1
|
Lai SK, Lee ZQ, Tan TI, Tan BH, Sugrue RJ. Evidence that the cell glycocalyx envelops respiratory syncytial virus (RSV) particles that form on the surface of RSV-infected human airway cells. Virology 2025; 604:110415. [PMID: 40044247 DOI: 10.1016/j.virol.2025.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 05/11/2025]
Abstract
We examined how respiratory syncytial virus (RSV) particles circumvent the overlying glycocalyx on virus-infected A549 cells. The glycocalyx was detected using the lectin WGA-AL488 probe, and the antibodies anti-HS and anti-syndecan-4 that detect heparin sulphate (HS) and the syndecan-4 protein (SYND4) respectively. Imaging of RSV-infected cells provided evidence that the glycocalyx envelopes the virus filaments as they form, and that components of the glycocalyx such as HS moieties and SYND4 are displayed on the surface of the mature virus filaments. Recombinant expression of the G protein in these cells suggested that the G protein was trafficked into pre-existing filamentous cellular structures with a well-defined glycocalyx, further suggesting that the glycocalyx is maintained at the site of virus particle assembly. These data provide evidence that during RSV particle assembly the virus filaments become enveloped by the glycocalyx, and that the glycocalyx should be considered as a structural component of virus filaments.
Collapse
Affiliation(s)
- Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Zhi Qi Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Trina Isabel Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Boon Huan Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
2
|
Sugrue RJ, Tan BH. The link between respiratory syncytial virus (RSV) morphogenesis and virus transmission: Towards a paradigm for understanding RSV transmission in the upper airway. Virology 2025; 604:110413. [PMID: 39869971 DOI: 10.1016/j.virol.2025.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Respiratory syncytial virus (RSV) particle assembly occurs on the surface of infected cells at specialized membrane domain called lipid rafts. The mature RSV particles assemble as filamentous projections called virus filaments, and these structures form on the surface of many permissive cell types indicating that this is a robust feature of the RSV particle assembly. The virus filaments also form on nasal airway organoids systems providing evidence that these structures also have a clinical relevance. Virus filaments also form on cells infected with the closely related human metapneumovirus, suggesting that virus filament formation may be a common feature of assembly process for viruses within the Pneumoviridae family. During RSV infection these virus filaments mediate the localized cell-to-cell spread of virus infection, suggesting that they play an important role in virus transmission. The current understanding of the connection between virus filament formation and virus transmission during RSV infection is presented.
Collapse
Affiliation(s)
- Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| |
Collapse
|
3
|
Huong TN, Lee ZQ, Lai SK, Lee HY, Tan BH, Sugrue RJ. Evidence that an interaction between the respiratory syncytial virus F and G proteins at the distal ends of virus filaments mediates efficient multiple cycle infection. Virology 2024; 591:109985. [PMID: 38227992 DOI: 10.1016/j.virol.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Evidence for a stable interaction between the respiratory syncytial virus (RSV) F and G proteins on the surface of virus filaments was provided using antibody immunoprecipitation studies on purified RSV particles, and by the in situ analysis on the surface of RSV-infected cells using the proximity ligation assay. Imaging of the F and G protein distribution on virus filaments suggested that this protein complex was localised at the distal ends of the virus filaments, and suggested that this protein complex played a direct role in mediating efficient localised cell-to-cell virus transmission. G protein expression was required for efficient localised cell-to-cell transmission of RSV in cell monolayers which provided evidence that this protein complex mediates efficient multiple cycle infection. Collectively, these data provide evidence that F and G proteins form a complex on the surface of RSV particles, and that a role for this protein complex in promoting virus transmission is suggested.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Zhi Qi Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Hsin Yee Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
4
|
Wang Y, Gao L. Cholesterol: A friend to viruses. Int Rev Immunol 2024; 43:248-262. [PMID: 38372266 DOI: 10.1080/08830185.2024.2314577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
5
|
Sugrue RJ, Tan BH. Defining the Assembleome of the Respiratory Syncytial Virus. Subcell Biochem 2023; 106:227-249. [PMID: 38159230 DOI: 10.1007/978-3-031-40086-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
During respiratory syncytial virus (RSV) particle assembly, the mature RSV particles form as filamentous projections on the surface of RSV-infected cells. The RSV assembly process occurs at the / on the cell surface that is modified by a virus infection, involving a combination of several different host cell factors and cellular processes. This induces changes in the lipid composition and properties of these lipid microdomains, and the virus-induced activation of associated Rho GTPase signaling networks drives the remodeling of the underlying filamentous actin (F-actin) cytoskeleton network. The modified sites that form on the surface of the infected cells form the nexus point for RSV assembly, and in this review chapter, they are referred to as the RSV assembleome. This is to distinguish these unique membrane microdomains that are formed during virus infection from the corresponding membrane microdomains that are present at the cell surface prior to infection. In this article, an overview of the current understanding of the processes that drive the formation of the assembleome during RSV particle assembly is given.
Collapse
Affiliation(s)
- Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
6
|
Esperante S, Alvarez-Paggi D, Salgueiro M, Desimone M, de Oliveira G, Arán M, García-Pardo J, Aptekmann A, Ventura S, Alonso L, de Prat-Gay G. A finely tuned interplay between calcium binding, ionic strength and pH modulates conformational and oligomerization equilibria in the Respiratory Syncytial Virus Matrix (M) protein. Arch Biochem Biophys 2022; 731:109424. [DOI: 10.1016/j.abb.2022.109424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
|
7
|
Malhi M, Norris MJ, Duan W, Moraes TJ, Maynes JT. Statin-mediated disruption of Rho GTPase prenylation and activity inhibits respiratory syncytial virus infection. Commun Biol 2021; 4:1239. [PMID: 34716403 PMCID: PMC8556396 DOI: 10.1038/s42003-021-02754-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe respiratory tract infections in children. To uncover new antiviral therapies, we developed a live cell-based high content screening approach for rapid identification of RSV inhibitors and characterized five drug classes which inhibit the virus. Among the molecular targets for each hit, there was a strong functional enrichment in lipid metabolic pathways. Modulation of lipid metabolites by statins, a key hit from our screen, decreases the production of infectious virus through a combination of cholesterol and isoprenoid-mediated effects. Notably, RSV infection globally upregulates host protein prenylation, including the prenylation of Rho GTPases. Treatment by statins or perillyl alcohol, a geranylgeranyltransferase inhibitor, reduces infection in vitro. Of the Rho GTPases assayed in our study, a loss in Rac1 activity strongly inhibits the virus through a decrease in F protein surface expression. Our findings provide new insight into the importance of host lipid metabolism to RSV infection and highlight geranylgeranyltransferases as an antiviral target for therapeutic development.
Collapse
Affiliation(s)
- Manpreet Malhi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael J Norris
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wenming Duan
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason T Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
8
|
Ravi LI, Tan TJ, Tan BH, Sugrue RJ. Virus-induced activation of the rac1 protein at the site of respiratory syncytial virus assembly is a requirement for virus particle assembly on infected cells. Virology 2021; 557:86-99. [PMID: 33677389 DOI: 10.1016/j.virol.2021.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
The distributions of the rac1, rhoA and cdc42 proteins in respiratory syncytial virus (RSV) infected cells was examined. All three rhoGTPases were detected within inclusion bodies, and while the rhoA and rac1 proteins were associated with virus filaments, only the rac1 protein was localised throughout the virus filaments. RSV infection led to increased rac1 protein activation, and using the rac1 protein inhibitor NS23766 we provided evidence that the increased rac1 activation occurred at the site of RSV assembly and facilitated F-actin remodeling during virus morphogenesis. A non-infectious virus-like particle (VLP) assay showed that the RSV VLPs formed in lipid-raft microdomains containing the rac1 protein, together with F-actin and filamin-1 (cell proteins associated with virus filaments). This provided evidence that the virus envelope proteins are trafficked to membrane microdomains containing the rac1 protein. Collectively, these data provide evidence that the rac1 protein plays a direct role in the RSV assembly process.
Collapse
Affiliation(s)
- Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Timothy J Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Boon Huan Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Defense Medical and Environment Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore; Infection and Immunity, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
9
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Yu J, Murthy V, Liu SL. Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses 2019; 11:E1060. [PMID: 31739586 PMCID: PMC6893729 DOI: 10.3390/v11111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor) superfamily protein is a group of molecules that share limited sequence homology but conserved three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity, cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR proteins and viral pathogens, the results of which have provided new insight into viral entry and virus-host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection, with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family proteins and associated virus-host interaction and viral pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Vaibhav Murthy
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Preugschas HF, Hrincius ER, Mewis C, Tran GVQ, Ludwig S, Ehrhardt C. Late activation of the Raf/MEK/ERK pathway is required for translocation of the respiratory syncytial virus F protein to the plasma membrane and efficient viral replication. Cell Microbiol 2018; 21:e12955. [PMID: 30223301 DOI: 10.1111/cmi.12955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Activation of the Raf/MEK/ERK cascade is required for efficient propagation of several RNA and DNA viruses, including human respiratory syncytial virus (RSV). In RSV infection, activation of the Raf/MEK/ERK cascade is biphasic. An early induction within minutes after infection is associated with viral attachment. Subsequently, a second activation occurs with, so far, unknown function in the viral life cycle. In this study, we aimed to characterise the role of Raf/MEK/ERK-mediated signalling during ongoing RSV infection. Our data show that inhibition of the kinase MEK after the virus has been internalised results in a reduction of viral titers. Further functional investigations revealed that the late-stage activation of ERK is required for a specific step in RSV replication, namely, the secretory transport of the RSV fusion protein F. Thus, MEK inhibition resulted in impaired surface accumulation of the F protein. F protein surface expression is essential for efficient replication as it is involved in viral filament formation, cell fusion, and viral transmission. In summary, we provide detailed insights of how host cell signalling interferes with RSV replication and identified the Raf/MEK/ERK kinase cascade as potential target for novel anti-RSV strategies.
Collapse
Affiliation(s)
- Hannah F Preugschas
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Carolin Mewis
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Giao V Q Tran
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,The Graduate School of the Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany.,Section for Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Huong TN, Yan Y, Jumat MR, Lui J, Tan BH, Wang DY, Sugrue RJ. A sustained antiviral host response in respiratory syncytial virus infected human nasal epithelium does not prevent progeny virus production. Virology 2018; 521:20-32. [PMID: 29870884 DOI: 10.1016/j.virol.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 12/01/2022]
Abstract
Respiratory syncytial virus infection was examined using a human nasal epithelial cell model. Maximum levels of shed-virus were produced at between 3 and 5 days post-infection (dpi), and the infectivity of the shed-virus was stable up to 10 dpi. The highest levels of interferon signalling were recorded at 2dpi, and infection induced a widespread antivirus response in the nasal epithelium, involving both infected cells and non-infected cells. Although these cellular responses were associated with reduced levels of progeny virus production and restricted virus spread, they did not inhibit the infectivity virus that is shed early in infection. In the clinical context these data suggest that although the host cell response in the nasal epithelium may restrict the levels of progeny virus particles produced, the stability of the shed-virus in the nasal mucosa may be an important factor in both disease progression and virus transmission.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Muhammad Raihan Jumat
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Jing Lui
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Republic of Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
13
|
Bajimaya S, Frankl T, Hayashi T, Takimoto T. Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses. Virology 2017; 510:234-241. [PMID: 28750327 DOI: 10.1016/j.virol.2017.07.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
Abstract
Cholesterol-rich lipid raft microdomains in the plasma membrane are considered to play a major role in the enveloped virus lifecycle. However, the functional role of cholesterol in assembly, infectivity and stability of respiratory RNA viruses is not fully understood. We previously reported that depletion of cellular cholesterol by cholesterol-reducing agents decreased production of human parainfluenza virus type 1 (hPIV1) particles by inhibiting virus assembly. In this study, we analyzed the role of cholesterol on influenza A virus (IAV) and respiratory syncytial virus (RSV) production. Unlike hPIV1, treatment of human airway cells with the agents did not decrease virus particle production. However, the released virions were less homogeneous in density and unstable. Addition of exogenous cholesterol to the released virions restored virus stability and infectivity. Collectively, these data indicate a critical role of cholesterol in maintaining IAV and RSV membrane structure that is essential for sustaining viral stability and infectivity.
Collapse
Affiliation(s)
- Shringkhala Bajimaya
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Tünde Frankl
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Tsuyoshi Hayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
14
|
Zheng LL, Li CM, Zhen SJ, Li YF, Huang CZ. A dynamic cell entry pathway of respiratory syncytial virus revealed by tracking the quantum dot-labeled single virus. NANOSCALE 2017; 9:7880-7887. [PMID: 28561831 DOI: 10.1039/c7nr02162c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Studying the cell entry pathway at the single-particle level can provide detailed and quantitative information for the dynamic events involved in virus entry. Indeed, the viral entry dynamics cannot be monitored by static staining methods used in cell biology, and thus virus dynamic tracking could be useful in the development of effective antiviral strategies. Therefore, the aim of this work was to use a quantum dot-based single-particle tracking approach to monitor the cell entry behavior of the respiratory syncytial virus (RSV) in living cells. The time-lapse fluorescence imaging and trajectory analysis of the quantum dot-labeled RSV showed that RSV entry into HEp-2 cells consisted of a typical endocytosis trafficking process. Three critical events during RSV entry were observed according to entry dynamic and fluorescence colocalization analysis. Firstly, RSV was attached to lipid rafts of the cell membrane, and then it was efficiently delivered into the perinuclear region within 2 h post-infection, mostly moving and residing into the lysosome compartment. Moreover, the relatively slow velocity of RSV transport across the cytoplasm and the formation of the actin tail indicated actin-based RSV motility, which was also confirmed by the effects of cytoskeletal inhibitors. Taken together, these findings provided new insights into the RSV entry mechanism and virus-cell interactions in RSV infection that could be beneficial in the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Lin Ling Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | | | | | | | | |
Collapse
|
15
|
Ludwig A, Nguyen TH, Leong D, Ravi LI, Tan BH, Sandin S, Sugrue RJ. Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly. J Cell Sci 2017; 130:1037-1050. [PMID: 28154158 PMCID: PMC5358342 DOI: 10.1242/jcs.198853] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an enveloped virus that assembles into filamentous virus particles on the surface of infected cells. Morphogenesis of RSV is dependent upon cholesterol-rich (lipid raft) membrane microdomains, but the specific role of individual raft molecules in RSV assembly is not well defined. Here, we show that RSV morphogenesis occurs within caveolar membranes and that both caveolin-1 and cavin-1 (also known as PTRF), the two major structural and functional components of caveolae, are actively recruited to and incorporated into the RSV envelope. The recruitment of caveolae occurred just prior to the initiation of RSV filament assembly, and was dependent upon an intact actin network as well as a direct physical interaction between caveolin-1 and the viral G protein. Moreover, cavin-1 protein levels were significantly increased in RSV-infected cells, leading to a virus-induced change in the stoichiometry and biophysical properties of the caveolar coat complex. Our data indicate that RSV exploits caveolae for its assembly, and we propose that the incorporation of caveolae into the virus contributes to defining the biological properties of the RSV envelope.
Collapse
Affiliation(s)
- Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Tra Huong Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Daniel Leong
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510
| | - Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
16
|
Bajimaya S, Hayashi T, Frankl T, Bryk P, Ward B, Takimoto T. Cholesterol reducing agents inhibit assembly of type I parainfluenza viruses. Virology 2016; 501:127-135. [PMID: 27915128 DOI: 10.1016/j.virol.2016.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 11/18/2022]
Abstract
Many enveloped RNA viruses utilize lipid rafts for the assembly of progeny virions, but the role of cholesterol, a major component of rafts, on paramyxovirus budding and virion formation is controversial. In this study, we analyzed the effects of FDA-approved cholesterol-reducing agents, gemfibrozil and lovastatin, on raft formation and assembly of human parainfluenza virus type 1 (hPIV1) and Sendai virus (SeV). Treatment of the human airway epithelial A549 cells with the agents, especially when combined, significantly decreased production of infectious hPIV1 and SeV. Mechanistic analysis indicated that depletion of cellular cholesterol reduced cell surface accumulation of envelope glycoproteins and association of viral matrix and nucleocapsids with raft membrane, which resulted in impaired virus budding and release from the cells. These results indicate that cellular cholesterol is required for assembly and formation of type 1 parainfluenza viruses and suggest that cholesterol could be an attractive target for antiviral agents against hPIV1.
Collapse
Affiliation(s)
- Shringkhala Bajimaya
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Tsuyoshi Hayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Tünde Frankl
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Peter Bryk
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Brian Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
Huong TN, Iyer Ravi L, Tan BH, Sugrue RJ. Evidence for a biphasic mode of respiratory syncytial virus transmission in permissive HEp2 cell monolayers. Virol J 2016; 13:12. [PMID: 26790623 PMCID: PMC4719537 DOI: 10.1186/s12985-016-0467-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During respiratory syncytial virus (RSV) infection filamentous virus particles are formed on the cell surface. Although the virus infectivity remains cell-associated, low levels of cell-free virus is detected during advanced infection. It is currently unclear if this cell-free virus infectivity is due to a low-efficiency specific cell-release mechanism, or if it arises due to mechanical breakage following virus-induced cell damage at the advanced stage of infection. Understanding the origin of this cell-free virus is a prerequisite for understanding the mechanism of RSV transmission in permissive cells. In this study we describe a detailed examination of RSV transmission in permissive HEp2 cell monolayers. METHODS HEp2 cell monolayers were infected with RSV using a multiplicity of infection of 0.0002, and the course of infection monitored over 5 days. The progression of the virus infection within the cell monolayers was performed using bright-field microscopy to visualise the cell monolayer and immunofluorescence microscopy to detect virus-infected cells. The cell-associated and cell-free virus infectivity were determined by virus plaque assay, and the virus-induced cell cytotoxicity determined by measuring cell membrane permeability and cellular DNA fragmentation. RESULTS At 2 days-post infection (dpi), large clusters of virus-infected cells could be detected indicating localised transmission in the cell monolayer, and during this stage we failed to detect either cell-free virus or cell cytotoxicity. At 3 dpi the presence of much larger infected cell clusters correlated with the begining of virus-induced changes in cell permeability. The presence of cell-free virus correlated with continued increase in cell permeability and cytotoxicity at 4 and 5 dpi. At 5 dpi extensive cell damage, syncytial formation, and increased cellular DNA fragmentation was noted. However, even at 5 dpi the cell-free virus constituted less than 1 % of the total virus infectivity. CONCLUSIONS Our data supports a model of RSV transmission that initially involves the localised cell-to-cell spread of virus particles within the HEp2 cell monolayer. However, low levels of cell free-virus infectivity was observed at the advanced stages of infection, which correlated with a general loss in cell monolayer integrity due to virus-induced cytotoxicity.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Singapore.
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
18
|
Huong TN, Tan BH, Sugrue RJ. A Proteomic-Based Workflow Using Purified Respiratory Syncytial Virus Particles to Identify Cellular Factors as Drug Targets. Methods Mol Biol 2016; 1442:175-194. [PMID: 27464695 DOI: 10.1007/978-1-4939-3687-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The identification of cellular factors that play a role in respiratory syncytial virus (RSV) replication is an alternative strategy in the identification of druggable cellular protein that are essential for RSV replication. In this regard experimental strategies that are able to screen relevant proteins from the vast array of proteins in the cellular milieu will facilitate the identification of potential drug targets. In this chapter we describe a procedure where RSV particles are purified from cells that are permissive for RSV infection, and the protein composition of the purified virus particles characterized using a proteomics-based strategy. This procedure revealed that actin, several actin-binding proteins, and the chaperones HSP70 and HSP90 also co-purified with the virus particles. The relevance of the HSP90 protein to virus replication was then further validated using imaging, gene silencing and by using an established small molecule HSP90 inhibitor.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
19
|
Li CM, Zheng LL, Yang XX, Wan XY, Wu WB, Zhen SJ, Li YF, Luo LF, Huang CZ. DNA-AuNP networks on cell membranes as a protective barrier to inhibit viral attachment, entry and budding. Biomaterials 2016; 77:216-26. [PMID: 26606447 PMCID: PMC7112435 DOI: 10.1016/j.biomaterials.2015.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022]
Abstract
Viral infections have caused numerous diseases and deaths worldwide. Due to the emergence of new viruses and frequent virus variation, conventional antiviral strategies that directly target viral or cellular proteins are limited because of the specificity, drug resistance and rapid clearance from the human body. Therefore, developing safe and potent antiviral agents with activity against viral infection at multiple points in the viral life cycle remains a major challenge. In this report, we propose a new modality to inhibit viral infection by fabricating DNA conjugated gold nanoparticle (DNA-AuNP) networks on cell membranes as a protective barrier. The DNA-AuNPs networks were found, via a plaque formation assay and viral titers, to have potent antiviral ability and protect host cells from human respiratory syncytial virus (RSV). Confocal immunofluorescence image analysis showed 80 ± 3.8% of viral attachment, 91.1 ± 0.9% of viral entry and 87.9 ± 2.8% of viral budding were inhibited by the DNA-AuNP networks, which were further confirmed by real-time fluorescence imaging of the RSV infection process. The antiviral activity of the networks may be attributed to steric effects, the disruption of membrane glycoproteins and limited fusion of cell membrane bilayers, all of which play important roles in viral infection. Therefore, our results suggest that the DNA-AuNP networks have not only prophylactic effects to inhibit virus attachment and entry, but also therapeutic effects to inhibit viral budding and cell-to-cell spread. More importantly, this proof-of-principle study provides a pathway for the development of a universal, broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Chun Mei Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lin Ling Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Xi Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Yan Wan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Wen Bi Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Shu Jun Zhen
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yuan Fang Li
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ling Fei Luo
- College of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
20
|
Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology 2015; 484:395-411. [DOI: 10.1016/j.virol.2015.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2022]
|
21
|
Jumat MR, Huong TN, Ravi LI, Stanford R, Tan BH, Sugrue RJ. Viperin protein expression inhibits the late stage of respiratory syncytial virus morphogenesis. Antiviral Res 2015; 114:11-20. [DOI: 10.1016/j.antiviral.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 01/13/2023]
|
22
|
Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells. Sci Rep 2014; 4:4529. [PMID: 24681709 PMCID: PMC3970125 DOI: 10.1038/srep04529] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/12/2014] [Indexed: 01/18/2023] Open
Abstract
Real-time tracking of virus invasion is crucial for understanding viral infection mechanism, which, however, needs simple and efficient labeling chemistry with improved signal-to-noise ratio. For that purpose, herein we investigated the invasion dynamics of respiratory syncytial virus (RSV) through dark-field microscopic imaging (iDFM) technique by using Au nanoparticles (AuNPs) as light scattering labels. RSV, a ubiquitous, non-segmented, pleiomorphic and negative-sense RNA virus, is an important human pathogen in infants, the elderly, and the immunocompromised. In order to label the enveloped virus of paramyxoviridae family, an efficient streptavidin (SA)-biotin binding chemistry was employed, wherein AuNPs and RSV particles modified with SA and biotin, respectively, allowing the AuNP-modified RSVs to maintain their virulence without affecting the native activities of RSV, making the long dynamic visualization successful for the RSV infections into human epidermis larynx carcinoma cells.
Collapse
|
23
|
Stoops EH, Caplan MJ. Trafficking to the apical and basolateral membranes in polarized epithelial cells. J Am Soc Nephrol 2014; 25:1375-86. [PMID: 24652803 DOI: 10.1681/asn.2013080883] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type-specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells.
Collapse
Affiliation(s)
- Emily H Stoops
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Caplan
- Departments of Cellular & Molecular Physiology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
24
|
Alonas E, Lifland AW, Gudheti M, Vanover D, Jung J, Zurla C, Kirschman J, Fiore VF, Douglas A, Barker TH, Yi H, Wright ER, Crowe JE, Santangelo PJ. Combining single RNA sensitive probes with subdiffraction-limited and live-cell imaging enables the characterization of virus dynamics in cells. ACS NANO 2014; 8:302-15. [PMID: 24351207 PMCID: PMC3906890 DOI: 10.1021/nn405998v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The creation of fluorescently labeled viruses is currently limited by the length of imaging observation time (e.g., labeling an envelope protein) and the rescue of viral infectivity (e.g., encoding a GFP protein). Using single molecule sensitive RNA hybridization probes delivered to the cytoplasm of infected cells, we were able to isolate individual, infectious, fluorescently labeled human respiratory syncytial virus virions. This was achieved without affecting viral mRNA expression, viral protein expression, or infectivity. Measurements included the characterization of viral proteins and genomic RNA in a single virion using dSTORM, the development of a GFP fusion assay, and the development of a pulse-chase assay for viral RNA production that allowed for the detection of both initial viral RNA and nascent RNA production at designated times postinfection. Live-cell measurements included imaging and characterization of filamentous virion fusion and the quantification of virus replication within the same cell over an eight-hour period. Using probe-labeled viruses, individual viral particles can be characterized at subdiffraction-limited resolution, and viral infections can be quantified in single cells over an entire cycle of replication. The implication of this development is that MTRIP labeling of viral RNA during virus assembly has the potential to become a general methodology for the labeling and study of many important RNA viruses.
Collapse
Affiliation(s)
- Eric Alonas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Bldg, Atlanta, Georgia 30332, United States
| | - Aaron W. Lifland
- Vutara, Inc., 615 Arapeen #304, Salt Lake City, Utah 84108, United States
| | - Manasa Gudheti
- Vutara, Inc., 615 Arapeen #304, Salt Lake City, Utah 84108, United States
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Bldg, Atlanta, Georgia 30332, United States
| | - Jeenah Jung
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Bldg, Atlanta, Georgia 30332, United States
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Bldg, Atlanta, Georgia 30332, United States
| | - Jonathan Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Bldg, Atlanta, Georgia 30332, United States
| | - Vincent F. Fiore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Bldg, Atlanta, Georgia 30332, United States
| | - Alison Douglas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Bldg, Atlanta, Georgia 30332, United States
| | - Thomas H. Barker
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Bldg, Atlanta, Georgia 30332, United States
| | - Hong Yi
- Robert P. Apkarian Integrated Electron Microscopy Core, College of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth R. Wright
- Robert P. Apkarian Integrated Electron Microscopy Core, College of Medicine, Emory University, Atlanta, Georgia 30322, United States
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, 2015 Uppergate Drive, NE, Suite 548, Atlanta, Georgia 30322, United States
| | - James E. Crowe
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Bldg, Atlanta, Georgia 30332, United States
- Address correspondence to
| |
Collapse
|
25
|
Shaikh FY, Crowe JE. Molecular mechanisms driving respiratory syncytial virus assembly. Future Microbiol 2013; 8:123-31. [PMID: 23252497 DOI: 10.2217/fmb.12.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Respiratory syncytial virus is a single-stranded RNA virus in the Paramyxoviridae family that preferentially assembles and buds from the apical surface of polarized epithelial cells, forming filamentous structures that contain both viral proteins and the genomic RNA. Recent studies have described both viral and host factors that are involved in ribonucleoprotein assembly and trafficking of viral proteins to the cell surface. At the cell surface, viral proteins assemble into filaments that probably require interactions between viral proteins, host proteins and the cell membrane. Finally, a membrane scission event must occur to release the free virion. This article will review the recent literature describing the mechanisms that drive respiratory syncytial virus assembly and budding.
Collapse
Affiliation(s)
- Fyza Y Shaikh
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
26
|
Abstract
Assembly of negative-strand RNA viruses occurs by budding from host plasma membranes. The budding process involves association of the viral core or nucleocapsid with a region of cellular membrane that will become the virus budding site, which contains the envelope glycoproteins and matrix protein. This region of membrane then buds out and pinches off to become the virus envelope. This review will address the questions of what are the mechanisms that bring the nucleocapsid and envelope glycoproteins together to form the virus budding site, and how does this lead to release of progeny virions? Recent evidence supports the idea that viral envelope glycoproteins and matrix proteins are organized into membrane microdomains that coalesce to form virus budding sites. There has also been substantial progress in understanding the last step in virus release, referred to as the "late budding function," which often involves host proteins of the vacuolar protein sorting apparatus. Key questions are raised as to the mechanism of the initial steps in formation of virus budding sites: How are membrane microdomains brought together and how are nucleocapsids selected for incorporation into these budding sites, particularly in the case of viruses for which genome RNA sequences are important for envelopment of nucleocapsids?
Collapse
Affiliation(s)
- Douglas S Lyles
- Department of Biochemistry, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
27
|
Abstract
Respiratory syncytial virus (RSV) is responsible for significant morbidity and mortality, particularly in infants younger than 18 months and in the elderly. To date, there are few effective treatment options available to prevent or treat RSV infections. Attractive therapeutic strategies include targeting host epithelial adhesion molecules required for RSV infection, enhancing localized cell-mediated immunity, interfering with RSV viral gene expression and developing a multigene DNA vaccine. The most recent data supporting the advantages and limitations of each of these approaches are discussed in detail. Several promising strategies offer hope for safe and effective prophylaxis and treatment of RSV infection.
Collapse
|
28
|
Shaikh FY, Utley TJ, Craven RE, Rogers MC, Lapierre LA, Goldenring JR, Crowe JE. Respiratory syncytial virus assembles into structured filamentous virion particles independently of host cytoskeleton and related proteins. PLoS One 2012; 7:e40826. [PMID: 22808269 PMCID: PMC3396619 DOI: 10.1371/journal.pone.0040826] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/13/2012] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a single-stranded RNA virus that assembles into viral filaments at the cell surface. Virus assembly often depends on the ability of a virus to use host proteins to accomplish viral tasks. Since the fusion protein cytoplasmic tail (FCT) is critical for viral filamentous assembly, we hypothesized that host proteins important for viral assembly may be recruited by the FCT. Using a yeast two-hybrid screen, we found that filamin A interacted with FCT, and mammalian cell experiments showed it localized to viral filaments but did not affect viral replication. Furthermore, we found that a number of actin-associated proteins also were excluded from viral filaments. Actin or tubulin cytoskeletal rearrangement was not necessary for F trafficking to the cell surface or for viral assembly into filaments, but was necessary for optimal viral replication and may be important for anchoring viral filaments. These findings suggest that RSV assembly into filaments occurs independently of actin polymerization and that viral proteins are the principal drivers for the mechanical tasks involved with formation of complex, structured RSV filaments at the host cell plasma membrane.
Collapse
Affiliation(s)
- Fyza Y. Shaikh
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Thomas J. Utley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ryan E. Craven
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Meredith C. Rogers
- The Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lynne A. Lapierre
- Department of Surgery and the Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James R. Goldenring
- Department of Surgery and the Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
29
|
Shirato K, Ujike M, Kawase M, Matsuyama S. Increased replication of respiratory syncytial virus in the presence of cytokeratin 8 and 18. J Med Virol 2012; 84:365-70. [PMID: 22170560 PMCID: PMC7166714 DOI: 10.1002/jmv.23196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previously, it was reported that productive viral infection, viral protein synthesis, and viral RNA replication of respiratory syncytial virus (RSV) operated efficiently in two human epithelial cell lines (HEp‐2 and A549), but not in a human mast‐cell line, HMC‐1. Based on these observations, it was hypothesized that HMC‐1 cells lack the machinery required for RSV replication. To identify the host factors required for RSV replication, cDNA subtraction using A549, HEp‐2, and HMC‐1 cells was performed, and cytokeratin 18 (C18) was identified as a candidate host factor. Because C18 is generally expressed in simple epithelia with cytokeratin 8 (C8), HMC‐1 cells that constitutively express C18 and C8 (HMC‐1‐C8/18) were established to evaluate the role of C8/18 in RSV replication. In HMC‐1‐C8/18 cells, RSV RNA replication was increased, and the amount of infective virus produced was also increased in the cellular fraction after RSV spinoculation, whereas RSV production was decreased in A549 cells in which C18 expression was knocked down. These data suggest that the replication of RSV increases in the presence of C8/18. J. Med. Virol. 84:365–370, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kazuya Shirato
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | |
Collapse
|
30
|
The human respiratory syncytial virus matrix protein is required for maturation of viral filaments. J Virol 2012; 86:4432-43. [PMID: 22318136 DOI: 10.1128/jvi.06744-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An experimental system was developed to generate infectious human respiratory syncytial virus (HRSV) lacking matrix (M) protein expression (M-null virus) from cDNA. The role of the M protein in virus assembly was then examined by infecting HEp-2 and Vero cells with the M-null virus and assessing the impact on infectious virus production and viral protein trafficking. In the absence of M, the production of infectious progeny was strongly impaired. Immunofluorescence (IF) microscopy analysis using antibodies against the nucleoprotein (N), attachment protein (G), and fusion protein (F) failed to detect the characteristic virus-induced cell surface filaments, which are believed to represent infectious virions. In addition, a large proportion of the N protein was detected in viral replication factories termed inclusion bodies (IBs). High-resolution analysis of the surface of M-null virus-infected cells by field emission scanning electron microscopy (SEM) revealed the presence of large areas with densely packed, uniformly short filaments. Although unusually short, these filaments were otherwise similar to those induced by an M-containing control virus, including the presence of the viral G and F proteins. The abundance of the short, stunted filaments in the absence of M indicates that M is not required for the initial stages of filament formation but plays an important role in the maturation or elongation of these structures. In addition, the absence of mature viral filaments and the simultaneous increase in the level of the N protein within IBs suggest that the M protein is involved in the transport of viral ribonucleoprotein (RNP) complexes from cytoplasmic IBs to sites of budding.
Collapse
|
31
|
A critical phenylalanine residue in the respiratory syncytial virus fusion protein cytoplasmic tail mediates assembly of internal viral proteins into viral filaments and particles. mBio 2012; 3:mBio.00270-11. [PMID: 22318318 PMCID: PMC3280462 DOI: 10.1128/mbio.00270-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a single-stranded RNA virus in the Paramyxoviridae family that assembles into filamentous structures at the apical surface of polarized epithelial cells. These filaments contain viral genomic RNA and structural proteins, including the fusion (F) protein, matrix (M) protein, nucleoprotein (N), and phosphoprotein (P), while excluding F-actin. It is known that the F protein cytoplasmic tail (FCT) is necessary for filament formation, but the mechanism by which the FCT mediates assembly into filaments is not clear. We hypothesized that the FCT is necessary for interactions with other viral proteins in order to form filaments. In order to test this idea, we expressed the F protein with cytoplasmic tail (CT) truncations or specific point mutations and determined the abilities of these variant F proteins to form filaments independent of viral infection when coexpressed with M, N, and P. Deletion of the terminal three FCT residues (amino acids Phe-Ser-Asn) or mutation of the Phe residue resulted in a loss of filament formation but did not affect F-protein expression or trafficking to the cell surface. Filament formation could be restored by addition of residues Phe-Ser-Asn to an FCT deletion mutant and was unaffected by mutations to Ser or Asn residues. Second, deletion of residues Phe-Ser-Asn or mutation of the Phe residue resulted in a loss of M, N, and P incorporation into virus-like particles. These data suggest that a C-terminal Phe residue in the FCT mediates assembly through incorporation of internal virion proteins into virus filaments at the cell surface. Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in infants and the elderly worldwide. There is no licensed RSV vaccine and only limited therapeutics for use in infected patients. Many aspects of the RSV life cycle have been studied, but the mechanisms that drive RSV assembly at the cell surface are not well understood. This study provides evidence that a specific residue in the RSV fusion protein cytoplasmic tail coordinates assembly into viral filaments by mediating the incorporation of internal virion proteins. Understanding the mechanisms that drive RSV assembly could lead to targeted development of novel antiviral drugs. Moreover, since RSV exits infected cells in an ESCRT (endosomal sorting complexes required for transport)-independent manner, these studies may contribute new knowledge about a general strategy by which ESCRT-independent viruses mediate outward bud formation using viral protein-mediated mechanisms during assembly and budding.
Collapse
|
32
|
Chang TH, Segovia J, Sabbah A, Mgbemena V, Bose S. Cholesterol-rich lipid rafts are required for release of infectious human respiratory syncytial virus particles. Virology 2011; 422:205-13. [PMID: 22088217 DOI: 10.1016/j.virol.2011.10.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/24/2011] [Accepted: 10/28/2011] [Indexed: 11/26/2022]
Abstract
Cholesterol and sphingolipid enriched lipid raft micro-domains in the plasma membrane play an important role in the life-cycle of numerous enveloped viruses. Although human respiratory syncytial virus (RSV) proteins associate with the raft domains of infected cells and rafts are incorporated in RSV virion particles, the functional role of raft during RSV infection was unknown. In the current study we have identified rafts as an essential component of host cell that is required for RSV infection. Treatment of human lung epithelial cells with raft disrupting agent methyl-beta-cyclodextrin (MBCD) led to drastic loss of RSV infectivity due to diminished release of infectious progeny RSV virion particles from raft disrupted cells. RSV infection of raft deficient Niemann-Pick syndrome type C human fibroblasts and normal human embryonic lung fibroblasts revealed that during productive RSV infection, raft is required for release of infectious RSV particles.
Collapse
Affiliation(s)
- Te-Hung Chang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
33
|
Ternette N, Wright C, Kramer HB, Altun M, Kessler BM. Label-free quantitative proteomics reveals regulation of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) and 5'-3'-exoribonuclease 2 (XRN2) during respiratory syncytial virus infection. Virol J 2011; 8:442. [PMID: 21933386 PMCID: PMC3190389 DOI: 10.1186/1743-422x-8-442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 09/20/2011] [Indexed: 01/06/2023] Open
Abstract
ABSTRACT: A large quantitative study was carried out to compare the proteome of respiratory syncytial virus (RSV) infected versus uninfected cells in order to determine novel pathways regulated during viral infection. RSV infected and mock-infected HEp2 cells were lysed and proteins separated by preparative isoelectric focussing using offgel fractionation. Following tryptic digestion, purified peptides were characterized using label-free quantitative expression profiling by nano-ultra performance liquid chromatography coupled to electrospray ionisation mass spectrometry with collision energy ramping for all-ion fragmentation (UPLC-MSE). A total of 1352 unique cellular proteins were identified and their abundance compared between infected and non-infected cells. Ingenuity pathway analysis revealed regulation of several central cellular metabolic and signalling pathways during infection. Selected proteins that were found regulated in RSV infected cells were screened by quantitative real-time PCR for their regulation on the transcriptional level. Synthesis of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) and 5'-3'-exoribonuclease 2 (XRN2) mRNAs were found to be highly induced upon RSV infection in a time dependent manner. Accordingly, IFIT3 protein levels accumulated during the time course of infection. In contrast, little variation was observed in XRN2 protein levels, but different forms were present in infected versus non-infected cells. This suggests a role of these proteins in viral infection, and analysis of their function will shed further light on mechanisms of RNA virus replication and the host cell defence machinery.
Collapse
Affiliation(s)
- Nicola Ternette
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | | | | | | | | |
Collapse
|
34
|
McPhee HK, Carlisle JL, Beeby A, Money VA, Watson SMD, Yeo RP, Sanderson JM. Influence of lipids on the interfacial disposition of respiratory syncytical virus matrix protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:304-311. [PMID: 21141948 DOI: 10.1021/la104041n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The propensity of a matrix protein from an enveloped virus of the Mononegavirales family to associate with lipids representative of the viral envelope has been determined using label-free methods, including tensiometry and Brewster angle microscopy on lipid films at the air-water interface and atomic force microscopy on monolayers transferred to OTS-treated silicon wafers. This has enabled factors that influence the disposition of the protein with respect to the lipid interface to be characterized. In the absence of sphingomyelin, respiratory syncytial virus matrix protein penetrates monolayers composed of mixtures of phosphocholines with phosphoethanolamines or cholesterol at the air-water interface. In ternary mixtures composed of sphingomyelin, 1,2-dioleoyl-sn-glycero-3-phosphocholine, and cholesterol, the protein exhibits two separate behaviors: (1) peripheral association with the surface of sphingomyelin-rich domains and (2) penetration of sphingomyelin-poor domains. Prolonged incubation of the protein with mixtures of phosphocholines and phosphoethanolamines leads to the formation of helical protein assemblies of uniform diameter that demonstrate an inherent propensity of the protein to assemble into a filamentous form.
Collapse
Affiliation(s)
- Helen K McPhee
- Department of Chemistry and Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Harrison MS, Sakaguchi T, Schmitt AP. Paramyxovirus assembly and budding: building particles that transmit infections. Int J Biochem Cell Biol 2010; 42:1416-29. [PMID: 20398786 PMCID: PMC2910131 DOI: 10.1016/j.biocel.2010.04.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 01/16/2023]
Abstract
The paramyxoviruses define a diverse group of enveloped RNA viruses that includes a number of important human and animal pathogens. Examples include human respiratory syncytial virus and the human parainfluenza viruses, which cause respiratory illnesses in young children and the elderly; measles and mumps viruses, which have caused recent resurgences of disease in developed countries; the zoonotic Hendra and Nipah viruses, which have caused several outbreaks of fatal disease in Australia and Asia; and Newcastle disease virus, which infects chickens and other avian species. Like other enveloped viruses, paramyxoviruses form particles that assemble and bud from cellular membranes, allowing the transmission of infections to new cells and hosts. Here, we review recent advances that have improved our understanding of events involved in paramyxovirus particle formation. Contributions of viral matrix proteins, glycoproteins, nucleocapsid proteins, and accessory proteins to particle formation are discussed, as well as the importance of host factor recruitment for efficient virus budding. Trafficking of viral structural components within infected cells is described, together with mechanisms that allow for the selection of specific sites on cellular membranes for the coalescence of viral proteins in preparation of bud formation and virion release.
Collapse
Affiliation(s)
- Megan S. Harrison
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, United States
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Anthony P. Schmitt
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
36
|
Radhakrishnan A, Yeo D, Brown G, Myaing MZ, Iyer LR, Fleck R, Tan BH, Aitken J, Sanmun D, Tang K, Yarwood A, Brink J, Sugrue RJ. Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics 2010; 9:1829-48. [PMID: 20530633 DOI: 10.1074/mcp.m110.001651] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this study, we used imaging and proteomics to identify the presence of virus-associated cellular proteins that may play a role in respiratory syncytial virus (RSV) maturation. Fluorescence microscopy of virus-infected cells revealed the presence of virus-induced cytoplasmic inclusion bodies and mature virus particles, the latter appearing as virus filaments. In situ electron tomography suggested that the virus filaments were complex structures that were able to package multiple copies of the virus genome. The virus particles were purified, and the protein content was analyzed by one-dimensional nano-LC MS/MS. In addition to all the major virus structural proteins, 25 cellular proteins were also detected, including proteins associated with the cortical actin network, energy pathways, and heat shock proteins (HSP70, HSC70, and HSP90). Representative actin-associated proteins, HSC70, and HSP90 were selected for further biological validation. The presence of beta-actin, filamin-1, cofilin-1, HSC70, and HSP90 in the virus preparation was confirmed by immunoblotting using relevant antibodies. Immunofluorescence microscopy of infected cells stained with antibodies against relevant virus and cellular proteins confirmed the presence of these cellular proteins in the virus filaments and inclusion bodies. The relevance of HSP90 to virus infection was examined using the specific inhibitors 17-N-Allylamino-17-demethoxygeldanamycin. Although virus protein expression was largely unaffected by these drugs, we noted that the formation of virus particles was inhibited, and virus transmission was impaired, suggesting an important role for HSP90 in virus maturation. This study highlights the utility of proteomics in facilitating both our understanding of the role that cellular proteins play during RSV maturation and, by extrapolation, the identification of new potential targets for antiviral therapy.
Collapse
Affiliation(s)
- Anuradha Radhakrishnan
- Division of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yeo DSY, Chan R, Brown G, Ying L, Sutejo R, Aitken J, Tan BH, Wenk MR, Sugrue RJ. Evidence that selective changes in the lipid composition of raft-membranes occur during respiratory syncytial virus infection. Virology 2009; 386:168-82. [PMID: 19178924 DOI: 10.1016/j.virol.2008.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/19/2008] [Accepted: 12/01/2008] [Indexed: 11/27/2022]
Abstract
We examined the structure of lipid-raft membranes in respiratory syncytial virus infected cells. Cholesterol depletion studies using methyl-beta-cyclodextrin suggested that membrane cholesterol was required for virus filament formation, but not inclusion bodies. In addition, virus filament formation coincided with elevated 3-hydroxy-3-methylglutaryl-coenzyme A reductase expression, suggesting an increase in requirement for endogenous cholesterol synthesis during virus assembly. Lipid raft membranes were examined by mass spectrometry, which suggested that virus infection induced subtle changes in the lipid composition of these membrane structures. This analysis revealed increased levels of raft-associated phosphatidylinositol (PI) and phosphorylated PI during RSV infection, which correlated with the appearance of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate (PIP(3)) within virus inclusion bodies, and inhibiting the synthesis of PIP(3) impaired the formation of progeny virus. Collectively, our analysis suggests that RSV infection induces specific changes in the composition of raft-associated lipids, and that these changes play an important role in virus maturation.
Collapse
Affiliation(s)
- Dawn Su-Yin Yeo
- Division of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, Nanyang Drive, Singapore, 637551, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Surface features of a Mononegavirales matrix protein indicate sites of membrane interaction. Proc Natl Acad Sci U S A 2009; 106:4441-6. [PMID: 19251668 DOI: 10.1073/pnas.0805740106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The matrix protein (M) of respiratory syncytial virus (RSV), the prototype viral member of the Pneumovirinae (family Paramyxoviridae, order Mononegavirales), has been crystallized and the structure determined to a resolution of 1.6 A. The structure comprises 2 compact beta-rich domains connected by a relatively unstructured linker region. Due to the high degree of side-chain order in the structure, an extensive contiguous area of positive surface charge covering approximately 600 A(2) can be resolved. This unusually large patch of positive surface potential spans both domains and the linker, and provides a mechanism for driving the interaction of the protein with a negatively-charged membrane surface or other virion components such as the nucleocapsid. This patch is complemented by regions of high hydrophobicity and a striking planar arrangement of tyrosine residues encircling the C-terminal domain. Comparison of the RSV M sequence with other members of the Pneumovirinae shows that regions of divergence correspond to surface exposed loops in the M structure, with the majority of viral species-specific differences occurring in the N-terminal domain.
Collapse
|
39
|
Shirato K, Taguchi F. Mast cell degranulation is induced by A549 airway epithelial cell infected with respiratory syncytial virus. Virology 2009; 386:88-93. [PMID: 19195674 DOI: 10.1016/j.virol.2009.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 11/10/2008] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
Respiratory syncytial virus (RSV), a major causative agent of respiratory tract infections, influences allergic diseases. Mast cells, important effector cells in allergic disease, also express chemokine (C-X(3)-C motif) receptor 1 (CX(3)CR1). The RSV attachment glycoprotein (G protein) is structurally similar to CX(3)C ligand 1 (CX(3)CL1), the CX(3)CR1 ligand, suggesting that RSV directly interacts with and affects mast cell function, including degranulation. In this paper, the effect of RSV infection on mast cell function was studied using the human mast cell line (HMC-1). The results showed that RSV infection and replication was inefficient in HMC-1 cells than in human epithelial A549 cells. Additionally, HMC-1 degranulation occurred only in coculture with RSV-infected A549 cells, with up-regulation of TNFalpha secretion. However, direct RSV inoculation and incubation with RSV-infected A549 cell culture medium failed to induce HMC-1 degranulation, suggesting that virus-infected cells are critical for degranulation during RSV infection; however, degranulation does not occur by direct RSV infection into mast cells.
Collapse
Affiliation(s)
- Kazuya Shirato
- Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011 Japan.
| | | |
Collapse
|
40
|
Moore ML, Chi MH, Goleniewska K, Durbin JE, Peebles RS. Differential regulation of GM1 and asialo-GM1 expression by T cells and natural killer (NK) cells in respiratory syncytial virus infection. Viral Immunol 2008; 21:327-39. [PMID: 18788941 DOI: 10.1089/vim.2008.0003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that respiratory syncytial virus (RSV) infection increases lung CD8(+) T cell GM1 expression. The related lipid asialo-GM1 (ASGM1) is expressed by T cells in viral infection and by natural killer (NK) cells. The in vivo co-expression of GM1 and ASGM1 by immune cells is not defined. Here we analyzed lung lymphocyte GM1 and ASGM1 expression in RSV-infected mice. GM1 and ASGM1 were coordinately upregulated by activated CD8(+) T cells in RSV-infected BALB/c and C57BL/6 mice. In contrast, RSV infection had no effect on constitutively high NK cell GM1 expression, while increasing NK cell ASGM1 expression. GM1 and ASGM1 co-localized in lipid raft structures in NK and CD8(+) T cells sorted from the lungs of RSV-infected mice. Anti-ASGM1 Ab treatment of RSV-infected BALB/c mice depleted GM1/ASGM1-expressing NK cells and GM1/ASGM1-expressing T cells, reduced lung IFN-gamma levels, increased viral load, delayed viral clearance, and reduced illness. STAT1(-/-) mice are more susceptible to RSV replication and disease than wild-type mice. In RSV-infected STAT1(-/-) mice, anti-ASGM1 Ab altered cytokine levels, but in contrast to BALB/c mice, antibody treatment had no effect on viral load or illness. Taken together, GM1 and ASGM1 expression are differentially regulated by T and NK cells in RSV infection. Also, GM1/ASGM1-expressing cells are important for control of RSV in BALB/c mice, whereas STAT1(-/-) mice clear RSV by an alternative pathway.
Collapse
Affiliation(s)
- Martin L Moore
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA
| | | | | | | | | |
Collapse
|
41
|
Batonick M, Oomens AGP, Wertz GW. Human respiratory syncytial virus glycoproteins are not required for apical targeting and release from polarized epithelial cells. J Virol 2008; 82:8664-72. [PMID: 18562526 PMCID: PMC2519684 DOI: 10.1128/jvi.00827-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/10/2008] [Indexed: 12/11/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane.
Collapse
Affiliation(s)
- Melissa Batonick
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908-0904, USA
| | | | | |
Collapse
|
42
|
Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proc Natl Acad Sci U S A 2008; 105:10209-14. [PMID: 18621683 DOI: 10.1073/pnas.0712144105] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) infects polarized epithelia, which have tightly regulated trafficking because of the separation and maintenance of the apical and basolateral membranes. Previously we established a link between the apical recycling endosome (ARE) and the assembly of RSV. The current studies tested the role of a major ARE-associated protein, Rab11 family interacting protein 2 (FIP2) in the virus life cycle. A dominant-negative form of FIP2 lacking its N-terminal C2 domain reduced the supernatant-associated RSV titer 1,000-fold and also caused the cell-associated virus titer to increase. These data suggested that the FIP2 C2 mutant caused a failure at the final budding step in the virus life cycle. Additionally, truncation of the Rab-binding domain from FIP2 caused its accumulation into mature filamentous virions. RSV budding was independent of the ESCRT machinery, the only well-defined budding mechanism for enveloped RNA viruses. Therefore, RSV uses a virus budding mechanism that is controlled by FIP2.
Collapse
|
43
|
Mohapatra SS, Boyapalle S. Epidemiologic, experimental, and clinical links between respiratory syncytial virus infection and asthma. Clin Microbiol Rev 2008; 21:495-504. [PMID: 18625684 PMCID: PMC2493089 DOI: 10.1128/cmr.00054-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Virtually all children experience respiratory syncytial virus (RSV) infection at least once during the first 2 years of life, but only a few develop bronchiolitis and more severe disease requiring hospitalization, usually in the first 6 months of life. Children who recover from RSV-induced bronchiolitis are at increased risk for the development of recurrent wheeze and asthma in later childhood. Recent studies suggest that there is an association between RSV-induced bronchiolitis and asthma within the first decade of life but that this association is not significant after age 13. Despite the considerable progress made in our understanding of several aspects of respiratory viral infections, further work needs to be done to clarify the molecular mechanisms of early interactions between virus and host cell and the role of host gene products in the infection process. This review provides a critical appraisal of the literature in epidemiology and experimental research which links RSV infection to asthma. Studies to date demonstrate that there is a significant association between RSV infection and childhood asthma and that preventing severe primary RSV infections can decrease the risk of childhood asthma.
Collapse
Affiliation(s)
- Shyam S Mohapatra
- Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida College of Medicine, James A Haley Veterans Hospital, 12901 Bruce B Downs Blvd, Tampa, Florida 33612, USA.
| | | |
Collapse
|
44
|
Sugrue RJ, Tan BH, Yeo DSY, Sutejo R. Antiviral Drugs for the Control of Pandemic Influenza Virus. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2008. [DOI: 10.47102/annals-acadmedsg.v37n6p518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the advent of an influenza virus pandemic it is likely that the administration of antiviral drugs will be an important first line of defence against the virus. The drugs currently in use are effective against seasonal influenza virus infection, and some cases have been used in the treatment of patients infected with the avian H5N1 influenza virus. However, it is becoming clear that the emergence of drug-resistant viruses will potentially be a major problem in the future efforts to control influenza virus infection. In addition, during a new pandemic, sufficient quantities of these agents will need to be distributed to many different parts of the world, possibly at short notice. In this review we provide an overview of some of the drugs that are currently available for the treatment and prevention of influenza virus infection. In addition, basic research on influenza virus is providing a much better understanding of the biology of the virus, which is offering the possibility of new anti-influenza virus drugs. We therefore also review some new antiviral strategies that are being reported in the scientific literature, which may form the basis of the next generation of antiviral strategies during a future influenza virus pandemic.
Key words: Antiviral, Amantadine, Pandemic influenza virus, Oseltamivir, siRNA
Collapse
|
45
|
Jeffree CE, Brown G, Aitken J, Su-Yin DY, Tan BH, Sugrue RJ. Ultrastructural analysis of the interaction between F-actin and respiratory syncytial virus during virus assembly. Virology 2007; 369:309-23. [PMID: 17825340 DOI: 10.1016/j.virol.2007.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 06/06/2007] [Accepted: 08/02/2007] [Indexed: 11/17/2022]
Abstract
During respiratory syncytial virus (RSV) infection there is a close physical interaction between the filamentous actin (F-actin) and the virus, involving both inclusion bodies and the virus filaments. This interaction appears to occur relatively early in the replication cycle, and can be detected from 8 h post-infection. Furthermore, during virus assembly we obtained evidence for the participation of an F-actin-associated signalling pathway involving phosphatidyl-3-kinase (PI3K). Treatment with the PI3K inhibitor LY294002 prevented the formation of virus filaments, although no effect was observed either on virus protein expression, or on trafficking of the virus glycoproteins to the cell surface. Inhibition of the activity of Rac GTPase, a down-stream effector of PI3K, by treatment with the Rac-specific inhibitor NSC23766 gave similar results. These data suggest that an intimate interaction occurs between actin and RSV, and that actin-associated signalling pathway, involving PI3K and Rac GTPase, may play an important role during virus assembly.
Collapse
Affiliation(s)
- Chris E Jeffree
- School of Biological Sciences, Daniel Rutherford Building, King's Buildings, Mayfield Road, University of Edinburgh Edinburgh, EH9 3JH, UK
| | | | | | | | | | | |
Collapse
|
46
|
Carromeu C, Simabuco FM, Tamura RE, Farinha Arcieri LE, Ventura AM. Intracellular localization of human respiratory syncytial virus L protein. Arch Virol 2007; 152:2259-63. [PMID: 17703289 DOI: 10.1007/s00705-007-1048-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/19/2007] [Indexed: 11/24/2022]
Abstract
Replication and transcription of the human respiratory syncytial virus (hRSV) genome is carried out by the ribonucleocapsid complex (RNA together with N, P, M2-1 and L proteins), with the L protein being responsible for all enzymatic activities. In the present study, we obtained anti-L polyclonal sera in mice. These antibodies were functional in immunofluorescence and Western blotting assays in hRSV-infected HEp-2 cells. In the immunofluorescence assays, we detected inclusion bodies in the anti-L staining, similar to the ones seen by anti-N or anti-P staining. The results presented here provide the first evidence of the intracellular localization of the hRSV L protein.
Collapse
Affiliation(s)
- C Carromeu
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
47
|
Ghildyal R, Ho A, Jans DA. Central role of the respiratory syncytial virus matrix protein in infection. FEMS Microbiol Rev 2006; 30:692-705. [PMID: 16911040 DOI: 10.1111/j.1574-6976.2006.00025.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus is the major respiratory pathogen of infants and children worldwide, with no effective treatment or vaccine available. Steady progress has been made in understanding the respiratory syncytial virus life cycle and the consequences of infection, but many areas of respiratory syncytial virus biology remain poorly understood, including the role of subcellular localisation of respiratory syncytial virus gene products such as the matrix protein in the infected host cell. The matrix protein plays a central role in viral assembly and, intriguingly, has been observed to traffic into and out of the nucleus at specific times during the respiratory syncytial virus infectious cycle. Further, the matrix protein has been shown to be able to inhibit transcription, which may be a key to respiratory syncytial virus pathogenesis. This review will focus on the role of the matrix protein in respiratory syncytial virus infection and what is known of its nucleocytoplasmic trafficking, the understanding of which may lead to new therapeutic approaches to combat respiratory syncytial virus, and/or vaccine development.
Collapse
Affiliation(s)
- Reena Ghildyal
- Department of Respiratory and Sleep Medicine, Monash Medical Centre, Clayton, Australia
| | | | | |
Collapse
|
48
|
Oomens AGP, Bevis KP, Wertz GW. The cytoplasmic tail of the human respiratory syncytial virus F protein plays critical roles in cellular localization of the F protein and infectious progeny production. J Virol 2006; 80:10465-77. [PMID: 16928754 PMCID: PMC1641763 DOI: 10.1128/jvi.01439-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The importance of the F protein cytoplasmic tail (CT) for replication of human respiratory syncytial virus (HRSV) was examined by monitoring the behavior of viruses expressing F proteins with a modified COOH terminus. The F protein mutant viruses were recovered and amplified under conditions where F protein function was complemented by expression of a heterologous viral envelope protein. The effect of the F protein modifications was then examined in the context of a viral infection in standard cell types (Vero and HEp-2). The F protein modifications consisted of a deletion of the predicted CT or a replacement of the CT with the CT of the vesicular stomatitis virus (VSV) G protein. In addition, engineered HRSVs that lacked all homologous glycoprotein genes (SH, G, and F) and expressed instead either the authentic VSV G protein or a VSV G containing the HRSV F protein CT were examined. We found that deletion or replacement of the F protein CT seriously impaired the production of infectious progeny. Cells infected with viruses bearing CT modifications displayed increased F protein surface expression and increased syncytium formation. The distribution of F protein in the plasma membrane of infected cells was altered, resulting in an F protein that was evenly distributed rather than localized predominantly to virus-induced surface filaments. CT deletion or exchange also abrogated interaction of F protein with Triton-insoluble lipid rafts. Addition of the F protein CT to the VSV G protein, expressed as the only viral glycoprotein in an HRSV genome, had the opposite effects: the number of infectious progeny was higher, the surface distribution was changed from relatively even to localized, and the proportion of VSV G protein associated with lipid rafts was higher. Together, these results show that the HRSV F protein CT plays a critical role in F protein cellular localization and production of infectious virus and suggest that the function provided by the CT is independent of the F protein ectodomain and transmembrane domain and is mediated by F protein-lipid raft interaction.
Collapse
Affiliation(s)
- Antonius G P Oomens
- Department of Pathology, University of Virginia, MR5 Building, P.O. Box 800904, Charlottesville, VA 22908-0904, USA
| | | | | |
Collapse
|
49
|
Liu S, Rodriguez AV, Tosteson MT. Role of simvastatin and methyl-beta-cyclodextrin [corrected] on inhibition of poliovirus infection. Biochem Biophys Res Commun 2006; 347:51-9. [PMID: 16824485 DOI: 10.1016/j.bbrc.2006.06.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 06/05/2006] [Indexed: 01/25/2023]
Abstract
Cells exposed to simvastatin or to methyl-beta-cyclodextrin show reduced poliovirus infection, without alteration in virus binding or on the kinetics of genome entry, suggesting that the steps which are altered are those post uncoating and genome entry. Reduction of infection by cyclodextrin is reversed by increasing MOI whereas that produced by simvastatin treatment is not, suggesting that the effects on infection are not due to a reduction in cholesterol. The differences in the characteristics of inhibition can be explained by the differential effects of the compounds. Cyclodextrin inhibits the store-operated calcium channels, suggesting that reduction in infection is through translational inhibition. Simvastatin produces vesicles from internal membranes which cannot sustain viral RNA synthesis, reducing infection through reduced transcription. The results indicate that the impact on viral infection by the cholesterol-modifying agents is due to the cellular changes produced rather than due to disruption of the cholesterol-rich domains.
Collapse
Affiliation(s)
- Shumei Liu
- Department of Cell Biology, Harvard Medical School, Cambridge, MA 02116, USA
| | | | | |
Collapse
|
50
|
Branigan PJ, Day ND, Liu C, Gutshall LL, Melero JA, Sarisky RT, Vecchio AMD. The cytoplasmic domain of the F protein of Human respiratory syncytial virus is not required for cell fusion. J Gen Virol 2006; 87:395-398. [PMID: 16432027 DOI: 10.1099/vir.0.81481-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytoplasmic domains of the fusion proteins encoded by several viruses play a role in cell fusion and contain sites for palmitoylation associated with viral protein trafficking and virus assembly. The fusion (F) protein ofHuman respiratory syncytial virus(HRSV) has a predicted cytoplasmic domain of 26 residues containing a single palmitoylated cysteine residue that is conserved in bovine RSV F protein, but not in the F proteins of other pneumoviruses such as pneumonia virus of mice, human metapneumovirus and avian pneumovirus. The cytoplasmic domains in other paramyxovirus fusion proteins such as Newcastle disease virus F protein play a role in fusion. In this study, it was shown that deletion of the entire cytoplasmic domain or mutation of the single cysteine residue (C550S) of the HRSV F protein had no effect on protein processing, cell-surface expression or fusion.
Collapse
Affiliation(s)
- Patrick J Branigan
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Nicole D Day
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Changbao Liu
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Lester L Gutshall
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Robert T Sarisky
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Alfred M Del Vecchio
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| |
Collapse
|