1
|
da Silva Siqueira L, Rodrigues FVF, Zanatta Â, Gonçalves JIB, Ghilardi IM, Alcará AM, Becker NB, Pinzetta G, Zanirati G, Becker BMA, Erwig HS, da Costa JC, Marinowic DR. Evaluation of the effects of the Zika Virus-Immunoglobulin G + complex on murine microglial cells. J Neurovirol 2024; 30:477-488. [PMID: 38935226 DOI: 10.1007/s13365-024-01218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
After the Zika virus (ZIKV) epidemic in Brazil, ZIKV infections were linked to damage to the central nervous system (CNS) and congenital anomalies. Due to the virus's ability to cross the placenta and reach brain tissue, its effects become severe, leading to Congenital Zika Syndrome (CZS) and resulting in neuroinflammation, microglial activation, and secretion of neurotoxic factors. The presence of ZIKV triggers an inadequate fetal immune response, as the fetus only has the protection of maternal antibodies of the Immunoglobulin G (IgG) class, which are the only antibodies capable of crossing the placenta. Because of limited understanding regarding the long term consequences of ZIKV infection and the involvement of maternal antibodies, this study sought to assess the impact of the ZIKV + IgG⁺complex on murine microglial cells. The cells were exposed to ZIKV, IgG antibodies, and the ZIKV + IgG⁺complex for 24 and 72 h. Treatment-induced cytotoxic effects were evaluated using the cell viability assay, oxidative stress, and mitochondrial membrane potential. The findings indicated that IgG antibodies exhibit cytotoxic effects on microglia, whether alone or in the presence of ZIKV, leading to compromised cell viability, disrupted mitochondrial membrane potential, and heightened oxidative damage. Our conclusion is that IgG antibodies exert detrimental effects on microglia, triggering their activation and potentially disrupting the creation of a neurotoxic environment. Moreover, the presence of antibodies may correlate with an elevated risk of ZIKV-induced neuroinflammation, contributing to long-term CNS damage.
Collapse
Affiliation(s)
- Laura da Silva Siqueira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Felipe Valle Fortes Rodrigues
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Ângela Zanatta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Nicole Bernd Becker
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Giulia Pinzetta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Bruno Maestri Abrianos Becker
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Helena Scartassini Erwig
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil.
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil.
| |
Collapse
|
2
|
Porier DL, Adam A, Kang L, Michalak P, Tupik J, Santos MA, Tanelus M, López K, Auguste DI, Lee C, Allen IC, Wang T, Auguste AJ. Humoral and T-cell-mediated responses to an insect-specific flavivirus-based Zika virus vaccine candidate. PLoS Pathog 2024; 20:e1012566. [PMID: 39388457 PMCID: PMC11495591 DOI: 10.1371/journal.ppat.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/22/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Flaviviruses represent a significant global health threat and relatively few licensed vaccines exist to protect against them. Insect-specific flaviviruses (ISFVs) are incapable of replication in humans and have emerged as a novel and promising tool for flavivirus vaccine development. ISFV-based flavivirus vaccines have shown exceptional safety, immunogenicity, and efficacy, however, a detailed assessment of the correlates of protection and immune responses induced by these vaccines are still needed for vaccine optimization. Here, we explore the mechanisms of protective immunity induced by a previously created pre-clinical Zika virus (ZIKV) vaccine candidate, called Aripo/Zika (ARPV/ZIKV). In brief, immunocompromised IFN-αβR-/- mice passively immunized with ARPV/ZIKV immune sera experienced protection after lethal ZIKV challenge, although this protection was incomplete. ARPV/ZIKV-vaccinated IFN-αβR-/- mice depleted of CD4+ or CD8+ T-cells at the time of ZIKV challenge showed no morbidity or mortality. However, the adoptive transfer of ARPV/ZIKV-primed T-cells into recipient IFN-αβR-/- mice resulted in a two-day median increase in survival time compared to controls. Altogether, these results suggest that ARPV/ZIKV-induced protection is primarily mediated by neutralizing antibodies at the time of challenge and that T-cells may play a comparatively minor but cumulative role in the protection observed. Lastly, ARPV/ZIKV-vaccinated Tcra KO mice, which are deficient in T-cell responses, experienced significant mortality post-challenge. These results suggest that ARPV/ZIKV-induced cell-mediated responses are critical for development of protective immune responses at vaccination. Despite the strong focus on neutralizing antibody responses to novel flavivirus vaccine candidates, these results suggest that cell-mediated responses induced by ISFV-based vaccines remain important to overall protective responses.
Collapse
Affiliation(s)
- Danielle L. Porier
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lin Kang
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, United States of America
| | - Pawel Michalak
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Juselyn Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Matthew A. Santos
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Manette Tanelus
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Krisangel López
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Dawn I. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Christy Lee
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Albert J. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
3
|
Adam A, Wenzel R, Unger E, Reiche S, Jassoy C. Serological Evidence of Zika Virus Infections in Sudan. Viruses 2024; 16:1045. [PMID: 39066208 PMCID: PMC11281350 DOI: 10.3390/v16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
Little is known about the frequency of Zika virus (ZIKV) infections in Sudan. The aim of this study was to obtain data on the prevalence of ZIKV infections and the immunity of the population in the country. To this end, 198 sera obtained between December 2012 and January 2013 in different regions in Sudan were examined for neutralizing antibodies against ZIKV, dengue virus (DENV), and yellow fever virus (YFV). The sera were non-randomly selected. The neutralization titers were compared with each other and with the WHO 1st International Standard for anti-Asian lineage Zika virus antibody. Twenty-six sera neutralized ZIKV. One-third of these sera had higher neutralization titers against ZIKV than against DENV-2 and -3. Two sera showed higher neutralization titers than the WHO standard for ZIKV antibodies. These data suggest occasional ZIKV infections in Sudan. The low percentage of sera in this cohort that neutralized ZIKV indicates that, in the study period, the population was susceptible to ZIKV infection.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| | - Robert Wenzel
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| | - Elisabeth Unger
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Christian Jassoy
- Institute for Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig Medical Center, University of Leipzig, 04103 Leipzig, Germany; (A.A.)
| |
Collapse
|
4
|
Singh T, Miller IG, Venkatayogi S, Webster H, Heimsath HJ, Eudailey JA, Dudley DM, Kumar A, Mangan RJ, Thein A, Aliota MT, Newman CM, Mohns MS, Breitbach ME, Berry M, Friedrich TC, Wiehe K, O'Connor DH, Permar SR. Prior dengue virus serotype 3 infection modulates subsequent plasmablast responses to Zika virus infection in rhesus macaques. mBio 2024; 15:e0316023. [PMID: 38349142 PMCID: PMC10936420 DOI: 10.1128/mbio.03160-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024] Open
Abstract
Immunodominant and highly conserved flavivirus envelope proteins can trigger cross-reactive IgG antibodies against related flaviviruses, which shapes subsequent protection or disease severity. This study examined how prior dengue serotype 3 (DENV-3) infection affects subsequent Zika virus (ZIKV) plasmablast responses in rhesus macaques (n = 4). We found that prior DENV-3 infection was not associated with diminished ZIKV-neutralizing antibodies or magnitude of plasmablast activation. Rather, characterization of 363 plasmablasts and their derivative 177 monoclonal antibody supernatants from acute ZIKV infection revealed that prior DENV-3 infection was associated with a differential isotype distribution toward IgG, lower somatic hypermutation, and lesser B cell receptor variable gene diversity as compared with repeat ZIKV challenge. We did not find long-lasting DENV-3 cross-reactive IgG after a ZIKV infection but did find persistent ZIKV-binding cross-reactive IgG after a DENV-3 infection, suggesting non-reciprocal cross-reactive immunity. Infection with ZIKV after DENV-3 boosted pre-existing DENV-3-neutralizing antibodies by two- to threefold, demonstrating immune imprinting. These findings suggest that the order of DENV and ZIKV infections has impact on the quality of early B cell immunity which has implications for optimal immunization strategies. IMPORTANCE The Zika virus epidemic of 2015-2016 in the Americas revealed that this mosquito-transmitted virus could be congenitally transmitted during pregnancy and cause birth defects in newborns. Currently, there are no interventions to mitigate this disease and Zika virus is likely to re-emerge. Understanding how protective antibody responses are generated against Zika virus can help in the development of a safe and effective vaccine. One main challenge is that Zika virus co-circulates with related viruses like dengue, such that prior exposure to one can generate cross-reactive antibodies against the other which may enhance infection and disease from the second virus. In this study, we sought to understand how prior dengue virus infection impacts subsequent immunity to Zika virus by single-cell sequencing of antibody producing cells in a second Zika virus infection. Identifying specific qualities of Zika virus immunity that are modulated by prior dengue virus immunity will enable optimal immunization strategies.
Collapse
Affiliation(s)
- Tulika Singh
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | | | - Sravani Venkatayogi
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Helen Webster
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Holly J. Heimsath
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Josh A. Eudailey
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amit Kumar
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Riley J. Mangan
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Amelia Thein
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mariel S. Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Madison Berry
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin Wiehe
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sallie R. Permar
- Human Vaccine Institute, School of Medicine, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, USA
| |
Collapse
|
5
|
Crooks CM, Chan C, Permar SR. Leveraging preclinical study designs to close gaps in vaccine development for perinatal pathogens. J Exp Med 2023; 220:e20230184. [PMID: 37289272 PMCID: PMC10250551 DOI: 10.1084/jem.20230184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Vaccines to perinatal pathogens are critical for both reducing the burden of endemic pathogens and preparing for the next pandemic. Although they are often at greater risk of severe disease from infection, pregnant people and children are routinely marginalized in the vaccine development process. We highlight several challenges in the vaccine development process and how three tools-translational animal models, human cohort studies of natural infection, and innovative data-use strategies-can speed vaccine development and ensure equity for pregnant people and children in the next pandemic.
Collapse
Affiliation(s)
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Porier DL, Adam A, Kang L, Michalak P, Tupik J, Santos MA, Lee C, Allen IC, Wang T, Auguste AJ. Humoral and T-cell-mediated responses to a pre-clinical Zika vaccine candidate that utilizes a unique insect-specific flavivirus platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530296. [PMID: 36909623 PMCID: PMC10002724 DOI: 10.1101/2023.03.01.530296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Vaccination is critical for the control and prevention of viral outbreaks, yet conventional vaccine platforms may involve trade-offs between immunogenicity and safety. Insect-specific viruses have emerged as a novel vaccine platform to overcome this challenge. Detailed studies of humoral and T-cell responses induced by new insect-specific flavivirus (ISFV)-based vaccine platforms are needed to better understand correlates of protection and improve vaccine efficacy. Previously, we used a novel ISFV called Aripo virus (ARPV) to create a Zika virus (ZIKV) vaccine candidate (designated ARPV/ZIKV). ARPV/ZIKV demonstrated exceptional safety and single-dose efficacy, completely protecting mice from a lethal ZIKV challenge. Here, we explore the development of immune responses induced by ARPV/ZIKV immunization and evaluate its correlates of protection. Passive transfer of ARPV/ZIKV-induced immune sera to naïve mice prior to challenge emphasized the importance of neutralizing antibodies as a correlate of protection. Depletion of T-cells in vaccinated mice and adoptive transfer of ARPV/ZIKV-primed T-cells to naïve mice prior to challenge indicated that ARPV/ZIKV-induced CD4 + and CD8 + T-cell responses contribute to the observed protection but may not be essential for protection during ZIKV challenge. However, vaccination of Rag1 KO, Tcra KO, and muMt - mice demonstrated the critical role for ARPV/ZIKV-induced T-cells in developing protective immune responses following vaccination. Overall, both humoral and T-cell-mediated responses induced by ISFV-based vaccines are important for comprehensive immunity, and ISFV platforms continue to be a promising method for future vaccine development.
Collapse
|
7
|
Poterek ML, Vogels CBF, Grubaugh ND, Ebel GD, Alex Perkins T, Cavany SM. Interactions between seasonal temperature variation and temporal synchrony drive increased arbovirus co-infection incidence. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220829. [PMID: 36277835 PMCID: PMC9579765 DOI: 10.1098/rsos.220829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/27/2022] [Indexed: 05/11/2023]
Abstract
Though instances of arthropod-borne (arbo)virus co-infection have been documented clinically, the overall incidence of arbovirus co-infection and its drivers are not well understood. Now that dengue, Zika and chikungunya viruses are all in circulation across tropical and subtropical regions of the Americas, it is important to understand the environmental and biological conditions that make co-infections more likely to occur. To understand this, we developed a mathematical model of co-circulation of two arboviruses, with transmission parameters approximating dengue, Zika and/or chikungunya viruses, and co-infection possible in both humans and mosquitoes. We examined the influence of seasonal timing of arbovirus co-circulation on the extent of co-infection. By undertaking a sensitivity analysis of this model, we examined how biological factors interact with seasonality to determine arbovirus co-infection transmission and prevalence. We found that temporal synchrony of the co-infecting viruses and average temperature were the most influential drivers of co-infection incidence. Our model highlights the synergistic effect of co-transmission from mosquitoes, which leads to more than double the number of co-infections than would be expected in a scenario without co-transmission. Our results suggest that appreciable numbers of co-infections are unlikely to occur except in tropical climates when the viruses co-occur in time and space.
Collapse
Affiliation(s)
- Marya L. Poterek
- Eck Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - T. Alex Perkins
- Eck Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sean M. Cavany
- Eck Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
8
|
Mapalagamage M, Weiskopf D, Sette A, De Silva AD. Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections. Viruses 2022; 14:v14020242. [PMID: 35215836 PMCID: PMC8878350 DOI: 10.3390/v14020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Arboviral infections such as Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) are a major disease burden in tropical and sub-tropical countries, and there are no effective vaccinations or therapeutic drugs available at this time. Understanding the role of the T cell response is very important when designing effective vaccines. Currently, comprehensive identification of T cell epitopes during a DENV infection shows that CD8 and CD4 T cells and their specific phenotypes play protective and pathogenic roles. The protective role of CD8 T cells in DENV is carried out through the killing of infected cells and the production of proinflammatory cytokines, as CD4 T cells enhance B cell and CD8 T cell activities. A limited number of studies attempted to identify the involvement of T cells in CHIKV and ZIKV infection. The identification of human immunodominant ZIKV viral epitopes responsive to specific T cells is scarce, and none have been identified for CHIKV. In CHIKV infection, CD8 T cells are activated during the acute phase in the lymph nodes/blood, and CD4 T cells are activated during the chronic phase in the joints/muscles. Studies on the role of T cells in ZIKV-neuropathogenesis are limited and need to be explored. Many studies have shown the modulating actions of T cells due to cross-reactivity between DENV-ZIKV co-infections and have repeated heterologous/homologous DENV infection, which is an important factor to consider when developing an effective vaccine.
Collapse
Affiliation(s)
- Maheshi Mapalagamage
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00700, Sri Lanka;
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Aruna Dharshan De Silva
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Paraclinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo 10390, Sri Lanka
- Correspondence:
| |
Collapse
|
9
|
Prior Heterologous Flavivirus Exposure Results in Reduced Pathogenesis in a Mouse Model of Zika Virus Infection. J Virol 2021; 95:e0057321. [PMID: 34076486 PMCID: PMC8312874 DOI: 10.1128/jvi.00573-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The 2015/2016 Zika virus epidemic in South and Central America left the scientific community urgently trying to understand the factors that contribute to Zika virus pathogenesis. Because multiple other flaviviruses are endemic in areas where Zika virus emerged, it is hypothesized that a key to understanding Zika virus disease severity is to study Zika virus infection in the context of prior flavivirus exposure. Human and animal studies have highlighted the idea that having been previously exposed to a different flavivirus may modulate the immune response to Zika virus. However, it is still unclear how prior flavivirus exposure impacts Zika viral burden and disease. In this murine study, we longitudinally examine multiple factors involved in Zika disease, linking viral burden with increased neurological disease severity, weight loss, and inflammation. We show that prior heterologous flavivirus exposure with dengue virus type 2 or 3 or the vaccine strain of yellow fever provides protection from mortality in a lethal Zika virus challenge. However, reduction in viral burden and Zika disease varies depending on the infecting primary flavivirus; with primary Zika virus infection being most protective from Zika virus challenge, followed by dengue virus 2, with yellow fever and dengue virus 3 protecting against mortality but showing more severe disease. This study demonstrates the variation in protective effects of prior flavivirus exposure on Zika virus pathogenesis and identifies distinct relationships between primary flavivirus infection and the potential for Zika virus disease. IMPORTANCE The emergence and reemergence of various vector-borne diseases in recent years highlights the need to understand the mechanisms of protection for each pathogen. In this study, we investigated the impact of prior exposure to Zika virus, dengue virus serotypes 2 or 3, or the vaccine strain of yellow fever on pathogenesis and disease outcomes in a mouse model of Zika virus infection. We found that prior exposure to a heterologous flavivirus was protective from mortality, and to varying degrees, prior flavivirus exposure was protective against neurological disease, weight loss, and severe viral burden during a lethal Zika challenge. Using a longitudinal and cross-sectional study design, we were able to link multiple disease parameters, including viral burden, with neurological disease severity, weight loss, and inflammatory response in the context of flavivirus infection. This study demonstrates a measurable but varied impact of prior flavivirus exposure in modulating flavivirus pathophysiology. Given the cyclic nature of most flavivirus outbreaks, this work will contribute to the forecasting of disease severity for future outbreaks.
Collapse
|
10
|
Evaluation of VIDAS ® Diagnostic Assay Prototypes Detecting Dengue Virus NS1 Antigen and Anti-Dengue Virus IgM and IgG Antibodies. Diagnostics (Basel) 2021; 11:diagnostics11071228. [PMID: 34359311 PMCID: PMC8307080 DOI: 10.3390/diagnostics11071228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/24/2023] Open
Abstract
Dengue is a serious tropical disease caused by the mosquito-borne dengue virus (DENV). Performant, rapid, and easy-to-use assays are needed for the accurate diagnosis of acute DENV infection. We evaluated the performance of three prototype assays developed for the VIDAS® automated platform to detect dengue NS1 antigen and anti-dengue IgM and IgG antibodies. Positive and negative agreement with competitor enzyme-linked immunosorbent assays (ELISA) and rapid diagnostic tests (RDT) was evaluated in 91 Lao patients (57 adults, 34 children) with acute DENV infection. The VIDAS® NS1 assay showed the best overall agreement (95.6%) with the competitor NS1 ELISA. Both VIDAS® NS1 and NS1 ELISA assays also demonstrated high sensitivity relative to DENV RNA RT-PCR set as gold standard (85.7% and 83.9%, respectively). In contrast, NS1 RDT was less sensitive relative to DENV RNA RT-PCR (72.7%). The overall agreement of VIDAS® IgM and IgG assays with the competitor assays was moderate (72.5% for IgM ELISA, 76.9% for IgG ELISA, and 68.7% for IgM and IgG RDT). In most analyses, test agreements of the VIDAS® assays were comparable in adults and children. Altogether, the VIDAS® dengue prototypes performed very well and appear to be suitable for routine detection of dengue NS1 antigen and anti-dengue IgM/IgG antibodies.
Collapse
|
11
|
A Novel Antigenic Site Spanning Domains I and III of the Zika Virus Envelope Glycoprotein Is the Target of Strongly Neutralizing Human Monoclonal Antibodies. J Virol 2021; 95:JVI.02423-20. [PMID: 33597214 PMCID: PMC8104094 DOI: 10.1128/jvi.02423-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
People infected with Zika virus develop durable neutralizing antibodies that prevent repeat infections. In the current study, we characterize a ZIKV-neutralizing human monoclonal antibody isolated from a patient after recovery. Our studies establish a novel site on the viral envelope that is targeted by human neutralizing antibodies. Our results are relevant to understanding how antibodies block infection and to guiding the design and evaluation of candidate vaccines. Zika virus (ZIKV), a mosquito-transmitted flavivirus, caused a large epidemic in Latin America between 2015 and 2017. Effective ZIKV vaccines and treatments are urgently needed to prevent future epidemics and severe disease sequelae. People infected with ZIKV develop strongly neutralizing antibodies linked to viral clearance and durable protective immunity. To understand the mechanisms of protective immunity and to support the development of ZIKV vaccines, we characterize here a strongly neutralizing antibody, B11F, isolated from a patient who recovered from ZIKV. Our results indicate that B11F targets a complex epitope on the virus that spans domains I and III of the envelope glycoprotein. While previous studies point to quaternary epitopes centered on domain II of the ZIKV E glycoprotein as targets of strongly neutralizing and protective human antibodies, we uncover a new site spanning domains I and III as a target of strongly neutralizing human antibodies. IMPORTANCE People infected with Zika virus develop durable neutralizing antibodies that prevent repeat infections. In the current study, we characterize a ZIKV-neutralizing human monoclonal antibody isolated from a patient after recovery. Our studies establish a novel site on the viral envelope that is targeted by human neutralizing antibodies. Our results are relevant to understanding how antibodies block infection and to guiding the design and evaluation of candidate vaccines.
Collapse
|
12
|
Ades AE, Soriano-Arandes A, Alarcon A, Bonfante F, Thorne C, Peckham CS, Giaquinto C. Vertical transmission of Zika virus and its outcomes: a Bayesian synthesis of prospective studies. THE LANCET. INFECTIOUS DISEASES 2021; 21:537-545. [PMID: 33068528 PMCID: PMC7992034 DOI: 10.1016/s1473-3099(20)30432-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Prospective studies of Zika virus in pregnancy have reported rates of congenital Zika syndrome and other adverse outcomes by trimester. However, Zika virus can infect and damage the fetus early in utero, but clear before delivery. The true vertical transmission rate is therefore unknown. We aimed to provide the first estimates of underlying vertical transmission rates and adverse outcomes due to congenital infection with Zika virus by trimester of exposure. METHODS This was a Bayesian latent class analysis of data from seven prospective studies of Zika virus in pregnancy. We estimated vertical transmission rates, rates of Zika-virus-related and non-Zika-virus-related adverse outcomes, and the diagnostic sensitivity of markers of congenital infection. We allowed for variation between studies in these parameters and used information from women in comparison groups with no PCR-confirmed infection, where available. FINDINGS The estimated mean risk of vertical transmission was 47% (95% credible interval 26 to 76) following maternal infection in the first trimester, 28% (15 to 46) in the second, and 25% (13 to 47) in the third. 9% (4 to 17) of deliveries following infections in the first trimester had symptoms consistent with congenital Zika syndrome, 3% (1 to 7) in the second, and 1% (0 to 3) in the third. We estimated that in infections during the first, second, and third trimester, respectively, 13% (2 to 27), 3% (-5 to 14), and 0% (-7 to 11) of pregnancies had adverse outcomes attributable to Zika virus infection. Diagnostic sensitivity of markers of congenital infection was lowest in the first trimester (42% [18 to 72]), but increased to 85% (51 to 99) in trimester two, and 80% (42 to 99) in trimester three. There was substantial between-study variation in the risks of vertical transmission and congenital Zika syndrome. INTERPRETATION This preliminary analysis recovers the causal effects of Zika virus from disparate study designs. Higher transmission in the first trimester is unusual with congenital infections but accords with laboratory evidence of decreasing susceptibility of placental cells to infection during pregnancy. FUNDING European Union Horizon 2020 programme.
Collapse
Affiliation(s)
- A E Ades
- Department of Population Health Science, University of Bristol Medical School, Bristol, UK,Correspondence to: Prof A E Ades, Department of Population Health Science, University of Bristol Medical School, Bristol BS8 2PS, UK
| | - Antoni Soriano-Arandes
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Ana Alarcon
- Department of Neonatology, Hospital Universitari Sant Joan de Déu, Sant Joan de Déu Research Institute, Barcelona, Spain
| | - Francesco Bonfante
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Claire Thorne
- Population Policy and Practice Programme, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Catherine S Peckham
- Population Policy and Practice Programme, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Carlo Giaquinto
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
13
|
Moore SM, Oidtman RJ, Soda KJ, Siraj AS, Reiner RC, Barker CM, Perkins TA. Leveraging multiple data types to estimate the size of the Zika epidemic in the Americas. PLoS Negl Trop Dis 2020; 14:e0008640. [PMID: 32986701 PMCID: PMC7544039 DOI: 10.1371/journal.pntd.0008640] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/08/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Several hundred thousand Zika cases have been reported across the Americas since 2015. Incidence of infection was likely much higher, however, due to a high frequency of asymptomatic infection and other challenges that surveillance systems faced. Using a hierarchical Bayesian model with empirically-informed priors, we leveraged multiple types of Zika case data from 15 countries to estimate subnational reporting probabilities and infection attack rates (IARs). Zika IAR estimates ranged from 0.084 (95% CrI: 0.067-0.096) in Peru to 0.361 (95% CrI: 0.214-0.514) in Ecuador, with significant subnational variability in every country. Totaling infection estimates across these and 33 other countries and territories, our results suggest that 132.3 million (95% CrI: 111.3-170.2 million) people in the Americas had been infected by the end of 2018. These estimates represent the most extensive attempt to determine the size of the Zika epidemic in the Americas, offering a baseline for assessing the risk of future Zika epidemics in this region.
Collapse
Affiliation(s)
- Sean M. Moore
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rachel J. Oidtman
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - K. James Soda
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Amir S. Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Robert C. Reiner
- Institute for Health Metrics and Evaluation, Seattle, Washington, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
14
|
Pereira Neto TA, Gonçalves-Pereira MH, de Queiroz CP, Ramos MF, de Oliveira FDFS, Oliveira-Prado R, do Nascimento VA, Abdalla LF, Santos JHA, Martins-Filho OA, Naveca FG, Teixeira-Carvalho A, Santiago HDC. Multifunctional T cell response in convalescent patients two years after ZIKV infection. J Leukoc Biol 2020; 108:1265-1277. [PMID: 32726884 DOI: 10.1002/jlb.4ma0520-708r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/16/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Zika is an important emerging infectious disease in which the role of T cells remains elusive. This study aimed to evaluate the phenotype of multifunctional T cells in individuals 2 yr after exposure to Zika virus (ZIKV). We used a library of 671 synthetic peptides covering the whole polyprotein of ZIKV in pools corresponding to each viral protein (i.e., capsid, membrane precursor or prM, envelope, NS1 [nonstructural protein], NS2A + NS2B, NS3, NS4A + NS4B, and NS5) to stimulate PBMCs from individuals previously exposed to ZIKV. We observed an increased frequency of ZIKV-specific IFNγ, IL-17A, TNF, and IL-10 production by T cell populations. IFNγ and TNF production were especially stimulated by prM, capsid, or NS1 in CD8+ T cells and by capsid or prM in CD4+ T cells. In addition, there was an increase in the frequency of IL-10+ CD8+ T cells after stimulation with prM, capsid, NS1, NS3, or NS5. Multifunctional properties were observed in ZIKV-specific T cells responding especially to prM, capsid, NS1 or, to a smaller extent, NS3 antigens. For example, we found a consistent IFNγ + TNF+ CD8+ T cell population in response to most virus antigens and CD4+ and CD8+ T cells that were IFNγ + IL-17A+ and IL-17A+IL-10+, which could also produce TNF, in response to capsid, prM, NS1, or NS3 stimulation. Interestingly, CD8+ T cells were more prone to a multifunctional phenotype than CD4+ T cells, and multifunctional T cells were more efficient at producing cytokines than single-function cells. This work provides relevant insights into the quality of ZIKV-specific T cell responses and ZIKV immunity.
Collapse
Affiliation(s)
| | | | - Camila Pereira de Queiroz
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Michele Faria Ramos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | - Felipe Gomes Naveca
- Leonidas e Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
| | | | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Association of past dengue fever epidemics with the risk of Zika microcephaly at the population level in Brazil. Sci Rep 2020; 10:1752. [PMID: 32019953 PMCID: PMC7000767 DOI: 10.1038/s41598-020-58407-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/17/2019] [Indexed: 11/08/2022] Open
Abstract
Despite all the research done on the first Zika virus (ZIKV) epidemics, it was only after the Brazilian epidemic that the Congenital Zika Syndrome was described. This was made possible due to the large number of babies born with microcephaly in the Northeast region (NE) in a narrow time. We hypothesize that the fivefold difference in the rate of microcephalic neonates between the NE and other regions is partially an effect of the population prior immunity against Dengue viruses (DENV), that cross-react with ZIKV. In this ecological study, we analysed the interaction between dengue fever epidemics from 2001 to 2014 and the 2015/2016 microcephaly epidemic in 400 microregions in Brazil using random-effects models under a Bayesian approach. The estimated effect of the time lag between the most recent large dengue epidemic (>400/100,000 inhabitants) and the microcephaly epidemic ranged from protection (up to 6 years prior) to an increased risk (from 7 to 12 years). This sustained window of protection, larger than described in previous longitudinal studies, is possibly an effect of herd immunity and of multiple exposures to DENV that could boost immunity.
Collapse
|
16
|
Giraldo-García AM, Castaño-Osorio JC. Effects of Flavivirus Cross-Reactivity (Zika and Dengue) on the Development of Vaccines for Use in Pregnancy. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00191-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Robbiani DF, Olsen PC, Costa F, Wang Q, Oliveira TY, Nery N, Aromolaran A, do Rosário MS, Sacramento GA, Cruz JS, Khouri R, Wunder EA, Mattos A, de Paula Freitas B, Sarno M, Archanjo G, Daltro D, Carvalho GBS, Pimentel K, de Siqueira IC, de Almeida JRM, Henriques DF, Lima JA, Vasconcelos PFC, Schaefer-Babajew D, Azzopardi SA, Bozzacco L, Gazumyan A, Belfort R, Alcântara AP, Carvalho G, Moreira L, Araujo K, Reis MG, Keesler RI, Coffey LL, Tisoncik-Go J, Gale M, Rajagopal L, Adams Waldorf KM, Dudley DM, Simmons HA, Mejia A, O'Connor DH, Steinbach RJ, Haese N, Smith J, Lewis A, Colgin L, Roberts V, Frias A, Kelleher M, Hirsch A, Streblow DN, Rice CM, MacDonald MR, de Almeida ARP, Van Rompay KKA, Ko AI, Nussenzweig MC. Risk of Zika microcephaly correlates with features of maternal antibodies. J Exp Med 2019; 216:2302-2315. [PMID: 31413072 PMCID: PMC6781003 DOI: 10.1084/jem.20191061] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy causes congenital abnormalities, including microcephaly. However, rates vary widely, and the contributing risk factors remain unclear. We examined the serum antibody response to ZIKV and other flaviviruses in Brazilian women giving birth during the 2015-2016 outbreak. Infected pregnancies with intermediate or higher ZIKV antibody enhancement titers were at increased risk to give birth to microcephalic infants compared with those with lower titers (P < 0.0001). Similarly, analysis of ZIKV-infected pregnant macaques revealed that fetal brain damage was more frequent in mothers with higher enhancement titers. Thus, features of the maternal antibodies are associated with and may contribute to the genesis of ZIKV-associated microcephaly.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Priscilla C Olsen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Federico Costa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
- Faculdade de Medicina and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Nivison Nery
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Adeolu Aromolaran
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| | - Mateus S do Rosário
- Hospital Geral Roberto Santos, Secretária da Saúde do Estado da Bahia, Salvador, Brazil
| | | | - Jaqueline S Cruz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Ricardo Khouri
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| | - Adriana Mattos
- Hospital Geral Roberto Santos, Secretária da Saúde do Estado da Bahia, Salvador, Brazil
| | - Bruno de Paula Freitas
- Hospital Geral Roberto Santos, Secretária da Saúde do Estado da Bahia, Salvador, Brazil
- Universidade Federal de São Paulo, São Paulo, Brazil
| | - Manoel Sarno
- Faculdade de Medicina and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Gracinda Archanjo
- Hospital Geral Roberto Santos, Secretária da Saúde do Estado da Bahia, Salvador, Brazil
| | - Dina Daltro
- Hospital Geral Roberto Santos, Secretária da Saúde do Estado da Bahia, Salvador, Brazil
| | - Gustavo B S Carvalho
- Hospital Geral Roberto Santos, Secretária da Saúde do Estado da Bahia, Salvador, Brazil
| | - Kleber Pimentel
- Hospital Geral Roberto Santos, Secretária da Saúde do Estado da Bahia, Salvador, Brazil
| | | | - João R M de Almeida
- Faculdade de Medicina and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Juliana A Lima
- Instituto Evandro Chagas, Ministério da Saúde Ananindeua, Pará, Brazil
| | | | | | - Stephanie A Azzopardi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | | | | | | | | | - Mitermayer G Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
- Faculdade de Medicina and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Rebekah I Keesler
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Jennifer Tisoncik-Go
- Washington National Primate Research Center, Seattle, WA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| | - Michael Gale
- Washington National Primate Research Center, Seattle, WA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Kristina M Adams Waldorf
- Washington National Primate Research Center, Seattle, WA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Rosemary J Steinbach
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR
| | - Nicole Haese
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR
| | - Jessica Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR
| | - Anne Lewis
- Pathology Services Unit, Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR
| | - Lois Colgin
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR
| | - Victoria Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR
| | - Antonio Frias
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR
| | - Meredith Kelleher
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR
| | - Alec Hirsch
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR
| | - Daniel N Streblow
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Antonio R P de Almeida
- Faculdade de Medicina and Instituto da Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Albert I Ko
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
18
|
Galula JU, Salem GM, Chang GJJ, Chao DY. Does structurally-mature dengue virion matter in vaccine preparation in post-Dengvaxia era? Hum Vaccin Immunother 2019; 15:2328-2336. [PMID: 31314657 PMCID: PMC6816432 DOI: 10.1080/21645515.2019.1643676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The unexpectedly low vaccine efficacy of Dengvaxia®, developed by Sanofi Pasteur, and a higher risk of severe diseases after vaccination among dengue-naive children or children younger than 6 years old, have cast skepticism about the safety of dengue vaccination resulting in the suspension of school-based immunization programs in the Philippines. The absence of immune correlates of protection from dengue virus (DENV) infection hampers the development of other potential DENV vaccines. While tetravalent live-attenuated tetravalent vaccines (LATVs), which mimic natural infection by inducing both cellular and humoral immune responses, are still currently favored, developing a vaccine that provides a balanced immunity to all four DENV serotypes remains a challenge. With the recently advanced understanding of virion structure and B cell immune responses from naturally infected DENV patients, two points of view in developing a next-generation dengue vaccine emerged: one is to induce potent, type-specific neutralizing antibodies (NtAbs) recognizing quaternary structure-dependent epitopes by having four components of vaccine strains replicate equivalently; the other is to induce protective and broadly NtAbs against the four serotypes of DENV with a universal vaccine. This article reviews the studies related to these issues and the current knowledge gap that needs to be filled in.
Collapse
Affiliation(s)
- Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, US Department of Health and Human Services , Fort Collins , CO , USA
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| |
Collapse
|
19
|
Goncalves A, Peeling RW, Chu MC, Gubler DJ, de Silva AM, Harris E, Murtagh M, Chua A, Rodriguez W, Kelly C, Wilder-Smith A. Innovative and New Approaches to Laboratory Diagnosis of Zika and Dengue: A Meeting Report. J Infect Dis 2019; 217:1060-1068. [PMID: 29294035 DOI: 10.1093/infdis/jix678] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022] Open
Abstract
Epidemics of dengue, Zika, and other arboviral diseases are increasing in frequency and severity. Current efforts to rapidly identify and manage these epidemics are limited by the short diagnostic window in acute infection, the extensive serologic cross-reactivity among flaviviruses, and the lack of point-of-care diagnostic tools to detect these viral species in primary care settings. The Partnership for Dengue Control organized a workshop to review the current landscape of Flavivirus diagnostic tools, identified current gaps, and developed strategies to accelerate the adoption of promising novel technologies into national programs. The rate-limiting step to bringing new diagnostic tools to the market is access to reference materials and well-characterized clinical samples to facilitate performance evaluation. We suggest the creation of an international laboratory-response consortium for flaviviruses with a decentralized biobank of well-characterized samples to facilitate assay validation. Access to proficiency panels are needed to ensure quality control, in additional to in-country capacity building.
Collapse
Affiliation(s)
| | | | - May C Chu
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Anschutz Medical Center, Aurora
| | - Duane J Gubler
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | | | | | | | | | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Singapore.,Institute of Public Health, University of Heidelberg, Germany.,Department of Global Health and Epidemiology, University of Umea, Sweden
| |
Collapse
|
20
|
Wilder-Smith A, Wei Y, de Araújo TVB, VanKerkhove M, Turchi Martelli CM, Turchi MD, Teixeira M, Tami A, Souza J, Sousa P, Soriano-Arandes A, Soria-Segarra C, Sanchez Clemente N, Rosenberger KD, Reveiz L, Prata-Barbosa A, Pomar L, Pelá Rosado LE, Perez F, Passos SD, Nogueira M, Noel TP, Moura da Silva A, Moreira ME, Morales I, Miranda Montoya MC, Miranda-Filho DDB, Maxwell L, Macpherson CNL, Low N, Lan Z, LaBeaud AD, Koopmans M, Kim C, João E, Jaenisch T, Hofer CB, Gustafson P, Gérardin P, Ganz JS, Dias ACF, Elias V, Duarte G, Debray TPA, Cafferata ML, Buekens P, Broutet N, Brickley EB, Brasil P, Brant F, Bethencourt S, Benedetti A, Avelino-Silva VL, Ximenes RADA, Alves da Cunha A, Alger J. Understanding the relation between Zika virus infection during pregnancy and adverse fetal, infant and child outcomes: a protocol for a systematic review and individual participant data meta-analysis of longitudinal studies of pregnant women and their infants and children. BMJ Open 2019; 9:e026092. [PMID: 31217315 PMCID: PMC6588966 DOI: 10.1136/bmjopen-2018-026092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Zika virus (ZIKV) infection during pregnancy is a known cause of microcephaly and other congenital and developmental anomalies. In the absence of a ZIKV vaccine or prophylactics, principal investigators (PIs) and international leaders in ZIKV research have formed the ZIKV Individual Participant Data (IPD) Consortium to identify, collect and synthesise IPD from longitudinal studies of pregnant women that measure ZIKV infection during pregnancy and fetal, infant or child outcomes. METHODS AND ANALYSIS We will identify eligible studies through the ZIKV IPD Consortium membership and a systematic review and invite study PIs to participate in the IPD meta-analysis (IPD-MA). We will use the combined dataset to estimate the relative and absolute risk of congenital Zika syndrome (CZS), including microcephaly and late symptomatic congenital infections; identify and explore sources of heterogeneity in those estimates and develop and validate a risk prediction model to identify the pregnancies at the highest risk of CZS or adverse developmental outcomes. The variable accuracy of diagnostic assays and differences in exposure and outcome definitions means that included studies will have a higher level of systematic variability, a component of measurement error, than an IPD-MA of studies of an established pathogen. We will use expert testimony, existing internal and external diagnostic accuracy validation studies and laboratory external quality assessments to inform the distribution of measurement error in our models. We will apply both Bayesian and frequentist methods to directly account for these and other sources of uncertainty. ETHICS AND DISSEMINATION The IPD-MA was deemed exempt from ethical review. We will convene a group of patient advocates to evaluate the ethical implications and utility of the risk stratification tool. Findings from these analyses will be shared via national and international conferences and through publication in open access, peer-reviewed journals. TRIAL REGISTRATION NUMBER PROSPERO International prospective register of systematic reviews (CRD42017068915).
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yinghui Wei
- Centre for Mathematical Sciences, University of Plymouth, Plymouth, UK
| | | | - Maria VanKerkhove
- Health Emergencies Programme, Organisation mondiale de la Sante, Geneve, Switzerland
| | | | - Marília Dalva Turchi
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Brazil
| | - Mauro Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Tami
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, The Netherlands
| | - João Souza
- Department of Social Medicine, University of São Paulo, São Paulo, Brazil
| | - Patricia Sousa
- Reference Center for Neurodevelopment, Assistance, and Rehabilitation of Children, State Department of Health of Maranhão, Sao Luís, Brazil
| | | | | | | | - Kerstin Daniela Rosenberger
- Department of Infectious Diseases, Section Clinical Tropical Medicine, UniversitatsKlinikum Heidelberg, Heidelberg, Germany
| | - Ludovic Reveiz
- Evidence and Intelligence for Action in Health, Pan American Health Organization, Washington, District of Columbia, USA
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D’Or Institute for Research & Education, Rio de Janeiro, Brazil
| | - Léo Pomar
- Department of Obstetrics and Gynecology, Centre Hospitalier de l’Ouest Guyanais, Saint-Laurent du Maroni, French Guiana
| | | | - Freddy Perez
- Communicable Diseases and Environmental Determinants of Health Department, Pan American Health Organization, Washington, District of Columbia, USA
| | | | - Mauricio Nogueira
- Faculdade de Medicina de Sao Jose do Rio Preto, Department of Dermatologic Diseases, São José do Rio Preto, Brazil
| | - Trevor P. Noel
- Windward Islands Research and Education Foundation, St. George’s University, True Blue Point, Grenada
| | - Antônio Moura da Silva
- Department of Public Health, Universidade Federal do Maranhão – São Luís, São Luís, Brazil
| | | | - Ivonne Morales
- Department of Infectious Diseases, Section Clinical Tropical Medicine, UniversitatsKlinikum Heidelberg, Heidelberg, Germany
| | | | | | - Lauren Maxwell
- Reproductive Health and Research, World Health Organization, Geneva, Switzerland
- Hubert Department of Global Health, Emory University, Atlanta, Georgia, USA
| | - Calum N. L. Macpherson
- Windward Islands Research and Education Foundation, St. George’s University, True Blue Point, Grenada
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Zhiyi Lan
- McGill University Health Centre, McGill University, Montréal, Canada
| | | | - Marion Koopmans
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caron Kim
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Esaú João
- Department of Infectious Diseases, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
| | - Thomas Jaenisch
- Department of Infectious Diseases, Section Clinical Tropical Medicine, UniversitatsKlinikum Heidelberg, Heidelberg, Germany
| | - Cristina Barroso Hofer
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul Gustafson
- Statistics, University of British Columbia, British Columbia, Vancouver, Canada
| | - Patrick Gérardin
- INSERM CIC1410 Clinical Epidemiology, CHU La Réunion, Saint Pierre, Réunion
- UM 134 PIMIT (CNRS 9192, INSERM U1187, IRD 249, Université de la Réunion), Universite de la Reunion, Sainte Clotilde, Réunion
| | | | - Ana Carolina Fialho Dias
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Elias
- Sustainable Development and Environmental Health, Pan American Health Organization, Washington, District of Columbia, USA
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, University of São Paulo, São Paulo, Brazil
| | - Thomas Paul Alfons Debray
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - María Luisa Cafferata
- Mother and Children Health Research Department, Instituto de Efectividad Clinica y Sanitaria, Buenos Aires, Argentina
| | - Pierre Buekens
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Nathalie Broutet
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Elizabeth B. Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Patrícia Brasil
- Instituto de pesquisa Clínica Evandro Chagas, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fátima Brant
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah Bethencourt
- Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Carabobo, Bolivarian Republic of Venezuela
| | - Andrea Benedetti
- Departments of Medicine and of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Vivian Lida Avelino-Silva
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | | | | | - Jackeline Alger
- Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | |
Collapse
|
21
|
Piontkivska H, Plonski NM, Miyamoto MM, Wayne ML. Explaining Pathogenicity of Congenital Zika and Guillain-Barré Syndromes: Does Dysregulation of RNA Editing Play a Role? Bioessays 2019; 41:e1800239. [PMID: 31106880 PMCID: PMC6699488 DOI: 10.1002/bies.201800239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Previous studies of Zika virus (ZIKV) pathogenesis have focused primarily on virus-driven pathology and neurotoxicity, as well as host-related changes in cell proliferation, autophagy, immunity, and uterine function. It is now hypothesized that ZIKV pathogenesis arises instead as an (unintended) consequence of host innate immunity, specifically, as the side effect of an otherwise well-functioning machine. The hypothesis presented here suggests a new way of thinking about the role of host immune mechanisms in disease pathogenesis, focusing on dysregulation of post-transcriptional RNA editing as a candidate driver of a broad range of observed neurodevelopmental defects and neurodegenerative clinical symptoms in both infants and adults linked with ZIKV infections. The authors collect and synthesize existing evidence of ZIKV-mediated changes in the expression of adenosine deaminases acting on RNA (ADARs), known links between abnormal RNA editing and pathogenesis, as well as ideas for future research directions, including potential treatment strategies.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences and University, Kent, OH
44242, USA
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | - Noel-Marie Plonski
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | | | - Marta L. Wayne
- Department of Biology, University of Florida, Gainesville,
FL 32611, USA
- Emerging Pathogens Institute, University of Florida,
Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Osuna CE, Whitney JB. Nonhuman Primate Models of Zika Virus Infection, Immunity, and Therapeutic Development. J Infect Dis 2019; 216:S928-S934. [PMID: 29267926 DOI: 10.1093/infdis/jix540] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Zika virus is a re-emerging flavivirus transmitted primarily by arthropod vectors. The recent devastating outbreak of Zika virus in Brazil was preceded by the slow global encroachment of this virus over many decades. To date, significant research efforts are underway to understand the spread and the unique pathogenesis of this virus; with the intent to rapidly develop vaccines and therapeutics. Several model systems have emerged to study Zika. This review will focus on the use of nonhuman primates to model Zika infection.
Collapse
Affiliation(s)
- Christa E Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts
| |
Collapse
|
23
|
Priyamvada L, Suthar MS, Ahmed R, Wrammert J. Humoral Immune Responses Against Zika Virus Infection and the Importance of Preexisting Flavivirus Immunity. J Infect Dis 2019; 216:S906-S911. [PMID: 29267924 DOI: 10.1093/infdis/jix513] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The recent emergence of Zika virus (ZIKV) in the western hemisphere has been linked to Guillain-Barre syndrome, congenital microcephaly, and devastating ophthalmologic and neurologic developmental abnormalities. The vast geographic spread and adverse disease outcomes of the 2015-2016 epidemic have elevated ZIKV from a previously understudied virus to one of substantial public health interest worldwide. Recent efforts to dissect immunological responses to ZIKV have provided significant insights into the functional quality and antigenic targets of ZIKV-induced B-cell responses. Several groups have demonstrated immunological cross-reactivity between ZIKV and other flaviviruses and have identified antibodies capable of both cross-neutralization, as well as antibody-dependent enhancement (ADE) of ZIKV infection. However, the impact of preexisting flavivirus immunity on ZIKV pathogenesis, the generation of protective responses, and in utero transmission of ZIKV infection remain unclear. Given the widespread endemicity of DENV in the areas most effected by the current ZIKV outbreak, the possibility of ADE is especially concerning and may pose unique challenges to the development and deployment of safe and immunogenic ZIKV vaccines. Here, we review current literature pertaining to ZIKV-induced B-cell responses and humoral cross-reactivity and discuss relevant considerations for the development of vaccines and therapeutics against ZIKV.
Collapse
Affiliation(s)
- Lalita Priyamvada
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Mehul S Suthar
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jens Wrammert
- Division of Infectious Disease, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
24
|
Castanha PMS, Souza WV, Braga C, de Araújo TVB, Ximenes RAA, Albuquerque MDFPM, Montarroyos UR, Miranda-Filho DB, Cordeiro MT, Dhalia R, Marques ETA, Rodrigues LC, Martelli CMT. Perinatal analyses of Zika- and dengue virus-specific neutralizing antibodies: A microcephaly case-control study in an area of high dengue endemicity in Brazil. PLoS Negl Trop Dis 2019; 13:e0007246. [PMID: 30856223 PMCID: PMC6428350 DOI: 10.1371/journal.pntd.0007246] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 03/21/2019] [Accepted: 02/14/2019] [Indexed: 01/12/2023] Open
Abstract
Laboratory confirmation of Zika virus (ZIKV) infection during pregnancy is challenging due to cross-reactivity with dengue virus (DENV) and limited knowledge about the kinetics of anti-Zika antibody responses during pregnancy. We described ZIKV and DENV serological markers and the maternal-fetal transfer of antibodies among mothers and neonates after the ZIKV microcephaly outbreak in Northeast Brazil (2016). We included 89 microcephaly cases and 173 neonate controls at time of birth and their mothers. Microcephaly cases were defined as newborns with a particular head circumference (2 SD below the mean). Two controls without microcephaly were matched by the expected date of delivery and area of residence. We tested maternal serum for recent (ZIKV genome, IgM and IgG3 anti-NS1) and previous (ZIKV and DENV neutralizing antibodies [NAbs]) markers of infection. Multiple markers of recent or previous ZIKV and DENV infection in mothers were analyzed using principal component analysis (PCA). At delivery, 5.6% of microcephaly case mothers and 1.7% of control mothers were positive for ZIKV IgM. Positivity for ZIKV IgG3 anti-NS1 was 8.0% for case mothers and 3.5% for control mothers. ZIKV NAbs was slightly higher among mothers of cases (69.6%) than that of mothers of controls (57.2%; p = 0.054). DENV exposure was detected in 85.8% of all mothers. PCA discriminated two distinct components related to recent or previous ZIKV infection and DENV exposure. ZIKV NAbs were higher in newborns than in their corresponding mothers (p<0.001). We detected a high frequency of ZIKV exposure among mothers after the first wave of the ZIKV outbreak in Northeast Brazil. However, we found low sensitivity of the serological markers to recent infection (IgM and IgG3 anti-NS1) in perinatal samples of mothers of microcephaly cases. Since the neutralization test cannot precisely determine the time of infection, testing for ZIKV immune status should be performed as early as possible and throughout pregnancy to monitor acute Zika infection in endemic areas.
Collapse
Affiliation(s)
- Priscila M. S. Castanha
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
- School of Medical Science, University of Pernambuco, Recife, Pernambuco, Brazil
| | - Wayner V. Souza
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| | - Cynthia Braga
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| | - Thalia Velho Barreto de Araújo
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
- Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ricardo A. A. Ximenes
- School of Medical Science, University of Pernambuco, Recife, Pernambuco, Brazil
- Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | - Marli T. Cordeiro
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| | - Rafael Dhalia
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| | - Ernesto T. A. Marques
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Laura C. Rodrigues
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Celina M. T. Martelli
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
- * E-mail:
| | | |
Collapse
|
25
|
Masel J, McCracken MK, Gleeson T, Morrison B, Rutherford G, Imrie A, Jarman RG, Koren M, Pollett S. Does prior dengue virus exposure worsen clinical outcomes of Zika virus infection? A systematic review, pooled analysis and lessons learned. PLoS Negl Trop Dis 2019; 13:e0007060. [PMID: 30682026 PMCID: PMC6370234 DOI: 10.1371/journal.pntd.0007060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/11/2019] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) recently caused a pandemic complicated by Guillain-Barre syndrome (GBS) and birth defects. ZIKV is structurally similar to the dengue viruses (DENV) and in vitro studies suggest antibody dependent enhancement occurs in ZIKV infections preceded by DENV; however, the clinical significance of this remains unclear. We undertook a PRISMA-adherent systematic review of all current human and non-human primate (NHP) data to determine if prior infection with DENV, compared to DENV-naïve hosts, is associated with a greater risk of ZIKV clinical complications or greater ZIKV peak viremia in vivo. We identified 1146 studies in MEDLINE, EMBASE and the grey literature, of which five studies were eligible. One human study indicated no increase in the risk of GBS in ZIKV infections with prior DENV exposure. Two additional human studies showed a small increase in ZIKV viremia in those with prior DENV exposure; however, this was not statistically significant nor was it associated with an increase in clinical severity or adverse pregnancy outcomes. While no meta-analysis was possible using human data, a pooled analysis of the two NHP studies leveraging extended data provided only weak evidence of a 0.39 log10 GE/mL rise in ZIKV viremia in DENV experienced rhesus macaques compared to those with no DENV exposure (p = 0.22). Using a customized quality grading criteria, we further show that no existing published human studies have offered high quality measurement of both acute ZIKV and antecedent DENV infections. In conclusion, limited human and NHP studies indicate a small and non-statistically significant increase in ZIKV viremia in DENV-experienced versus DENV-naïve hosts; however, there is no evidence that even a possible small increase in ZIKV viremia would correlate with a change in ZIKV clinical phenotype. More data derived from larger sample sizes and improved sero-assays are needed to resolve this question, which has major relevance for clinical prognosis and vaccine design. Zika virus (ZIKV) is a mosquito borne virus that recently caused a large epidemic with some cases complicated by ascending paralysis (Guillain-Barre syndrome) and birth defects. One major concern is that such complications may be more common in those who have had previous infection with the closely related mosquito-borne dengue virus (DENV) which also circulates in the tropics. Here, we undertook a thorough, structured review of all human and high-order animal literature to synthesize the current evidence about whether ZIKV outcomes are worse in those with previous DENV exposure. We further undertook a pooled analysis across the two major non-human primate studies to improve statistical power. We summarize that, in humans and in non-human primates, prior DENV exposure may lead to a small increase in ZIKV viral load during infection. However, we do not show that any possible increase in ZIKV viral replication is associated with a higher rate of Zika complications or Zika clinical severity. We further graded the quality of these published literature and indicate that substantial improvements in the immunological measurement of ZIKV and DENV exposure in humans are needed to answer these and other pertinent questions about these two epidemic pathogens.
Collapse
Affiliation(s)
- Jennifer Masel
- Department of Medicine, USUHS, Bethesda, MD, United States of America
| | - Michael K. McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Todd Gleeson
- Department of Medicine, USUHS, Bethesda, MD, United States of America
| | - Brian Morrison
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - George Rutherford
- Institute for Global Health Sciences, University of California, San Francisco, CA, United States of America
| | - Allison Imrie
- University of Western Australia, Perth, WA, Australia
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Michael Koren
- Department of Medicine, USUHS, Bethesda, MD, United States of America
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Department of Preventive Medicine & Biostatistics, USUHS, Bethesda, MD, United States of America
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Camperdown, NSW, Australia
- * E-mail:
| |
Collapse
|
26
|
Vogels CBF, Rückert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol 2019; 17:e3000130. [PMID: 30668574 PMCID: PMC6358106 DOI: 10.1371/journal.pbio.3000130] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Epidemiological synergy between outbreaks of viruses transmitted by Aedes aegypti mosquitoes, such as chikungunya, dengue, and Zika viruses, has resulted in coinfection of humans with multiple viruses. Despite the potential impact on public health, we know only little about the occurrence and consequences of such coinfections. Here, we review the impact of coinfection on clinical disease in humans, discuss the possibility for co-transmission from mosquito to human, and describe a role for modeling transmission dynamics at various levels of co-transmission. Solving the mystery of virus coinfections will reveal whether they should be viewed as a serious concern for public health.
Collapse
Affiliation(s)
- Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Claudia Rückert
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sean M. Cavany
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
27
|
Adam A, Woda M, Kounlavouth S, Rothman AL, Jarman RG, Cox JH, Ledgerwood JE, Gromowski GD, Currier JR, Friberg H, Mathew A. Multiplexed FluoroSpot for the Analysis of Dengue Virus- and Zika Virus-Specific and Cross-Reactive Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:3804-3814. [PMID: 30413671 DOI: 10.4049/jimmunol.1800892] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne pathogens that have a significant impact on human health. Immune sera, mAbs, and memory B cells (MBCs) isolated from patients infected with one DENV type can be cross-reactive with the other three DENV serotypes and even more distantly related flaviviruses such as ZIKV. Conventional ELISPOTs effectively measure Ab-secreting B cells but because they are limited to the assessment of a single Ag at a time, it is challenging to distinguish serotype-specific and cross-reactive MBCs in the same well. We developed a novel multifunction FluoroSpot assay using fluorescently labeled DENV and ZIKV (FLVs) that measures the cross-reactivity of Abs secreted by single B cells. Conjugation efficiency and recognition of FLVs by virus-specific Abs were confirmed by flow cytometry. Using a panel of DENV immune, ZIKV immune, and naive PBMC, FLVs were able to simultaneously detect DENV serotype-specific, ZIKV-specific, DENV serotype cross-reactive, and DENV/ZIKV cross-reactive Abs secreted by individual MBCs. Our findings indicate that the FLVs are sensitive and specific tools to detect specific and cross-reactive MBCs. These reagents will allow the assessment of the breadth as well as the durability of DENV/ZIKV B cell responses following vaccination or natural infection. This novel approach using FLVs in a FluoroSpot assay can be applied to other diseases such as influenza in which prior immunity with homosubtype- or heterosubtype-specific MBCs may influence subsequent infections.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Marcia Woda
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Sonia Kounlavouth
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Josephine H Cox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910; and
| | - Anuja Mathew
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI 02903;
| |
Collapse
|
28
|
Keeffe JR, Van Rompay KKA, Olsen PC, Wang Q, Gazumyan A, Azzopardi SA, Schaefer-Babajew D, Lee YE, Stuart JB, Singapuri A, Watanabe J, Usachenko J, Ardeshir A, Saeed M, Agudelo M, Eisenreich T, Bournazos S, Oliveira TY, Rice CM, Coffey LL, MacDonald MR, Bjorkman PJ, Nussenzweig MC, Robbiani DF. A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Rep 2018; 25:1385-1394.e7. [PMID: 30403995 PMCID: PMC6268006 DOI: 10.1016/j.celrep.2018.10.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/15/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) causes severe neurologic complications and fetal aberrations. Vaccine development is hindered by potential safety concerns due to antibody cross-reactivity with dengue virus and the possibility of disease enhancement. In contrast, passive administration of anti-ZIKV antibodies engineered to prevent enhancement may be safe and effective. Here, we report on human monoclonal antibody Z021, a potent neutralizer that recognizes an epitope on the lateral ridge of the envelope domain III (EDIII) of ZIKV and is protective against ZIKV in mice. When administered to macaques undergoing a high-dose ZIKV challenge, a single anti-EDIII antibody selected for resistant variants. Co-administration of two antibodies, Z004 and Z021, which target distinct sites on EDIII, was associated with a delay and a 3- to 4-log decrease in peak viremia. Moreover, the combination of these antibodies engineered to avoid enhancement prevented viral escape due to mutation in macaques, a natural host for ZIKV.
Collapse
Affiliation(s)
- Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA; Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Priscilla C Olsen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stephanie A Azzopardi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jackson B Stuart
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jennifer Watanabe
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jodie Usachenko
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Eisenreich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
29
|
Alcendor DJ. Zika virus infection and implications for kidney disease. J Mol Med (Berl) 2018; 96:1145-1151. [PMID: 30171265 PMCID: PMC6208949 DOI: 10.1007/s00109-018-1692-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
High-level and persistent viruria observed in patients infected by Zika virus (ZIKV) has been well documented. However, renal pathology in acutely infected, immunocompetent patients remains subclinical. Moreover, the long-term impact of ZIKV infection, replication, and persistence in the renal compartment of adults and infants as well as immunosuppressed patients and solid organ transplant (SOT) recipients is unknown. Mechanisms involving host and viral factors that limit or control ZIKV pathogenesis in the renal compartment are important yet unexplored. The observation that long-term viral shedding occurs in the renal compartment in the absence of clinical disease requires further investigation. In this review, I explore Zika virus-induced renal pathology in animal models, the dynamics of virus shedding in urine, virus replication in glomerular cells, ZIKV infection in human renal transplantation, and the potential impact of long-term persistent ZIKV infection in the renal compartment.
Collapse
Affiliation(s)
- Donald J Alcendor
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Hubbard Hospital, 5th Floor, Rm. 5025, Nashville, TN, 37208, USA.
| |
Collapse
|
30
|
Bowen JR, Zimmerman MG, Suthar MS. Taking the defensive: Immune control of Zika virus infection. Virus Res 2018; 254:21-26. [PMID: 28867493 PMCID: PMC5832569 DOI: 10.1016/j.virusres.2017.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
ZIKV is a neurotropic mosquito-borne flavivirus that has recently emerged in the Americas and is a pathogen of significant public health concern across the world. ZIKV was first isolated in Uganda in 1947 and remained dormant in Africa and Asia for decades, with sporadic outbreaks characterized by a mild self-limiting disease in humans. The emergence of ZIKV in the Americas corresponded with enhanced disease severity and congenital Zika syndrome, a phenotype characterized by severe microcephaly, brain anomalies, ocular anomalies, congenital contractures and neurological impairments. In less than two years, a collective effort led by the scientific research community has uncovered many new facets to the once rarely discussed ZIKV. In this review, we highlight the known immune parameters that correlate with protective immunity to ZIKV infection, including pattern recognition receptors, interferons, humoral and cell-mediated responses, as well as countermeasures utilized by ZIKV to inhibit host antiviral immune responses.
Collapse
Affiliation(s)
- James R Bowen
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Matthew G Zimmerman
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
31
|
Gao X, Wen Y, Wang J, Hong W, Li C, Zhao L, Yin C, Jin X, Zhang F, Yu L. Delayed and highly specific antibody response to nonstructural protein 1 (NS1) revealed during natural human ZIKV infection by NS1-based capture ELISA. BMC Infect Dis 2018; 18:275. [PMID: 29898684 PMCID: PMC6000977 DOI: 10.1186/s12879-018-3173-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
Background Zika virus (ZIKV) had spread rapidly in the past few years in southern hemisphere where dengue virus (DENV) had caused epidemic problems for over half a century. The high degree of cross-reactivity of Envelope (E) protein specific antibody responses between ZIKV and DENV made it challenging to perform differential diagnosis between the two infections using standard ELISA method for E protein. Methods Using an IgG capture ELISA, we investigated the kinetics of nonstructural protein 1 (NS1) antibody response during natural ZIKV infection and the cross-reactivity to NS1 proteins using convalescent sera obtained from patients infected by either DENV or ZIKV. Results The analyses of the sequential serum samples from ZIKV infected individuals showed NS1 specific Abs appeared 2 weeks later than E specific Abs. Notably, human sera from ZIKV infected individuals did not contain cross-reactivity to NS1 proteins of any of the four DENV serotypes. Furthermore, four out of five NS1-specific monoclonal antibodies (mAbs) isolated from ZIKV infected individuals did not bind to DENV NS1 proteins. Only limited amount of cross-reactivity to ZIKV NS1 was displayed in 108 DENV1 immune sera at 1:100 dilution. Conclusions The high degree of NS1-specific Abs in both ZIKV and DENV infection revealed here suggest that NS1-based diagnostics would significantly improve the differential diagnosis between DENV and ZIKV infections. Electronic supplementary material The online version of this article (10.1186/s12879-018-3173-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiujie Gao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng Rd. East, Guangzhou, 510060, China
| | - Yingfen Wen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng Rd. East, Guangzhou, 510060, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng Rd. East, Guangzhou, 510060, China
| | - Wenxin Hong
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng Rd. East, Guangzhou, 510060, China
| | - Chunlin Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng Rd. East, Guangzhou, 510060, China
| | - Lingzhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng Rd. East, Guangzhou, 510060, China
| | - Chibiao Yin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng Rd. East, Guangzhou, 510060, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, CAS Key Lab of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, 200025, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng Rd. East, Guangzhou, 510060, China.
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng Rd. East, Guangzhou, 510060, China.
| |
Collapse
|
32
|
Koblischke M, Stiasny K, Aberle SW, Malafa S, Tsouchnikas G, Schwaiger J, Kundi M, Heinz FX, Aberle JH. Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection. Front Immunol 2018; 9:1196. [PMID: 29899743 PMCID: PMC5989350 DOI: 10.3389/fimmu.2018.01196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.
Collapse
Affiliation(s)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Julia Schwaiger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Franz X. Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Lee I, Bos S, Li G, Wang S, Gadea G, Desprès P, Zhao RY. Probing Molecular Insights into Zika Virus⁻Host Interactions. Viruses 2018; 10:v10050233. [PMID: 29724036 PMCID: PMC5977226 DOI: 10.3390/v10050233] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/13/2022] Open
Abstract
The recent Zika virus (ZIKV) outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain–Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1) what virologic factors are involved in the ZIKV-associated human diseases; (2) which ZIKV protein(s) contributes to the enhanced viral pathogenicity; and (3) how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV–host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV–host Interactions.
Collapse
Affiliation(s)
- Ina Lee
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Sandra Bos
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Shusheng Wang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
34
|
Esposito DLA, de Moraes JB, Antônio Lopes da Fonseca B. Current priorities in the Zika response. Immunology 2018; 153:435-442. [PMID: 29243225 PMCID: PMC5838418 DOI: 10.1111/imm.12878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 11/30/2022] Open
Abstract
Zika virus (ZIKV), a single-stranded RNA virus of the Flaviviridae family, is an arbovirus (viruses transmitted by arthropods) transmitted to humans and non-human primates through the bites of infected female Aedes sp. mosquitoes. Although first isolated in 1947, it only recently emerged as a global threat, present in several countries resulting in a pandemic scenario. ZIKV infections may have severe outcomes, such as neurological impairment, and with the intrinsic ability of inducing microcephaly in fetuses of infected pregnant women, the virus has become a major public health problem. This review discusses some advances in diagnosis; vaccine development and the problems associated with their administration; the importance of the cross-reactivity with other flaviviruses in protecting or worsening the disease; the implications of the recent outbreak caused by the virus in the world; and future prospects for the complete understanding of this disease.
Collapse
Affiliation(s)
- Danillo L. A. Esposito
- Department of Internal MedicineRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSão PauloBrazil
| | - Jonathan B. de Moraes
- Graduate Studies Programme on Basic and Applied ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSão PauloBrazil
| | | |
Collapse
|
35
|
Mathew A. Defining the role of NK cells during dengue virus infection. Immunology 2018; 154:557-562. [PMID: 29570783 PMCID: PMC6050221 DOI: 10.1111/imm.12928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
In recent years, our understanding of the complex number of signals that need to be integrated between a diverse number of receptors present on natural killer (NK) cells and ligands present on target cells has improved. Here, we review the progress made in identifying interactions between dengue viral peptides presented on HLA Class 1 molecules with inhibitory and activating killer-like immunoglobulin receptors on NK cells, direct interactions of viral proteins with NK cell receptors, the involvement of dengue virus-specific antibodies in mediating antibody-dependent cell-mediated cytotoxicity and the role of soluble factors in modulating NK cell responses. We discuss findings of NK cell activation early after natural dengue infection, and point to the role that NK cells may play in regulating both innate and adaptive immune responses, in the context of our new appreciation of interactions of dengue virus with specific NK cell receptors. With a number of flavivirus vaccine candidates in clinical trials, how NK cells respond to attenuated dengue virus and subunit protein vaccine candidates and shape adaptive immunity will need to be considered.
Collapse
Affiliation(s)
- Anuja Mathew
- Department of Cell and Molecular BiologyInstitute for Immunology and InformaticsProvidenceRIUSA
| |
Collapse
|
36
|
Abstract
Zika virus (ZIKV) is a flavivirus that can cause congenital disease and requires development of an effective long-term preventative strategy. A replicative ZIKV vaccine with properties similar to the yellow fever 17D (YF17D) live-attenuated vaccine (LAV) would be advantageous, as a single dose of YF17D produces lifelong immunity. However, a replicative ZIKV vaccine must also be safe from causing persistent organ infections. Here we report an approach to ZIKV LAV development. We identify a ZIKV variant that produces small plaques due to interferon (IFN)-restricted viral propagation and displays attenuated infection of endothelial cells. We show that these properties collectively reduce the risk of organ infections and vertical transmission in a mouse model but remain sufficiently immunogenic to prevent wild-type ZIKV infection. Our findings suggest a strategy for the development of a safe but efficacious ZIKV LAV.
Collapse
|
37
|
Aubry M, Teissier A, Huart M, Merceron S, Vanhomwegen J, Mapotoeke M, Mariteragi-Helle T, Roche C, Vial AL, Teururai S, Sicard S, Paulous S, Desprès P, Manuguerra JC, Mallet HP, Imrie A, Musso D, Deparis X, Cao-Lormeau VM. Seroprevalence of Dengue and Chikungunya Virus Antibodies, French Polynesia, 2014-2015. Emerg Infect Dis 2018; 24:558-561. [PMID: 29460745 PMCID: PMC5823337 DOI: 10.3201/eid2403.171149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We investigated dengue and chikungunya virus antibody seroprevalence in French Polynesia during 2014-2015. Dengue virus seroprevalence was ≈60% among schoolchildren and >83% among the general population; chikungunya virus seroprevalence was <3% before and 76% after Zika virus emergence (2013). Dengue virus herd immunity may affect Zika virus infection and pathogenesis.
Collapse
|
38
|
Immune Responses to Dengue and Zika Viruses-Guidance for T Cell Vaccine Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020385. [PMID: 29473899 PMCID: PMC5858454 DOI: 10.3390/ijerph15020385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 02/01/2023]
Abstract
Despite numerous efforts to identify the molecular and cellular effectors of the adaptive immunity that induce a long-lasting immunity against dengue or Zika virus infection, the specific mechanisms underlying such protective immunity remain largely unknown. One of the major challenges lies in the high level of dengue virus (DENV) seroprevalence in areas where Zika virus (ZIKV) is circulating. In the context of such a pre-existing DENV immunity that can exacerbate ZIKV infection and disease, and given the lack of appropriate treatment for ZIKV infection, there is an urgent need to develop an efficient vaccine against DENV and ZIKV. Notably, whereas several ZIKV vaccine candidates are currently in clinical trials, all these vaccine candidates have been designed to induce neutralizing antibodies as the primary mechanism of immune protection. Given the difficulty to elicit simultaneously high levels of neutralizing antibodies against the different DENV serotypes, and the potential impact of pre-existing subneutralizing antibodies induced upon DENV infection or vaccination on ZIKV infection and disease, additional or alternative strategies to enhance vaccine efficacy, through T cell immunity, are now being considered. In this review, we summarize recent discoveries about cross-reactive B and T cell responses against DENV and ZIKV and propose guidelines for the development of safe and efficient T cell vaccines targeting both viruses.
Collapse
|
39
|
Rothan HA, Bidokhti MRM, Byrareddy SN. Current concerns and perspectives on Zika virus co-infection with arboviruses and HIV. J Autoimmun 2018; 89:11-20. [PMID: 29352633 DOI: 10.1016/j.jaut.2018.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Dissemination of vector-borne viruses, such as Zika virus (ZIKV), in tropical and sub-tropical regions has a complicated impact on the immunopathogenesis of other endemic viruses such as dengue virus (DENV), chikungunya virus (CHIKV) and human immunodeficiency virus (HIV). The consequences of the possible co-infections with these viruses have specifically shown significant impact on the treatment and vaccination strategies. ZIKV is a mosquito-borne flavivirus from African and Asian lineages that causes neurological complications in infected humans. Many of DENV and CHIKV endemic regions have been experiencing outbreaks of ZIKV infection. Intriguingly, the mosquitoes, Aedes Aegypti and Aedes Albopictus, can simultaneously transmit all the combinations of ZIKV, DENV, and CHIKV to the humans. The co-circulation of these viruses leads to a complicated immune response due to the pre-existence or co-existence of ZIKV infection with DENV and CHIKV infections. The non-vector transmission of ZIKV, especially, via sexual intercourse and placenta represents an additional burden that may hander the treatment strategies of other sexually transmitted diseases such as HIV. Collectively, ZIKV co-circulation and co-infection with other viruses have inevitable impact on the host immune response, diagnosis techniques, and vaccine development strategies for the control of these co-infections.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Human Biology, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Mehdi R M Bidokhti
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Centre (UNMC), Omaha, NE 68198-5800, USA.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Centre (UNMC), Omaha, NE 68198-5800, USA.
| |
Collapse
|
40
|
Zika virus: An emerging infectious disease with serious perinatal and neurologic complications. J Allergy Clin Immunol 2017; 141:482-490. [PMID: 29273403 DOI: 10.1016/j.jaci.2017.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 11/21/2017] [Indexed: 11/20/2022]
Abstract
Zika virus (ZIKV) is a flavivirus that is primarily transmitted by Aedes aegypti, the mosquito vector also important in transmission of the flaviviruses responsible for dengue fever, yellow fever, and chikungunya. Because of occurrence in the same geographic regions, serologic cross-reactivity, and similar but often less severe clinical manifestations, such as dengue and chikungunya infections, ZIKV infection likely has gone undetected, misdiagnosed, or both for many years. ZIKV is somewhat unique among flaviviruses in its ability to also be transmitted through sexual contact, nonsexual body fluids, and perinatally. The relatively recent detection of the link between ZIKV infection and Guillain-Barré syndrome and fetal neurological defects, including microcephaly, has prompted intense efforts aimed at the development of new and specific diagnostic tests. Infection with ZIKV has been postulated to lead to a more severe clinical course from other structurally related viruses, especially dengue, and vice versa because of a phenomenon termed antibody-dependent enhancement. Inactivated whole virus, DNA, RNA, and vectored vaccine approaches to prevent ZIKV infection are in development, as are treatments for active disease that are safe in pregnant women. Here we summarize the important epidemiologic and clinical features of ZIKV infection, as well as the progress and challenges in developing rapid point-of-care diagnostic tests and vaccines to prevent disease. We used electronic databases to identify relevant published data regarding ZIKV MeSH searches.
Collapse
|
41
|
Blevins S, Huseby ES. Killer T cells with a beta-flavi(r) for dengue. Nat Immunol 2017; 18:1186-1188. [PMID: 29044243 DOI: 10.1038/ni.3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sydney Blevins
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|