenge even after six months.
Collapse
Affiliation(s)
- Huilin Ou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yao
- Zhejiang Tianyuan Bio-Pharmaceutical Co., Ltd., Hangzhou, China
| | - Dongshan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Frederick X.C. Wang
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Dallas, Texas, USA
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Pham NB, Ho TT, Nguyen GT, Le TT, Le NT, Chang HC, Pham MD, Conrad U, Chu HH. Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein. J Nanobiotechnology 2017; 15:69. [PMID: 28982373 PMCID: PMC5629800 DOI: 10.1186/s12951-017-0305-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
Background The continuing spread of the newly emerged H7N9 virus among poultry in China, as well as the possibility of human-to-human transmission, has attracted numerous efforts to develop an effective vaccine against H7N9. The use of nanoparticles in vaccinology is inspired by the fact that most pathogens have a dimension within the nano-size range and therefore can be processed efficiently by the immune system, which leads to a potent immune response. Herein, we report a facile approach to increase antigen size to achieve not only fast but also effective responses against the recombinant HA/H7N9 protein via a simple conjugation of the protein onto the surface of nanodiamond particles. Results In this study, trimeric Haemagglutinin (H7) that is transiently expressed in N. benthamiana was purified using affinity chromatography, and its trimeric state was revealed successfully by the cross-linking reaction. The trimeric H7 solution was subsequently mixed with a nanodiamond suspension in different ratios. The successful conjugation of the trimeric H7 onto the surface of nanodiamond particles was demonstrated by the changes in size and Zeta-potential of the particles before and after protein coating, Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and Western-blot analysis. Next, biofunction of the protein-nanodiamond conjugates was screened using a haemagglutination assay. A mixture containing 5 µg of trimeric H7 and 60 µg of nanodiamond corresponds to a ratio of 1:12 (w/w) of agglutinated chicken red blood cells at HA titer of 1024, which is 512-fold higher than the HA titer of free trimeric H7. After the 2nd and 3rd immunization in mice, ELISA and Western blot analyses demonstrated that the physical mixture of trimeric H7 protein and nanodiamond (1:12, w/w) elicited statistically significant stronger H7-specific-IgG response demonstrated by higher amounts of H7N9-specific IgG (over 15.4-fold with P < 0.05 after the second immunization). Conclusions These results indicated a potential effect inherent to nanodiamond towards modulating immune systems, which should be further evaluated and broadly applied in nanovaccine development.
Collapse
Affiliation(s)
- Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thuong Thi Ho
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Giang Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Thuy Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Ngoc Thu Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan, ROC
| | - Minh Dinh Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan, ROC
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.
| |
Collapse
|
32
|
Hu Z, Jiao X, Liu X. Antibody Immunity Induced by H7N9 Avian Influenza Vaccines: Evaluation Criteria, Affecting Factors, and Implications for Rational Vaccine Design. Front Microbiol 2017; 8:1898. [PMID: 29018438 PMCID: PMC5622983 DOI: 10.3389/fmicb.2017.01898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022] Open
Abstract
Severe H7N9 avian influenza virus (AIV) infections in humans have public health authorities around the world on high alert for the potential development of a human influenza pandemic. Currently, the newly-emerged highly pathogenic avian influenza A (H7N9) virus poses a dual challenge for public health and poultry industry. Numerous H7N9 vaccine candidates have been generated using various platforms. Immunization trials in animals and humans showed that H7N9 vaccines are apparently poorly immunogenic because they induced low hemagglutination inhibition and virus neutralizing antibody titers. However, H7N9 vaccines elicit comparable levels of total hemagglutinin (HA)-reactive IgG antibody as the seasonal influenza vaccines, suggesting H7N9 vaccines are as immunogenic as their seasonal counterparts. A large fraction of overall IgG antibody is non-neutralizing antibody and they target unrecognized epitopes outside of the traditional antigenic sites in HA. Further, the Treg epitope identified in H7 HA may at least partially contribute to regulation of antibody immunity. Here, we review the latest advances for the development of H7N9 vaccines and discuss the influence of serological criteria on evaluation of immunogenicity of H7N9 vaccines. Next, we discuss factors affecting antibody immunity induced by H7N9 vaccines, including the change in antigenic epitopes in HA and the presence of the Treg epitope. Last, we present our perspectives for the unique features of antibody immunity of H7N9 vaccines and propose some future directions to improve or modify antibody response induced by H7N9 vaccines. This perspective would provide critical implications for rational design of H7N9 vaccines for human and veterinary use.
Collapse
Affiliation(s)
- Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Chen TH, Liu YY, Jan JT, Huang MH, Spearman M, Butler M, Wu SC. Recombinant hemagglutinin proteins formulated in a novel PELC/CpG adjuvant for H7N9 subunit vaccine development. Antiviral Res 2017; 146:213-220. [PMID: 28947234 DOI: 10.1016/j.antiviral.2017.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
Abstract
Humans infected with H7N9 avian influenza viruses can result in severe pneumonia and acute respiratory syndrome with an approximately 40% mortality rate, and there is an urgent need to develop an effective vaccine to reduce its pandemic potential. In this study, we used a novel PELC/CpG adjuvant for recombinant H7HA (rH7HA) subunit vaccine development. After immunizing BALB/c mice intramuscularly, rH7HA proteins formulated in this adjuvant instead of an alum adjuvant elicited higher IgG, hemagglutination-inhibition, and virus neutralizing antibodies in sera; induced higher numbers of H7HA-specific IFN-γ-secreting T cells and antibody secreting cells in spleen; and provided improved protection against live virus challenges. Our results indicate that rH7HA proteins formulated in PELC/CpG adjuvant can induce potent anti-H7N9 immunity that may provide useful information for H7N9 subunit vaccine development.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Yu Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Maureen Spearman
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
34
|
Altenburg AF, Magnusson SE, Bosman F, Stertman L, de Vries RD, Rimmelzwaan GF. Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice. Clin Exp Immunol 2017; 190:19-28. [PMID: 28665497 DOI: 10.1111/cei.13004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
Because of the high variability of seasonal influenza viruses and the eminent threat of influenza viruses with pandemic potential, there is great interest in the development of vaccines that induce broadly protective immunity. Most probably, broadly protective influenza vaccines are based on conserved proteins, such as nucleoprotein (NP). NP is a vaccine target of interest as it has been shown to induce cross-reactive antibody and T cell responses. Here we tested and compared various NP-based vaccine preparations for their capacity to induce humoral and cellular immune responses to influenza virus NP. The immunogenicity of protein-based vaccine preparations with Matrix-M™ adjuvant as well as recombinant viral vaccine vector modified Vaccinia virus Ankara (MVA) expressing the influenza virus NP gene, with or without modifications that aim at optimization of CD8+ T cell responses, was addressed in BALB/c mice. Addition of Matrix-M™ adjuvant to NP wild-type protein-based vaccines significantly improved T cell responses. Furthermore, recombinant MVA expressing the influenza virus NP induced strong antibody and CD8+ T cell responses, which could not be improved further by modifications of NP to increase antigen processing and presentation.
Collapse
Affiliation(s)
- A F Altenburg
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, the Netherlands
| | | | - F Bosman
- AmatsiQ-Biologicals, Ghent, Belgium
| | | | - R D de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - G F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Carvalho SB, Moleirinho MG, Wheatley D, Welsh J, Gantier R, Alves PM, Peixoto C, Carrondo MJT. Universal label-free in-process quantification of influenza virus-like particles. Biotechnol J 2017; 12. [PMID: 28514082 DOI: 10.1002/biot.201700031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/07/2017] [Accepted: 05/16/2017] [Indexed: 01/19/2023]
Abstract
Virus-like particles (VLPs) are becoming established as vaccines, in particular for influenza pandemics, increasing the interest in the development of VLPs manufacturing bioprocess. However, for complex VLPs, the analytical tools used for quantification are not yet able to keep up with the bioprocess progress. Currently, quantification for Influenza relies on traditional methods: hemagglutination assay or Single Radial Immunodiffusion. These analytical technologies are time-consuming, cumbersome, and not supportive of efficient downstream process development and monitoring. Hereby we report a label-free tool that uses Biolayer interferometry (BLI) technology applied on an Octet platform to quantify Influenza VLPs at all stages of bioprocess. Human (α2,6-linked sialic acid) and avian (α2,3-linked sialic acid) biotinylated receptors associated with streptavidin biosensors were used, to quantify hemagglutinin content in several mono- and multivalent Influenza VLPs. The applied method was able to quantify hemagglutinin from crude samples up to final bioprocessing VLP product. BLI technology confirmed its value as a high throughput analytical tool with high sensitivity and improved detection limits compared to traditional methods. This simple and fast method allowed for real-time results, which are crucial for in-line monitoring of downstream processing, improving process development, control and optimization.
Collapse
Affiliation(s)
- Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mafalda G Moleirinho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal
| |
Collapse
|
36
|
Smith GE, Sun X, Bai Y, Liu YV, Massare MJ, Pearce MB, Belser JA, Maines TR, Creager HM, Glenn GM, Flyer D, Pushko P, Levine MZ, Tumpey TM. Neuraminidase-based recombinant virus-like particles protect against lethal avian influenza A(H5N1) virus infection in ferrets. Virology 2017. [PMID: 28624679 DOI: 10.1016/j.virol.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Avian influenza A (H5N1) viruses represent a growing threat for an influenza pandemic. The presence of widespread avian influenza virus infections further emphasizes the need for vaccine strategies for control of pre-pandemic H5N1 and other avian influenza subtypes. Influenza neuraminidase (NA) vaccines represent a potential strategy for improving vaccines against avian influenza H5N1 viruses. To evaluate a strategy for NA vaccination, we generated a recombinant influenza virus-like particle (VLP) vaccine comprised of the NA protein of A/Indonesia/05/2005 (H5N1) virus. Ferrets vaccinated with influenza N1 NA VLPs elicited high-titer serum NA-inhibition (NI) antibody titers and were protected from lethal challenge with A/Indonesia/05/2005 virus. Moreover, N1-immune ferrets shed less infectious virus than similarly challenged control animals. In contrast, ferrets administered control N2 NA VLPs were not protected against H5N1 virus challenge. These results provide support for continued development of NA-based vaccines against influenza H5N1 viruses.
Collapse
Affiliation(s)
- Gale E Smith
- Novavax, Inc., 20 Firstfield, Gaithersburg, MD 20878, USA
| | - Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yaohui Bai
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ye V Liu
- Novavax, Inc., 20 Firstfield, Gaithersburg, MD 20878, USA
| | | | - Melissa B Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hannah M Creager
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA, USA
| | | | - David Flyer
- Novavax, Inc., 20 Firstfield, Gaithersburg, MD 20878, USA
| | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Frederick, MD, USA
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
37
|
Isakova-Sivak I, Rudenko L. Tackling a novel lethal virus: a focus on H7N9 vaccine development. Expert Rev Vaccines 2017; 16:1-13. [PMID: 28532182 DOI: 10.1080/14760584.2017.1333907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Avian-origin H7N9 influenza viruses first detected in humans in China in 2013 continue to cause severe human infections with a mortality rate close to 40%. These viruses are acknowledged as the subtype most likely to cause the next influenza pandemic. Areas covered: Here we review published data on the development of H7N9 influenza vaccine candidates and their evaluation in preclinical and clinical trials identified on PubMed database with the term 'H7N9 influenza vaccine'. In addition, a search with the same term was done on ClinicalTrials.gov to find ongoing clinical trials with H7N9 vaccines. Expert commentary: Influenza vaccines are the most powerful tool for protecting the human population from influenza infections, both seasonal and pandemic. During the past four years, a large number of promising H7N9 influenza vaccine candidates have been generated using traditional and advanced gene engineering techniques. In addition, with the support of WHO's GAP program, influenza vaccine production capacities have been established in a number of vulnerable low- and middle-income countries with a high population density, allowing the countries to be independent of vaccine supply from high-income countries. Overall, it is believed that the world is now well prepared for a possible H7N9 influenza pandemic.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - Larisa Rudenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| |
Collapse
|
38
|
Yang JR, Cheng CY, Chen CY, Lin CH, Kuo CY, Huang HY, Wu FT, Yang YC, Wu CY, Liu MT, Hsiao PW. A virus-like particle vaccination strategy expands its tolerance to H3N2 antigenic drift by enhancing neutralizing antibodies against hemagglutinin stalk. Antiviral Res 2017; 140:62-75. [DOI: 10.1016/j.antiviral.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
39
|
Nerome K, Matsuda S, Maegawa K, Sugita S, Kuroda K, Kawasaki K, Nerome R. Quantitative analysis of the yield of avian H7 influenza virus haemagglutinin protein produced in silkworm pupae with the use of the codon-optimized DNA: A possible oral vaccine. Vaccine 2017; 35:738-746. [PMID: 28065477 DOI: 10.1016/j.vaccine.2016.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/25/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022]
Abstract
In this study, we aimed to quantitatively compare the increased production of three H7 influenza virus-like particle (VLP) haemagglutinin (HA) with the use of a codon-optimized single HA gene in silkworm pupae. Recombinant baculovirus (Korea H7-BmNPV) could produce 0.40 million HA units per pupa, corresponding to 1832μg protein. The yield of the HA produced in larva was estimated to be approximately 0.31 million HA units per larva, and there were no significant differences between the three HA proteins. We could establish efficient recovery system of HA production in larvae and pupae with the use of three cycles sonication methods. Next, we compared yields of HA proteins from three different H7 and two H5 recombinant baculoviruses based on the amount of mRNA synthesized in BmN cells, suggesting that mRNA synthesis may be also a useful indicator for the production of HA. Based on HA titres from four recombinants, the yield of HA had a great influence on the codon-optimized effect and the characteristics of the viral HA gene. The recombinant containing codon optimized HA DNA of A/tufted duck/Fukushima/16/2011 (H5N1) did produce more than one million HA units, although another recombinant including of the wild H5N1 strain failed to show HA activity. Electron microscopy revealed the presence of large VLP and small HA particle in the heavy and light fractions. The purified VLPs reacted with the authentic anti-H7 antibodies and the antibodies prepared after immunization with the VLP H7 antigen. Also H5 and H7VLPs could produce HI antibody in chickens and mice with oral immunization. The antibodies elicited with oral immunization were confirmed in fluorescent antibody analysis and western blotting in Korea H5-BmNPV and H7HA-BmNPV recombinant infected BmN cells. Taken together, these findings provided important insights into future oral vaccine development.
Collapse
Affiliation(s)
- Kuniaki Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago, Okinawa 905-0004, Japan.
| | - Sayaka Matsuda
- The Institute of Biological Resources, 893-2, Nakayama, Nago, Okinawa 905-0004, Japan
| | - Kenichi Maegawa
- The Institute of Biological Resources, 893-2, Nakayama, Nago, Okinawa 905-0004, Japan
| | - Shigeo Sugita
- Equine Research Institute, Japan Racing Association, 321-4, Tokami-cho, Utsunomiya, Tochigi 320-0856, Japan
| | - Kazumichi Kuroda
- Division of Microbiology, Nihon University School of Medicine, 30-1, Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazunori Kawasaki
- National Institute of Advanced Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Reiko Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago, Okinawa 905-0004, Japan
| |
Collapse
|
40
|
Pushko P, Tretyakova I, Hidajat R, Zsak A, Chrzastek K, Tumpey TM, Kapczynski DR. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens. Virology 2016; 501:176-182. [PMID: 27936463 DOI: 10.1016/j.virol.2016.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022]
Abstract
Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Aniko Zsak
- USDA SEPRL, 934 College Station Rd, Athens, GA, USA
| | | | | | | |
Collapse
|
41
|
Pushko P, Sun X, Tretyakova I, Hidajat R, Pulit-Penaloza JA, Belser JA, Maines TR, Tumpey TM. Mono- and quadri-subtype virus-like particles (VLPs) containing H10 subtype elicit protective immunity to H10 influenza in a ferret challenge model. Vaccine 2016; 34:5235-5242. [PMID: 27663671 DOI: 10.1016/j.vaccine.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Avian-origin influenza represents a global public health concern. In 2013, the H10N8 virus caused documented human infections for the first time. Currently, there is no approved vaccine against H10 influenza. Recombinant virus-like particles (VLPs) represent a promising vaccine approach. In this study, we evaluated H10 VLPs containing hemagglutinin from H10N8 virus as an experimental vaccine in a ferret challenge model. In addition, we evaluated quadri-subtype VLPs co-localizing H5, H7, H9 and H10 subtypes. Both vaccines elicited serum antibody that reacted with the homologous H10 derived from H10N8 virus and cross-reacted with the heterologous H10N1 virus. Quadri-subtype vaccine also elicited serum antibody to the homologous H5, H7, and H9 antigens and cross-reacted with multiple clades of H5N1 virus. After heterologous challenge with the H10N1 virus, all vaccinated ferrets showed significantly reduced titers of replicating virus in the respiratory tract indicating protective effect of vaccination with either H10 VLPs or with quadri-subtype VLPs.
Collapse
Affiliation(s)
- Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA.
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Irina Tretyakova
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701, USA
| | - Joanna A Pulit-Penaloza
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| |
Collapse
|
42
|
Lee KL, Twyman RM, Fiering S, Steinmetz N. Virus-based nanoparticles as platform technologies for modern vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:554-78. [PMID: 26782096 PMCID: PMC5638654 DOI: 10.1002/wnan.1383] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
Abstract
Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Karin L. Lee
- Department of Biomedical Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
| | | | - Steven Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Nicole Steinmetz
- Departments of Biomedical Engineering, Radiology, Materials Science and Engineering, and Macromolecular Science and Engineering, Case Western Reserve University and Medicine, Cleveland, OH 44106;
| |
Collapse
|
43
|
Immunogenicity of Virus Like Particle Forming Baculoviral DNA Vaccine against Pandemic Influenza H1N1. PLoS One 2016; 11:e0154824. [PMID: 27149064 PMCID: PMC4858234 DOI: 10.1371/journal.pone.0154824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
An outbreak of influenza H1N1 in 2009, representing the first influenza pandemic of the 21st century, was transmitted to over a million individuals and claimed 18,449 lives. The current status in many countries is to prepare influenza vaccine using cell-based or egg-based killed vaccine. However, traditional influenza vaccine platforms have several limitations. To overcome these limitations, many researchers have tried various approaches to develop alternative production platforms. One of the alternative approach, we reported the efficacy of influenza HA vaccination using a baculoviral DNA vaccine (AcHERV-HA). However, the immune response elicited by the AcHERV-HA vaccine, which only targets the HA antigen, was lower than that of the commercial killed vaccine. To overcome the limitations of this previous vaccine, we constructed a human endogenous retrovirus (HERV) envelope-coated, baculovirus-based, virus-like-particle (VLP)–forming DNA vaccine (termed AcHERV-VLP) against pandemic influenza A/California/04/2009 (pH1N1). BALB/c mice immunized with AcHERV-VLP (1×107 FFU AcHERV-VLP, i.m.) and compared with mice immunized with the killed vaccine or mice immunized with AcHERV-HA. As a result, AcHERV-VLP immunization produced a greater humoral immune response and exhibited neutralizing activity with an intrasubgroup H1 strain (PR8), elicited neutralizing antibody production, a high level of interferon-γ secretion in splenocytes, and diminished virus shedding in the lung after challenge with a lethal dose of influenza virus. In conclusion, VLP-forming baculovirus DNA vaccine could be a potential vaccine candidate capable of efficiently delivering DNA to the vaccinee and VLP forming DNA eliciting stronger immunogenicity than egg-based killed vaccines.
Collapse
|
44
|
Quan FS, Lee YT, Kim KH, Kim MC, Kang SM. Progress in developing virus-like particle influenza vaccines. Expert Rev Vaccines 2016; 15:1281-93. [PMID: 27058302 DOI: 10.1080/14760584.2016.1175942] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recombinant vaccines based on virus-like particles (VLPs) or nanoparticles have been successful in their safety and efficacy in preclinical and clinical studies. The technology of expressing enveloped VLP vaccines has combined with molecular engineering of proteins in membrane-anchor and immunogenic forms mimicking the native conformation of surface proteins on the enveloped viruses. This review summarizes recent developments in influenza VLP vaccines against seasonal, pandemic, and avian influenza viruses from the perspective of use in humans. The immunogenicity and efficacies of influenza VLP vaccine in the homologous and cross-protection were reviewed. Discussions include limitations of current influenza vaccination strategies and future directions to confer broadly cross protective new influenza vaccines as well as vaccination.
Collapse
Affiliation(s)
- Fu-Shi Quan
- a Department of Medical Zoology , Kyung Hee University School of Medicine , Seoul , Korea
| | - Young-Tae Lee
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| | - Ki-Hye Kim
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| | - Min-Chul Kim
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA.,c Animal and Plant Quarantine Agency , Gimcheon , Korea
| | - Sang-Moo Kang
- b Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
45
|
Kapczynski DR, Tumpey TM, Hidajat R, Zsak A, Chrzastek K, Tretyakova I, Pushko P. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses. Vaccine 2016; 34:1575-1581. [PMID: 26868083 DOI: 10.1016/j.vaccine.2016.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022]
Abstract
Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious. Here we describe a recombinant VLP containing HA proteins derived from three distinct clades of H5N1 viruses as an experimental, broadly protective H5 avian influenza vaccine. A baculovirus vector was configured to co-express the H5 genes from recent H5N1 HPAI isolates A/chicken/Germany/2014 (clade 2.3.4.4), A/chicken/West Java/Subang/29/2007 (clade 2.1.3) and A/chicken/Egypt/121/2012 (clade 2.2.1). Co-expression of these genes in Sf9 cells along with influenza neuraminidase (NA) and retrovirus gag genes resulted in production of triple-clade H555 VLPs that exhibited hemagglutination activity and morphologically resembled influenza virions. Vaccination of chickens with these VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with three different viruses including the recent U.S. H5N8 HPAI isolate. We conclude that these novel triple-clade VLPs represent a feasible strategy for simultaneously evoking protective antibodies against multiple variants of H5 influenza virus.
Collapse
Affiliation(s)
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA
| | | | | | | | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA.
| |
Collapse
|
46
|
Brazzoli M, Magini D, Bonci A, Buccato S, Giovani C, Kratzer R, Zurli V, Mangiavacchi S, Casini D, Brito LM, De Gregorio E, Mason PW, Ulmer JB, Geall AJ, Bertholet S. Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin. J Virol 2016; 90:332-44. [PMID: 26468547 PMCID: PMC4702536 DOI: 10.1128/jvi.01786-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Seasonal influenza is a vaccine-preventable disease that remains a major health problem worldwide, especially in immunocompromised populations. The impact of influenza disease is even greater when strains drift, and influenza pandemics can result when animal-derived influenza virus strains combine with seasonal strains. In this study, we used the SAM technology and characterized the immunogenicity and efficacy of a self-amplifying mRNA expressing influenza virus hemagglutinin (HA) antigen [SAM(HA)] formulated with a novel oil-in-water cationic nanoemulsion. We demonstrated that SAM(HA) was immunogenic in ferrets and facilitated containment of viral replication in the upper respiratory tract of influenza virus-infected animals. In mice, SAM(HA) induced potent functional neutralizing antibody and cellular immune responses, characterized by HA-specific CD4 T helper 1 and CD8 cytotoxic T cells. Furthermore, mice immunized with SAM(HA) derived from the influenza A virus A/California/7/2009 (H1N1) strain (Cal) were protected from a lethal challenge with the heterologous mouse-adapted A/PR/8/1934 (H1N1) virus strain (PR8). Sera derived from SAM(H1-Cal)-immunized animals were not cross-reactive with the PR8 virus, whereas cross-reactivity was observed for HA-specific CD4 and CD8 T cells. Finally, depletion of T cells demonstrated that T-cell responses were essential in mediating heterologous protection. If the SAM vaccine platform proves safe, well tolerated, and effective in humans, the fully synthetic SAM vaccine technology could provide a rapid response platform to control pandemic influenza. IMPORTANCE In this study, we describe protective immune responses in mice and ferrets after vaccination with a novel HA-based influenza vaccine. This novel type of vaccine elicits both humoral and cellular immune responses. Although vaccine-specific antibodies are the key players in mediating protection from homologous influenza virus infections, vaccine-specific T cells contribute to the control of heterologous infections. The rapid production capacity and the synthetic origin of the vaccine antigen make the SAM platform particularly exploitable in case of influenza pandemic.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cross Protection
- Disease Models, Animal
- Female
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Leukocyte Reduction Procedures
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Respiratory System/virology
- Survival Analysis
- Treatment Outcome
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
Collapse
Affiliation(s)
| | - Diletta Magini
- Novartis Vaccines and Diagnostics S.r.l., Siena, Italy Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | - Vanessa Zurli
- Novartis Vaccines and Diagnostics S.r.l., Siena, Italy Dipartimento di Biologia, Università degli Studi di Padova, Padua, Italy
| | | | | | - Luis M Brito
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | | | - Peter W Mason
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | - Jeffrey B Ulmer
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | - Andrew J Geall
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
47
|
Tretyakova I, Hidajat R, Hamilton G, Horn N, Nickols B, Prather RO, Tumpey TM, Pushko P. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein. Virology 2016; 487:163-71. [PMID: 26529299 PMCID: PMC4679414 DOI: 10.1016/j.virol.2015.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 01/13/2023]
Abstract
Influenza VLPs comprised of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins have been previously used for immunological and virological studies. Here we demonstrated that influenza VLPs can be made in Sf9 cells by using the bovine immunodeficiency virus gag (Bgag) protein in place of M1. We showed that Bgag can be used to prepare VLPs for several influenza subtypes including H1N1 and H10N8. Furthermore, by using Bgag, we prepared quadri-subtype VLPs, which co-expressed within the VLP the four HA subtypes derived from avian-origin H5N1, H7N9, H9N2 and H10N8 viruses. VLPs showed hemagglutination and neuraminidase activities and reacted with specific antisera. The content and co-localization of each HA subtype within the quadri-subtype VLP were evaluated. Electron microscopy showed that Bgag-based VLPs resembled influenza virions with the diameter of 150-200nm. This is the first report of quadri-subtype design for influenza VLP and the use of Bgag for influenza VLP preparation.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Cell Line
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunodeficiency Virus, Bovine/genetics
- Immunodeficiency Virus, Bovine/immunology
- Influenza A Virus, H10N8 Subtype/genetics
- Influenza A Virus, H10N8 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/immunology
- Insecta
- Neuraminidase/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Sf9 Cells
- Spodoptera
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
| | - Rachmat Hidajat
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA
| | | | - Noah Horn
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA
| | - Brian Nickols
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA
| | | | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Atlanta, GA, USA
| | - Peter Pushko
- Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD, USA.
| |
Collapse
|
48
|
López-Sagaseta J, Malito E, Rappuoli R, Bottomley MJ. Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J 2015; 14:58-68. [PMID: 26862374 PMCID: PMC4706605 DOI: 10.1016/j.csbj.2015.11.001] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023] Open
Abstract
For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity) and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens.
Collapse
Affiliation(s)
| | - Enrico Malito
- GlaxoSmithKline Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | - Rino Rappuoli
- GlaxoSmithKline Vaccines S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | | |
Collapse
|
49
|
Suboptimal Humoral Immune Response against Influenza A(H7N9) Virus Is Related to Its Internal Genes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1235-43. [PMID: 26446420 DOI: 10.1128/cvi.00443-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022]
Abstract
Influenza A(H7N9) virus pneumonia is associated with a high case fatality rate in humans. Multiple viral factors have been postulated to account for the high virulence of the virus. It has been reported that patients with influenza A(H7N9) virus infection have relatively low titers of neutralizing antibodies compared to those with seasonal influenza virus infections. In this study, we compared serum hemagglutination inhibition (HI) and microneutralization (MN) antibody titers of mice challenged with wild-type A(H7N9) viruses [H7N9(Anhui) and H7N9(Zhejiang)], an A(H1N1)pdm09 virus [pH1N1(2009)], and a recombinant A(H7N9) virus with PR8/H1N1 internal genes (rg-PR8-H7-N9). All mice infected by H7N9(Anhui) and H7N9(Zhejiang) developed serum HI antibodies at 14 days postinfection (dpi) but no detectable MN antibodies, even at 28 dpi. A low level of neutralizing activity was detected in H7N9(Anhui)- and H7N9(Zhejiang)-infected mice using fluorescent focus MN assay, but convalescent-phase serum samples obtained from H7N9(Anhui)-infected mice did not reduce the mortality of naive mice after homologous virus challenge. Reinfection with homologous A(H7N9) virus induced higher HI and MN titers than first infection. In contrast, pH1N1(2009) virus infection induced robust HI and MN antibody responses, even during the first infection. Moreover, rg-PR8-H7-N9 induced significantly higher HI and MN antibody titers than H7N9(Zhejiang). In conclusion, the internal genes of A(H7N9) virus can affect the humoral immune response against homologous viral surface proteins, which may also contribute to the virulence of A(H7N9) virus.
Collapse
|
50
|
Generation and Characterization of Live Attenuated Influenza A(H7N9) Candidate Vaccine Virus Based on Russian Donor of Attenuation. PLoS One 2015; 10:e0138951. [PMID: 26405798 PMCID: PMC4583547 DOI: 10.1371/journal.pone.0138951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/04/2015] [Indexed: 12/30/2022] Open
Abstract
Background Avian influenza A (H7N9) virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV) are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV) to provide temperature sensitive, cold-adapted and attenuated phenotypes. Methodology/Principal Findings LAIV candidate A/Anhui/1/2013(H7N9)-CDC-LV7A (abbreviated as CDC-LV7A), based on the Russian MDV, A/Leningrad/134/17/57 (H2N2), was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering) in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9)RG-LV1 and A(H7N9)RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9) virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7. Conclusions/Significance Our data indicate that the A/Anhui/1/2013(H7N9)-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for distribution by WHO to vaccine manufacturers.
Collapse
|