1
|
Brady C, Tipton T, Carnell O, Longet S, Gooch K, Hall Y, Salguero J, Tomic A, Carroll M. A systems biology approach to define SARS-CoV-2 correlates of protection. NPJ Vaccines 2025; 10:69. [PMID: 40229322 PMCID: PMC11997207 DOI: 10.1038/s41541-025-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Correlates of protection (CoPs) for SARS-CoV-2 have yet to be sufficiently defined. This study uses the machine learning platform, SIMON, to accurately predict the immunological parameters that reduced clinical pathology or viral load following SARS-CoV-2 challenge in a cohort of 90 non-human primates. We found that anti-SARS-CoV-2 spike antibody and neutralising antibody titres were the best predictors of clinical protection and low viral load in the lung. Since antibodies to SARS-CoV-2 spike showed the greatest association with clinical protection and reduced viral load, we next used SIMON to investigate the immunological features that predict high antibody titres. It was found that a pre-immunisation response to seasonal beta-HCoVs and a high frequency of peripheral intermediate and non-classical monocytes predicted low SARS-CoV-2 spike IgG titres. In contrast, an elevated T cell response as measured by IFNγ ELISpot predicted high IgG titres. Additional predictors of clinical protection and low SARS-CoV-2 burden included a high abundance of peripheral T cells. In contrast, increased numbers of intermediate monocytes predicted clinical pathology and high viral burden in the throat. We also conclude that an immunisation strategy that minimises pathology post-challenge did not necessarily mediate viral control. This would be an important finding to take forward into the development of future vaccines aimed at limiting the transmission of SARS-CoV-2. These results contribute to SARS-CoV-2 CoP definition and shed light on the factors influencing the success of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Caolann Brady
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| | - Tom Tipton
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Oliver Carnell
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Stephanie Longet
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- International Center for Infectiology Research (CIRI), Team GIMAP, Claude Bernard Lyon 1 University, Saint-Etienne, France
| | - Karen Gooch
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Javier Salguero
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Medical School, Boston, MA, USA
- Biomedical Engineering, Boston University, College of Engineering, Boston, MA, USA
| | - Miles Carroll
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
van den Dijssel J, Konijn VAL, Duurland MC, de Jongh R, Koets L, Veldhuisen B, Raaphorst H, Turksma AW, Freen‐van Heeren JJ, Steenhuis M, Rispens T, van der Schoot CE, van Ham SM, van Lier RAW, van Gisbergen KPJM, ten Brinke A, van de Sandt CE. Age and Latent Cytomegalovirus Infection Do Not Affect the Magnitude of De Novo SARS-CoV-2-Specific CD8 + T Cell Responses. Eur J Immunol 2025; 55:e202451565. [PMID: 40071711 PMCID: PMC11898545 DOI: 10.1002/eji.202451565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/15/2025]
Abstract
Immunosenescence, age-related immune dysregulation, reduces immunity upon vaccinations and infections. Cytomegalovirus (CMV) infection results in declining naïve (Tnaïve) and increasing terminally differentiated (Temra) T cell populations, further aggravating immune aging. Both immunosenescence and CMV have been speculated to hamper the formation of protective T-cell immunity against novel or emerging pathogens. The SARS-CoV-2 pandemic presented a unique opportunity to examine the impact of age and/or CMV on the generation of de novo SARS-CoV-2-specific CD8+ T cell responses in 40 younger (22-40 years) and 37 older (50-66 years) convalescent individuals. Heterotetramer combinatorial coding combined with phenotypic markers were used to study 35 SARS-CoV-2 epitope-specific CD8+ T cell populations directly ex vivo. Neither age nor CMV affected SARS-CoV-2-specific CD8+ T cell frequencies, despite reduced total CD8+ Tnaïve cells in older CMV- and CMV+ individuals. Robust SARS-CoV-2-specific central memory CD8+ T (Tcm) responses were detected in younger and older adults regardless of CMV status. Our data demonstrate that immune aging and CMV status did not impact the SARS-CoV-2-specific CD8+ T cell response. However, SARS-CoV-2-specific CD8+ T cells of older CMV- individuals displayed the lowest stem cell memory (Tscm), highest Temra and PD1+ populations, suggesting that age, not CMV, may impact long-term SARS-CoV-2 immunity.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Veronique A. L. Konijn
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Mariël C Duurland
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Rivka de Jongh
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Lianne Koets
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- National Screening Laboratory of SanquinResearch and Laboratory ServicesAmsterdamThe Netherlands
| | - Barbera Veldhuisen
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Immunohematology DiagnosticsSanquin Diagnostic ServicesAmsterdamThe Netherlands
| | | | | | | | - Maurice Steenhuis
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Amsterdam UMC location Vrije Universiteit AmsterdamMolecular Cell Biology and ImmunologyAmsterdamThe Netherlands
| | - C Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Klaas P. J. M. van Gisbergen
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Physiology and Cancer Programme, Champalimaud ResearchChampalimaud FoundationLisboaPortugal
| | - Anja ten Brinke
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Carolien E. van de Sandt
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Department of Microbiology and ImmunologyUniversity of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Solchenberger H, Odendahl M, Schriefer D, Proschmann U, Rahbani GKA, Ziemssen T, Akgün K. Extensive T-Cell Profiling Following SARS-CoV-2 mRNA Vaccination in Multiple Sclerosis Patients Treated with DMTs. Pathogens 2025; 14:235. [PMID: 40137720 PMCID: PMC11944680 DOI: 10.3390/pathogens14030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Disease-modifying therapies (DMTs) are known to impact cellular and humoral immune response in persons with multiple sclerosis (pwMS). In this study, we performed in-depth SARS-CoV-2-specific T-cell profiling using flow cytometry. T-cell immunity in pwMS with or without DMTs was evaluated before a first SARS-CoV-2 messenger ribonucleic acid (mRNA) vaccination and at one-, two- and six-month follow-up. T-cell stimulation without SARS-CoV-2-specific antigens was used as a control. T-cell response was compared to B-cell response by evaluating SARS-CoV-2-specific antibodies. We observed an upregulation of specific subpopulations of SARS-CoV-2 spike-specific CD4+ T cells. Thus, our results demonstrate the induction of a broad and distinct CD4+ T-cell response in pwMS even on anti-CD20 treatment and sphingosine-1-phosphate receptor modulation after SARS-CoV-2 mRNA vaccination. This was particularly seen in CD4+high and CD4+CD154+ T cells. Our results do not support the induction of a CD8+ T-cell immune response. While humoral immune response was impaired in pwMS during ocrelizumab and fingolimod treatment, there was evidence of a compensatory upregulation of subpopulations of SARS-CoV-2-specific CD4+ T cells at low levels of seroconversion in pwMS. In conclusion, our results provide important insights into the mechanisms of the adaptive immune response in pwMS following SARS-CoV-2 mRNA vaccination.
Collapse
Affiliation(s)
- Hannah Solchenberger
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Technical University Dresden, 01307 Dresden, Germany; (H.S.); (D.S.); (U.P.); (G.K.a.R.); (T.Z.)
| | - Marcus Odendahl
- Medical Faculty Carl Gustav Carus, Technical University Dresden, Experimental Transfusion Medicine, 01307 Dresden, Germany;
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Dirk Schriefer
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Technical University Dresden, 01307 Dresden, Germany; (H.S.); (D.S.); (U.P.); (G.K.a.R.); (T.Z.)
| | - Undine Proschmann
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Technical University Dresden, 01307 Dresden, Germany; (H.S.); (D.S.); (U.P.); (G.K.a.R.); (T.Z.)
| | - Georges Katoul al Rahbani
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Technical University Dresden, 01307 Dresden, Germany; (H.S.); (D.S.); (U.P.); (G.K.a.R.); (T.Z.)
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Technical University Dresden, 01307 Dresden, Germany; (H.S.); (D.S.); (U.P.); (G.K.a.R.); (T.Z.)
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Technical University Dresden, 01307 Dresden, Germany; (H.S.); (D.S.); (U.P.); (G.K.a.R.); (T.Z.)
| |
Collapse
|
4
|
Pickering H, Schaenman J, Phan HV, Maguire C, Tsitsiklis A, Rouphael N, Higuita NIA, Atkinson MA, Brakenridge S, Fung M, Messer W, Salehi-Rad R, Altman MC, Becker PM, Bosinger SE, Eckalbar W, Hoch A, Doni Jayavelu N, Kim-Schulze S, Jenkins M, Kleinstein SH, Krammer F, Maecker HT, Ozonoff A, Diray-Arce J, Shaw A, Baden L, Levy O, Reed EF, Langelier CR. Host-microbe multiomic profiling identifies distinct COVID-19 immune dysregulation in solid organ transplant recipients. Nat Commun 2025; 16:586. [PMID: 39794319 PMCID: PMC11723965 DOI: 10.1038/s41467-025-55823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels. In addition, transplant recipients exhibit decreased plasmablasts and transitional B cells, and increased senescent T cells. Blood and nasal transcriptional profiling demonstrate unexpected upregulation of innate immune signaling pathways and increased levels of several proinflammatory serum chemokines. Severe disease in transplant recipients, however, is characterized by a less robust induction of pro-inflammatory genes and chemokines. Together, our study reveals distinct immune features and altered viral dynamics in solid organ transplant recipients.
Collapse
Affiliation(s)
- Harry Pickering
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Joanna Schaenman
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hoang Van Phan
- University of California San Francisco, San Francisco, CA, USA
| | - Cole Maguire
- The University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | | - Monica Fung
- University of California San Francisco, San Francisco, CA, USA
| | | | - Ramin Salehi-Rad
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew C Altman
- Benaroya Research Institute, University of Washington, Seattle, WA, USA
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD, USA
| | | | - Walter Eckalbar
- University of California San Francisco, San Francisco, CA, USA
| | - Annmarie Hoch
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Meagan Jenkins
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | - Al Ozonoff
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT & Harvard, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Lindsey Baden
- Harvard Medical School, Boston, MA, USA
- Brigham & Women's Hospital, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT & Harvard, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elaine F Reed
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles R Langelier
- University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Lee JS, Lacerda E, Kingdon C, Susannini G, Dockrell HM, Nacul L, Cliff JM. Abnormal T-Cell Activation And Cytotoxic T-Cell Frequency Discriminates Symptom Severity In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.02.24319359. [PMID: 39830245 PMCID: PMC11741448 DOI: 10.1101/2025.01.02.24319359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating but poorly-understood disease. ME/CFS symptoms can range from mild to severe, and include immune system effects alongside incapacitating fatigue and post-exertional disease exacerbation. In this study, we examined immunological profiles of people living with ME/CFS by flow cytometry, focusing on cytotoxic cells, to determine whether people with mild/moderate (n= 43) or severe ME/CFS (n=53) expressed different immunological markers. We found that people with mild/moderate ME/CFS had increased expression of cytotoxic effector molecules alongside enhanced proportions of early-immunosenescence cells, determined by the CD28 - CD57 - phenotype, indicative of persistent viral infection. In contrast, people with severe ME/CFS had higher proportions of activated circulating lymphocytes, determined by CD69 + and CD38 + expression, and expressed more pro-inflammatory cytokines, including IFNγ, TNF and IL-17, following stimulation in vitro , indicative of prolonged non-specific inflammation. These changes were consistent across different cell types including CD8 + T cells, mucosal associated invariant T cells and Natural Killer cells, indicating generalised altered cytotoxic responses across the innate and adaptive immune system. These immunological differences likely reflect different disease pathogenesis mechanisms occurring in the two clinical groups, opening up opportunities for the development of prognostic markers and stratified treatments.
Collapse
|
6
|
Surekha MV, Meur G, Suneetha N, Balakrishna N, Kumar PU, Tulja B, Reddy KS, Ibrahim A, Sunitha P. COVID-19 Serostatus Does Not Affect the Intrauterine Transfer of Micronutrients and Fatty Acids or Maternal-fetal Lymphocyte Cell Composition: An Observational Study. Am J Perinatol 2024. [PMID: 39719143 DOI: 10.1055/a-2480-5329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
OBJECTIVE Studies on the effects of coronavirus disease 2019 (COVID-19) on pregnant mothers and their newborns, specifically in relation to their micronutrient status, fatty acids (FAs), and inflammatory status are sparse. We hypothesized that COVID-19 infection would adversely affect the transfer of nutrients, and FAs from mothers to their fetuses via the umbilical cord and maternal-fetal distribution of inflammatory cells. This study aimed to determine the effect of COVID-19 on micronutrients, inflammatory markers, and FAs profiles in pregnant mothers and their newborns' cord blood. STUDY DESIGN This was a cross-sectional study of 212 pregnant mothers in the third trimester and their newborns, recruited after testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serostatus. Peripheral blood of mothers and cord blood were collected at birth and analyzed for vitamin B12 (Vit B12), folic acid, 25(OH)D3, FAs, and peripheral blood mononuclear cells. Student's t-test or analysis of variance (ANOVA) was used to express statistical significance. Non-normal data were tested using the Mann-Whitney U test and Kruskal-Wallis test, with proportions compared with the chi-square test. RESULTS Vit B12 levels were significantly low and adrenic acid levels significantly high in COVID-19 seropositive mothers while 25(OH)D3 was significantly low in seropositive cord blood. Irrespective of COVID-19 serostatus, folate, vit B12, saturated FA levels were significantly high in cord blood indicating their increased transfer from mothers to the fetus. However, monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) levels were significantly lower in cord blood. Irrespective of COVID-19 serostatus, CD4+ T helper cells (percentage of lymphocytes) were significantly higher in cord blood, while NK cells, NK-T cells, and CD8+ T-cytotoxic cells-percentage of lymphocytes-were significantly lower in cord blood when compared with corresponding mother's blood. CONCLUSION The results indicate that while COVID-19 did not impede the transfer of essential nutrients such as MUFA and PUFA from mother to fetus, or affect maternal-fetal immune cell responses, it did appear to affect the levels of vit B12, vitamin D, and adrenic acid. KEY POINTS · COVID-19 did not impede essential fatty acids transfer through cord blood.. · COVID-19 affected maternal-fetal immune responses.. · COVID-19 affected vitB12, vitamin D and adrenic acid levels..
Collapse
Affiliation(s)
- Mullapudi V Surekha
- Pathology and Microbiology Division, Indian Council of Medical Research-National Institute of Nutrition (ICMR-NIN), Hyderabad, Telangana, India
| | - Gargi Meur
- Lipid Chemistry Division, Indian Council of Medical Research-National Institute of Nutrition (ICMR-NIN), Hyderabad, Telangana, India
| | - Nadimpalli Suneetha
- Obstetrics and Gynecology Department, Government Area Hospital, Nampally, Hyderabad, Telangana, India
| | - Nagalla Balakrishna
- Department of Statistics, Apollo Hospitals Educational and Research Foundation (AHERF), Hyderabad, Telangana, India
| | - Putcha U Kumar
- Pathology and Microbiology Division, Indian Council of Medical Research-National Institute of Nutrition (ICMR-NIN), Hyderabad, Telangana, India
| | - Bhukya Tulja
- Animal Facility, Indian Council of Medical Research-National Institute of Nutrition (ICMR-NIN), Hyderabad, Telangana, India
| | - K Suryam Reddy
- Lipid Chemistry Division, Indian Council of Medical Research-National Institute of Nutrition (ICMR-NIN), Hyderabad, Telangana, India
| | - Ahmed Ibrahim
- Lipid Chemistry Division, Indian Council of Medical Research-National Institute of Nutrition (ICMR-NIN), Hyderabad, Telangana, India
| | - Pratha Sunitha
- Department of Obstetrics and Gynecology, Area Hospital, Nampally, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Song S, Gan J, Long Q, Gao Z, Zheng Y. Decoding NAD+ Metabolism in COVID-19: Implications for Immune Modulation and Therapy. Vaccines (Basel) 2024; 13:1. [PMID: 39852780 PMCID: PMC11768799 DOI: 10.3390/vaccines13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
The persistent threat of COVID-19, particularly with the emergence of new variants, underscores the urgency for innovative therapeutic strategies beyond conventional antiviral treatments. Current immunotherapies, including IL-6/IL-6R monoclonal antibodies and JAK inhibitors, exhibit suboptimal efficacy, necessitating alternative approaches. Our review delves into the significance of NAD+ metabolism in COVID-19 pathology, marked by decreased NAD+ levels and upregulated NAD+-consuming enzymes such as CD38 and poly (ADP-ribose) polymerases (PARPs). Recognizing NAD+'s pivotal role in energy metabolism and immune modulation, we propose modulating NAD+ homeostasis could bolster the host's defensive capabilities against the virus. The article reviews the scientific rationale behind targeting NAD+ pathways for therapeutic benefit, utilizing strategies such as NAD+ precursor supplementation and enzyme inhibition to modulate immune function. While preliminary data are encouraging, the challenge lies in optimizing these interventions for clinical use. Future research should aim to unravel the intricate roles of key metabolites and enzymes in NAD+ metabolism and to elucidate their specific mechanisms of action. This will be essential for developing targeted NAD+ therapies, potentially transforming the management of COVID-19 and setting a precedent for addressing other infectious diseases.
Collapse
Affiliation(s)
- Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Jialing Gan
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| |
Collapse
|
8
|
Günter M, Mueller KAL, Salazar MJ, Gekeler S, Prang C, Harm T, Gawaz MP, Autenrieth SE. Immune signature of patients with cardiovascular disease predicts increased risk for a severe course of COVID-19. Eur J Immunol 2024; 54:e2451145. [PMID: 39094122 DOI: 10.1002/eji.202451145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection can lead to life-threatening clinical manifestations. Patients with cardiovascular disease (CVD) are at higher risk for severe courses of COVID-19. So far, however, there are hardly any strategies for predicting the course of SARS-CoV-2 infection in CVD patients at hospital admission. Thus, we investigated whether this prediction is achievable by prospectively analysing the blood immunophenotype of 94 nonvaccinated participants, including uninfected and acutely SARS-CoV-2-infected CVD patients and healthy donors, using a 36-colour spectral flow cytometry panel. Unsupervised data analysis revealed little differences between healthy donors and CVD patients, whereas the distribution of the cell populations changed dramatically in SARS-CoV-2-infected CVD patients. The latter had more mature NK cells, activated monocyte subsets, central memory CD4+ T cells, and plasmablasts but fewer dendritic cells, CD16+ monocytes, innate lymphoid cells, and CD8+ T-cell subsets. Moreover, we identified an immune signature characterised by CD161+ T cells, intermediate effector CD8+ T cells, and natural killer T (NKT) cells that is predictive for CVD patients with a severe course of COVID-19. Thus, intensified immunophenotype analyses can help identify patients at risk of severe COVID-19 at hospital admission, improving clinical outcomes through specific treatment.
Collapse
Affiliation(s)
- Manina Günter
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
- German Cancer Research Centre, Research Group Dendritic Cells in Infection and Cancer, Heidelberg, Germany
| | - Karin Anne Lydia Mueller
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Mathew J Salazar
- German Cancer Research Centre, Research Group Dendritic Cells in Infection and Cancer, Heidelberg, Germany
| | - Sarah Gekeler
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Carolin Prang
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Stella E Autenrieth
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
- German Cancer Research Centre, Research Group Dendritic Cells in Infection and Cancer, Heidelberg, Germany
| |
Collapse
|
9
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
11
|
Rowntree LC, Audsley J, Allen LF, McQuilten HA, Hagen RR, Chaurasia P, Petersen J, Littler DR, Tan HX, Murdiyarso L, Habel JR, Foo IJH, Zhang W, Ten Berge ERV, Ganesh H, Kaewpreedee P, Lee KWK, Cheng SMS, Kwok JSY, Jayasinghe D, Gras S, Juno JA, Wheatley AK, Kent SJ, Rossjohn J, Cheng AC, Kotsimbos TC, Trubiano JA, Holmes NE, Pang Chan KK, Hui DSC, Peiris M, Poon LLM, Lewin SR, Doherty PC, Thevarajan I, Valkenburg SA, Kedzierska K, Nguyen THO. SARS-CoV-2-specific CD8 + T cells from people with long COVID establish and maintain effector phenotype and key TCR signatures over 2 years. Proc Natl Acad Sci U S A 2024; 121:e2411428121. [PMID: 39284068 PMCID: PMC11441481 DOI: 10.1073/pnas.2411428121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 10/02/2024] Open
Abstract
Long COVID occurs in a small but important minority of patients following COVID-19, reducing quality of life and contributing to healthcare burden. Although research into underlying mechanisms is evolving, immunity is understudied. SARS-CoV-2-specific T cell responses are of key importance for viral clearance and COVID-19 recovery. However, in long COVID, the establishment and persistence of SARS-CoV-2-specific T cells are far from clear, especially beyond 12 mo postinfection and postvaccination. We defined ex vivo antigen-specific B cell and T cell responses and their T cell receptors (TCR) repertoires across 2 y postinfection in people with long COVID. Using 13 SARS-CoV-2 peptide-HLA tetramers, spanning 11 HLA allotypes, as well as spike and nucleocapsid probes, we tracked SARS-CoV-2-specific CD8+ and CD4+ T cells and B-cells in individuals from their first SARS-CoV-2 infection through primary vaccination over 24 mo. The frequencies of ORF1a- and nucleocapsid-specific T cells and B cells remained stable over 24 mo. Spike-specific CD8+ and CD4+ T cells and B cells were boosted by SARS-CoV-2 vaccination, indicating immunization, in fully recovered and people with long COVID, altered the immunodominance hierarchy of SARS-CoV-2 T cell epitopes. Meanwhile, influenza-specific CD8+ T cells were stable across 24 mo, suggesting no bystander-activation. Compared to total T cell populations, SARS-CoV-2-specific T cells were enriched for central memory phenotype, although the proportion of central memory T cells decreased following acute illness. Importantly, TCR repertoire composition was maintained throughout long COVID, including postvaccination, to 2 y postinfection. Overall, we defined ex vivo SARS-CoV-2-specific B cells and T cells to understand primary and recall responses, providing key insights into antigen-specific responses in people with long COVID.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ruth R Hagen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lydia Murdiyarso
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Isabelle J H Foo
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Elizabeth R V Ten Berge
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanujah Ganesh
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Prathanporn Kaewpreedee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelly W K Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Samuel M S Cheng
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janette S Y Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Dhilshan Jayasinghe
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Monash Infectious Diseases, Monash Health and School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Tom C Kotsimbos
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC 3004, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC 3084, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha E Holmes
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC 3000, Australia
- Data Analytics Research and Evaluation Centre, Austin Health and University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Ken Ka Pang Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Disease, Alfred Hospital and Monash University, Melbourne, VIC 3000, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
12
|
Wang Y, Wang Q, He F, Qiao N, Li X, Wei L, Sun L, Dai W, Li Y, Pang X, Hu J, Huang C, Yang G, Pang C, Hu Z, Xing M, Wan C, Zhou D. Age-dependent decrease of circulating T follicular helper cells correlates with disease severity in elderly patients with COVID-19. Clin Immunol 2024; 266:110329. [PMID: 39067679 DOI: 10.1016/j.clim.2024.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Overwhelming evidence has shown that aging is a significant risk factor for COVID-19-related hospitalizations, death and other adverse health outcomes. Particular T cell subsets that susceptible to aging and associated with COVID-19 disease severity requires further elucidation. Our study recruited 57 elderly patients with acute COVID-19 and 27 convalescent donors. Adaptive immunity was assessed across the COVID-19 severity spectrum. Patients underwent age-dependent CD4+ T lymphopenia, preferential loss of circulating T follicular regulatory cells (cTfh) subsets including cTfh-em, cTfh-cm, cTfh1, cTfh2, cTfh17 and circulating T follicular regulatory cells (cTfr), which regulated antibody production through different pathways and correlated with COVID-19 severity, were observed. Moreover, vaccination improved cTfh-cm, cTfh2, cTfr proportion and promoted NAb production. In conclusion, the elderly had gone through age-dependent cTfh subsets deficiency, which impeded NAb production and enabled aggravation of COVID-19 to critical illness, whereas SARS-CoV-2 vaccine inoculation helped to rejuvenate cTfh, cTfr and intensify NAb responses.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Qiu Wang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Nan Qiao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Xuejun Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Liqun Wei
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Lingjin Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Xueyang Pang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Jiayi Hu
- Department of Clinical Medicine, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Chuan Huang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Guangchen Yang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Zhidong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China.
| | - Chunxiao Wan
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China; Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Shanghai 201508, China.
| |
Collapse
|
13
|
Fogaça MBT, Lopes-Luz L, Saavedra DP, de Oliveira NKAB, Jesus Sousa MBD, Perez JDP, de Andrade IA, Crispim GJB, Pinto LDS, Ferreira MRA, Ribeiro BM, Nagata T, Conceição FR, Stefani MMDA, Bührer-Sékula S. Production of antigens expressed in Nicotiana benthamiana plant and Escherichia coli for the SARS-CoV-2 IgG antibody detection by ELISA. J Virol Methods 2024; 329:114969. [PMID: 38834144 DOI: 10.1016/j.jviromet.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
The recent COVID-19 pandemic disclosed a critical shortage of diagnostic kits worldwide, emphasizing the urgency of utilizing all resources available for the development and production of diagnostic tests. Different heterologous protein expression systems can be employed for antigen production. This study assessed novel SARS-CoV-2 proteins produced by a transient expression system in Nicotiana benthamiana utilizing an infectious clone vector based on pepper ringspot virus (PepRSV). These proteins included the truncated S1-N protein (spike protein N-terminus residues 12-316) and antigen N (nucleocapsid residues 37-402). Two other distinct SARS-CoV-2 antigens expressed in Escherichia coli were evaluated: QCoV9 chimeric antigen protein (spike protein residues 449-711 and nucleocapsid protein residues 160-406) and QCoV7 truncated antigen (nucleocapsid residues 37-402). ELISAs using the four antigens individually and the same panel of samples were performed for the detection of anti-SARS-CoV-2 IgG antibodies. Sensitivity was evaluated using 816 samples from 351 COVID-19 patients hospitalized between 5 and 65 days after symptoms onset; specificity was tested using 195 samples collected before 2018, from domiciliary contacts of leprosy patients. Our findings demonstrated consistent test sensitivity, ranging from 85 % to 88 % with specificity of 97.5 %, regardless of the SARS-CoV2 antigen and the expression system used for production. Our results highlight the potential of plant expression systems as useful alternative platforms to produce recombinant antigens and for the development of diagnostic tests, particularly in resource-constrained settings.
Collapse
Affiliation(s)
- Matheus Bernardes Torres Fogaça
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, Goiânia, Goiás 74690-900, Brazil
| | - Leonardo Lopes-Luz
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, Goiânia, Goiás 74690-900, Brazil
| | - Djairo Pastor Saavedra
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, Goiânia, Goiás 74690-900, Brazil
| | - Nicolle Kathlen Alves Belem de Oliveira
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maria Beatris de Jesus Sousa
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Julio Daniel Pacheco Perez
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ikaro Alves de Andrade
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Gildemar José Bezerra Crispim
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil; Hospital Regional de Santa Maria, Brasília, DF 72502-100, Brazil
| | - Luciano da Silva Pinto
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS CEP 96160-000, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS CEP 96160-000, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS CEP 96160-000, Brazil
| | - Mariane Martins de Araújo Stefani
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Samira Bührer-Sékula
- Laboratório de Produção e Desenvolvimento de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, Goiânia, Goiás 74690-900, Brazil.
| |
Collapse
|
14
|
Verstegen NJM, Hagen RR, Kreher C, Kuijper LH, Dijssel JVD, Ashhurst T, Kummer LYL, Palomares Cabeza V, Steenhuis M, Duurland MC, Jongh RD, Schoot CEVD, Konijn VAL, Mul E, Kedzierska K, van Dam KPJ, Stalman EW, Boekel L, Wolbink G, Tas SW, Killestein J, Rispens T, Wieske L, Kuijpers TW, Eftimov F, van Kempen ZLE, van Ham SM, Ten Brinke A, van de Sandt CE. T cell activation markers CD38 and HLA-DR indicative of non-seroconversion in anti-CD20-treated patients with multiple sclerosis following SARS-CoV-2 mRNA vaccination. J Neurol Neurosurg Psychiatry 2024; 95:855-864. [PMID: 38548324 PMCID: PMC11347213 DOI: 10.1136/jnnp-2023-332224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/19/2024] [Indexed: 08/18/2024]
Abstract
BACKGROUND Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. METHODS In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). RESULTS Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. CONCLUSION These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.
Collapse
Affiliation(s)
- Niels J M Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christine Kreher
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute, and The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Laura Y L Kummer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Virginia Palomares Cabeza
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rivka de Jongh
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Veronique A L Konijn
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Mul
- Research Facilities, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Koos P J van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center location Reade, Amsterdam, The Netherlands
| | - Gertjan Wolbink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center location Reade, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zoé L E van Kempen
- Department of Neurology, Amsterdam UMC, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Priest DG, Ebihara T, Tulyeu J, Søndergaard JN, Sakakibara S, Sugihara F, Nakao S, Togami Y, Yoshimura J, Ito H, Onishi S, Muratsu A, Mitsuyama Y, Ogura H, Oda J, Okusaki D, Matsumoto H, Wing JB. Atypical and non-classical CD45RB lo memory B cells are the majority of circulating SARS-CoV-2 specific B cells following mRNA vaccination or COVID-19. Nat Commun 2024; 15:6811. [PMID: 39122676 PMCID: PMC11315995 DOI: 10.1038/s41467-024-50997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Resting memory B cells can be divided into classical or atypical groups, but the heterogenous marker expression on activated memory B cells makes similar classification difficult. Here, by longitudinal analysis of mass cytometry and CITE-seq data from cohorts with COVID-19, bacterial sepsis, or BNT162b2 mRNA vaccine, we observe that resting B cell memory consist of classical CD45RB+ memory and CD45RBlo memory, of which the latter contains of two distinct groups of CD11c+ atypical and CD23+ non-classical memory cells. CD45RB levels remain stable in these cells after activation, thereby enabling the tracking of activated B cells and plasmablasts derived from either CD45RB+ or CD45RBlo memory B cells. Moreover, in both COVID-19 patients and mRNA vaccination, CD45RBlo B cells formed the majority of SARS-CoV2 specific memory B cells and correlated with serum antibodies, while CD45RB+ memory are activated by bacterial sepsis. Our results thus identify that stably expressed CD45RB levels can be exploited to trace resting memory B cells and their activated progeny, and suggest that atypical and non-classical CD45RBlo memory B cells contribute to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- David G Priest
- Laboratory of Human Single Cell Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, 563-0793, Japan
| | - Takeshi Ebihara
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Janyerkye Tulyeu
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jonas N Søndergaard
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, IFReC, Osaka University, Suita, Osaka, 563-0793, Japan
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka, 532-0003, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Disease, Osaka University, Suita, Osaka, 563-0793, Japan
- Research Institute for Microbial Disease, Osaka University, Suita, Osaka, 563-0793, Japan
| | - Shunichiro Nakao
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Ito
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shinya Onishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Arisa Muratsu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yumi Mitsuyama
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, 558-8558, Japan
| | - Hiroshi Ogura
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Oda
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Daisuke Okusaki
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI-IFReC, Osaka University, Suita, 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Hisatake Matsumoto
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - James B Wing
- Laboratory of Human Single Cell Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, 563-0793, Japan.
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan.
| |
Collapse
|
16
|
Deng S, Xu Z, Wang M, Hu J, Liu Z, Zhu F, Zheng P, Kombe Kombe AJ, Zhang H, Wu S, Jin T. Structural insights into immune escape at killer T cell epitope by SARS-CoV-2 Spike Y453F variants. J Biol Chem 2024; 300:107563. [PMID: 39002680 PMCID: PMC11342781 DOI: 10.1016/j.jbc.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
CD8+ T cell immunity, mediated by human leukocyte antigen (HLA) and T cell receptor (TCR), plays a critical role in conferring immune memory and protection against viral pathogens. The emergence of SARS-CoV-2 variants poses a serious challenge to the efficacy of current vaccines. Whereas numerous SARS-CoV-2 mutations associated with immune escape from CD8+ T cells have been documented, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored. Here, we studied an HLA-A24-restricted NYN epitope (Spike448-456) that elicits broad CD8+ T cell responses in COVID-19 patients characterized by a common TCR repertoire. Four natural mutations, N450K, L452Q, L452R, and Y453F, arose within the NYN epitope and have been transmitted in certain viral lineages. Our findings indicate that these mutations have minimal impact on the epitope's presentation by cell surface HLA, yet they diminish the affinities of their respective peptide-HLA complexes (pHLAs) for NYN peptide-specific TCRs, particularly L452R and Y453F. Furthermore, we determined the crystal structure of HLA-A24 loaded with the Y453F peptide (NYNYLFRLF), and subsequently a ternary structure of the public TCRNYN-I complexed to the original NYN-HLA-A24 (NYNYLYRLF). Our structural analysis unveiled that despite competent presentation by HLA, the mutant Y453F peptide failed to establish a stable TCR-pHLA ternary complex due to reduced peptide: TCR contacts. This study supports the idea that cellular immunity restriction is an important driving force behind viral evolution.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- SARS-CoV-2/immunology
- Immune Evasion
- CD8-Positive T-Lymphocytes/immunology
- COVID-19/immunology
- COVID-19/virology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/chemistry
- Mutation
- Crystallography, X-Ray
Collapse
Affiliation(s)
- Shasha Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Zhihao Xu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meihua Wang
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Hu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peiyi Zheng
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Songquan Wu
- College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, Anhui, P.R. China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; College of Medicine, Lishui University, Lishui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
17
|
Leekha A, Saeedi A, Sefat KMSR, Kumar M, Martinez-Paniagua M, Damian A, Kulkarni R, Reichel K, Rezvan A, Masoumi S, Liu X, Cooper LJN, Sebastian M, Sands CM, Das VE, Patel NB, Hurst B, Varadarajan N. Multi-antigen intranasal vaccine protects against challenge with sarbecoviruses and prevents transmission in hamsters. Nat Commun 2024; 15:6193. [PMID: 39043645 PMCID: PMC11266618 DOI: 10.1038/s41467-024-50133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Immunization programs against SARS-CoV-2 with commercial intramuscular vaccines prevent disease but are less efficient in preventing infections. Mucosal vaccines can provide improved protection against transmission, ideally for different variants of concern (VOCs) and related sarbecoviruses. Here, we report a multi-antigen, intranasal vaccine, NanoSTING-SN (NanoSTING-Spike-Nucleocapsid), eliminates virus replication in both the lungs and the nostrils upon challenge with the pathogenic SARS-CoV-2 Delta VOC. We further demonstrate that NanoSTING-SN prevents transmission of the SARS-CoV-2 Omicron VOC (BA.5) to vaccine-naïve hamsters. To evaluate protection against other sarbecoviruses, we immunized mice with NanoSTING-SN. We showed that immunization affords protection against SARS-CoV, leading to protection from weight loss and 100% survival in mice. In non-human primates, animals immunized with NanoSTING-SN show durable serum IgG responses (6 months) and nasal wash IgA responses cross-reactive to SARS-CoV-2 (XBB1.5), SARS-CoV and MERS-CoV antigens. These observations have two implications: (1) mucosal multi-antigen vaccines present a pathway to reducing transmission of respiratory viruses, and (2) eliciting immunity against multiple antigens can be advantageous in engineering pan-sarbecovirus vaccines.
Collapse
Affiliation(s)
- Ankita Leekha
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - K M Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Monish Kumar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Adrian Damian
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Kate Reichel
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ali Rezvan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Shalaleh Masoumi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | | | | | - Vallabh E Das
- College of Optometry, University of Houston, Houston, TX, USA
| | - Nimesh B Patel
- College of Optometry, University of Houston, Houston, TX, USA
| | - Brett Hurst
- Institute of Antiviral Research, Utah State University, UT, Logan, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
18
|
Gutierrez-Chavez C, Aperrigue-Lira S, Ortiz-Saavedra B, Paz I. Chemokine receptors in COVID-19 infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:53-94. [PMID: 39260938 DOI: 10.1016/bs.ircmb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors play diverse roles in the immune response against pathogens by recruiting innate and adaptive immune cells to sites of infection. However, their involvement could also be detrimental, causing tissue damage and exacerbating respiratory diseases by triggering histological alterations such as fibrosis and remodeling. This chapter reviews the role of chemokine receptors in the immune defense against SARS-CoV-2 infection. In COVID-19, CXCR3 is expressed mainly in T cells, and its upregulation is related to an increase in SARS-CoV-2-specific antibodies but also to COVID-19 severity. CCR5 is a key player in T-cell recruitment, and its suppression leads to reduced inflammation and viremia levels. Conversely, CXCR6 is implicated in the aberrant migration of memory T cells within airways. On the other hand, increased CCR4+ cells in the blood and decreased CCR4+ cells in lung cells are associated with severe COVID-19. Additionally, CCR2 is associated with an increase in macrophage recruitment to lung tissues. Elevated levels of CXCR1 and CXCR2, which are predominantly expressed in neutrophils, are associated with the severity of the disease, and finally, the expression of CX3CR1 in cytotoxic T lymphocytes affects the retention of these cells in lung tissues, thereby impacting the severity of COVID-19. Despite the efforts of many clinical trials to find effective therapies for COVID-19 using chemokine receptor inhibitors, no conclusive results have been found due to the small number of patients, redundancy, and co-expression of chemokine receptors by immune cells, which explains the difficulty in finding a single therapeutic target or effective treatment.
Collapse
Affiliation(s)
| | - Shalom Aperrigue-Lira
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Brando Ortiz-Saavedra
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Irmia Paz
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| |
Collapse
|
19
|
Lee MJ, de los Rios Kobara I, Barnard TR, Vales Torres X, Tobin NH, Ferbas KG, Rimoin AW, Yang OO, Aldrovandi GM, Wilk AJ, Fulcher JA, Blish CA. NK Cell-Monocyte Cross-talk Underlies NK Cell Activation in Severe COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1693-1705. [PMID: 38578283 PMCID: PMC11102029 DOI: 10.4049/jimmunol.2300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
Collapse
Affiliation(s)
- Madeline J. Lee
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Izumi de los Rios Kobara
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Trisha R. Barnard
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Xariana Vales Torres
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Nicole H. Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kathie G. Ferbas
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anne W. Rimoin
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Grace M. Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aaron J. Wilk
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
20
|
Landolina N, Ricci B, Veneziani I, Alicata C, Mariotti FR, Pelosi A, Quatrini L, Mortari EP, Carsetti R, Vacca P, Tumino N, Azzarone B, Moretta L, Maggi E. TLR2/4 are novel activating receptors for SARS-CoV-2 spike protein on NK cells. Front Immunol 2024; 15:1368946. [PMID: 38881905 PMCID: PMC11176535 DOI: 10.3389/fimmu.2024.1368946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background In early infected or severe coronavirus disease 2019 (COVID-19) patients, circulating NK cells are consistently reduced, despite being highly activated or exhausted. The aim of this paper was to establish whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (SP) may directly trigger NK cells and through which receptor(s). Methods SP-stimulated human NK cells have been evaluated for the expression of activation markers, cytokine release, and cytotoxic activity, as well as for gene expression profiles and NF-kB phosphorylation, and they have been silenced with specific small interfering RNAs. Results SPs from the Wuhan strain and other variants of concern (VOCs) directly bind and stimulate purified NK cells by increasing activation marker expression, cytokine release, and cytolytic activity, prevalently in the CD56brightNK cell subset. VOC-SPs differ in their ability to activate NK cells, G614, and Delta-Plus strains providing the strongest activity in the majority of donors. While VOC-SPs do not trigger ACE2, which is not expressed on NK cells, or other activating receptors, they directly and variably bind to both Toll-like receptor 2 (TLR2) and TLR4. Moreover, SP-driven NK cell functions are inhibited upon masking such receptors or silencing the relative genes. Lastly, VOC-SPs upregulate CD56dimNK cell functions in COVID-19 recovered, but not in non-infected, individuals. Conclusions TLR2 and TLR4 are novel activating receptors for SP in NK cells, suggesting a new role of these cells in orchestrating the pathophysiology of SARS-CoV-2 infection. The pathogenic relevance of this finding is highlighted by the fact that free SP providing NK cell activation is frequently detected in a SARS-CoV-2 inflamed environment and in plasma of infected and long-COVID-19 subjects.
Collapse
Affiliation(s)
- Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Biancamaria Ricci
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Irene Veneziani
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Linda Quatrini
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Tumino
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
21
|
Edner NM, Houghton LP, Ntavli E, Rees-Spear C, Petersone L, Wang C, Fabri A, Elfaki Y, Rueda Gonzalez A, Brown R, Kisand K, Peterson P, McCoy LE, Walker LSK. TIGIT +Tfh show poor B-helper function and negatively correlate with SARS-CoV-2 antibody titre. Front Immunol 2024; 15:1395684. [PMID: 38868776 PMCID: PMC11167088 DOI: 10.3389/fimmu.2024.1395684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Circulating follicular helper T cells (cTfh) can show phenotypic alterations in disease settings, including in the context of tissue-damaging autoimmune or anti-viral responses. Using severe COVID-19 as a paradigm of immune dysregulation, we have explored how cTfh phenotype relates to the titre and quality of antibody responses. Severe disease was associated with higher titres of neutralising S1 IgG and evidence of increased T cell activation. ICOS, CD38 and HLA-DR expressing cTfh correlated with serum S1 IgG titres and neutralising strength, and interestingly expression of TIGIT by cTfh showed a negative correlation. TIGIT+cTfh expressed increased IFNγ and decreased IL-17 compared to their TIGIT-cTfh counterparts, and showed reduced capacity to help B cells in vitro. Additionally, TIGIT+cTfh expressed lower levels of CD40L than TIGIT-cTfh, providing a potential explanation for their poor B-helper function. These data identify phenotypic changes in polyclonal cTfh that correlate with specific antibody responses and reveal TIGIT as a marker of cTfh with altered function.
Collapse
Affiliation(s)
- Natalie M. Edner
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Luke P. Houghton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Elisavet Ntavli
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lina Petersone
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chunjing Wang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Astrid Fabri
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Yassin Elfaki
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Andrea Rueda Gonzalez
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Laura E. McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
22
|
Huang C, Hu X, Wang D, Gong R, Wang Q, Ren F, Wu Y, Chen J, Xiong X, Li H, Wang Q, Long G, Zhang D, Han Y. Multi-cohort study on cytokine and chemokine profiles in the progression of COVID-19. Sci Rep 2024; 14:10324. [PMID: 38710800 DOI: 10.1038/s41598-024-61133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Various substances in the blood plasma serve as prognostic indicators of the progression of COVID-19. Consequently, multi-omics studies, such as proteomic and metabolomics, are ongoing to identify accurate biomarkers. Cytokines and chemokines, which are crucial components of immune and inflammatory responses, play pivotal roles in the transition from mild to severe illness. To determine the relationship between plasma cytokines and the progression of COVID-19, we used four study cohorts to perform a systematic study of cytokine levels in patients with different disease stages. We observed differential cytokine expression between patients with persistent-mild disease and patients with mild-to-severe transformation. For instance, IL-4 and IL-17 levels significantly increased in patients with mild-to-severe transformation, indicating differences within the mild disease group. Subsequently, we analysed the changes in cytokine and chemokine expression in the plasma of patients undergoing two opposing processes: the transition from mild to severe illness and the transition from severe to mild illness. We identified several factors, such as reduced expression of IL-16 and IL-18 during the severe phase of the disease and up-regulated expression of IL-10, IP-10, and SCGF-β during the same period, indicative of the deterioration or improvement of patients' conditions. These factors obtained from fine-tuned research cohorts could provide auxiliary indications for changes in the condition of COVID-19 patients.
Collapse
Affiliation(s)
- Chaolin Huang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, 430023, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Delong Wang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, USTC, Hefei, 230001, Anhui, China
| | - Rui Gong
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, USTC, Hefei, 230001, Anhui, China
| | - Qiongya Wang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Fuli Ren
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, 430023, Hubei, China
| | - Yuanjun Wu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Juan Chen
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Xianglian Xiong
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Huadong Li
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Qian Wang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Gangyu Long
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China
| | - Dingyu Zhang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, USTC, Hefei, 230001, Anhui, China.
| | - Yang Han
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430023, Hubei, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, 430023, Hubei, China.
| |
Collapse
|
23
|
Putri GH, Howitt G, Marsh-Wakefield F, Ashhurst TM, Phipson B. SuperCellCyto: enabling efficient analysis of large scale cytometry datasets. Genome Biol 2024; 25:89. [PMID: 38589921 PMCID: PMC11003185 DOI: 10.1186/s13059-024-03229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Advancements in cytometry technologies have enabled quantification of up to 50 proteins across millions of cells at single cell resolution. Analysis of cytometry data routinely involves tasks such as data integration, clustering, and dimensionality reduction. While numerous tools exist, many require extensive run times when processing large cytometry data containing millions of cells. Existing solutions, such as random subsampling, are inadequate as they risk excluding rare cell subsets. To address this, we propose SuperCellCyto, an R package that builds on the SuperCell tool which groups highly similar cells into supercells. SuperCellCyto is available on GitHub ( https://github.com/phipsonlab/SuperCellCyto ) and Zenodo ( https://doi.org/10.5281/zenodo.10521294 ).
Collapse
Affiliation(s)
- Givanna H Putri
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - George Howitt
- Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Felix Marsh-Wakefield
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Belinda Phipson
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Reperant L, Russell CA, Osterhaus A. Scientific highlights of the 9th ESWI Influenza Conference. ONE HEALTH OUTLOOK 2024; 6:5. [PMID: 38561784 PMCID: PMC10986029 DOI: 10.1186/s42522-024-00099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The European Scientific Working Group on Influenza (ESWI) held the 9th ESWI Influenza Conference in Valencia from 17-20 September 2023. Here we provide a summary of twelve key presentations, covering major topics on influenza virus, respiratory syncytial virus (RSV) and SARS coronavirus 2 (SARS-CoV-2) including: infection processes beyond acute respiratory disease, long COVID, vaccines against influenza and RSV, the implications of the potential extinction of influenza B virus Yamagata lineage, and the threats posed by zoonotic highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
| | - Colin A Russell
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Osterhaus
- Center of Infection Medicine and Zoonosis Research and the University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
25
|
Korotaeva AA, Samoilova EV, Pogosova NV, Kuchiev DT, Gomyranova NV, Paleev FN. Factors of Interleukin-6 Signaling in COVID-19 Patients with Lung Damage of Varying Degrees: A Pilot Study. Bull Exp Biol Med 2024; 176:772-775. [PMID: 38890212 DOI: 10.1007/s10517-024-06106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 06/20/2024]
Abstract
Specific features of IL-6 signal transduction were studied in 89 patients with lung damage of varying degrees during the first COVID-19 pandemic wave. The levels of IL-6 signaling components (IL-6, sIL-6R, and sgp130) and highly sensitive C-reactive protein (hsCRP) were examined in patients with intact lungs (CT-0), mild (CT-1), moderate (CT-2), moderate to severe (CT-3), and severe (CT-4) lung damage. Seventy patients were re-examined 3-7 months after discharge from the hospital. The IL-6 and hsCRP levels increased several times with severing lung damage severity. In patients with CT-3, sIL6-R increased statistically significantly and remained high in CT-4 patients. sgp130 levels were lower in CT-1 and CT-2 patients and higher in CT-3 and CT-4 patients compared to CT-0 patients. We revealed a positive correlation between IL-6 and hsCRP levels in CT-1, CT-2, and CT-3 patients. In CT-3 patients, sIL-6R levels positively correlated with IL-6 concentration. The studied parameters decreased considerably in all patients 3-7 months after discharge. It can be suggested that IL-6 classic-signaling is predominant in CT-1 and CT-2, while trans-signaling prevails in CT-3. Disorders in regulatory mechanisms of IL-6 signaling occur in CT-4, which prevents physiological elimination of IL-6 hyperactivity. The results obtained are preliminary and require a broader study.
Collapse
Affiliation(s)
- A A Korotaeva
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E V Samoilova
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - N V Pogosova
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D T Kuchiev
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Gomyranova
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - F N Paleev
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
26
|
Davies K, McLaren J. Destabilisation of T cell-dependent humoral immunity in sepsis. Clin Sci (Lond) 2024; 138:65-85. [PMID: 38197178 PMCID: PMC10781648 DOI: 10.1042/cs20230517] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For some, sepsis presents as a predominantly suppressive disorder, whilst others experience a pro-inflammatory condition which can culminate in a 'cytokine storm'. Frequently, patients experience signs of concurrent hyper-inflammation and immunosuppression, underpinning the difficulty in directing effective treatment. Although intensive care unit mortality rates have improved in recent years, one-third of discharged patients die within the following year. Half of post-sepsis deaths are due to exacerbation of pre-existing conditions, whilst half are due to complications arising from a deteriorated immune system. It has been suggested that the intense and dysregulated response to infection may induce irreversible metabolic reprogramming in immune cells. As a critical arm of immune protection in vertebrates, alterations to the adaptive immune system can have devastating repercussions. Indeed, a marked depletion of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such sepsis-induced lymphopenia has profound consequences on how T cells respond to infection but equally on the humoral immune response that is both elicited by B cells and supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of cells expressing dysfunctional or exhausted phenotypes. This review will specifically focus on how sepsis destabilises the adaptive immune system, with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral immunity.
Collapse
Affiliation(s)
- Kate Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| |
Collapse
|
27
|
Langelier C, Pickering H, Schaenman J, Phan H, Maguire C, Tsitsiklis A, Rouphael N, Higuita N, Atkinson M, Breckenridge S, Fung M, Messer W, Salehi-Rad R, Altman M, Becker P, Bosinger S, Eckalbar W, Hoch A, Jayavelu N, Kim-Schulze S, Jenkins M, Kleinstein S, Krammer F, Maecker H, Ozonoff A, Diray-Arce J, Shaw A, Baden L, Levy O, Reed E. Host-Microbe Multi-omic Profiling Identifies a Unique Program of COVID-19 Inflammatory Dysregulation in Solid Organ Transplant Recipients. RESEARCH SQUARE 2023:rs.3.rs-3621844. [PMID: 38196658 PMCID: PMC10775393 DOI: 10.21203/rs.3.rs-3621844/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant (SOT) recipients, who have atypical but poorly characterized immune responses to SARS-CoV-2 infection. We sought to understand and the host immunologic and microbial features of COVID-19 in SOT recipients by leveraging a prospective multicenter cohort of 1164 hospitalized patients. Using multi-omic immuoprofiling, we studied 86 SOT recipients in this cohort, who were age- and sex-matched 2:1 with 172 non-SOT controls. PBMC and nasal transcriptional profiling unexpectedly demonstrated upregulation of innate immune pathways related to interferon (IFN) and Toll-like receptor signaling, and complement activation, in SOT recipients. Longitudinal analyses across the first 30-days post-hospitalization demonstrated persistent upregulation of these innate immunity pathways in SOT recipients. The levels of several proinflammatory serum chemokines, such as CX3CL1 and KITLG, were also higher in SOT recipients at the time of hospitalization, although IFN-gamma levels were lower. We observed differential dynamics of CXCL11, which remained persistently elevated in SOT recipients over the course of hospitalization. Nasal microbiome alpha diversity was higher in SOT recipients versus controls, but no differences in taxonomic abundance beyond SARS-CoV-2 were observed. SOT recipients had higher nasal SARS-CoV-2 viral loads and impaired viral clearance compared to controls. Antibody analysis demonstrated lower anti-SARS-CoV-2 spike IgG levels in SOT recipients upon hospitalization, but no distinctions over time compared to controls. Mass cytometry demonstrated marked differences in blood immune cell populations, with SOT recipients exhibiting decreased plasmablasts and transitional B cells, and increased senescent T cells. Severe disease in SOT recipients was characterized by a less robust induction of inflammatory chemokines, such as IL-6 and CCL7, and a more subtle proinflammatory transcriptional response in the blood and airway. Together, our study reveals distinct immune features and altered viral dynamics in SOT recipients compared to non-SOT controls. We unexpectedly find that SOT recipients exhibit an augmented, predominantly innate immune response in both the blood and upper respiratory tract that remains relatively stable across disease severity, in contrast to non-SOT controls. These findings may relate to the paradoxical observation that SOT recipients have similar COVID-19 mortality rates versus the general population, despite being more susceptible to SARS-CoV-2 infection, remaining infectious longer, and having higher rates of hospitalization. In summary, we find that COVID-19 in SOT recipients is characterized by a biologically distinct immune state, suggesting the potential for unique prognostic biomarkers and therapeutic approaches in this vulnerable population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Patrice Becker
- National Institute of Allergy and Infectious Diseases/National Institutes of Health
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kusakabe T, Lin WY, Cheong JG, Singh G, Ravishankar A, Yeung ST, Mesko M, DeCelie MB, Carriche G, Zhao Z, Rand S, Doron I, Putzel GG, Worgall S, Cushing M, Westblade L, Inghirami G, Parkhurst CN, Guo CJ, Schotsaert M, García-Sastre A, Josefowicz SZ, Salvatore M, Iliev ID. Fungal microbiota sustains lasting immune activation of neutrophils and their progenitors in severe COVID-19. Nat Immunol 2023; 24:1879-1889. [PMID: 37872315 PMCID: PMC10805066 DOI: 10.1038/s41590-023-01637-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023]
Abstract
Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.
Collapse
Affiliation(s)
- Takato Kusakabe
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Woan-Yu Lin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
| | - Jin-Gyu Cheong
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Arjun Ravishankar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Stephen T Yeung
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Department of Microbiology, New York University, Langone Health, New York City, NY, USA
| | - Marissa Mesko
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Meghan Bialt DeCelie
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Guilhermina Carriche
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Sophie Rand
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Itai Doron
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Gregory G Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Stefan Worgall
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York City, NY, USA
| | - Melissa Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Lars Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Christopher N Parkhurst
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York City, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, New York City, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Steven Z Josefowicz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Mirella Salvatore
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York City, NY, USA.
| |
Collapse
|
29
|
Zhang W, Clemens EB, Kedzierski L, Chua BY, Mayo M, Lonzi C, Hinchcliff A, Rigas V, Middleton BF, Binks P, Rowntree LC, Allen LF, Tan HX, Petersen J, Chaurasia P, Krammer F, Wheatley AK, Kent SJ, Rossjohn J, Miller A, Lynar S, Nelson J, Nguyen THO, Davies J, Kedzierska K. Broad spectrum SARS-CoV-2-specific immunity in hospitalized First Nations peoples recovering from COVID-19. Immunol Cell Biol 2023; 101:964-974. [PMID: 37725525 PMCID: PMC10872797 DOI: 10.1111/imcb.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
Collapse
Affiliation(s)
- Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Mark Mayo
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Claire Lonzi
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | | | - Vanessa Rigas
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | | | - Paula Binks
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD 4810, Australia
| | - Sarah Lynar
- Menzies School of Health Research, Darwin, NT 0811, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Jane Nelson
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT 0811, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- Center for Influenza Disease and Emergence Response (CIDER), Melbourne, VIC 3000, Australia
| |
Collapse
|
30
|
Yang S, Duan L, Wang C, Zhang C, Hou S, Wang H, Song J, Zhang T, Li Z, Wang M, Tang J, Zheng Q, Wang H, Wang Q, Zhao W. Activation and induction of antigen-specific T follicular helper cells play a critical role in recombinant SARS-CoV-2 RBD vaccine-induced humoral responses. MOLECULAR BIOMEDICINE 2023; 4:34. [PMID: 37853288 PMCID: PMC10584785 DOI: 10.1186/s43556-023-00145-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
The role of follicular T helper (Tfh) cells in humoral response has been considered essential in recent years. Understanding how Tfh cells control complex humoral immunity is critical to developing strategies to improve the efficacy of vaccines against SARS-CoV-2 and other emerging pathogens. However, the immunologic mechanism of Tfh cells in SARS-CoV-2 receptor binding domain (RBD) vaccine strategy is limited. In this study, we expressed and purified recombinant SARS-CoV-2 RBD protein in Drosophila S2 cells for the first time and explored the mechanism of Tfh cells induced by RBD vaccine in humoral immune response. We mapped the dynamic of Tfh cell in lymph node and spleen following RBD vaccination and revealed the relationship between Tfh cells and humoral immune response induced by SARS-CoV-2 RBD vaccine through correlation analysis, blocking of IL-21 signaling pathway, and co-culture of Tfh with memory B cells. Recombinant RBD protein elicited a predominant Tfh1 and Tfh1-17 subset response and strong GC responses in spleen and lymph nodes, especially to enhanced vaccination. IL-21 secreted by Tfh cells affected the development and differentiation of B cells and played a key role in the humoral immune response. These observations will help us further understand the mechanism of protective immune response induced by COVID-19 vaccine and has guiding significance for the development of vaccines against newly emerging mutants.
Collapse
Affiliation(s)
- Songhao Yang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Chan Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Cuiying Zhang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Siyu Hou
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Hao Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jiahui Song
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Tingting Zhang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Zihua Li
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Mingxia Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Jing Tang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Qi Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| | - Wei Zhao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| |
Collapse
|
31
|
Sui C, Lee W. Role of interleukin 6 and its soluble receptor on the diffusion barrier dysfunction of alveolar tissue. Biomed Microdevices 2023; 25:40. [PMID: 37851124 DOI: 10.1007/s10544-023-00680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
During respiratory infection, barrier dysfunction in alveolar tissue can result from "cytokine storm" caused by overly reactive immune response. Particularly, interleukin 6 (IL-6) is implicated as a key biomarker of cytokine storm responsible for and further progression to pulmonary edema. In this study, alveolar-like tissue was reconstructed in a microfluidic device with: (1) human microvascular lung endothelial cells (HULEC-5a) cultured under flow-induced shear stress and (2) human epithelial cells (Calu-3) cultured at air-liquid interface. The effects of IL-6 and the soluble form of its receptor (sIL-6R) on the permeability, electrical resistance, and morphology of the endothelial and epithelial layers were evaluated. The diffusion barrier properties of both the endothelial and epithelial layers were significantly degraded only when IL-6 treatment was combined with sIL-6R. As suggested by recent review and clinical studies, our results provide unequivocal evidence that the barrier dysfunction occurs through trans-signaling in which IL-6 and sIL-6R form a complex and then bind to the surface of endothelial and epithelial cells, but not by classical signaling in which IL-6 binds to membrane-expressed IL-6 receptor. This finding suggests that the role of both IL-6 and sIL-6R should be considered as important biomarkers in developing strategies for treating cytokine storm.
Collapse
Affiliation(s)
- Chao Sui
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
| |
Collapse
|
32
|
Lee MJ, Blish CA. Defining the role of natural killer cells in COVID-19. Nat Immunol 2023; 24:1628-1638. [PMID: 37460639 PMCID: PMC10538371 DOI: 10.1038/s41590-023-01560-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 09/20/2023]
Abstract
Natural killer (NK) cells are critical effectors of antiviral immunity. Researchers have therefore sought to characterize the NK cell response to coronavirus disease 2019 (COVID-19) and the virus that causes it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The NK cells of patients with severe COVID-19 undergo extensive phenotypic and functional changes. For example, the NK cells from critically ill patients with COVID-19 are highly activated and exhausted, with poor cytotoxic function and cytokine production upon stimulation. The NK cell response to SARS-CoV-2 is also modulated by changes induced in virally infected cells, including the ability of a viral peptide to bind HLA-E, preventing NK cells from receiving inhibitory signals, and the downregulation of major histocompatibility complex class I and ligands for the activating receptor NKG2D. These changes have important implications for the ability of infected cells to escape NK cell killing. The implications of these findings for antibody-dependent NK cell activity in COVID-19 are also reviewed. Despite these advances in the understanding of the NK cell response to SARS-CoV-2, there remain critical gaps in our current understanding and a wealth of avenues for future research on this topic.
Collapse
Affiliation(s)
- Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Baird S, Ashley CL, Marsh‐Wakefield F, Alca S, Ashhurst TM, Ferguson AL, Lukeman H, Counoupas C, Post JJ, Konecny P, Bartlett A, Martinello M, Bull RA, Lloyd A, Grey A, Hutchings O, Palendira U, Britton WJ, Steain M, Triccas JA. A unique cytotoxic CD4 + T cell-signature defines critical COVID-19. Clin Transl Immunology 2023; 12:e1463. [PMID: 37645435 PMCID: PMC10461786 DOI: 10.1002/cti2.1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/04/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Objectives SARS-CoV-2 infection causes a spectrum of clinical disease presentation, ranging from asymptomatic to fatal. While neutralising antibody (NAb) responses correlate with protection against symptomatic and severe infection, the contribution of the T-cell response to disease resolution or progression is still unclear. As newly emerging variants of concern have the capacity to partially escape NAb responses, defining the contribution of individual T-cell subsets to disease outcome is imperative to inform the development of next-generation COVID-19 vaccines. Methods Immunophenotyping of T-cell responses in unvaccinated individuals was performed, representing the full spectrum of COVID-19 clinical presentation. Computational and manual analyses were used to identify T-cell populations associated with distinct disease states. Results Critical SARS-CoV-2 infection was characterised by an increase in activated and cytotoxic CD4+ lymphocytes (CTL). These CD4+ CTLs were largely absent in asymptomatic to severe disease states. In contrast, non-critical COVID-19 was associated with high frequencies of naïve T cells and lack of activation marker expression. Conclusion Highly activated and cytotoxic CD4+ T-cell responses may contribute to cell-mediated host tissue damage and progression of COVID-19. Induction of these potentially detrimental T-cell responses should be considered when developing and implementing effective COVID-19 control strategies.
Collapse
Affiliation(s)
- Sarah Baird
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Caroline L Ashley
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Felix Marsh‐Wakefield
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteCamperdownNSWAustralia
- Human Cancer and Viral Immunology LaboratoryThe University of SydneyCamperdownNSWAustralia
| | - Sibel Alca
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Thomas M Ashhurst
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Sydney Cytometry Core Research FacilityCharles Perkins Centre, Centenary Institute and The University of SydneyCamperdownNSWAustralia
| | - Angela L Ferguson
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteCamperdownNSWAustralia
| | - Hannah Lukeman
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Tuberculosis Research ProgramCentenary InstituteSydneyNSWAustralia
| | - Jeffrey J Post
- Prince of Wales Clinical SchoolUNSWSydneyNSWAustralia
- School of Clinical Medicine, Medicine & HealthUNSWSydneyNSWAustralia
| | - Pamela Konecny
- Prince of Wales Clinical SchoolUNSWSydneyNSWAustralia
- St George HospitalSydneyNSWAustralia
| | - Adam Bartlett
- The Kirby Institute, UNSWSydneyNSWAustralia
- School of Biomedical Sciences, Medicine & HealthUNSWSydneyNSWAustralia
- Sydney Children's HospitalSydneyNSWAustralia
| | | | - Rowena A Bull
- The Kirby Institute, UNSWSydneyNSWAustralia
- School of Biomedical Sciences, Medicine & HealthUNSWSydneyNSWAustralia
| | - Andrew Lloyd
- The Kirby Institute, UNSWSydneyNSWAustralia
- School of Biomedical Sciences, Medicine & HealthUNSWSydneyNSWAustralia
| | - Alice Grey
- RPA Virtual Hospital, Sydney Local Health DistrictSydneyNSWAustralia
| | - Owen Hutchings
- RPA Virtual Hospital, Sydney Local Health DistrictSydneyNSWAustralia
| | - Umaimainthan Palendira
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteCamperdownNSWAustralia
| | - Warwick J Britton
- Tuberculosis Research ProgramCentenary InstituteSydneyNSWAustralia
- Department of Clinical ImmunologyRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Megan Steain
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| | - James A Triccas
- Sydney Infectious Diseases Institute, Faculty of Medicine and HealthThe University of SydneyNSWCamperdownAustralia
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
35
|
Zhang W, Kedzierski L, Chua BY, Mayo M, Lonzi C, Rigas V, Middleton BF, McQuilten HA, Rowntree LC, Allen LF, Purcell RA, Tan HX, Petersen J, Chaurasia P, Mordant F, Pogorelyy MV, Minervina AA, Crawford JC, Perkins GB, Zhang E, Gras S, Clemens EB, Juno JA, Audsley J, Khoury DS, Holmes NE, Thevarajan I, Subbarao K, Krammer F, Cheng AC, Davenport MP, Grubor-Bauk B, Coates PT, Christensen B, Thomas PG, Wheatley AK, Kent SJ, Rossjohn J, Chung AW, Boffa J, Miller A, Lynar S, Nelson J, Nguyen THO, Davies J, Kedzierska K. Robust and prototypical immune responses toward COVID-19 vaccine in First Nations peoples are impacted by comorbidities. Nat Immunol 2023; 24:966-978. [PMID: 37248417 PMCID: PMC10232372 DOI: 10.1038/s41590-023-01508-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023]
Abstract
High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.
Collapse
Affiliation(s)
- Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Mark Mayo
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Claire Lonzi
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Vanessa Rigas
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Bianca F Middleton
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ruth A Purcell
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Francesca Mordant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Griffith B Perkins
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Eva Zhang
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Macquarie University, Sydney, New South Wales, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Services, Royal Melbourne Hospital and Doherty Department, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allen C Cheng
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School and School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Monash Infectious Diseases, Monash Health and School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Branka Grubor-Bauk
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - P Toby Coates
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Britt Christensen
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - John Boffa
- Central Australian Aboriginal Congress, Alice Springs, Northern Territory, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, Queensland, Australia
| | - Sarah Lynar
- Menzies School of Health Research, Darwin, Northern Territory, Australia
- Infectious Diseases Department, Royal Darwin Hospital and Northern Territory Medical Programme, Darwin, Northern Territory, Australia
| | - Jane Nelson
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| | - Jane Davies
- Menzies School of Health Research, Darwin, Northern Territory, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
- Center for Influenza Disease and Emergence Response, Melbourne, Victoria, Australia.
| |
Collapse
|
36
|
Labzin LI, Chew KY, Eschke K, Wang X, Esposito T, Stocks CJ, Rae J, Patrick R, Mostafavi H, Hill B, Yordanov TE, Holley CL, Emming S, Fritzlar S, Mordant FL, Steinfort DP, Subbarao K, Nefzger CM, Lagendijk AK, Gordon EJ, Parton RG, Short KR, Londrigan SL, Schroder K. Macrophage ACE2 is necessary for SARS-CoV-2 replication and subsequent cytokine responses that restrict continued virion release. Sci Signal 2023; 16:eabq1366. [PMID: 37098119 DOI: 10.1126/scisignal.abq1366] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Macrophages are key cellular contributors to the pathogenesis of COVID-19, the disease caused by the virus SARS-CoV-2. The SARS-CoV-2 entry receptor ACE2 is present only on a subset of macrophages at sites of SARS-CoV-2 infection in humans. Here, we investigated whether SARS-CoV-2 can enter macrophages, replicate, and release new viral progeny; whether macrophages need to sense a replicating virus to drive cytokine release; and, if so, whether ACE2 is involved in these mechanisms. We found that SARS-CoV-2 could enter, but did not replicate within, ACE2-deficient human primary macrophages and did not induce proinflammatory cytokine expression. By contrast, ACE2 overexpression in human THP-1-derived macrophages permitted SARS-CoV-2 entry, processing and replication, and virion release. ACE2-overexpressing THP-1 macrophages sensed active viral replication and triggered proinflammatory, antiviral programs mediated by the kinase TBK-1 that limited prolonged viral replication and release. These findings help elucidate the role of ACE2 and its absence in macrophage responses to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Larisa I Labzin
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
- IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Kathrin Eschke
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaohui Wang
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
- IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, QLD 4072, Australia
| | - Tyron Esposito
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
- IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, QLD 4072, Australia
| | - Claudia J Stocks
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
- IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, QLD 4072, Australia
| | - James Rae
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Ralph Patrick
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Helen Mostafavi
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Brittany Hill
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Teodor E Yordanov
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Caroline L Holley
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
- IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefan Emming
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
- IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, QLD 4072, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Daniel P Steinfort
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Anne K Lagendijk
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma J Gordon
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Kirsty R Short
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, QLD 4072, Australia
- IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
37
|
Nguyen THO, Rowntree LC, Allen LF, Chua BY, Kedzierski L, Lim C, Lasica M, Tennakoon GS, Saunders NR, Crane M, Chee L, Seymour JF, Anderson MA, Whitechurch A, Clemens EB, Zhang W, Chang SY, Habel JR, Jia X, McQuilten HA, Minervina AA, Pogorelyy MV, Chaurasia P, Petersen J, Menon T, Hensen L, Neil JA, Mordant FL, Tan HX, Cabug AF, Wheatley AK, Kent SJ, Subbarao K, Karapanagiotidis T, Huang H, Vo LK, Cain NL, Nicholson S, Krammer F, Gibney G, James F, Trevillyan JM, Trubiano JA, Mitchell J, Christensen B, Bond KA, Williamson DA, Rossjohn J, Crawford JC, Thomas PG, Thursky KA, Slavin MA, Tam CS, Teh BW, Kedzierska K. Robust SARS-CoV-2 T cell responses with common TCRαβ motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells. Cell Rep Med 2023; 4:101017. [PMID: 37030296 PMCID: PMC10040362 DOI: 10.1016/j.xcrm.2023.101017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Chhay Lim
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Masa Lasica
- Department of Haematology, St Vincent's Hospital, Fitzroy, VIC 3065, Australia; Department of Haematology, Eastern Health, Box Hill, VIC 3128, Australia
| | - G Surekha Tennakoon
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Natalie R Saunders
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Megan Crane
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lynette Chee
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ashley Whitechurch
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jessica A Neil
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Han Huang
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lynn K Vo
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Natalie L Cain
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Grace Gibney
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Janine M Trevillyan
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jeni Mitchell
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Britt Christensen
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Katherine A Bond
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Deborah A Williamson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, UK
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karin A Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Constantine S Tam
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| |
Collapse
|
38
|
Yu M, Charles A, Cagigi A, Christ W, Österberg B, Falck-Jones S, Azizmohammadi L, Åhlberg E, Falck-Jones R, Svensson J, Nie M, Warnqvist A, Hellgren F, Lenart K, Arcoverde Cerveira R, Ols S, Lindgren G, Lin A, Maecker H, Bell M, Johansson N, Albert J, Sundling C, Czarnewski P, Klingström J, Färnert A, Loré K, Smed-Sörensen A. Delayed generation of functional virus-specific circulating T follicular helper cells correlates with severe COVID-19. Nat Commun 2023; 14:2164. [PMID: 37061513 PMCID: PMC10105364 DOI: 10.1038/s41467-023-37835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.
Collapse
Affiliation(s)
- Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Wanda Christ
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lida Azizmohammadi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Åhlberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ryan Falck-Jones
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Svensson
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mu Nie
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Warnqvist
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gustaf Lindgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Holden Maecker
- The Human Immune Monitoring Center, Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Bell
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
39
|
Habel JR, Chua BY, Kedzierski L, Selva KJ, Damelang T, Haycroft ER, Nguyen TH, Koay HF, Nicholson S, McQuilten HA, Jia X, Allen LF, Hensen L, Zhang W, van de Sandt CE, Neil JA, Pragastis K, Lau JS, Jumarang J, Allen EK, Amanant F, Krammer F, Wragg KM, Juno JA, Wheatley AK, Tan HX, Pell G, Walker S, Audsley J, Reynaldi A, Thevarajan I, Denholm JT, Subbarao K, Davenport MP, Hogarth PM, Godfrey DI, Cheng AC, Tong SY, Bond K, Williamson DA, McMahon JH, Thomas PG, Pannaraj PS, James F, Holmes NE, Smibert OC, Trubiano JA, Gordon CL, Chung AW, Whitehead CL, Kent SJ, Lappas M, Rowntree LC, Kedzierska K. Immune profiling of SARS-CoV-2 infection during pregnancy reveals NK cell and γδ T cell perturbations. JCI Insight 2023; 8:e167157. [PMID: 37036008 PMCID: PMC10132165 DOI: 10.1172/jci.insight.167157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 04/11/2023] Open
Abstract
Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.
Collapse
Affiliation(s)
- Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ebene R. Haycroft
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thi H.O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley A. McQuilten
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lilith F. Allen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jessica A. Neil
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Pragastis
- Department of Infectious Diseases, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Jillian S.Y. Lau
- Department of Infectious Diseases, Alfred Health, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Eastern Health, Box Hill, Victoria, Australia
| | - Jaycee Jumarang
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Fatima Amanant
- Department of Microbiology, and
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Kathleen M. Wragg
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Gabrielle Pell
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Susan Walker
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Justin T. Denholm
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - P. Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Allen C. Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, and Monash Infectious Diseases, Monash Health, Melbourne, Victoria, Australia
| | - Steven Y.C. Tong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Bond
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Departments of Pediatrics, Molecular Microbiology and Immunology, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Natasha E. Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Critical Care, University of Melbourne, Parkville, Victoria, Australia
- Data Analytics Research and Evaluation Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Olivia C. Smibert
- Departments of Pediatrics, Molecular Microbiology and Immunology, Keck School of Medicine, UCLA, Los Angeles, California, USA
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, and
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jason A. Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, and
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - Claire L. Gordon
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Clare L. Whitehead
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Pregnancy Research Centre, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
40
|
Thymosin Alpha 1 Restores the Immune Homeostasis in lymphocytes during Post-Acute Sequelae of SARS-CoV-2 infection. Int Immunopharmacol 2023; 118:110055. [PMID: 36989892 PMCID: PMC10030336 DOI: 10.1016/j.intimp.2023.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The complex alterations of the immune system and the immune-mediated multiorgan injury plays a key role in host response to SARS-CoV-2 infection and in the pathogenesis of COVID-19, being also associated with adverse outcomes. Thymosin alpha 1 (Tα1) is one of the molecules used in the treatment of COVID-19, as it is known to restore the homeostasis of the immune system during infections and cancer. The use of Tα1 in COVID-19 patients had been widely used in China and in COVID-19 patients, it has been shown to decrease hospitalization rate, especially in those with greater disease severity, and reduce mortality by restoring lymphocytopenia and more specifically, depleted T cells. Persistent dysregulation with depletion of naive B and T cell subpopulations and expansion of memory T cells suggest a chronic stimulation of the immune response in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Our data obtained from an ex vivo study, showed that in PASC individuals with a chronically altered immune response, Tα1 improve the restoration of an appropriate response, most evident in those with more severe illness and who need respiratory support during acute phase, and in those with specific systemic and psychiatric symptoms of PASC, confirming Tα1 treatment being more effective in compromised patients. The results obtained, along with promising reports on recent trials on Tα1 administration in patients with COVID-19, offer new insights into intervention also for those patients with long-lasting inflammation with post-infectious symptoms, some of which have a delayed onset.
Collapse
Key Words
- post-acute sars-cov-2 symptoms
- thymosin alpha 1
- immune regulation
- anti-inflammatory response
- a-cov, acute covid-19
- aa, ambient air
- cdc, center for desease control and prevention
- em, effector memory
- tfh, follicular helper lymphocytes
- hd, healthy donors
- pasc, post-acute sequelae of sars-cov-2 infection
- pcc, post-covid conditions
- pd-1, programmed cell death-1
- ards, respiratory stress syndrome
- resp sup, respiratory support
- rpmi, roswell park memorial institute
- sev, severe acute phase of infection
- tem, terminal effector memory
- tα1, thymosin alpha 1
Collapse
|
41
|
Abd El-Baky N, Amara AA, Redwan EM. HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines (Basel) 2023; 11:548. [PMID: 36992131 PMCID: PMC10058130 DOI: 10.3390/vaccines11030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The adaptive (T-cell-mediated) immune response is a key player in determining the clinical outcome, in addition to neutralizing antibodies, after SARS-CoV-2 infection, as well as supporting the efficacy of vaccines. T cells recognize viral-derived peptides bound to major histocompatibility complexes (MHCs) so that they initiate cell-mediated immunity against SARS-CoV-2 infection or can support developing a high-affinity antibody response. SARS-CoV-2-derived peptides bound to MHCs are characterized via bioinformatics or mass spectrometry on the whole proteome scale, named immunopeptidomics. They can identify potential vaccine targets or therapeutic approaches for SARS-CoV-2 or else may reveal the heterogeneity of clinical outcomes. SARS-CoV-2 epitopes that are naturally processed and presented on the human leukocyte antigen class I (HLA-I) and class II (HLA-II) were identified for immunopeptidomics. Most of the identified SARS-CoV-2 epitopes were canonical and out-of-frame peptides derived from spike and nucleocapsid proteins, followed by membrane proteins, whereby many of which are not caught by existing vaccines and could elicit effective responses of T cells in vivo. This review addresses the detection of SARS-CoV-2 viral epitopes on HLA-I and HLA-II using bioinformatics prediction and mass spectrometry (HLA peptidomics). Profiling the HLA-I and HLA-II peptidomes of SARS-CoV-2 is also detailed.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria P.O. Box 21934, Egypt
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 80203, Saudi Arabia
| |
Collapse
|
42
|
Baiocchi GC, Vojdani A, Rosenberg AZ, Vojdani E, Halpert G, Ostrinski Y, Zyskind I, Filgueiras IS, Schimke LF, Marques AHC, Giil LM, Lavi YB, Silverberg JI, Zimmerman J, Hill DA, Thornton A, Kim M, De Vito R, Fonseca DLM, Plaça DR, Freire PP, Camara NOS, Calich VLG, Scheibenbogen C, Heidecke H, Lattin MT, Ochs HD, Riemekasten G, Amital H, Shoenfeld Y, Cabral-Marques O. Cross-sectional analysis reveals autoantibody signatures associated with COVID-19 severity. J Med Virol 2023; 95:e28538. [PMID: 36722456 DOI: 10.1002/jmv.28538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with increased levels of autoantibodies targeting immunological proteins such as cytokines and chemokines. Reports further indicate that COVID-19 patients may develop a broad spectrum of autoimmune diseases due to reasons not fully understood. Even so, the landscape of autoantibodies induced by SARS-CoV-2 infection remains uncharted territory. To gain more insight, we carried out a comprehensive assessment of autoantibodies known to be linked to diverse autoimmune diseases observed in COVID-19 patients in a cohort of 231 individuals, of which 161 were COVID-19 patients (72 with mild, 61 moderate, and 28 with severe disease) and 70 were healthy controls. Dysregulated IgG and IgA autoantibody signatures, characterized mainly by elevated concentrations, occurred predominantly in patients with moderate or severe COVID-19 infection. Autoantibody levels often accompanied anti-SARS-CoV-2 antibody concentrations while stratifying COVID-19 severity as indicated by random forest and principal component analyses. Furthermore, while young versus elderly COVID-19 patients showed only slight differences in autoantibody levels, elderly patients with severe disease presented higher IgG autoantibody concentrations than young individuals with severe COVID-19. This work maps the intersection of COVID-19 and autoimmunity by demonstrating the dysregulation of multiple autoantibodies triggered during SARS-CoV-2 infection. Thus, this cross-sectional study suggests that SARS-CoV-2 infection induces autoantibody signatures associated with COVID-19 severity and several autoantibodies that can be used as biomarkers of COVID-19 severity, indicating autoantibodies as potential therapeutical targets for these patients.
Collapse
Affiliation(s)
- Gabriela C Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aristo Vojdani
- Immunosciences Laboratory, Inc., Department of Immunology, Los Angeles, California, USA.,Cyrex Laboratories, Phoenix, Arizona, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Gilad Halpert
- Ariel University, Ariel, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Saint Petersburg State University Russia, St Petersburg, Russia
| | - Yuri Ostrinski
- Ariel University, Ariel, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Saint Petersburg State University Russia, St Petersburg, Russia
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York, New York, USA.,Maimonides Medical Center, Brooklyn, New York, USA
| | - Igor S Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre H C Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Yael B Lavi
- Department of Chemistry Ben Gurion University Beer-Sheva, Beer-Sheva, Israel
| | - Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, USA
| | | | | | | | - Myungjin Kim
- Data Science Initiative at Brown University, Providence, Rhode Island, USA
| | - Roberta De Vito
- Department of Biostatistics and the Data Science Initiative at Brown University, Providence, Rhode Island, USA
| | - Dennyson L M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Desireé R Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, São Paulo, Brazil
| | - Paula P Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O S Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vera L G Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Harald Heidecke
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Miriam T Lattin
- Department of Biology, Yeshiva University, Manhatten, New York, USA
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Howard Amital
- Ariel University, Ariel, Israel.,Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel.,Saint Petersburg State University Russia, St Petersburg, Russia
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, São Paulo, Brazil.,Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, Baltimore, USA.,Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
43
|
Prado CADS, Fonseca DLM, Singh Y, Filgueiras IS, Baiocchi GC, Plaça DR, Marques AHC, Dantas-Komatsu RCS, Usuda JN, Freire PP, Salgado RC, Napoleao SMDS, Ramos RN, Rocha V, Zhou G, Catar R, Moll G, Camara NOS, de Miranda GC, Calich VLG, Giil LM, Mishra N, Tran F, Luchessi AD, Nakaya HI, Ochs HD, Jurisica I, Schimke LF, Cabral-Marques O. Integrative systems immunology uncovers molecular networks of the cell cycle that stratify COVID-19 severity. J Med Virol 2023; 95:e28450. [PMID: 36597912 PMCID: PMC10107240 DOI: 10.1002/jmv.28450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Youvika Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Crispim Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre H C Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Júlia N Usuda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rodrigo Nalio Ramos
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, Hospital São Luiz, São Paulo, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, Hospital São Luiz, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil.,Department of Hematology, Churchill Hospital, University of Oxford, Oxford, UK
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany.,Berlin Institute of Health (BIH) and Berlin Center for Regenerative Therapies (BCRT), Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin-Brandenburg School for Regenerative Therapies (BSRT), all Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Gustavo Cabral de Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany.,Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andre Ducati Luchessi
- Department of Clinical and Toxicology Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, UHN, Data Science Discovery Centre, Toronto, Ontario, Canada
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.,Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
44
|
Zafarani A, Razizadeh MH, Pashangzadeh S, Amirzargar MR, Taghavi-Farahabadi M, Mahmoudi M. Natural killer cells in COVID-19: from infection, to vaccination and therapy. Future Virol 2023:10.2217/fvl-2022-0040. [PMID: 36936055 PMCID: PMC10013930 DOI: 10.2217/fvl-2022-0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/31/2023] [Indexed: 03/15/2023]
Abstract
Natural killer (NK) cells are among the most important innate immunity members, which are the first cells that fight against infected cells. The function of these cells is impaired in patients with COVID-19 and they are not able to prevent the spread of the disease or destroy the infected cells. Few studies have evaluated the effects of COVID-19 vaccines on NK cells, though it has been demonstrated that DNA vaccines and BNT162b2 can affect NK cell response. In the present paper, the effects of SARS-CoV-2 on the NK cells during infection, the effect of vaccination on NK cells, and the NK cell-based therapies were reviewed.
Collapse
Affiliation(s)
- Alireza Zafarani
- 1Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Salar Pashangzadeh
- 3Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
- 4Immunology Today, Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Amirzargar
- 1Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- 5Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- 6Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Author for correspondence: Tel.: +98 936 002 0731;
| |
Collapse
|
45
|
Asashima H, Mohanty S, Comi M, Ruff WE, Hoehn KB, Wong P, Klein J, Lucas C, Cohen I, Coffey S, Lele N, Greta L, Raddassi K, Chaudhary O, Unterman A, Emu B, Kleinstein SH, Montgomery RR, Iwasaki A, Dela Cruz CS, Kaminski N, Shaw AC, Hafler DA, Sumida TS. PD-1 highCXCR5 -CD4 + peripheral helper T cells promote CXCR3 + plasmablasts in human acute viral infection. Cell Rep 2023; 42:111895. [PMID: 36596303 PMCID: PMC9806868 DOI: 10.1016/j.celrep.2022.111895] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/15/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023] Open
Abstract
T cell-B cell interaction is the key immune response to protect the host from severe viral infection. However, how T cells support B cells to exert protective humoral immunity in humans is not well understood. Here, we use COVID-19 as a model of acute viral infections and analyze CD4+ T cell subsets associated with plasmablast expansion and clinical outcome. Peripheral helper T cells (Tph cells; denoted as PD-1highCXCR5-CD4+ T cells) are significantly increased, as are plasmablasts. Tph cells exhibit "B cell help" signatures and induce plasmablast differentiation in vitro. Interestingly, expanded plasmablasts show increased CXCR3 expression, which is positively correlated with higher frequency of activated Tph cells and better clinical outcome. Mechanistically, Tph cells help B cell differentiation and produce more interferon γ (IFNγ), which induces CXCR3 expression on plasmablasts. These results elucidate a role for Tph cells in regulating protective B cell response during acute viral infection.
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Michela Comi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - William E Ruff
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Patrick Wong
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Inessa Cohen
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Sarah Coffey
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Nikhil Lele
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Leissa Greta
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Omkar Chaudhary
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Avraham Unterman
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Brinda Emu
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
46
|
Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023; 15:v15020400. [PMID: 36851614 PMCID: PMC9967513 DOI: 10.3390/v15020400] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic. Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID. This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein-Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity. Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
- Correspondence: ; Tel.: +1-310-657-1077
| | | | - Evan Saidara
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
47
|
von Borstel A, Nguyen TH, Rowntree LC, Ashhurst TM, Allen LF, Howson LJ, Holmes NE, Smibert OC, Trubiano JA, Gordon CL, Cheng AC, Kent SJ, Rossjohn J, Kedzierska K, Davey MS. Circulating effector γδ T cell populations are associated with acute coronavirus disease 19 in unvaccinated individuals. Immunol Cell Biol 2023; 101:321-332. [PMID: 36698330 DOI: 10.1111/imcb.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe coronavirus disease 2019 (COVID-19) in a small proportion of infected individuals. The immune system plays an important role in the defense against SARS-CoV-2, but our understanding of the cellular immune parameters that contribute to severe COVID-19 disease is incomplete. Here, we show that populations of effector γδ T cells are associated with COVID-19 in unvaccinated patients with acute disease. We found that circulating CD27neg CD45RA+ CX3CR1+ Vδ1effector cells expressing Granzymes (Gzms) were enriched in COVID-19 patients with acute disease. Moreover, higher frequencies of GzmB+ Vδ2+ T cells were observed in acute COVID-19 patients. SARS-CoV-2 infection did not alter the γδ T cell receptor repertoire of either Vδ1+ or Vδ2+ subsets. Our work demonstrates an association between effector populations of γδ T cells and acute COVID-19 in unvaccinated individuals.
Collapse
Affiliation(s)
- Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lauren J Howson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Critical Care, University of Melbourne, Parkville, VIC, Australia.,Data Analytics Research and Evaluation (DARE) Centre, Austin Health and University of Melbourne, Heidelberg, VIC, Australia.,Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Allen C Cheng
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Martin S Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
48
|
Scharf L, Axelsson H, Emmanouilidi A, Mathew NR, Sheward DJ, Leach S, Isakson P, Smirnov IV, Marklund E, Miron N, Andersson LM, Gisslén M, Murrell B, Lundgren A, Bemark M, Angeletti D. Longitudinal single-cell analysis of SARS-CoV-2-reactive B cells uncovers persistence of early-formed, antigen-specific clones. JCI Insight 2023; 8:165299. [PMID: 36445762 PMCID: PMC9870078 DOI: 10.1172/jci.insight.165299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from patients with severe COVID-19 every third to seventh day during hospitalization and every third month after recovery. We profiled their antigen-specific immune cell dynamics by combining single-cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq), and B cell receptor-Seq (BCR-Seq) with oligo-tagged antigen baits. While the proportion of Spike receptor binding domain-specific memory B cells (MBC) increased from 3 months after infection, the other Spike- and Nucleocapsid-specific B cells remained constant. All patients showed ongoing class switching and sustained affinity maturation of antigen-specific cells, and affinity maturation was not significantly increased early after vaccine. B cell analysis revealed a polyclonal response with limited clonal expansion; nevertheless, some clones detected during hospitalization, as plasmablasts, persisted for up to 1 year, as MBC. Monoclonal antibodies derived from persistent B cell families increased their binding and neutralization breadth and started recognizing viral variants by 3 months after infection. Overall, our findings provide important insights into the clonal evolution and dynamics of antigen-specific B cell responses in longitudinally sampled patients infected with COVID-19.
Collapse
Affiliation(s)
- Lydia Scharf
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hannes Axelsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Aikaterini Emmanouilidi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nimitha R. Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Susannah Leach
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pharmacology
| | - Pauline Isakson
- Department of Clinical Immunology and Transfusion Medicine, and
| | - Ilya V. Smirnov
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Emelie Marklund
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nicolae Miron
- Department of Clinical Immunology and Transfusion Medicine, and
| | - Lars-Magnus Andersson
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lundgren
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, and
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, and
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Putri GH, Chung J, Edwards DN, Marsh-Wakefield F, Koprinska I, Dervish S, King NJC, Ashhurst TM, Read MN. TrackSOM: Mapping immune response dynamics through clustering of time-course cytometry data. Cytometry A 2023; 103:54-70. [PMID: 35758217 DOI: 10.1002/cyto.a.24668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 01/20/2023]
Abstract
Mapping the dynamics of immune cell populations over time or disease-course is key to understanding immunopathogenesis and devising putative interventions. We present TrackSOM, a novel method for delineating cellular populations and tracking their development over a time- or disease-course cytometry datasets. We demonstrate TrackSOM-enabled elucidation of the immune response to West Nile Virus infection in mice, uncovering heterogeneous subpopulations of immune cells and relating their functional evolution to disease severity. TrackSOM is easy to use, encompasses few parameters, is quick to execute, and enables an integrative and dynamic overview of the immune system kinetics that underlie disease progression and/or resolution.
Collapse
Affiliation(s)
- Givanna H Putri
- School of Computer Science, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Chung
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,Viral Immunopathology Laboratory, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Davis N Edwards
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Vascular Immunology Unit, Department of Pathology, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Cytometry Core Research Facility, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Irena Koprinska
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia
| | - Suat Dervish
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas J C King
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| | - Thomas M Ashhurst
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,Vascular Immunology Unit, Department of Pathology, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark N Read
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,Viral Immunopathology Laboratory, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
50
|
Wang F, Cui Y, He D, Gong L, Liang H. Natural killer cells in sepsis: Friends or foes? Front Immunol 2023; 14:1101918. [PMID: 36776839 PMCID: PMC9909201 DOI: 10.3389/fimmu.2023.1101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is one of the major causes of death in the hospital worldwide. The pathology of sepsis is tightly associated with dysregulation of innate immune responses. The contribution of macrophages, neutrophils, and dendritic cells to sepsis is well documented, whereas the role of natural killer (NK) cells, which are critical innate lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells has been reported as a risk factor leading to severe organ damage or death. In sharp contrast, some other studies revealed that triggering NK cell activity contributes to alleviating sepsis. In all, although there are several reports on NK cells in sepsis, whether they exert detrimental or protective effects remains unclear. Here, we will review the available experimental and clinical studies about the opposing roles of NK cells in sepsis, and we will discuss the prospects for NK cell-based immunotherapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiqin Cui
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongmei He
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lisha Gong
- School of Laboratory Medicine and Technology, Harbin Medical University, Daqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|