1
|
Jia Z, Zhang D, Zhu L, Xue J. Animal models of human herpesvirus infection. Animal Model Exp Med 2025; 8:615-628. [PMID: 39921263 PMCID: PMC12067922 DOI: 10.1002/ame2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/18/2025] [Indexed: 02/10/2025] Open
Abstract
Human herpesvirus, a specific group within the herpesvirus family, is responsible for a variety of human diseases. These viruses can infect humans and other vertebrates, primarily targeting the skin, mucous membranes, and neural tissues, thereby significantly impacting the health of both humans and animals. Animal models are crucial for studying virus pathogenesis, vaccine development, and drug testing. Despite several vaccine candidates being in preclinical and clinical stages, no vaccines are current available to prevent lifelong infections caused by these human herpesviruses, except for varicella-zoster virus (VZV) vaccine. However, the strict host tropism of herpesviruses and other limitations mean that no single animal model can fully replicate all key features of human herpesvirus-associated diseases. This makes it challenging to evaluate vaccines and antivirals against human herpesvirus comprehensively. Herein, we summarize the current animal models used to study the human herpesviruses including α-herpesviruses (herpes simplex virus type 1(HSV-1), HSV-2, VZV), β-herpesviruses (human cytomegalovirus (HCMV), γ-herpesviruses (Epstein-Barr virus (EBV)) and Kaposi's sarcoma herpesvirus (KSHV)). By providing concise information and detailed analysis of the potential, limitations and applications of various models, such as non-human primates, mice, rabbits, guinea pigs, and tree shrews, this summary aims to help researchers efficiently select the most appropriate animal model, offering practical guidance for studying human herpesvirus.
Collapse
Affiliation(s)
- Ziqing Jia
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dong Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lin Zhu
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Ministry of EducationChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Quadiri A, Prakash S, Vahed H, Tadros JM, Sun M, Hormi-Carver KK, Patel SJ, BenMohamed L. Therapeutic mucosal vaccination of herpes simplex virus type 2 infected guinea pigs with an adenovirus-based vaccine expressing the ribonucleotide reductase 2 and glycoprotein D induces local tissue-resident CD4+ and CD8+ TRM cells associated with protection against recurrent genital herpes. Front Immunol 2025; 16:1568258. [PMID: 40207227 PMCID: PMC11979635 DOI: 10.3389/fimmu.2025.1568258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction The reactivation of herpes simplex virus 2 (HSV-2) from latency causes viral shedding that develops into recurrent genital lesions. The role of tissue-resident T cells and the nature of viral antigens associated with protection against recurrent genital herpes remain to be fully elucidated. Methods In this preclinical study, we investigated the protective therapeutic efficacy, in the guinea pig model of recurrent genital herpes, of five recombinant adenovirus-based therapeutic vaccine candidates (rAd-Ags), each expressing different HSV-2 envelope and tegument proteins: RR1 (UL39), RR2 (UL40), gD (glycoprotein D), VP16 (UL48), or VP22 (UL49). We compared the frequency and function of dorsal root ganglia (DRG)- and vaginal mucosa (VM)-resident CD4+ and CD8+ T cells induced by each vaccine and their effect on the frequency and severity of recurrent genital herpes. Results HSV-2 latent-infected guinea pigs immunized with rAd-RR2 and rAd-gD vaccines showed high frequencies of DRG- and VM-tissue-resident IFN-g-producing CD4+ and CD8+ TRM cells associated with significant reductions in viral shedding and genital herpetic lesions. Discussion Taken together, these preclinical results provide new insights into the T cell mechanisms of protection against recurrent genital herpes and confirm the tegument RR2 protein and glycoprotein D as viable candidate antigens to be incorporated in future genital herpes therapeutic vaccines.
Collapse
Affiliation(s)
- Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Jimmy Medhat Tadros
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swena Jignesh Patel
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, School of Medicine, Irvine, CA, United States
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| |
Collapse
|
3
|
Duarte LF, Carbone-Schellman J, Bueno SM, Kalergis AM, Riedel CA, González PA. Tackling cutaneous herpes simplex virus disease with topical immunomodulators-a call to action. Clin Microbiol Rev 2025; 38:e0014724. [PMID: 39982077 PMCID: PMC11917526 DOI: 10.1128/cmr.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
SUMMARYAntivirals play important roles in restricting viral diseases. Nevertheless, they act on a relatively limited number of viruses and occasionally display partial effectiveness in some tissues or against escape variants. Although vaccination remains the most cost-effective approach for preventing microbial diseases, developing prophylactic or therapeutic solutions for pathogens, such as herpes simplex viruses (HSVs), that effectively reduce their clinical manifestations in the skin has proven exceptionally challenging despite extensive research. Alternatively, a less explored approach for tackling HSV skin infection involves using topical immunomodulatory molecules to potentiate the host's innate antiviral immune responses. When applied directly to herpetic skin lesions where viral antigen is present, this strategy has the potential to elicit virus-specific adaptive immunity. Based on currently available data, we foresee substantial potential for this approach in addressing HSV skin infections, along with additional prospects to advance understanding of skin biology and apply relevant new findings to other dermatological conditions. However, due to the limited number of case studies evaluating this method and its safety profile, particularly in immunocompromised individuals and pregnant women, further research is crucial, especially to assess the effects of immunomodulators in these vulnerable populations. Here, we revisit and discuss the use of immunomodulatory molecules for potentiating the host immune response against HSV skin infection and call for action for increased research and clinical trials regarding the possible benefits of this latter strategy for treating HSV cutaneous disease and recurrences. We also revisit and discuss antivirals and vaccine candidates against HSVs.
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana – Universidad del Desarrollo, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Investigación para la Resilencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Mou T, Zhao Y, Jia J, Gao KC, Li SY, Kuang YQ. Immunogenicity and Protective Efficacy of an mRNA Vaccine Targeting HSV-2 UL41 in Mice. Vaccines (Basel) 2025; 13:271. [PMID: 40266094 PMCID: PMC11945300 DOI: 10.3390/vaccines13030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Herpes simplex virus 2 (HSV-2) is the primary cause of sexually transmitted genital ulcerative diseases, for which no effective prophylactic vaccine is currently available. However, the identification of appropriate targets for an HSV-2 mRNA vaccine remains an area requiring further investigation. METHODS The immunogenicity and protective effects of an HSV-2 UL41 mRNA vaccine were evaluated in a BALB/c mouse model. The mice were intramuscularly immunized twice, followed by HSV-2 infection at 28 days post boost. Clinical signs were monitored daily, and the viral load and tissue inflammation were assessed on days 1, 4, and 7 post infection. Dendritic cell (DC) activation in spleen tissue was analyzed via transcriptome sequencing. RESULTS A comparison of the clinical, immunological, and pathological characteristics of the groups that were immunized with the UL41 mRNA vaccine and then infected with HSV2, along with the control groups, revealed that the vaccine elicited both cellular and humoral immunity, inhibited viral replication, suppressed the inflammatory response, and provided protective effects against the virus in vivo. Furthermore, in vitro assays of DC expansion revealed that the vaccine immunization increased the induction of DCs from splenic cells. Transcriptomic analysis of these DCs revealed the activation of immune signaling pathways. CONCLUSIONS Our study suggests that the UL41 mRNA vaccine may provide effective protection against HSV-2-related diseases and holds promise as a potential mRNA vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi-Qun Kuang
- Research Center for Clinical Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China (Y.Z.)
| |
Collapse
|
5
|
Zhang H, Li Q, Liao Y, Ma D, Zeng F, Zhang Z, Yu L, Yue R, Li X, Liao Y, Li D, Jang G, Zhao H, Zhao X, Zheng H, Li H, Liu L, Zhang Y. Immune Response Elicited by Recombinant Adenovirus-Delivered Glycoprotein B and Nucleocapsid Protein UL18 and UL25 of HSV-1 in Mice. Int J Mol Sci 2024; 25:13486. [PMID: 39769249 PMCID: PMC11678876 DOI: 10.3390/ijms252413486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Due to the complex pathogenic and immune escape mechanisms of herpes simplex virus type 1 (HSV-1), especially the failure of induced immune responses to block the initial cell-to-cell transmission of the virus from skin cells to neurons, the body struggles to establish effective prevention and control methods, resulting in the failure of currently developed vaccines. Previous studies have highlighted the crucial roles of surface glycoproteins and nucleocapsid proteins in activating the body's immune defense system against HSV-1 infection. In this study, recombinant adenoviruses were used as vectors to generate adenoviruses carrying the nucleocapsid protein genes UL18 and UL25, as well as the surface glycoprotein gene gB. This approach aimed to mimic the protein expression process that occurs following viral infection of the host and to investigate the immune response characteristics induced by UL18, UL25, and gB proteins. The findings revealed that UL18, UL25, and gB proteins could all trigger the expression of genes associated with innate immune responses; however, the specific genes induced varied in type and level. Furthermore, all three proteins were capable of promoting the proliferation of CD8+ T cells in the lymph nodes. Notably, only UL18 and gB could elicit a Th1 cell immune response. Interestingly, among these proteins, only UL18 could also induce a relatively higher IL-4 level, indicating a Th2 cell immune response. In addition to cellular immunity, all three proteins stimulated the production of specific IgG antibodies. Notably, UL18 induced higher and more sustained levels of specific IgG antibodies in mice. By contrast, only glycoprotein gB induced lower levels of neutralizing antibodies in mice. Moreover, when these mice were challenged with HSV-1, the co-immunization with UL18 and gB provided better protection than gB alone. In conclusion, HSV-1 surface glycoproteins and nucleocapsid proteins exhibit differences in their ability to induce innate and adaptive immunity in the body, suggesting potential avenues for vaccine design by leveraging their complementary advantages.
Collapse
Affiliation(s)
- Haobo Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Qi Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Danjing Ma
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Fengyuan Zeng
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhenxiao Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Li Yu
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Rong Yue
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Xinghang Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Yuansheng Liao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Dandan Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Guorun Jang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Heng Zhao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Xin Zhao
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Huiwen Zheng
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Heng Li
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming 650118, China; (H.Z.); (Q.L.); (Y.L.); (D.M.); (F.Z.); (Z.Z.); (L.Y.); (R.Y.); (X.L.); (Y.L.); (D.L.); (G.J.); (H.Z.); (X.Z.); (H.Z.); (H.L.)
| |
Collapse
|
6
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Kawamura Y, Komoto S, Fukuda S, Kugita M, Tang S, Patel A, Pieknik JR, Nagao S, Taniguchi K, Krause PR, Yoshikawa T. Development of recombinant rotavirus carrying herpes simplex virus 2 glycoprotein D gene based on reverse genetics technology. Microbiol Immunol 2024; 68:56-64. [PMID: 38098134 DOI: 10.1111/1348-0421.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 02/07/2024]
Abstract
Vaccine development for herpes simplex virus 2 (HSV-2) has been attempted, but no vaccines are yet available. A plasmid-based reverse genetics system for Rotavirus (RV), which can cause gastroenteritis, allows the generation of recombinant RV containing foreign genes. In this study, we sought to develop simian RV (SA11) as a vector to express HSV-2 glycoprotein D (gD2) and evaluated its immunogenicity in mice. We generated the recombinant SA11-gD2 virus (rSA11-gD2) and confirmed its ability to express gD2 in vitro. The virus was orally inoculated into suckling BALB/c mice and into 8-week-old mice. Serum IgG and IgA titers against RV and gD2 were measured by ELISA. In the 8-week-old mice inoculated with rSA11-gD2, significant increases in not only antibodies against RV but also IgG against gD2 were demonstrated. In the suckling mice, antibodies against RV were induced, but gD2 antibody was not detected. Diarrhea observed after the first inoculation of rSA11-gD2 in suckling mice was similar to that induced by the parent virus. A gD2 expressing simian RV recombinant, which was orally inoculated, induced IgG against gD2. This strategy holds possibility for genital herpes vaccine development.
Collapse
Affiliation(s)
- Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Pediatrics, Fujita Health University Okazaki Medical Center, Okazaki, Aichi, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, Japan
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, Oita, Japan
| | - Saori Fukuda
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masanori Kugita
- Advanced Medical Research Center for Animal Models of Human Disease, Fujita Health University, Toyoake, Aichi, Japan
| | - Shuang Tang
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amita Patel
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Julianna R Pieknik
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shizuko Nagao
- Advanced Medical Research Center for Animal Models of Human Disease, Fujita Health University, Toyoake, Aichi, Japan
| | - Koki Taniguchi
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Philip R Krause
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
- Independent Consultant, Bethesda, Maryland, USA
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
8
|
Hussain MS, Gupta G, Samuel VP, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Khan R, Altwaijry N, Patel S, Patel A, Singh SK, Dua K. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries. Rev Med Virol 2024; 34:e2491. [PMID: 37985599 DOI: 10.1002/rmv.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The immunopathology of herpes simplex virus (HSV)-associated neuroinflammation is a captivating and intricate field of study within the scientific community. HSV, renowned for its latent infection capability, gives rise to a spectrum of neurological expressions, ranging from mild symptoms to severe encephalitis. The enigmatic interplay between the virus and the host's immune responses profoundly shapes the outcome of these infections. This review delves into the multifaceted immune reactions triggered by HSV within neural tissues, intricately encompassing the interplay between innate and adaptive immunity. Furthermore, this analysis delves into the delicate equilibrium between immune defence and the potential for immunopathology-induced neural damage. It meticulously dissects the roles of diverse immune cells, cytokines, and chemokines, unravelling the intricacies of neuroinflammation modulation and its subsequent effects. By exploring HSV's immune manipulation and exploitation mechanisms, this review endeavours to unveil the enigmas surrounding the immunopathology of HSV-associated neuroinflammation. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of HSV infections.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samir Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Archita Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, New South Wales, Australia
| |
Collapse
|
9
|
Preda M, Manolescu LSC, Chivu RD. Advances in Alpha Herpes Viruses Vaccines for Human. Vaccines (Basel) 2023; 11:1094. [PMID: 37376483 DOI: 10.3390/vaccines11061094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Alpha herpes simplex viruses are an important public health problem affecting all age groups. It can produce from common cold sores and chicken pox to severe conditions like encephalitis or newborn mortality. Although all three subtypes of alpha herpes viruses have a similar structure, the produced pathology differs, and at the same time, the available prevention measures, such as vaccination. While there is an available and efficient vaccine for the varicella-zoster virus, for herpes simplex virus 1 and 2, after multiple approaches from trivalent subunit vaccine to next-generation live-attenuated virus vaccines and bioinformatic studies, there is still no vaccine available. Although there are multiple failed approaches in present studies, there are also a few promising attempts; for example, the trivalent vaccine containing herpes simplex virus type 2 (HSV-2) glycoproteins C, D, and E (gC2, gD2, gE2) produced in baculovirus was able to protect guinea pigs against vaginal infection and proved to cross-protect against HSV-1. Another promising vaccine is the multivalent DNA vaccine, SL-V20, tested in a mouse model, which lowered the clinical signs of infection and produced efficient viral eradication against vaginal HSV-2. Promising approaches have emerged after the COVID-19 pandemic, and a possible nucleoside-modified mRNA vaccine could be the next step. All the approaches until now have not led to a successful vaccine that could be easy to administer and, at the same time, offer antibodies for a long period.
Collapse
Affiliation(s)
- Madalina Preda
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Research Department, Marius Nasta Institute of Pneumology, 050159 Bucharest, Romania
| | - Loredana Sabina Cornelia Manolescu
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Virology, Institute of Virology "Stefan S. Nicolau", 030304 Bucharest, Romania
| | - Razvan Daniel Chivu
- Department of Public Health and Health Management, Faculty of Midwifery and Nursing, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
10
|
Wan M, Yang X, Chen Z, Su W, Cai L, Hou A, Sun B, Zhang Y, Kong W, Jiang C, Zhou Y. Comparison of Effects of Multiple Adjuvants and Immunization Routes on the Immunogenicity and Protection of HSV-2 gD Subunit Vaccine. Immunol Lett 2023:S0165-2478(23)00097-4. [PMID: 37290556 DOI: 10.1016/j.imlet.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Genital herpes caused by herpes simplex virus type 2 (HSV-2) poses a global health issue. HSV-2 infection increases the risk of acquiring HIV infection. Studies have demonstrated that HSV-2 subunit vaccines have potential benefits, but require adjuvants to induce a balanced Th1/Th2 response. To develop a novel, effective vaccine, in this study, a truncated glycoprotein D (aa 1-285) of HSV-2 was formulated with an Al(OH)3 adjuvant, three squalene adjuvants, MF59, AS03, and AS02, or a mucosal adjuvant, bacterium-like particles (BLPs). The immunogenicity of these subunit vaccines was evaluated in mice. After three immunizations, vaccines formulated with Al(OH)3, MF59, AS03, and AS02 (intramuscularly) induced higher titers of neutralizing antibody than that formulated without adjuvant, and in particular, mice immunized with the vaccine plus AS02 had the highest neutralizing antibody titers and tended to produce a more balanced immune reaction than others. Intranasal gD2-PA-BLPs also induced excellent IgA levels and a more balanced Th1 and Th2 responses than intranasal gD2. After challenge with a lethal dose of HSV-2, all five adjuvants exhibited a positive effect in improving the survival rate. AS02 and gD2-PA-BLPs enhanced survival by 50% and 25%, respectively, when compared with the vaccine without adjuvant. AS02 was the only adjuvant that resulted in complete vaginal virus clearance and genital lesion healing within eight days. These results demonstrate the potential of using AS02 as a subunit vaccine adjuvant, and BLPs as a mucosal vaccine adjuvant.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhijun Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
11
|
Awasthi S, Onishi M, Lubinski JM, Fowler BT, Naughton AM, Hook LM, Egan KP, Hagiwara M, Shirai S, Sakai A, Nakagawa T, Goto K, Yoshida O, Stephens AJ, Choi G, Cohen GH, Katayama K, Friedman HM. Novel Adjuvant S-540956 Targets Lymph Nodes and Reduces Genital Recurrences and Vaginal Shedding of HSV-2 DNA When Administered with HSV-2 Glycoprotein D as a Therapeutic Vaccine in Guinea Pigs. Viruses 2023; 15:1148. [PMID: 37243234 PMCID: PMC10220834 DOI: 10.3390/v15051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulcer disease and a major risk factor for acquisition and transmission of HIV. Frequent recurrent genital lesions and concerns about transmitting infection to intimate partners affect the quality of life of infected individuals. Therapeutic vaccines are urgently needed to reduce the frequency of genital lesions and transmission. S-540956 is a novel vaccine adjuvant that contains CpG oligonucleotide ODN2006 annealed to its complementary sequence and conjugated to a lipid that targets the adjuvant to lymph nodes. Our primary goal was to compare S-540956 administered with HSV-2 glycoprotein D (gD2) with no treatment in a guinea pig model of recurrent genital herpes (studies 1 and 2). Our secondary goals were to compare S-540956 with oligonucleotide ODN2006 (study1) or glucopyranosyl lipid A in a stable oil-in-water nano-emulsion (GLA-SE) (study 2). gD2/S-540956 reduced the number of days with recurrent genital lesions by 56%, vaginal shedding of HSV-2 DNA by 49%, and both combined by 54% compared to PBS, and was more efficacious than the two other adjuvants. Our results indicate that S-540956 has great potential as an adjuvant for a therapeutic vaccine for genital herpes, and merits further evaluation with the addition of potent T cell immunogens.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Motoyasu Onishi
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - John M. Lubinski
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Bernard T. Fowler
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Alexis M. Naughton
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Kevin P. Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Masaki Hagiwara
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Seiki Shirai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Akiho Sakai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Takayuki Nakagawa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Kumiko Goto
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Osamu Yoshida
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Alisa J. Stephens
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA; (A.J.S.); (G.C.)
| | - Grace Choi
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA; (A.J.S.); (G.C.)
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Kazufumi Katayama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| |
Collapse
|
12
|
Piras F, Plitnick LM, Berglund P, Bernard MC, Desert P. Nonclinical safety evaluation of two vaccine candidates for herpes simplex virus type 2 to support combined administration in humans. J Appl Toxicol 2023; 43:534-556. [PMID: 36227735 DOI: 10.1002/jat.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is the most common cause of genital disease worldwide. The development of an effective HSV-2 vaccine would significantly impact global health based on the psychological distress caused by genital herpes for some individuals, the risk transmitting the infection from mother to infant, and the elevated risk of acquiring HIV-1. Five nonclinical safety studies were conducted with the replication defective HSV529 vaccine, alone or adjuvanted with GLA-SE, and the G103 subunit vaccine containing GLA-SE. A biodistribution study was conducted in guinea pigs to evaluate distribution, persistence, and shedding of HSV529. A preliminary immunogenicity study was conducted in rabbits to demonstrate HSV529-specific humoral response and its enhancement by GLA-SE. Three repeated-dose toxicity studies, one in guinea pigs and two in rabbits, were conducted to assess systemic toxicity and local tolerance of HSV529, alone or adjuvanted with GLA-SE, or G103 containing GLA-SE. Data from these studies show that both vaccines are safe and well tolerated and support the ongoing HSV-2 clinical trial in which the two vaccine candidates will be given either sequentially or concomitantly to explore their potential synergistic and incremental effects.
Collapse
Affiliation(s)
| | | | - Peter Berglund
- Immune Design Corp., Seattle, WA, USA, a wholly owned subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
- HDT Bio, Seattle, Washington, USA
| | | | | |
Collapse
|
13
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
14
|
Wan M, Yang X, Sun J, Ding X, Chen Z, Su W, Cai L, Hou A, Sun B, Gao F, Jiang C, Zhou Y. An Adenovirus-Based Recombinant Herpes Simplex Virus 2 (HSV-2) Therapeutic Vaccine Is Highly Protective against Acute and Recurrent HSV-2 Disease in a Guinea Pig Model. Viruses 2023; 15:219. [PMID: 36680259 PMCID: PMC9861952 DOI: 10.3390/v15010219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Genital herpes (GH) has become one of the most common sexually transmitted diseases worldwide, and it is spreading rapidly in developing countries. Approximately 90% of GH cases are caused by HSV-2. Therapeutic HSV-2 vaccines are intended for people already infected with HSV-2 with the goal of reducing clinical recurrences and recurrent virus shedding. In our previous work, we evaluated recombinant adenovirus-based vaccines, including rAd-gD2ΔUL25, rAd-ΔUL25, and rAd-gD2, for their potency as prophylactic vaccines. In this study, we evaluated these three vaccines as therapeutic vaccines against acute and recurrent diseases in intravaginal challenged guinea pigs. Compared with the control groups, the recombinant vaccine rAd-gD2ΔUL25 induced a higher titer of the binding antibody, and rAd-gD2 + rAd-ΔUL25 induced a higher titer of the neutralizing antibody. Both rAd-gD2ΔUL25 and rAd-gD2 + rAd-ΔUL25 vaccines significantly enhanced the survival rate by 50% compared to rAd-gD2 and reduced viral replication in the genital tract and recurrent genital skin disease. Our findings provide a new perspective for HSV-2 therapeutic vaccine research and provide a new technique to curtail the increasing spread of HSV-2.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xue Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhijun Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Chang A, Sholukh AM, Wieland A, Jaye DL, Carrington M, Huang ML, Xie H, Jerome KR, Roychoudhury P, Greninger AL, Koff JL, Cohen JB, Koelle DM, Corey L, Flowers CR, Ahmed R. Herpes simplex virus lymphadenitis is associated with tumor reduction in a patient with chronic lymphocytic leukemia. J Clin Invest 2022; 132:e161109. [PMID: 35862190 PMCID: PMC9479599 DOI: 10.1172/jci161109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundHerpes simplex virus lymphadenitis (HSVL) is an unusual presentation of HSV reactivation in patients with chronic lymphocytic leukemia (CLL) and is characterized by systemic symptoms and no herpetic lesions. The immune responses during HSVL have not, to our knowledge, been studied.MethodsPeripheral blood and lymph node (LN) samples were obtained from a patient with HSVL. HSV-2 viral load, antibody levels, B and T cell responses, cytokine levels, and tumor burden were measured.ResultsThe patient showed HSV-2 viremia for at least 6 weeks. During this period, she had a robust HSV-specific antibody response with neutralizing and antibody-dependent cellular phagocytotic activity. Activated (HLA-DR+, CD38+) CD4+ and CD8+ T cells increased 18-fold, and HSV-specific CD8+ T cells in the blood were detected at higher numbers. HSV-specific B and T cell responses were also detected in the LN. Markedly elevated levels of proinflammatory cytokines in the blood were also observed. Surprisingly, a sustained decrease in CLL tumor burden without CLL-directed therapy was observed with this and also a prior episode of HSVL.ConclusionHSVL should be considered part of the differential diagnosis in patients with CLL who present with signs and symptoms of aggressive lymphoma transformation. An interesting finding was the sustained tumor control after 2 episodes of HSVL in this patient. A possible explanation for the reduction in tumor burden may be that the HSV-specific response served as an adjuvant for the activation of tumor-specific or bystander T cells. Studies in additional patients with CLL are needed to confirm and extend these findings.FundingNIH grants 4T32CA160040, UL1TR002378, and 5U19AI057266 and NIH contracts 75N93019C00063 and HHSN261200800001E. Neil W. and William S. Elkin Fellowship (Winship Cancer Institute).
Collapse
Affiliation(s)
- Andres Chang
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| | - Anton M. Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andreas Wieland
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| | - David L. Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Hong Xie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jean L. Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
| | - Jonathon B. Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
| | - David M. Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department Medicine and
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department Medicine and
| | | | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| |
Collapse
|
16
|
Abstract
This article describes procedures for two preclinical animal models for genital herpes infection. The guinea pig model shares many features of genital herpes in humans, including a natural route of inoculation, self-limiting primary vulvovaginitis, spontaneous recurrences, symptomatic and subclinical shedding of HSV-2, and latent infection of the associated sensory ganglia (lumbosacral dorsal root ganglia, DRG). Many humoral and cytokine responses to HSV-2 infection in the guinea pig have been characterized; however, due to the limited availability of immunological reagents, assessments of cellular immune responses are lacking. In contrast, the mouse model has been important in assessing cellular immune responses to herpes infection. Both the mouse and guinea pig models have been extremely useful for evaluating preventative and immunotherapeutic approaches for controlling HSV infection and recurrent disease. In this article, we describe procedures for infecting guinea pigs and mice with HSV-2, scoring subsequent genital disease, and measuring replicating virus to confirm infection. We also provide detailed protocols for dissecting and isolating DRG (the site of HSV-2 latency), quantifying HSV-2 genomic copies in DRG, and assessing symptomatic and subclinical shedding of HSV-2 in the vagina. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Primary and recurrent genital herpes infection in the guinea pig model Support Protocol 1: Blood collection via lateral saphenous vein or by cardiac puncture after euthanasia Support Protocol 2: Dissection and isolation of dorsal root ganglia from guinea pigs Support Protocol 3: PCR amplification and quantification of HSV-2 genomic DNA from samples Basic Protocol 2: Primary genital herpes infection in the mouse model Alternate Protocol: Flank infection with HSV-2 in the mouse model Support Protocol 4: Dissection and isolation of mouse dorsal root ganglia.
Collapse
Affiliation(s)
- Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Krishnan R, Stuart PM. Developments in Vaccination for Herpes Simplex Virus. Front Microbiol 2021; 12:798927. [PMID: 34950127 PMCID: PMC8691362 DOI: 10.3389/fmicb.2021.798927] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus (HSV) is an alpha herpes virus, with two subtypes: HSV-1 and HSV-2. HSV is one of the most prevalent sexually transmitted infections. It is the cause of severe neonatal infections and a leading cause of infectious blindness in the Western world. As of 2016, 13.2% of the global population ages 15-49 were existing with HSV-2 infection and 66.6% with HSV-1. This high prevalence of disease and the fact that resistance to current therapies is on the rise makes it imperative to develop and discover new methods of HSV prevention and management. Among the arsenal of therapies/treatments for this virus has been the development of a prophylactic or therapeutic vaccine to prevent the complications of HSV reactivation. Our current understanding of the immune responses involved in latency and reactivation provides a unique challenge to the development of vaccines. There are no approved vaccines currently available for either prophylaxis or therapy. However, there are various promising candidates in the pre-clinical and clinical phases of study. Vaccines are being developed with two broad focuses: preventative and therapeutic, some with a dual use as both immunotherapeutic and prophylactic. Within this article, we will review the current guidelines for the treatment of herpes simplex infections, our understanding of the immunological pathways involved, and novel vaccine candidates in development.
Collapse
Affiliation(s)
| | - Patrick M. Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Assessment of Two Novel Live-Attenuated Vaccine Candidates for Herpes Simplex Virus 2 (HSV-2) in Guinea Pigs. Vaccines (Basel) 2021; 9:vaccines9030258. [PMID: 33805768 PMCID: PMC7999511 DOI: 10.3390/vaccines9030258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
Treatment to ameliorate the symptoms of infection with herpes simplex virus 2 (HSV-2) and to suppress reactivation has been available for decades. However, a safe and effective preventative or therapeutic vaccine has eluded development. Two novel live-attenuated HSV-2 vaccine candidates (RVx201 and RVx202) have been tested preclinically for safety. Hartley guinea pigs were inoculated vaginally (n = 3) or intradermally (n = 16) with either vaccine candidate (2 × 107 PFU) and observed for disease for 28 days. All animals survived to study end without developing HSV-2-associated disease. Neither vaccine candidate established latency in dorsal root or sacral sympathetic ganglia, as determined by viral DNA quantification, LAT expression, or explant reactivation. Infectious virus was shed in vaginal secretions for three days following vaginal inoculation with RVx202, but not RVx201, although active or latent HSV-2 was not detected at study end. In contrast, guinea pigs inoculated with wild-type HSV-2 MS (2 × 105 PFU) vaginally (n = 5) or intradermally (n = 16) developed acute disease, neurological signs, shed virus in vaginal secretions, experienced periodic recurrences throughout the study period, and had latent HSV-2 in their dorsal root and sacral sympathetic ganglia at study end. Both vaccine candidates generated neutralizing antibody. Taken together, these findings suggest that these novel vaccine candidates are safe in guinea pigs and should be tested for efficacy as preventative and/or therapeutic anti-HSV-2 vaccines.
Collapse
|
19
|
Madavaraju K, Koganti R, Volety I, Yadavalli T, Shukla D. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front Cell Infect Microbiol 2021; 10:617578. [PMID: 33537244 PMCID: PMC7848091 DOI: 10.3389/fcimb.2020.617578] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) can infect a broad host range and cause mild to life threating infections in humans. The surface glycoproteins of HSV are evolutionarily conserved and show an extraordinary ability to bind more than one receptor on the host cell surface. Following attachment, the virus fuses its lipid envelope with the host cell membrane and releases its nucleocapsid along with tegument proteins into the cytosol. With the help of tegument proteins and host cell factors, the nucleocapsid is then docked into the nuclear pore. The viral double stranded DNA is then released into the host cell’s nucleus. Released viral DNA either replicates rapidly (more commonly in non-neuronal cells) or stays latent inside the nucleus (in sensory neurons). The fusion of the viral envelope with host cell membrane is a key step. Blocking this step can prevent entry of HSV into the host cell and the subsequent interactions that ultimately lead to production of viral progeny and cell death or latency. In this review, we have discussed viral entry mechanisms including the pH-independent as well as pH-dependent endocytic entry, cell to cell spread of HSV and use of viral glycoproteins as an antiviral target.
Collapse
Affiliation(s)
- Krishnaraju Madavaraju
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Raghuram Koganti
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ipsita Volety
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Tejabhiram Yadavalli
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Deepak Shukla
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Singh T, Otero CE, Li K, Valencia SM, Nelson AN, Permar SR. Vaccines for Perinatal and Congenital Infections-How Close Are We? Front Pediatr 2020; 8:569. [PMID: 33384972 PMCID: PMC7769834 DOI: 10.3389/fped.2020.00569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Congenital and perinatal infections are transmitted from mother to infant during pregnancy across the placenta or during delivery. These infections not only cause pregnancy complications and still birth, but also result in an array of pediatric morbidities caused by physical deformities, neurodevelopmental delays, and impaired vision, mobility and hearing. Due to the burden of these conditions, congenital and perinatal infections may result in lifelong disability and profoundly impact an individual's ability to live to their fullest capacity. While there are vaccines to prevent congenital and perinatal rubella, varicella, and hepatitis B infections, many more are currently in development at various stages of progress. The spectrum of our efforts to understand and address these infections includes observational studies of natural history of disease, epidemiological evaluation of risk factors, immunogen design, preclinical research of protective immunity in animal models, and evaluation of promising candidates in vaccine trials. In this review we summarize this progress in vaccine development research for Cytomegalovirus, Group B Streptococcus, Herpes simplex virus, Human Immunodeficiency Virus, Toxoplasma, Syphilis, and Zika virus congenital and perinatal infections. We then synthesize this evidence to examine how close we are to developing a vaccine for these infections, and highlight areas where research is still needed.
Collapse
Affiliation(s)
- Tulika Singh
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Claire E. Otero
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Katherine Li
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sarah M. Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Ashley N. Nelson
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sallie R. Permar
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
21
|
Ayoub HH, Chemaitelly H, Abu-Raddad LJ. Epidemiological Impact of Novel Preventive and Therapeutic HSV-2 Vaccination in the United States: Mathematical Modeling Analyses. Vaccines (Basel) 2020; 8:E366. [PMID: 32650385 PMCID: PMC7564812 DOI: 10.3390/vaccines8030366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022] Open
Abstract
This study aims to inform herpes simplex virus type 2 (HSV-2) vaccine development, licensure, and implementation by delineating the population-level impact of vaccination. Mathematical models were constructed to describe the transmission dynamics in presence of prophylactic or therapeutic vaccines assuming 50% efficacy, with application to the United States. Catch-up prophylactic vaccination will reduce, by 2050, annual number of new infections by 58%, incidence rate by 60%, seroprevalence by 21%, and avert yearly as much as 350,000 infections. Number of vaccinations needed to avert one infection was only 50 by 2050, 34 by prioritizing those aged 15-19 years, 4 by prioritizing the highest sexual risk group, 43 by prioritizing women, and 47 by prioritizing men. Therapeutic vaccination of infected adults with symptomatic disease will reduce, by 2050, annual number of new infections by 12%, incidence rate by 13%, seroprevalence by 4%, and avert yearly as much as 76,000 infections. Number of vaccinations needed to avert one infection was eight by 2050, two by prioritizing those aged 15-19 years, three by prioritizing the highest sexual risk group, seven by prioritizing men, and ten by prioritizing women. HSV-2 vaccination offers an impactful and cost-effective intervention to prevent genital herpes medical and psychosexual disease burden.
Collapse
Affiliation(s)
- Houssein H. Ayoub
- Department of Mathematics, Statistics, and Physics, Qatar University, Doha 2713, Qatar;
| | - Hiam Chemaitelly
- Infectious Diseases Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar;
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar
| | - Laith J. Abu-Raddad
- Infectious Diseases Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar;
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha 24144, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York City, NY 10065, USA
| |
Collapse
|
22
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|
23
|
Egan K, Hook LM, LaTourette P, Desmond A, Awasthi S, Friedman HM. Vaccines to prevent genital herpes. Transl Res 2020; 220:138-152. [PMID: 32272093 PMCID: PMC7293938 DOI: 10.1016/j.trsl.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Genital herpes increases the risk of acquiring and transmitting Human Immunodeficiency Virus (HIV), is a source of anxiety for many about transmitting infection to intimate partners, and is life-threatening to newborns. A vaccine that prevents genital herpes infection is a high public health priority. An ideal vaccine will prevent both genital lesions and asymptomatic subclinical infection to reduce the risk of inadvertent transmission to partners, will be effective against genital herpes caused by herpes simplex virus types 1 and 2 (HSV-1, HSV-2), and will protect against neonatal herpes. Three phase 3 human trials were performed over the past 20 years that used HSV-2 glycoproteins essential for virus entry as immunogens. None achieved its primary endpoint, although each was partially successful in either delaying onset of infection or protecting a subset of female subjects that were HSV-1 and HSV-2 uninfected against HSV-1 genital infection. The success of future vaccine candidates may depend on improving the predictive value of animal models by requiring vaccines to achieve near-perfect protection in these models and by using the models to better define immune correlates of protection. Many vaccine candidates are under development, including DNA, modified mRNA, protein subunit, killed virus, and attenuated live virus vaccines. Lessons learned from prior vaccine studies and select candidate vaccines are discussed, including a trivalent nucleoside-modified mRNA vaccine that our laboratory is pursuing. We are optimistic that an effective vaccine for prevention of genital herpes will emerge in this decade.
Collapse
Affiliation(s)
- Kevin Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Lauren M Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Philip LaTourette
- University Laboratory Animal Resources, Philadelphia, PA; Department of Pathobiology, School of Veterinary Medicine, Philadelphia, PA
| | - Angela Desmond
- Infectious Disease Division, Department of Pediatrics, The Children's Hospital of Philadelphia; University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
24
|
Albershardt TC, Parsons AJ, Reeves RS, Flynn PA, Campbell DJ, Ter Meulen J, Berglund P. Therapeutic efficacy of PD1/PDL1 blockade in B16 melanoma is greatly enhanced by immunization with dendritic cell-targeting lentiviral vector and protein vaccine. Vaccine 2020; 38:3369-3377. [PMID: 32088020 DOI: 10.1016/j.vaccine.2020.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
While immune checkpoint inhibition is rapidly becoming standard of care in many solid tumors, immune checkpoint inhibitors (ICIs) fail to induce clinical responses in many patients, presumably due to insufficient numbers of tumor-specific T cells in the tumor milieu. To this end, immunization protocols using viral vectors expressing tumor-associated antigens are being explored to induce T cell responses that synergize with ICIs. However, the optimal combination of vaccine and immune checkpoint regimen remains undefined. Here, a dendritic cell-targeting lentiviral vector (ZVex®) expressing the endogenous murine tyrosinase-related protein 1 (mTRP1), or the human tumor antigen NY-ESO-1, was explored as monotherapy or heterologous prime-boost (HPB) vaccine regimen together with recombinant tumor antigen in the murine B16 melanoma model. PD1/PDL1 blockade significantly enhanced ZVex/mTRP1, but not ZVex/NY-ESO-1, induced immune responses in mice, whereas the opposite effect was observed with anti-CTLA4 antibody. Anti-tumor efficacy of anti-PD1, but not anti-PDL1 or anti-CTLA4, was significantly enhanced by ZVex/mTRP1 and HPB vaccination. These results suggest mechanistic differences in the effect of checkpoint blockade on vaccine-induced immune and anti-tumor responses against self versus non-self tumor antigens, possibly due to tolerance and state of exhaustion of anti-tumor T cells.
Collapse
Affiliation(s)
| | - Andrea Jean Parsons
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Rebecca Susan Reeves
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - David James Campbell
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jan Ter Meulen
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Peter Berglund
- Immune Design, A Wholly-owned Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
25
|
Marchese V, Dal Zoppo S, Quaresima V, Rossi B, Matteelli A. Vaccines for STIs: Present and Future Directions. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
26
|
Sandgren KJ, Truong NR, Smith JB, Bertram K, Cunningham AL. Vaccines for Herpes Simplex: Recent Progress Driven by Viral and Adjuvant Immunology. Methods Mol Biol 2020; 2060:31-56. [PMID: 31617171 DOI: 10.1007/978-1-4939-9814-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous. They both cause genital herpes, occasionally severe disease in the immunocompromised, and facilitate much HIV acquisition globally. Despite more than 60 years of research, there is no licensed prophylactic HSV vaccine and some doubt as to whether this can be achieved. Nevertheless, a previous HSV vaccine candidate did have partial success in preventing genital herpes and HSV acquisition and another immunotherapeutic candidate reduced viral shedding and recurrent lesions, inspiring further research. However, the entry pathway of HSV into the anogenital mucosa and the subsequent cascade of immune responses need further elucidation so that these responses could be mimicked or improved by a vaccine, to prevent viral entry and colonization of the neuronal ganglia. For an effective novel vaccine against genital herpes the choice of antigen and adjuvant may be critical. The incorporation of adjuvants of the vaccine candidates in the past, may account for their partial efficacy. It is likely that they can be improved by understanding the mechanisms of immune responses elicited by different adjuvants and comparing these to natural immune responses. Here we review the history of vaccines for HSV, those in development and compare them to successful vaccines for chicken pox or herpes zoster. We also review what is known of the natural immune control of herpes lesions, via interacting innate immunity and CD4 and CD8 T cells and the lessons they provide for development of new, more effective vaccines.
Collapse
Affiliation(s)
- Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Kirstie Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. .,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
27
|
Schiffer JT, Gottlieb SL. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development. Vaccine 2019; 37:7363-7371. [PMID: 28958807 PMCID: PMC5867191 DOI: 10.1016/j.vaccine.2017.09.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States; University of Washington, Department of Medicine, Seattle, WA, United States.
| | - Sami L Gottlieb
- World Health Organization, Department of Reproductive Health and Research, Geneva, Switzerland
| |
Collapse
|
28
|
Jahanban‐Esfahlan R, Seidi K, Majidinia M, Karimian A, Yousefi B, Nabavi SM, Astani A, Berindan‐Neagoe I, Gulei D, Fallarino F, Gargaro M, Manni G, Pirro M, Xu S, Sadeghi M, Nabavi SF, Shirooie S. Toll‐like receptors as novel therapeutic targets for herpes simplex virus infection. Rev Med Virol 2019; 29:e2048. [DOI: 10.1002/rmv.2048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Khaled Seidi
- Immunology Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical Sciences Urmia Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical Sciences Babol Iran
| | - Bahman Yousefi
- Molecular Medicine Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Science Tabriz Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Akram Astani
- Department of MicrobiologyShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Ioana Berindan‐Neagoe
- MEDFUTURE ‐Research Center for Advanced Medicine“Iuliu‐Hatieganu” University of Medicine and Pharmacy Cluj‐Napoca Romania
- Research Centerfor Functional Genomics, Biomedicine and Translational Medicine“Iuliu‐Hatieganu” University of Medicine and Pharmacy Cluj‐Napoca Romania
- Department of Functional Genomics and Experimental PathologyThe Oncology Institute “Prof. Dr. Ion Chiricuţă” Cluj‐Napoca Romania
| | - Diana Gulei
- MEDFUTURE ‐Research Center for Advanced Medicine“Iuliu‐Hatieganu” University of Medicine and Pharmacy Cluj‐Napoca Romania
| | | | - Marco Gargaro
- Department of Experimental MedicineUniversity of Perugia Italy
| | - Giorgia Manni
- Department of Experimental MedicineUniversity of Perugia Italy
| | - Matteo Pirro
- Department of MedicineUniversity of Perugia Italy
| | - Suowen Xu
- Aab Cardiovascular Research InstituteUniversity of Rochester Rochester NY USA
| | - Mahmoud Sadeghi
- Department of Transplantation ImmunologyUniversity of Heidelberg Heidelberg Germany
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Samira Shirooie
- Department of Pharmacology, Faculty of PharmacyKermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
29
|
Xu X, Zhang Y, Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev Med Virol 2019; 29:e2054. [PMID: 31197909 PMCID: PMC6771534 DOI: 10.1002/rmv.2054] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus (HSV) can cause oral or genital ulcerative lesions and even encephalitis in various age groups with high infection rates. More seriously, HSV may lead to a wide range of recurrent diseases throughout a lifetime. No vaccines against HSV are currently available. The accumulated clinical research data for HSV vaccines reveal that the effects of HSV interacting with the host, especially the host immune system, may be important for the development of HSV vaccines. HSV vaccine development remains a major challenge. Thus, we focus on the research data regarding the interactions of HSV and host immune cells, including dendritic cells (DCs), innate lymphoid cells (ILCs), macrophages, and natural killer (NK) cells, and the related signal transduction pathways involved in immune evasion and cytokine production. The aim is to explore possible strategies to develop new effective HSV vaccines.
Collapse
Affiliation(s)
- Xingli Xu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| |
Collapse
|
30
|
Mahipal A, Ejadi S, Gnjatic S, Kim-Schulze S, Lu H, Ter Meulen JH, Kenney R, Odunsi K. First-in-human phase 1 dose-escalating trial of G305 in patients with advanced solid tumors expressing NY-ESO-1. Cancer Immunol Immunother 2019; 68:1211-1222. [PMID: 31069460 PMCID: PMC11028382 DOI: 10.1007/s00262-019-02331-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Human tumor cells express antigens that serve as targets for the host cellular immune system. This phase 1 dose-escalating study was conducted to assess safety and tolerability of G305, a recombinant NY-ESO-1 protein vaccine mixed with glucopyranosyl lipid A (GLA), a synthetic TLR4 agonist adjuvant, in a stable emulsion (SE). Twelve patients with solid tumors expressing NY-ESO-1 were treated using a 3 + 3 design. The NY-ESO-1 dose was fixed at 250 µg, while GLA-SE was increased from 2 to 10 µg. Safety, immunogenicity, and clinical responses were assessed prior to, during, and at the end of therapy. G305 was safe and immunogenic at all doses. All related AEs were Grade 1 or 2, with injection site soreness as the most commonly reported event (100%). Overall, 75% of patients developed antibody response to NY-ESO-1, including six patients with increased antibody titer ( ≥ 4-fold rise) and three patients with seroconversion from negative (titer < 100) to positive (titer ≥ 100). CD4 T-cell responses were observed in 44.4% of patients; 33.3% were new responses and 1 was boosted ( ≥ 2-fold rise). Following treatment, 8 of 12 patients had stable disease for 3 months or more; at the end of 1 year, three patients had stable disease and nine patients were alive. G305 is a potent immunotherapeutic agent that can stimulate NY-ESO-1-specific antibody and T-cell responses. The vaccine was safe at all doses of GLA-SE (2-10 µg) and showed potential clinical benefit in this population of patients.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
- Adult
- Aged
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/adverse effects
- Antigens, Neoplasm/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/adverse effects
- Cancer Vaccines/immunology
- Drugs, Investigational/administration & dosage
- Drugs, Investigational/adverse effects
- Female
- Glucosides/administration & dosage
- Glucosides/adverse effects
- Glucosides/immunology
- Humans
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Lipid A/administration & dosage
- Lipid A/adverse effects
- Lipid A/immunology
- Male
- Membrane Proteins/administration & dosage
- Membrane Proteins/adverse effects
- Membrane Proteins/immunology
- Middle Aged
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Recombinant Proteins/immunology
- Toll-Like Receptor 4/agonists
- Toll-Like Receptor 4/immunology
- Treatment Outcome
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/immunology
- Young Adult
Collapse
Affiliation(s)
- Amit Mahipal
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Mayo Clinic, Rochester, MN, USA
| | - Samuel Ejadi
- HonorHealth Research Institute, Virginia G. Piper Cancer Center, Scottsdale, AZ, USA
| | - Sacha Gnjatic
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hailing Lu
- Immune Design Corp., 1616 East Lake Ave. E, Suite 300, Seattle, WA, 98102, USA
| | - Jan H Ter Meulen
- Immune Design Corp., 1616 East Lake Ave. E, Suite 300, Seattle, WA, 98102, USA.
| | - Richard Kenney
- Immune Design Corp, South San Francisco, CA, USA
- ClinReg Biologics LLC, Potomac, MD, USA
| | | |
Collapse
|
31
|
Truong NR, Smith JB, Sandgren KJ, Cunningham AL. Mechanisms of Immune Control of Mucosal HSV Infection: A Guide to Rational Vaccine Design. Front Immunol 2019; 10:373. [PMID: 30894859 PMCID: PMC6414784 DOI: 10.3389/fimmu.2019.00373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes Simplex Virus (HSV) is a highly prevalent sexually transmitted infection that aside from causing cold sores and genital lesions, causes complications in the immunocompromised and has facilitated a large proportion of HIV acquisition globally. Despite decades of research, there is no prophylactic HSV vaccine ready for use in humans, leaving many questioning whether a prophylactic vaccine is an achievable goal. A previous HSV vaccine trial did have partial success in decreasing acquisition of HSV2–promising evidence that vaccines can prevent acquisition. However, there is still an incomplete understanding of the immune response pathways elicited by HSV after initial mucosal infection and how best to replicate these responses with a vaccine, such that acquisition and colonization of the dorsal root ganglia could be prevented. Another factor to consider in the rational design of an HSV vaccine is adjuvant choice. Understanding the immune responses elicited by different adjuvants and whether lasting humoral and cell-mediated responses are induced is important, especially when studies of past trial vaccines found that a sufficiently protective cell-mediated response was lacking. In this review, we discuss what is known of the immune control involved in initial herpes lesions and reactivation, including the importance of CD4 and CD8 T cells, and the interplay between innate and adaptive immunity in response to primary infection, specifically focusing on the viral relay involved. Additionally, a summary of previous and current vaccine trials, including the components used, immune responses elicited and the feasibility of prophylactic vaccines looking forward, will also be discussed.
Collapse
Affiliation(s)
- Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Study on antiviral activities, drug-likeness and molecular docking of bioactive compounds of Punica granatum L. to Herpes simplex virus - 2 (HSV-2). Microb Pathog 2018; 118:301-309. [DOI: 10.1016/j.micpath.2018.03.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
|
33
|
Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses. J Virol 2018; 92:JVI.01930-17. [PMID: 29212932 DOI: 10.1128/jvi.01930-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
The amino terminus of the human papillomavirus (HPV) minor capsid protein L2 contains a major cross-neutralization epitope which provides the basis for the development of a broadly protecting HPV vaccine. A wide range of protection against different HPV types would eliminate one of the major drawbacks of the commercial, L1-based prophylactic vaccines. Previously, we have reported that insertion of the L2 epitope into a scaffold composed of bacterial thioredoxin protein generates a potent antigen inducing comprehensive protection against different animal and human papillomaviruses. We also reported, however, that although protection is broad, some oncogenic HPV types escape the neutralizing antibody response, if L2 epitopes from single HPV types are used as immunogen. We were able to compensate for this by applying a mix of thioredoxin proteins carrying L2 epitopes from HPV16, -31, and -51. As the development of a cost-efficient HPV prophylactic vaccines is one of our objectives, this approach is not feasible as it requires the development of multiple good manufacturing production processes in combination with a complex vaccine formulation. Here, we report the development of a thermostable thioredoxin-based single-peptide vaccine carrying an L2 polytope of up to 11 different HPV types. The L2 polytope antigens have excellent abilities in respect to broadness of protection and robustness of induced immune responses. To further increase immunogenicity, we fused the thioredoxin L2 polytope antigen with a heptamerization domain. In the final vaccine design, we achieve protective responses against all 14 oncogenic HPV types that we have analyzed plus the low-risk HPVs 6 and 11 and a number of cutaneous HPVs.IMPORTANCE Infections by a large number of human papillomaviruses lead to malignant and nonmalignant disease. Current commercial vaccines based on virus-like particles (VLPs) effectively protect against some HPV types but fail to do so for most others. Further, only about a third of all countries have access to the VLP vaccines. The minor capsid protein L2 has been shown to contain so-called neutralization epitopes within its N terminus. We designed polytopes comprising the L2 epitope amino acids 20 to 38 of up to 11 different mucosal HPV types and inserted them into the scaffold of thioredoxin derived from a thermophile archaebacterium. The antigen induced neutralizing antibody responses in mice and guinea pigs against 26 mucosal and cutaneous HPV types. Further, addition of a heptamerization domain significantly increased the immunogenicity. The final vaccine design comprising a heptamerized L2 8-mer thioredoxin single-peptide antigen with excellent thermal stability might overcome some of the limitations of the current VLP vaccines.
Collapse
|
34
|
Pollack SM, Ingham M, Spraker MB, Schwartz GK. Emerging Targeted and Immune-Based Therapies in Sarcoma. J Clin Oncol 2018; 36:125-135. [DOI: 10.1200/jco.2017.75.1610] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Soft tissue and bone sarcomas are malignancies of mesenchymal origin, and more than 50 subtypes are defined. For most sarcomas, locally advanced or unresectable disease is still treated with cytotoxic chemotherapy. Recently, our understanding of subtype-specific cancer biology has expanded, and it has revealed distinct molecular alterations responsible for tumor initiation and progression. These findings have motivated the development of targeted therapies that are being evaluated in subtype-specific or biomarker-driven clinical trials. Indeed, the spectrum of targeted drug development in sarcoma now spans many of the most active paradigms in cancer research and includes agents that target cancer-related vulnerabilities in receptor tyrosine kinases and intracellular signaling pathways, epigenetics, metabolism, nuclear-cytoplasmic transport, and many others. Our understanding of the sarcoma immune microenvironment and heterogeneous mechanisms of tumor immune evasion has also expanded. Although a subset of sarcomas appears inflamed and responsive to immune checkpoint blockade with programmed death 1 (PD-1) targeted agents, novel immunotherapies and combinations likely will be needed for most subtypes. A variety of approaches—including targeting immune checkpoints other than PD-1; modulating tumor-associated macrophage phenotype from tumor-promoting to tumor-suppressive status; using cellular-based therapies, such as chimeric antigen and high-affinity T-cell receptors to deepen the adaptive immune response; and reinvigorating older approaches, such as vaccines and oncolytic virus-based treatments—are being investigated. The goal of these new approaches is to harness subtype-specific insights into cancer and immune biology to bring more effective and less toxic treatments to the clinic for the benefit of patients with sarcoma.
Collapse
Affiliation(s)
- Seth M. Pollack
- Seth M. Pollack, Fred Hutchinson Cancer Research Center; Seth M. Pollack and Matthew B. Spraker, University of Washington, Seattle, WA; and Matthew Ingham and Gary K. Schwartz, Columbia University School of Medicine, New York, NY
| | - Matthew Ingham
- Seth M. Pollack, Fred Hutchinson Cancer Research Center; Seth M. Pollack and Matthew B. Spraker, University of Washington, Seattle, WA; and Matthew Ingham and Gary K. Schwartz, Columbia University School of Medicine, New York, NY
| | - Matthew B. Spraker
- Seth M. Pollack, Fred Hutchinson Cancer Research Center; Seth M. Pollack and Matthew B. Spraker, University of Washington, Seattle, WA; and Matthew Ingham and Gary K. Schwartz, Columbia University School of Medicine, New York, NY
| | - Gary K. Schwartz
- Seth M. Pollack, Fred Hutchinson Cancer Research Center; Seth M. Pollack and Matthew B. Spraker, University of Washington, Seattle, WA; and Matthew Ingham and Gary K. Schwartz, Columbia University School of Medicine, New York, NY
| |
Collapse
|
35
|
Gottlieb SL, Giersing BK, Hickling J, Jones R, Deal C, Kaslow DC. Meeting report: Initial World Health Organization consultation on herpes simplex virus (HSV) vaccine preferred product characteristics, March 2017. Vaccine 2017; 37:7408-7418. [PMID: 29224963 DOI: 10.1016/j.vaccine.2017.10.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 12/18/2022]
Abstract
The development of vaccines against herpes simplex virus (HSV) is an important global goal for sexual and reproductive health. A key priority to advance development of HSV vaccines is the definition of preferred product characteristics (PPCs), which provide strategic guidance on World Health Organization (WHO) preferences for new vaccines, specifically from a low- and middle-income country (LMIC) perspective. To start the PPC process for HSV vaccines, the WHO convened a global stakeholder consultation in March 2017, to define the priority public health needs that should be addressed by HSV vaccines and discuss the key considerations for HSV vaccine PPCs, particularly for LMICs. Meeting participants outlined an initial set of overarching public health goals for HSV vaccines in LMICs, which are: to reduce the acquisition of HIV associated with HSV-2 infection in high HIV-prevalence populations and to reduce the burden of HSV-associated disease, including mortality and morbidity due to neonatal herpes and impacts on sexual and reproductive health. Participants also considered the role of prophylactic versus therapeutic vaccines, whether both HSV-2 and HSV-1 should be targeted, important target populations, and infection and disease endpoints for clinical trials. This article summarizes the main discussions from the consultation.
Collapse
Affiliation(s)
| | | | | | | | - Carolyn Deal
- National Institutes of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | |
Collapse
|
36
|
Johnston C, Magaret A, Roychoudhury P, Greninger AL, Cheng A, Diem K, Fitzgibbon MP, Huang ML, Selke S, Lingappa JR, Celum C, Jerome KR, Wald A, Koelle DM. Highly conserved intragenic HSV-2 sequences: Results from next-generation sequencing of HSV-2 U L and U S regions from genital swabs collected from 3 continents. Virology 2017; 510:90-98. [PMID: 28711653 PMCID: PMC5565707 DOI: 10.1016/j.virol.2017.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. METHODS Genital lesion swabs containing ≥ 107log10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (UL_US) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. RESULTS Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated UL_US segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. CONCLUSIONS Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA.
| | - Amalia Magaret
- Department of Laboratory Medicine, University of Washington, USA; Department of Biostatistics, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA
| | | | | | - Anqi Cheng
- Department of Biostatistics, University of Washington, USA
| | - Kurt Diem
- Department of Laboratory Medicine, University of Washington, USA
| | - Matthew P Fitzgibbon
- Genomics and Bioinformatics Resource, Fred Hutchinson Cancer Research Center, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, USA
| | - Stacy Selke
- Department of Laboratory Medicine, University of Washington, USA
| | - Jairam R Lingappa
- Department of Medicine, University of Washington, USA; Department of Global Health, University of Washington, USA; Department of Pediatrics, University of Washington, USA
| | - Connie Celum
- Department of Medicine, University of Washington, USA; Department of Epidemiology, University of Washington, USA; Department of Global Health, University of Washington, USA
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA
| | - Anna Wald
- Department of Medicine, University of Washington, USA; Department of Laboratory Medicine, University of Washington, USA; Department of Epidemiology, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA
| | - David M Koelle
- Department of Medicine, University of Washington, USA; Department of Laboratory Medicine, University of Washington, USA; Department of Global Health, University of Washington, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, USA; Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
37
|
Zhou Y, Wang Z, Xu Y, Zhang Z, Hua R, Liu W, Jiang C, Chen Y, Yang W, Kong W. Optimized DNA Vaccine Enhanced by Adjuvant IL28B Induces Protective Immune Responses Against Herpes Simplex Virus Type 2 in Mice. Viral Immunol 2017; 30:601-614. [PMID: 28650722 DOI: 10.1089/vim.2017.0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antigen-specific immune responses determine the efficacy of herpes simplex virus type 2 (HSV-2) vaccines. To optimize the immunogenicity of the antigen gD2, we developed the gD2ΔUL25 DNA vaccine encoding HSV-2 glycoprotein D and UL25 gene encoding viral capsid vertex proteins in this study. The gD2 and gD2ΔUL25 DNA vaccines were compared with formalin-inactivated HSV-2 (FI-HSV-2), and results showed a greater protective immune response induced by gD2ΔUL25 than by gD2. Therefore, gD2ΔUL25 was chosen to evaluate further using the IL28B adjuvant. Immunization with gD2ΔUL25/IL28B elicited stronger humoral and T cell immune responses than with gD2ΔUL25 alone. Compared with controls, gD2ΔUL25/IL28B decreased HSV-2 viral loads and induced protective effects against genital tract lesions generated by HSV-2. These findings demonstrated that the prophylactic DNA vaccine gD2ΔUL25 with IL28B adjuvant could enhance the humoral and T cell immune responses, and improve the protective immune response against HSV-2 in female mice compared with FI-HSV-2.
Collapse
Affiliation(s)
- Yan Zhou
- 1 National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University , Changchun, China
- 2 Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University , Changchun, China
| | - Ziyan Wang
- 1 National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University , Changchun, China
| | - Yongqing Xu
- 1 National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University , Changchun, China
| | - Zeqiang Zhang
- 1 National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University , Changchun, China
- 2 Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University , Changchun, China
| | - Rui Hua
- 3 Hepatic Department, The First Hospital of Jilin University , Changchun, China
| | - Wei Liu
- 1 National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University , Changchun, China
- 4 Department of Biotechnology, Jilin Medical University , Jilin, China
| | - Chunlai Jiang
- 1 National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University , Changchun, China
- 2 Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University , Changchun, China
| | - Yan Chen
- 1 National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University , Changchun, China
- 2 Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University , Changchun, China
| | - Wenying Yang
- 5 Gastroenterol Department, Jilin Province People's Hospital , Changchun, China
| | - Wei Kong
- 1 National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University , Changchun, China
- 2 Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University , Changchun, China
| |
Collapse
|
38
|
Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir. J Virol 2017; 91:JVI.02257-16. [PMID: 28228587 DOI: 10.1128/jvi.02257-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses.IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection.
Collapse
|
39
|
Speranza MC, Kasai K, Lawler SE. Preclinical Mouse Models for Analysis of the Therapeutic Potential of Engineered Oncolytic Herpes Viruses. ILAR J 2017; 57:63-72. [PMID: 27034396 DOI: 10.1093/ilar/ilw002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After more than two decades of research and development, oncolytic herpes viruses (oHSVs) are moving into the spotlight due to recent encouraging clinical trial data. oHSV and other oncolytic viruses function through direct oncolytic cancer cell-killing mechanisms and by stimulating antitumor immunity. As further viruses are developed and optimized for the treatment of various types of cancer, appropriate predictive preclinical models will be of great utility. This review will discuss existing data in this area, focusing on the mouse tumor models that are commonly used.
Collapse
Affiliation(s)
- Maria-Carmela Speranza
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Kazue Kasai
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Sean E Lawler
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| |
Collapse
|
40
|
Wang N, Zhen Y, Jin Y, Wang X, Li N, Jiang S, Wang T. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS). J Control Release 2016; 246:12-29. [PMID: 27986552 DOI: 10.1016/j.jconrel.2016.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 01/09/2023]
Abstract
To develop effective mucosal vaccines, two types of multifunctional liposomes, the mannosylated lipid A-liposomes (MLLs) with a size of 200nm and the stealth lipid A-liposomes (SLLs) of 50nm, both loaded with a model antigen and NH4HCO3, were fabricated together into microneedles, forming the proSLL/MLL-constituted microneedle array (proSMMA), which upon rehydration dissolved rapidly recovering the initial MLLs and SLLs. Mice vaccinated with proSMMAs by vaginal mucosa patching other than conventional intradermal administration established robust antigen-specific humoral and cellular immunity at both systemic and mucosal levels, especially, in the reproductive and intestinal ducts. Further exploration demonstrated that the MLLs reconstituted from the administered proSMMAs were mostly taken up by vaginal mucosal dendritic cells, whereas the recovered SLLs trafficked directly to draining lymph nodes wherein to be picked up by macrophages. Moreover, the antigens delivered by either liposomes were also cross-presented for MHC-I displaying by APCs thanks to lysosome escape and ROS (reactive oxygen species) stimulation, both of which occurred when lysosomal acidifying the liposome-released NH4HCO3 into CO2 and NH4+/NH3 to rupture lysosomes by gas expansion and to cause ROS production by excessive ammonia induction, resulting in a mixed Th1/Th2 type response which was also promoted by liposomal lipid A via activation of TLR4. In addition, vaginal vaccination of the engineered HSV2 antigen gD-loaded proSMMAs successfully protected mice from the virus challenge. Thus, the proSMMAs are in fact a vaccine adjuvant-dual delivery system capable of eliciting robust humoral and cellular immunity against the invading pathogens, especially, the sexually transmitted ones.
Collapse
Affiliation(s)
- Ning Wang
- School of Biological and Medical Engineering, Hefei University of Technology, 193 Tun Brook Road, Hefei, Anhui Province 230009, China
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Xueting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ning Li
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Shaohong Jiang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| |
Collapse
|
41
|
Sauerbrei A. Herpes Genitalis: Diagnosis, Treatment and Prevention. Geburtshilfe Frauenheilkd 2016; 76:1310-1317. [PMID: 28017972 DOI: 10.1055/s-0042-116494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/15/2016] [Accepted: 09/01/2016] [Indexed: 01/13/2023] Open
Abstract
Herpes genitalis is caused by the herpes simplex virus type 1 or type 2 and can manifest as primary or recurrent infection. It is one of the most common sexually transmitted infections and due to associated physical and psychological morbidity it constitutes a considerable, often underestimated medical problem. In addition to providing the reader with basic knowledge of the pathogen and clinical presentation of herpes genitalis, this review article discusses important aspects of the laboratory diagnostics, antiviral therapy and prophylaxis. The article is aimed at all health-care workers managing patients with herpes genitalis and attempts to improve the often suboptimal counselling, targeted use of laboratory diagnostics, treatment and preventive measures provided to patients.
Collapse
Affiliation(s)
- A Sauerbrei
- Institut für Virologie und Antivirale Therapie, Konsiliarlabor für HSV und VZV, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
42
|
Johnson RF, Kurup D, Hagen KR, Fisher C, Keshwara R, Papaneri A, Perry DL, Cooper K, Jahrling PB, Wang JT, Ter Meulen J, Wirblich C, Schnell MJ. An Inactivated Rabies Virus-Based Ebola Vaccine, FILORAB1, Adjuvanted With Glucopyranosyl Lipid A in Stable Emulsion Confers Complete Protection in Nonhuman Primate Challenge Models. J Infect Dis 2016; 214:S342-S354. [PMID: 27456709 PMCID: PMC5050469 DOI: 10.1093/infdis/jiw231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The 2013-2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus-based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti-rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine.
Collapse
Affiliation(s)
| | - Drishya Kurup
- Department of Microbiology and Immunology, Sidney Kimmel Medical College
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | - Christine Fisher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College
| | - Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College
| | | | - Donna L Perry
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | - Peter B Jahrling
- Emerging Viral Pathogens Section Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | | | - Jan Ter Meulen
- Immune Design, South San Francisco, California Immune Design, Seattle, Washington
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Understanding natural herpes simplex virus immunity to inform next-generation vaccine design. Clin Transl Immunology 2016; 5:e94. [PMID: 27525067 PMCID: PMC4973325 DOI: 10.1038/cti.2016.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Incremental advances in our knowledge of how natural immune control of herpes simplex virus (HSV) develops have yielded insight as to why previous vaccine attempts have only been partially successful, however, our understanding of these pathways, particularly in humans, is still incomplete. Further elucidation of the innate immune events that are responsible for stimulating these effector responses is required to accurately inform vaccine design. An enhanced understanding of the mechanism of action of novel adjuvants will also facilitate the rational choice of adjuvant to optimise such responses. Here we review the reasons for the hitherto partial HSV vaccine success and align these with our current knowledge of how natural HSV immunity develops. In particular, we focus on the innate immune response and the role of dendritic cells in inducing protective T-cell responses and how these pathways might be recapitulated in a vaccine setting.
Collapse
|
44
|
Abstract
As one of the most common sexually transmitted diseases, genital herpes is a global medical problem with significant physical and psychological morbidity. Genital herpes is caused by herpes simplex virus type 1 or type 2 and can manifest as primary and/or recurrent infection. This manuscript provides an overview about the fundamental knowledge on the virus, its epidemiology, and infection. Furthermore, the current possibilities of antiviral therapeutic interventions and laboratory diagnosis of genital herpes as well as the present situation and perspectives for the treatment by novel antivirals and prevention of disease by vaccination are presented. Since the medical management of patients with genital herpes simplex virus infection is often unsatisfactory, this review aims at all physicians and health professionals who are involved in the care of patients with genital herpes. The information provided would help to improve the counseling of affected patients and to optimize the diagnosis, treatment, and prevention of this particular disease.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for Herpes Simplex Virus and Varicella-Zoster Virus, Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|
45
|
Dowling JK, Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin Transl Immunology 2016; 5:e85. [PMID: 27350884 PMCID: PMC4910119 DOI: 10.1038/cti.2016.22] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 12/27/2022] Open
Abstract
Innate immune cells have a critical role in defense against infection and disease. Central to this is the broad specificity with which they can detect pathogen-associated patterns and danger-associated patterns via the pattern recognition receptors (PRRs) they express. Several families of PRRs have been identified including: Toll-like receptors (TLRs), C-type lectin-like receptors, retinoic acid-inducible gene-like receptors and nucleotide-binding oligomerization domain-like receptors. TLRs are one of the most largely studied families of PRRs. The binding of ligands to TLRs on antigen presenting cells (APCs), mainly dendritic cells, leads to APC maturation, induction of inflammatory cytokines and the priming of naive T cells to drive acquired immunity. Therefore, activation of TLRs promotes both innate inflammatory responses and the induction of adaptive immunity. Consequently, in the last two decades mounting evidence has inextricably linked TLR activation with the pathogenesis of immune diseases and cancer. It has become advantageous to harness these aspects of TLR signaling therapeutically to accelerate and enhance the induction of vaccine-specific responses and also target TLRs with the use of biologics and small molecule inhibitors for the treatment of disease. In these respects, TLRs may be considered a 'Swiss Army' knife of the immune system, ready to respond in a multitude of infectious and disease states. Here we describe the latest advances in TLR-targeted therapeutics and the use of TLR ligands as vaccine adjuvants.
Collapse
Affiliation(s)
- Jennifer K Dowling
- Pattern Recognition Receptors and Inflammation Research group, Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Monash University, Clayton, Victoria, Australia
| | - Ashley Mansell
- Pattern Recognition Receptors and Inflammation Research group, Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Monash University, Clayton, Victoria, Australia
| |
Collapse
|