1
|
Atmar RL, Lyke KE, Posavad CM, Deming ME, Brady RC, Dobrzynski D, Edupuganti S, Mulligan MJ, Rupp RE, Rostad CA, Jackson LA, Martin JM, Shriver MC, Rajakumar K, Coler RN, El Sahly HM, Kottkamp AC, Branche AR, Frenck RW, Johnston C, Babu TM, Bäcker M, Archer JI, Crandon S, Nakamura A, Nayak SU, Szydlo D, Dominguez Islas CP, Brown ER, O'Connell SE, Montefiori DC, Eaton A, Neuzil KM, Stephens DS, Beigel JH, Pasetti M, Roberts PC. Mucosal and Systemic Antibody Responses After Boosting With a Bivalent Messenger RNA Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine. J Infect Dis 2025:jiaf176. [PMID: 40298376 DOI: 10.1093/infdis/jiaf176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Mucosal immunity plays a critical role in preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and replication. Understanding the capacity of coronavirus disease 2019 (COVID-19) vaccines to elicit both mucosal and systemic antibodies could help optimize vaccination strategies. METHODS We conducted an open-label, phase 1/2 adaptive-design clinical trial to evaluate the safety and immunogenicity of COVID-19 immunizations. Healthy adults received 2 priming doses of mRNA-1273, a booster dose of mRNA-1273, and a second booster of bivalent (WA-1 and BA.4/BA.5) mRNA-1273.222. Adverse event data were collected. Serum and mucosal immunity were evaluated. RESULTS One hundred six persons were enrolled. Thirty received all 4 study-related vaccine doses. All vaccines were well tolerated, with injection site pain, malaise, myalgias, and headache being the most frequently reported symptoms. Among those who received a second booster, 24 of 30 (80%) had serological evidence of SARS-CoV-2 infection. Following the second booster, increases in geometric mean binding and pseudovirus neutralization antibody titers to the ancestral strain and BA.1 and BA.5 variants were observed. Increases in mucosal immunoglobulin G and immunoglobulin A (IgA) antibodies in nasal and salivary samples were observed in both previously infected and infection-naive participants, although prior infection markedly boosted virus-specific mucosal IgA responses. CONCLUSIONS The mRNA-1273.222 booster vaccine was safe and immunogenic and induced mucosal antibody responses in previously infected and infection-naive persons. CLINICAL TRIALS REGISTRATION NCT04889209.
Collapse
Affiliation(s)
- Robert L Atmar
- Departments of Medicine and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christine M Posavad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Meagan E Deming
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rebecca C Brady
- Cincinnati Children's Hospital Medical Center, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David Dobrzynski
- Division of Infectious Diseases, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Srilatha Edupuganti
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mark J Mulligan
- New York University Langone Vaccine Center and Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Richard E Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Christina A Rostad
- Department of Pediatrics and Center for Childhood Infections and Vaccines, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Judith M Martin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mallory C Shriver
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kumaravel Rajakumar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rhea N Coler
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hana M El Sahly
- Departments of Medicine and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Angelica C Kottkamp
- New York University Langone Vaccine Center and Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Angela R Branche
- Division of Infectious Diseases, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Robert W Frenck
- Cincinnati Children's Hospital Medical Center, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christine Johnston
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Tara M Babu
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Martín Bäcker
- New York University Langone Hospital-Long Island Vaccine Center Research Clinic and Division of Infectious Disease, Department of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, USA
| | | | - Sonja Crandon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aya Nakamura
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Seema U Nayak
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Szydlo
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Clara P Dominguez Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth R Brown
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sarah E O'Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Amanda Eaton
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David S Stephens
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John H Beigel
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcela Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Paul C Roberts
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Oliveira MCL, Martelli DR, Simões e Silva AC, Dias CS, Diniz LM, Colosimo EA, Pinhati CC, Galante SC, Duelis FN, Carvalho LE, Coelho LG, Bernardes MET, Martelli-Júnior H, de Oliveira FES, Mak RH, Oliveira EA. COVID-19 Vaccine Effectiveness and Risk Factors of Booster Failure in 480,000 Patients with Diabetes Mellitus: A Population-Based Cohort Study. Microorganisms 2025; 13:979. [PMID: 40431152 PMCID: PMC12114578 DOI: 10.3390/microorganisms13050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/29/2025] Open
Abstract
To investigate the real-world effectiveness of COVID-19 vaccines in a large cohort of patients with diabetes mellitus (DM), we analyzed all >18-year-old patients with COVID-19 registered in a Brazilian nationwide surveillance database between February 2020 and February 2023. The primary outcome of interest was vaccine effectiveness against death, evaluated using multivariate logistic regression models. Among the 2,131,089 patients registered in the SIVEP-Gripe, 482,677 (22.6%) had DM. After adjusting for covariates, patients with DM had a higher risk of death than those without comorbidities (adjusted odds ratio [aOR] = 1.43, 95% CI, 1.39-1.47). For patients without comorbidities (72.7%, 95% CI, 70.5-74.7) and those with DM (73.4%, 95% CI, 68.2-76.7), vaccine effectiveness was similar after the booster dose. However, it was reduced in patients with DM associated with other comorbidities (60.5%; 95% CI, 57.5-63.2). The strongest factor associated with booster failure was the omicron variant (aOR = 27.8, 95% CI, 19.9-40.1). Our study revealed that COVID-19 vaccines provided robust protection against death in individuals with DM. However, our findings underscore the need to update vaccines and develop tailored strategies for individuals with diabetes, especially those with additional underlying conditions.
Collapse
Affiliation(s)
- Maria Christina L. Oliveira
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Daniella R. Martelli
- Health Science/Primary Care Postgraduate Program, State University of Montes Claros (Unimontes), Montes Claros 39401-089, MG, Brazil; (D.R.M.); (H.M.-J.); (F.E.S.d.O.)
| | - Ana Cristina Simões e Silva
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Cristiane S. Dias
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Lilian M. Diniz
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Enrico A. Colosimo
- Department of Statistics, Federal University of Minas Gerais (UFMG), Belo Horizonte 30310-580, MG, Brazil;
| | - Clara C. Pinhati
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Stella C. Galante
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Fernanda N. Duelis
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Laura E. Carvalho
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Laura G. Coelho
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Maria Eduarda T. Bernardes
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| | - Hercílio Martelli-Júnior
- Health Science/Primary Care Postgraduate Program, State University of Montes Claros (Unimontes), Montes Claros 39401-089, MG, Brazil; (D.R.M.); (H.M.-J.); (F.E.S.d.O.)
| | - Fabrício Emanuel S. de Oliveira
- Health Science/Primary Care Postgraduate Program, State University of Montes Claros (Unimontes), Montes Claros 39401-089, MG, Brazil; (D.R.M.); (H.M.-J.); (F.E.S.d.O.)
| | - Robert H. Mak
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California San Diego, La Jolla, CA 92093, USA;
| | - Eduardo A. Oliveira
- Department of Pediatrics, Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), R. Engenheiro Amaro Lanari 389/501, Belo Horizonte 30310-580, MG, Brazil; (M.C.L.O.); (A.C.S.e.S.); (C.S.D.); (L.M.D.); (C.C.P.); (S.C.G.); (F.N.D.); (L.E.C.); (L.G.C.); (M.E.T.B.)
| |
Collapse
|
3
|
Shamsollahi HR, Younesian S, Nikfarjam A, Nasiri Z, Yunesian M. Effectiveness of mass vaccination for prevention of hospitalization, severe disease and death due to SARS-CoV-2 omicron Ba.2 variant; A case-population study. Heliyon 2025; 11:e42670. [PMID: 40051856 PMCID: PMC11883369 DOI: 10.1016/j.heliyon.2025.e42670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
One of the primary concerns regarding COVID-19 vaccination programs is the emergence of new virus variants and the effectiveness of the currently available vaccines against these variants. The main objective of this study was to evaluate the effectiveness of the system of vaccination of COVID-19 in Iran in preventing hospitalization, severe illness, critical illness, and death in relation to the Omicron BA.2 variant of SARS-CoV-2. The study focused on assessing vaccine effectiveness regardless of the specific vaccine administered in the community and also investigated the potential improvement in effectiveness after receiving the second dose or subsequent doses of the vaccine. The study specifically examined two age groups including individuals aged 65 years and older and individuals younger than 65 years. This study was performed using case-population method provided by World Health Organization (WHO). To conduct the study, data on vaccination coverage and vaccination status within the community were obtained from the data center of the Public Health Service in the Tehran province, Iran. Additionally, data on hospitalization, critical illness, and death related to COVID-19 were collected from hospitals in Tehran during the period when the Omicron Ba.2 variant was dominant in Iran. The results of the study indicated that vaccination with the available vaccines was effective in preventing severe illness, critical illness, and death resulting from infection with the Omicron variant in both age groups. This study found that completing the vaccination regimen was more effective in preventing adverse outcomes associated with the Omicron variant in elderly individuals compared to younger individuals.
Collapse
Affiliation(s)
- Hamid Reza Shamsollahi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sobhan Younesian
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Nikfarjam
- Deputy of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nasiri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zayou L, Prakash S, Vahed H, Dhanushkodi NR, Quadiri A, Belmouden A, Lemkhente Z, Chentoufi A, Gil D, Ulmer JB, BenMohamed L. Dynamics of spike-specific neutralizing antibodies across five-year emerging SARS-CoV-2 variants of concern reveal conserved epitopes that protect against severe COVID-19. Front Immunol 2025; 16:1503954. [PMID: 40040708 PMCID: PMC11876060 DOI: 10.3389/fimmu.2025.1503954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Since early 2020, several SARS-CoV-2 variants of concern (VOCs) continue to emerge, evading waning antibody mediated immunity produced by the current Spike-alone based COVID-19 vaccines. This caused a prolonged and persistent COVID-19 pandemic that is going to enter its fifth year. Thus, the need remains for innovative next generation vaccines that would incorporate protective Spike-derived B-cell epitopes that resist immune evasion. Methods Towards that goal, in this study we (i) Screened the sequences of Spike among many VOCs and identified conserved and non-conserved linear B-cell epitopes; (ii) Compared titers and neutralization antibodies specific to these conserved and non-conserved B-cell epitopes from serum of symptomatic and asymptomatic COVID-19 patients that were exposed to multiple VOCs across the 5-year COVID-19 pandemic, and (iii) Compared protective efficacy of conserved versus non-conserved B-cell epitopes against the most pathogenic Delta variant in a "humanized" ACE-2/HLA transgenic mouse model. Results We found robust conserved B-cell epitope-specific antibody titers and neutralization in sera from asymptomatic COVID-19 patients. In contrast, sera from symptomatic patients contained weaker antibody responses specific to conserved B-cell epitopes. A multi-epitope COVID-19 vaccine that incorporated the conserved B-cell epitopes, but not the non-conserved B-cell epitopes, significantly protected the ACE2/HLA transgenic mice against infection and COVID-19 like symptoms caused by the Delta variant. Discussion These findings underscore the importance of conserved B-cell epitopes in generating robust protective immunity against severe COVID-19 symptoms caused by various VOCs, providing valuable insights for the development of broad-spectrum next generation Coronavirus vaccines capable of conferring cross-variant protective immunity.
Collapse
Affiliation(s)
- Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ahmed Belmouden
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Zohra Lemkhente
- BIOMCI Lab., Faculty of Medicine and Pharmacy, Ibnou Zohr University, Agadir, Morocco
| | - Aziz Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Pandey RP, Kumar S, Rao DN, Gupta DL. Emerging severe acute respiratory syndrome coronavirus 2 variants and their impact on immune evasion and vaccine-induced immunity. Trans R Soc Trop Med Hyg 2024; 118:761-772. [PMID: 39297227 DOI: 10.1093/trstmh/trae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 12/14/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants harboring mutations in the structural protein, especially in the receptor binding domain (RBD) of spike protein, have raised concern about potential immune escape. The spike protein of SARS-CoV-2 plays a vital role in infection and is an important target for neutralizing antibodies. The mutations that occur in the structural proteins, especially in the spike protein, lead to changes in the virus attributes of transmissibility, an increase in disease severity, a notable reduction in neutralizing antibodies generated and thus a decreased response to vaccines and therapy. The observed multiple mutations in the RBD of the spike protein showed immune escape because it increases the affinity of spike protein binding with the ACE-2 receptor of host cells and increases resistance to neutralizing antibodies. Cytotoxic T-cell responses are crucial in controlling SARS-CoV-2 infections from the infected tissues and clearing them from circulation. Cytotoxic T cells efficiently recognized the infected cells and killed them by releasing soluble mediator's perforin and granzymes. However, the overwhelming response of T cells and, subsequently, the overproduction of inflammatory mediators during severe infections with SARS-CoV-2 may lead to poor outcomes. This review article summarizes the impact of mutations in the spike protein of SARS-CoV-2, especially mutations of RBD, on immunogenicity, immune escape and vaccine-induced immunity, which could contribute to future studies focusing on vaccine design and immunotherapy.
Collapse
Affiliation(s)
- Ramendra Pati Pandey
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, India-248007
| | - Sachin Kumar
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, India-110017
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India-110029
| | - Dablu Lal Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India-492099
| |
Collapse
|
6
|
Zhu J, He C, Liu Y, Chen M, Zhang J, Chen D, Ni H, Wen J. An engineered Japanese encephalitis virus mRNA-lipid nanoparticle immunization induces protective immunity in mice. Front Microbiol 2024; 15:1472824. [PMID: 39588106 PMCID: PMC11586386 DOI: 10.3389/fmicb.2024.1472824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Japanese encephalitis virus (JEV) and Zika virus (ZIKV) pose a severe threat to human health. Our previous research results, as well as those of other research groups, indicated that antibodies (Abs) induced by JEV infection or JEV vaccine vaccination could enhance ZIKV infection in vitro and exacerbate the mortality of ZIKV-infected mice, vice versa, which is known as antibody-dependent enhancement (ADE). Although studies on other flaviviruses revealed that altering the amino acid residues located in the fusion loop (FL) of envelope (E) protein can reduce the level of flavivirus-cross-reactive Abs, thereby abating the ADE of heterologous flavivirus infection, it is unclear whether this strategy is equally applicable to JEV. Methods In this study, we constructed recombinant adenoviruses and nucleotide-modified mRNA-lipid nanoparticle (LNP) encoding JEV wild-type E protein or E protein mutant (designated as Ad5-JEV-EWT and Ad5-JEV-Emut; JEV-EWT mRNA-LNP, and JEV-Emut mRNA-LNP). We evaluated the immunogenicity of these vaccine candidates in mice and the capacity of vaccine-immune mouse sera to neutralize JEV infection or mediate ADE of ZIKV infection in vitro and in vivo. Results Ad5-JEV-Emut or JEV-Emut mRNA-LNP immunization induced ZIKV-cross-reactive Ab response which is dramatically lower than that induced by Ad5-JEV-EWT and JEV-EWT mRNA-LNP, respectively. The levels of JEV-neutralizing Abs induced by Ad5-JEV-Emut or JEV-Emut mRNA-LNP are comparable to that induced by Ad5-JEV-EWT and JEV-EWT mRNA-LNP, respectively. The ability of Abs induced by Ad5-JEV-Emut to enhance ZIKV infection in vitro is attenuated as compared with that induced by Ad5-JEV-EWT. Moreover, JEV-Emut mRNA-LNP immunization elicited potent T cell response similar to JEV-EWT mRNA-LNP in mice. Mice immunized with each mRNA-LNP exhibited lower level of serum viral load than the mock-immunized mice post JEV challenge. Mice receiving JEV-EWT mRNA-LNP-immune mouse sera exhibited ADE post ZIKV challenge whereas passively transferred JEV-Emut mRNA-LNP-immune mouse sera did not lead to obvious ADE of ZIKV infection in recipient mice. Most importantly, maternally acquired Abs did not enhance the mortality of 1-day-old neonates born to JEV-Emut mRNA-LNP-immunized mice post ZIKV challenge. Discussion These results suggest that optimizing the FL sequence of JEV could significantly reduce the level of JEV/ZIKV-cross-reactive Abs and abrogate the ADE of ZIKV infection, providing a promising strategy to develop effective and safety JEV vaccine.
Collapse
Affiliation(s)
- Jiayang Zhu
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Caiying He
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Yusha Liu
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Min Chen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jiayi Zhang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
- Wenzhou Central Blood Station, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dong Chen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
- Wenzhou Central Blood Station, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongxia Ni
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Chewaskulyong B, Satjaritanun P, Ketpueak T, Suksombooncharoen T, Charoentum C, Nuchpong N, Tantraworasin A. Neutralizing antibodies and safety of a COVID-19 vaccine against SARS-CoV-2 wild-type and Omicron variants in solid cancer patients. PLoS One 2024; 19:e0310781. [PMID: 39509358 PMCID: PMC11542819 DOI: 10.1371/journal.pone.0310781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE The aim of this study was to assess the seroconversion rate and percent inhibition of neutralizing antibodies against the wild-type and Omicron variants of SARS-CoV-2 in patients with solid cancer who received two COVID-19 vaccine doses by comparing chemotherapy and nonchemotherapy groups. METHODS This prospective cohort study enrolled 115 cancer patients from Maharaj Nakorn Chiang Mai Hospital, Sriphat Medical Center, Faculty of Medicine, Chiang Mai University, and Chiang Mai Klaimor Hospital, Chiang Mai, Thailand, between August 2021 and February 2022, with data from 91 patients who received two COVID-19 vaccine doses analyzed. Participants received vaccines as part of their personal vaccination programs, including various mRNA and non-mRNA vaccine combinations. Blood samples were collected at baseline, on day 28, and at 6 months post-second dose to assess neutralizing antibodies. The primary outcome was the seroconversion rate against the wild-type and Omicron variants on day 28. Secondary outcomes included seroconversion at 6 months, factors associated with seroconversion, and safety. RESULTS Among the participants, 45% were receiving chemotherapy. On day 28, seroconversion rates were 77% and 62% for the wild-type and Omicron variants, respectively. Chemotherapy did not significantly affect seroconversion rates (p = 0.789 for wild type, p = 0.597 for Omicron). The vaccine type administered was positively correlated with seroconversion, with an adjusted odds ratio (95% confidence interval) of 25.86 (1.39-478.06) for the wild type and 17.38 (3.65-82.66) for the Omicron variant with the primary heterologous vaccine regimen. Grades 1 and 2 adverse events were observed in 34.0% and 19.7% of participants, respectively. CONCLUSIONS Despite the lower seroconversion rate against the Omicron variant, no significant difference was observed between the chemotherapy and nonchemotherapy groups. COVID-19 vaccinations demonstrated good tolerability in this cohort. These findings highlight the importance of vaccine safety and immunogenicity in cancer patients and can inform tailored vaccination strategies for this vulnerable population.
Collapse
Affiliation(s)
- Busyamas Chewaskulyong
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattarapong Satjaritanun
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanika Ketpueak
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thatthan Suksombooncharoen
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiyut Charoentum
- Division of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttaphoom Nuchpong
- Medical Oncology Outpatient Clinic, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai, Thailand
| | - Apichat Tantraworasin
- Department of Surgery, General Thoracic Unit, Faculty of Medicine, and Clinical Surgical Research Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Soudani N, Bricker TL, Darling T, Seehra K, Patel N, Guebre-Xabier M, Smith G, Davis-Gardner M, Suthar MS, Ellebedy AH, Boon ACM. Immunogenicity and efficacy of XBB.1.5 rS vaccine against the EG.5.1 variant of SARS-CoV-2 in Syrian hamsters. J Virol 2024; 98:e0052824. [PMID: 39230305 PMCID: PMC11494984 DOI: 10.1128/jvi.00528-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
The continued emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates updating coronavirus disease 2019 (COVID-19) vaccines to match circulating strains. The immunogenicity and efficacy of these vaccines must be tested in pre-clinical animal models. In Syrian hamsters, we measured the humoral and cellular immune response after immunization with the nanoparticle recombinant Spike (S) protein-based COVID-19 vaccine (Novavax, Inc.). We also compared the efficacy of the updated monovalent XBB.1.5 variant vaccine with previous COVID-19 vaccines for the induction of XBB.1.5 and EG.5.1 neutralizing antibodies and protection against a challenge with the EG.5.1 variant of SARS-CoV-2. Immunization induced high levels of S-specific IgG and IgA antibody-secreting cells and antigen-specific CD4+ T cells. The XBB.1.5 and XBB.1.16 vaccines, but not the Prototype vaccine, induced high levels of neutralizing antibodies against the XBB.1.5, EG.5.1, and JN.1 variants of SARS-CoV-2. Upon challenge with the Omicron EG.5.1 variant, the XBB.1.5 and XBB.1.16 vaccines reduced the virus load in the lungs, nasal turbinates, trachea, and nasal washes. The bivalent vaccine (Prototype rS + BA.5 rS) continued to offer protection in the trachea and lungs, but protection was reduced in the upper airways. By contrast, the monovalent Prototype vaccine no longer offered good protection, and breakthrough infections were observed in all animals and tissues. Thus, based on these study results, the protein-based XBB.1.5 vaccine is immunogenic and increased the breadth of protection against the Omicron EG.5.1 variant in the Syrian hamster model. IMPORTANCE As SARS-CoV-2 continues to evolve, there is a need to assess the immunogenicity and efficacy of updated vaccines against newly emerging variants in pre-clinical models such as mice and hamsters. Here, we compared the immunogenicity and efficacy between the updated XBB.1.5, the original Prototype Wuhan-1, and the bivalent Prototype + BA.5 vaccine against a challenge with the EG.5.1 Omicron variant of SARS-CoV-2 in hamsters. The XBB.1.5 and bivalent vaccine, but not the Prototype, induced serum-neutralizing antibodies against EG.5.1, albeit the titers were higher in the XBB.1.5 immunized hamsters. The presence of neutralizing antibodies was associated with complete protection against EG.5.1 infection in the lower airways and reduced virus titers in the upper airways. Compared with the bivalent vaccine, immunization with XBB.1.5 improved viral control in the nasal turbinates. Together, our data show that the updated vaccine is immunogenic and that it offers better protection against recent variants of SARS-CoV-2.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19/virology
- Mesocricetus
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Cricetinae
- Immunogenicity, Vaccine
- Disease Models, Animal
- Vaccine Efficacy
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Female
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nita Patel
- Novavax Inc., Gaithersburg, Maryland, USA
| | | | - Gale Smith
- Novavax Inc., Gaithersburg, Maryland, USA
| | - Meredith Davis-Gardner
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory National Primate Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory National Primate Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Akaberi D, Pourghasemi Lati M, Krambrich J, Berger J, Neilsen G, Strandback E, Turunen SP, Wannberg J, Gullberg H, Moche M, Chinthakindi PK, Nyman T, Sarafianos SG, Sandström A, Järhult JD, Sandberg K, Lundkvist Å, Verho O, Lennerstrand J. Identification of novel and potent inhibitors of SARS-CoV-2 main protease from DNA-encoded chemical libraries. Antimicrob Agents Chemother 2024; 68:e0090924. [PMID: 39194208 PMCID: PMC11459923 DOI: 10.1128/aac.00909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
In vitro screening of large compound libraries with automated high-throughput screening is expensive and time-consuming and requires dedicated infrastructures. Conversely, the selection of DNA-encoded chemical libraries (DECLs) can be rapidly performed with routine equipment available in most laboratories. In this study, we identified novel inhibitors of SARS-CoV-2 main protease (Mpro) through the affinity-based selection of the DELopen library (open access for academics), containing 4.2 billion compounds. The identified inhibitors were peptide-like compounds containing an N-terminal electrophilic group able to form a covalent bond with the nucleophilic Cys145 of Mpro, as confirmed by x-ray crystallography. This DECL selection campaign enabled the discovery of the unoptimized compound SLL11 (IC50 = 30 nM), proving that the rapid exploration of large chemical spaces enabled by DECL technology allows for the direct identification of potent inhibitors avoiding several rounds of iterative medicinal chemistry. As demonstrated further by x-ray crystallography, SLL11 was found to adopt a highly unique U-shaped binding conformation, which allows the N-terminal electrophilic group to loop back to the S1' subsite while the C-terminal amino acid sits in the S1 subsite. MP1, a close analog of SLL11, showed antiviral activity against SARS-CoV-2 in the low micromolar range when tested in Caco-2 and Calu-3 (EC50 = 2.3 µM) cell lines. As peptide-like compounds can suffer from low cell permeability and metabolic stability, the cyclization of the compounds will be explored in the future to improve their antiviral activity.
Collapse
Affiliation(s)
- Dario Akaberi
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | | | - Janina Krambrich
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Julia Berger
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Grace Neilsen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Emilia Strandback
- Department of Medical Biochemistry and Biophysics, Protein Science Facility, Karolinska Institutet, Stockholm, Sweden
| | - S. Pauliina Turunen
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
- Drug Discovery and Development, Science for Life Laboratory, Solna, Sweden
| | - Johan Wannberg
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| | - Hjalmar Gullberg
- Science for Life Laboratory, Biochemical and Cellular Assay Facility, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, Solna, Stockholm, Sweden
| | - Martin Moche
- Department of Medical Biochemistry and Biophysics, Protein Science Facility, Karolinska Institutet, Stockholm, Sweden
| | - Praveen Kumar Chinthakindi
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Tomas Nyman
- Department of Medical Biochemistry and Biophysics, Protein Science Facility, Karolinska Institutet, Stockholm, Sweden
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Anja Sandström
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Kristian Sandberg
- Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Oscar Verho
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Johan Lennerstrand
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Hauser D, Urda L, Lang C, Mittelholzer C, Otte F, Kipfer E, Zhang Y, Lett M, Schebitz C, Müller RU, Klimkait W, Klimkait T. Benefits of Repeated SARS-CoV-2 Vaccination and Virus-induced Cross-neutralization Potential in Immunocompromised Transplant Patients and Healthy Individuals. Open Forum Infect Dis 2024; 11:ofae527. [PMID: 39371367 PMCID: PMC11450466 DOI: 10.1093/ofid/ofae527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Background Current COVID-19 vaccines primarily target the Spike protein of defined virus variants, offering limited protection against emerging variants in immunocompetent individuals. Similarly, protective immunity following natural SARS-CoV-2 infection is variable and of short duration, raising concerns about immunocompromised individuals' vaccination strategies. Methods This prospective multicenter study examined 66 sera from 59 immunocompromised and 451 sera from 215 immunocompetent individuals from different pandemic periods. We establish and validate a live virus-based neutralization assay to determine the virus-inactivating potential against ancestral and current SARS-CoV-2 isolates. Results Our virus-based neutralization assay demonstrated superior performance over surrogate neutralization assays. We found strong but transient immunity after complete vaccination schemes, with single doses providing minimum neutralization, regardless of vaccine type. Combining vaccination-induced immunity with SARS-CoV-2 infection before or after vaccination yielded higher neutralizing titers than vaccination or infection alone, consistent across both study groups. Additional doses after a full vaccination course restored neutralization levels. Conclusions Potentially protective SARS-CoV-2 neutralization is reliably induced in immunocompromised individuals by prior attenuation of immunosuppression. First-generation vaccines protect against various SARS-CoV-2 variants in immunocompetent individuals, with effective cross-neutralization demonstrated up to the Delta variant but largely absent for later Omicron variants. Continuous vaccine updates are necessary to address emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- David Hauser
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Christopher Lang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Enja Kipfer
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Lett
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Wilfried Klimkait
- KfH-Nierenzentrum, Heilig-Geist-Gesundheitszentrum, Köln-Longerich, Germany
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Hannawi S, Abuquta A, Eldin LS, Hassan A, Alamadi A, Gao C, Baidoo AAH, Yang X, Su H, Zhang J, Xie L. Immunogenicity and Safety of Omicron-Containing Multivalent COVID-19 Vaccines in Unvaccinated and Previously Vaccinated Adults. Vaccines (Basel) 2024; 12:1109. [PMID: 39460276 PMCID: PMC11510771 DOI: 10.3390/vaccines12101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
The SARS-CoV-2 evolution trajectory remains uncertain, and the antigenic characteristics of future variants are highly unpredictable. We report the immunogenicity and safety of multivalent COVID-19 vaccines, SCTV01E and SCTV01E-1, against Omicron BA.5. This phase 2 trial randomized 400 adults into two cohorts, 160 unvaccinated (3 doses) and 240 previously vaccinated (2 doses) individuals to receive 30 µg SCTV01E-1 or 30 µg SCTV01E (1:1) between 4 November and 28 November 2022. Among the unvaccinated cohort, day 42 geometric mean fold rises (GMFRs) of neutralizing antibodies (nAb) against Omicron BA.5 were reported to be 12.8× and 20.5× over day 0 for SCTV01E-1 and SCTV01E, respectively. On day 178, both vaccines increased geometric mean titers (GMTs) of nAb against BA.5 following the booster dose compared to pre-booster levels on D150. Similar frequencies of solicited [6.2% (5/81) and 7.6% (6/79)] and unsolicited [11.1% (9/81) and 10.1% (8/79)] adverse events (AEs) were reported in SCTV01E-1 and SCTV01E groups, respectively. Grade 3 or more AEs were < 2% in both vaccine groups [SCTV01E-1: 1.2% (1/81), SCTV01E: 1.3% (1/79)]. In the previously vaccinated cohort, similar GMFRs were reported on day 28 (SCTV01E-1: 9.4× and SCTV01E: 8.7×) over baseline (D0). On day 148, both vaccines showed increased nAb levels with similar GMFRs over D120. Comparable incidences of solicited [13.2% (16/121) and 10.9% (13/119)] and unsolicited [17.4% (21/121) and 10.9% (13/119)] AEs were reported in SCTV01E-1 and SCTV01E groups, respectively. Numerically identical ≥ grade 3 AEs [SCTV01E-1: 1.7% (2/121) and SCTV01E: 1.7% (2/119)] were reported. This trial demonstrates the effectiveness of updated multivalent vaccines with acceptable safety profiles.
Collapse
Affiliation(s)
- Suad Hannawi
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates; (S.H.); (A.H.)
| | - Alaa Abuquta
- Accident and Emergency Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates;
| | - Linda Saf Eldin
- General Surgery Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates;
| | - Aala Hassan
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates; (S.H.); (A.H.)
| | - Ahmad Alamadi
- Ear, Nose and Throat Department (ENT), Al Kuwait-Dubai (ALBaraha) Hospital, Dubai 00000, United Arab Emirates;
| | - Cuige Gao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Adam Abdul Hakeem Baidoo
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Xinjie Yang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Huo Su
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Jinxiu Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (A.A.H.B.); (X.Y.); (H.S.); (J.Z.)
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
12
|
Zayou L, Prakash S, Vahed H, Dhanushkodi NR, Quadiri A, Belmouden A, Lemkhente Z, Chentoufi A, Gil D, Ulmer JB, BenMohamed L. Dynamics of Spike-Specific Neutralizing Antibodies Across Five-Year Emerging SARS-CoV-2 Variants of Concern Reveal Conserved Epitopes that Protect Against Severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614369. [PMID: 39386567 PMCID: PMC11463540 DOI: 10.1101/2024.09.22.614369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Since early 2020, several SARS-CoV-2 variants of concern (VOCs) continue to emerge, evading waning antibody mediated immunity produced by the current Spike-alone based COVID-19 vaccines. This caused a prolonged and persistent COVID-19 pandemic that is going to enter its fifth year. Thus, the need remains for innovative next generation vaccines that would incorporate protective Spike-derived B-cell epitopes that resist immune evasion. Towards that goal, in this study we (i) Screened the sequences of Spike among many VOCs and identified conserved and non-conserved linear B-cell epitopes; (ii) Compared titers and neutralization antibodies specific to these conserved and non-conserved B-cell epitopes from serum of symptomatic and asymptomatic COVID-19 patients that were exposed to multiple VOCs across the 5-year COVID-19 pandemic, and (iii) Compared protective efficacy of conserved versus non-conserved B-cell epitopes against the most pathogenic Delta variant in a "humanized" ACE-2/HLA transgenic mouse model. We found robust conserved B-cell epitope-specific antibody titers and neutralization in sera from asymptomatic COVID-19 patients. In contrast, sera from symptomatic patients contained weaker antibody responses specific to conserved B-cell epitopes. A multi-epitope COVID-19 vaccine that incorporated the conserved B-cell epitopes, but not the non-conserved B-cell epitopes, significantly protected the ACE2/HLA transgenic mice against infection and COVID-19 like symptoms caused by the Delta variant. These findings underscore the importance of conserved B-cell epitopes in generating robust protective immunity against severe COVID-19 symptoms caused by various VOCs, providing valuable insights for the development of broad-spectrum next generation Coronavirus vaccines capable of conferring cross-variant protective immunity.
Collapse
Affiliation(s)
- Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ahmed Belmouden
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Zohra Lemkhente
- Laboratory of Medical-Surgical, Biomedicine and infectiology Research, Faculty of Medicine and Pharmacy, Ibnou Zohr University, Agadir, Morocco
| | - Aziz Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
13
|
Lin MR, Huang CG, Chiu CH, Chen CJ. Evaluation of Vaccine Strategies among Healthcare Workers during COVID-19 Omicron Outbreak in Taiwan. Vaccines (Basel) 2024; 12:1057. [PMID: 39340088 PMCID: PMC11435596 DOI: 10.3390/vaccines12091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to assess the reactogenicity and immunogenicity of various SARS-CoV-2 vaccines and compare their protective effects against COVID-19 among healthcare workers (HCWs) during the Omicron outbreak in Taiwan. METHODS Conducted from March 2021 to July 2023, this prospective observational study included healthy HCWs without prior COVID-19 immunization. Participants chose between adenovirus-vectored (AstraZeneca), mRNA (Moderna, BioNTech-Pfizer), and protein-based (Medigen, Novavax) vaccines. Blood samples were taken at multiple points to measure neutralizing antibody (nAb) titers, and adverse events (AEs) were recorded via questionnaires. RESULTS Of 710 HCWs, 668 (94.1%) completed three doses, and 290 (40.8%) received a fourth dose during the Omicron outbreak. AEs were more common with AstraZeneca and Moderna vaccines, while Medigen caused fewer AEs. Initial nAb titers were highest with Moderna but waned over time regardless of the vaccine. Booster doses significantly increased nAb titers, with the highest levels observed in Moderna BA1 recipients. The fourth dose significantly reduced COVID-19 incidence, with Moderna BA1 being the most effective. CONCLUSIONS Regular booster doses, especially with mRNA and adjuvant-protein vaccines, effectively enhance nAb levels and reduce infection rates, providing critical protection for frontline HCWs during variant outbreaks.
Collapse
Affiliation(s)
- Min-Ru Lin
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
14
|
Mi Y, Xu K, Wang W, Kong W, Xu X, Rong X, Tan J. Sequential Immunization with Vaccines Based on SARS-CoV-2 Virus-like Particles Induces Broadly Neutralizing Antibodies. Vaccines (Basel) 2024; 12:927. [PMID: 39204050 PMCID: PMC11359007 DOI: 10.3390/vaccines12080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Although many people have been vaccinated against COVID-19, infections with SARS-CoV-2 seem hard to avoid. There is a need to develop more effective vaccines and immunization strategies against emerging variants of infectious diseases. To understand whether different immunization strategies using variants sequence-based virus-like particles (VLPs) vaccines could offer superior immunity against future SARS-CoV-2 variants, our team constructed VLPs for the original Wuhan-Hu-1 strain (prototype), Delta (δ) variant, and Omicron (ο) variant of SARS-CoV-2, using baculovirus-insect expression system. Then we used these VLPs to assess the immune responses induced by homologous prime-boost, heterologous prime-boost, and sequential immunizations strategies in a mouse model. Our results showed that the pro+δ+ο sequential strategies elicited better neutralizing antibody responses. These sequential strategies also take advantage of inducing CD4+ T and CD8+ T lymphocytes proliferation and tendency to cytokine of Th1. Currently, our data suggest that sequential immunization with VLPs of encoding spike protein derived from SARS-CoV-2 variants of concern may be a potential vaccine strategy against emerging diseases, such as "Disease X".
Collapse
Affiliation(s)
- Youjun Mi
- Department of Pathophysiology, School of BasicMedical Sciences, Lanzhou University, Lanzhou 730000, China;
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (W.W.); (W.K.); (X.X.); (X.R.)
| | - Kun Xu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medicine Sciences, Lanzhou University, Lanzhou 730000, China;
- People’s Hospital of Qianxinan Prefecture, Xingyi 562400, China
| | - Wenting Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (W.W.); (W.K.); (X.X.); (X.R.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medicine Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Weize Kong
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (W.W.); (W.K.); (X.X.); (X.R.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medicine Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Xiaonan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (W.W.); (W.K.); (X.X.); (X.R.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medicine Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Xifeng Rong
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (W.W.); (W.K.); (X.X.); (X.R.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medicine Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Jiying Tan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (W.W.); (W.K.); (X.X.); (X.R.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medicine Sciences, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
15
|
Hadley E, Yoo YJ, Patel S, Zhou A, Laraway B, Wong R, Preiss A, Chew R, Davis H, Brannock MD, Chute CG, Pfaff ER, Loomba J, Haendel M, Hill E, Moffitt R. Insights from an N3C RECOVER EHR-based cohort study characterizing SARS-CoV-2 reinfections and Long COVID. COMMUNICATIONS MEDICINE 2024; 4:129. [PMID: 38992084 PMCID: PMC11239932 DOI: 10.1038/s43856-024-00539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Although the COVID-19 pandemic has persisted for over 3 years, reinfections with SARS-CoV-2 are not well understood. We aim to characterize reinfection, understand development of Long COVID after reinfection, and compare severity of reinfection with initial infection. METHODS We use an electronic health record study cohort of over 3 million patients from the National COVID Cohort Collaborative as part of the NIH Researching COVID to Enhance Recovery Initiative. We calculate summary statistics, effect sizes, and Kaplan-Meier curves to better understand COVID-19 reinfections. RESULTS Here we validate previous findings of reinfection incidence (6.9%), the occurrence of most reinfections during the Omicron epoch, and evidence of multiple reinfections. We present findings that the proportion of Long COVID diagnoses is higher following initial infection than reinfection for infections in the same epoch. We report lower albumin levels leading up to reinfection and a statistically significant association of severity between initial infection and reinfection (chi-squared value: 25,697, p-value: <0.0001) with a medium effect size (Cramer's V: 0.20, DoF = 3). Individuals who experienced severe initial and first reinfection were older in age and at a higher mortality risk than those who had mild initial infection and reinfection. CONCLUSIONS In a large patient cohort, we find that the severity of reinfection appears to be associated with the severity of initial infection and that Long COVID diagnoses appear to occur more often following initial infection than reinfection in the same epoch. Future research may build on these findings to better understand COVID-19 reinfections.
Collapse
Affiliation(s)
| | | | - Saaya Patel
- Stony Brook University, Stony Brook, NY, USA
| | - Andrea Zhou
- University of Virginia, Charlottesville, VA, USA
| | | | - Rachel Wong
- Stony Brook University, Stony Brook, NY, USA
| | | | - Rob Chew
- RTI International, Durham, NC, USA
| | - Hannah Davis
- Patient Led Research Collaborative (PLRC), Calabasas, CA, USA
| | | | | | | | | | | | - Elaine Hill
- University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
16
|
Sandford R, Yadav R, Noble E, Sumner K, Joshi D, Tartof S, Wernli K, Martin E, Gaglani M, Zimmerman R, Talbot H, Grijalva C, Belongia E, Carlson C, Coughlin M, Flannery B, Pearce B, Rogier E. Antibody Response to Symptomatic Infection With SARS-CoV-2 Omicron Variant Viruses, December 2021-June 2022. Influenza Other Respir Viruses 2024; 18:e13339. [PMID: 39012045 PMCID: PMC11250392 DOI: 10.1111/irv.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024] Open
Abstract
We describe humoral immune responses in 105 ambulatory patients with laboratory-confirmed SARS-CoV-2 Omicron variant infection. In dried blood spot (DBS) collected within 5 days of illness onset and during convalescence, we measured binding antibody (bAb) against ancestral spike protein receptor binding domain (RBD) and nucleocapsid (N) protein using a commercial multiplex bead assay. Geometric mean bAb concentrations against RBD increased by a factor of 2.5 from 1258 to 3189 units/mL and by a factor of 47 against N protein from 5.5 to 259 units/mL between acute illness and convalescence; lower concentrations were associated with greater geometric mean ratios. Paired DBS specimens may be used to evaluate humoral response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ryan Sandford
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
- Oak Ridge Institute for Science and EducationOak RidgeTennesseeUSA
- Rollins School of Public HealthAtlantaGeorgiaUSA
| | - Ruchi Yadav
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Emma K. Noble
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
- Oak Ridge Institute for Science and EducationOak RidgeTennesseeUSA
| | - Kelsey Sumner
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Devyani Joshi
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Sara Y. Tartof
- Department of Research & EvaluationKaiser Permanente Southern CaliforniaYorba LindaCaliforniaUSA
- Department of Health Systems ScienceKaiser Permanente Bernard J. Tyson School of MedicinePasadenaCaliforniaUSA
| | - Karen J. Wernli
- Kaiser Permanente Washington Health Research InstituteSeattleWashingtonUSA
| | - Emily T. Martin
- University of Michigan School of Public HealthAnn ArborMichiganUSA
| | - Manjusha Gaglani
- Baylor Scott & White HealthTempleTexasUSA
- Texas A&M University College of MedicineTempleTexasUSA
| | | | | | | | | | | | | | | | - Brad Pearce
- Rollins School of Public HealthAtlantaGeorgiaUSA
| | - Eric Rogier
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| |
Collapse
|
17
|
Chen L, Ren W, Lei H, Wang J, Que H, Wan D, Alu A, Peng D, Fu M, Hong W, Huang Y, Song X, Lu G, Wei X. Intranasal boosting with RBD-HR protein vaccine elicits robust mucosal and systemic immune responses. Genes Dis 2024; 11:101066. [PMID: 38550714 PMCID: PMC10972810 DOI: 10.1016/j.gendis.2023.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Accepted: 06/27/2023] [Indexed: 03/17/2025] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has decreased the efficacy of SARS-CoV-2 vaccines in containing coronavirus disease 2019 (COVID-19) over time, and booster vaccination strategies are urgently necessitated to achieve sufficient protection. Intranasal immunization can improve mucosal immunity, offering protection against the infection and sustaining the spread of SARS-CoV-2. In this study, an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum, nasal lavage fluid, and bronchoalveolar lavage fluid compared with only two doses of mRNA vaccine. After intranasal boosting with the RBD-HR vaccine, the levels of serum neutralizing antibodies against prototype and variant strains of SARS-CoV-2 pseudoviruses were markedly higher than those in mice receiving mRNA vaccine alone, and intranasal boosting with the RBD-HR vaccine also inhibited the binding of RBD to hACE2 receptors. Furthermore, the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+ dendritic cells in the respiratory mucosa, and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs, including mediastinal lymph nodes, inguinal lymph nodes, and spleen. Collectively, these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locally and systemically.
Collapse
Affiliation(s)
| | | | | | - Jiayu Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dandan Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Xiang T, Quan X, Jia H, Wang H, Liang B, Li S, Wang X, Li H, Feng X, Fan L, Xu L, Wang T, Xiong S, Yang D, Liu J, Zheng X. Omicron breakthrough infections after triple-dose inactivated COVID-19 vaccination: A comprehensive analysis of antibody and T-cell responses. Immunology 2024; 172:313-327. [PMID: 38462236 DOI: 10.1111/imm.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
This study longitudinally evaluated the immune response in individuals over a year after receiving three doses of an inactivated SARS-CoV-2 vaccine, focusing on reactions to Omicron breakthrough infections. From 63 blood samples of 37 subjects, results showed that the third booster enhanced the antibody response against Alpha, Beta, and Delta VOCs but was less effective against Omicron. Although antibody titres decreased post-vaccination, SARS-CoV-2-specific T-cell responses, both CD4+ and CD8+, remained stable. Omicron breakthrough infections significantly improved neutralization against various VOCs, including Omicron. However, the boost in antibodies against WT, Alpha, Beta, and Delta variants was more pronounced. Regarding T cells, breakthrough infection predominantly boosted the CD8+ T-cell response, and the intensity of the spike protein-specific T-cell response was roughly comparable between WT and Omicron BA.5.
Collapse
Affiliation(s)
- Tiandan Xiang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xufeng Quan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Jia
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Boyun Liang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Sumeng Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Huadong Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Fan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Xu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Shue Xiong
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Yang Y, Li F, Du L. Therapeutic nanobodies against SARS-CoV-2 and other pathogenic human coronaviruses. J Nanobiotechnology 2024; 22:304. [PMID: 38822339 PMCID: PMC11140877 DOI: 10.1186/s12951-024-02573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Nanobodies, single-domain antibodies derived from variable domain of camelid or shark heavy-chain antibodies, have unique properties with small size, strong binding affinity, easy construction in versatile formats, high neutralizing activity, protective efficacy, and manufactural capacity on a large-scale. Nanobodies have been arisen as an effective research tool for development of nanobiotechnologies with a variety of applications. Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, have caused serious outbreaks or a global pandemic, and continue to post a threat to public health worldwide. The viral spike (S) protein and its cognate receptor-binding domain (RBD), which initiate viral entry and play a critical role in virus pathogenesis, are important therapeutic targets. This review describes pathogenic human CoVs, including viral structures and proteins, and S protein-mediated viral entry process. It also summarizes recent advances in development of nanobodies targeting these CoVs, focusing on those targeting the S protein and RBD. Finally, we discuss potential strategies to improve the efficacy of nanobodies against emerging SARS-CoV-2 variants and other CoVs with pandemic potential. It will provide important information for rational design and evaluation of therapeutic agents against emerging and reemerging pathogens.
Collapse
MESH Headings
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/pharmacology
- Single-Domain Antibodies/therapeutic use
- Single-Domain Antibodies/chemistry
- Humans
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Animals
- COVID-19/virology
- COVID-19/immunology
- COVID-19/therapy
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Middle East Respiratory Syndrome Coronavirus/immunology
- Virus Internalization/drug effects
- Pandemics
- Betacoronavirus/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/virology
- Pneumonia, Viral/immunology
- Severe acute respiratory syndrome-related coronavirus/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
Collapse
Affiliation(s)
- Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Coronavirus Research, University of Minnesota, Minneapolis, MN, USA.
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Li J, Huang Q, Liang Y, Jiang J, Yang Y, Feng J, Tan X, Li T. The Potential Mechanisms of Arrhythmia in Coronavirus disease-2019. Int J Med Sci 2024; 21:1366-1377. [PMID: 38818469 PMCID: PMC11134579 DOI: 10.7150/ijms.94578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) leads to coronavirus disease-2019 (COVID-19) which can cause severe cardiovascular complications including myocardial injury, arrhythmias, acute coronary syndrome and others. Among these complications, arrhythmias are considered serious and life-threatening. Although arrhythmias have been associated with factors such as direct virus invasion leading to myocardial injury, myocarditis, immune response disorder, cytokine storms, myocardial ischemia/hypoxia, electrolyte abnormalities, intravascular volume imbalances, drug interactions, side effects of COVID-19 vaccines and autonomic nervous system dysfunction, the exact mechanisms of arrhythmic complications in patients with COVID-19 are complex and not well understood. In the present review, the literature was extensively searched to investigate the potential mechanisms of arrhythmias in patients with COVID-19. The aim of the current review is to provide clinicians with a comprehensive foundation for the prevention and treatment of arrhythmias associated with long COVID-19.
Collapse
Affiliation(s)
- Jianhong Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiuyuan Huang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Yifan Liang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
21
|
Gogineni P, Melson E, Papamargaritis D, Davies M. Oral glucagon-like peptide-1 receptor agonists and combinations of entero-pancreatic hormones as treatments for adults with type 2 diabetes: where are we now? Expert Opin Pharmacother 2024; 25:801-818. [PMID: 38753454 PMCID: PMC11195668 DOI: 10.1080/14656566.2024.2356254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) have changed the landscape of type 2 diabetes (T2D) management due to their cardio-renal benefits, their glucose-lowering efficacy and weight loss (WL) maintenance. However, the response to GLP-1 RA monotherapy is heterogeneous. Additionally, the majority of GLP-1 RAs are injectable treatments. Oral GLP-1 RAs and injectable combinations of GLP-1 with other entero-pancreatic hormones (glucose-dependent insulinotropic polypeptide (GIP), glucagon and amylin) are under development for T2D and obesity management. AREAS COVERED Herein, we review the data on (i) oral GLP-1 RAs (oral semaglutide 25/50 mg and orforglipron) and (ii) dual/triple agonists (tirzepatide, cagrilintide 2.4 mg/semaglutide 2.4 mg, survodutide, mazdutide, retatrutide) that have recently completed phase 3 trials for T2D or are currently in phase 3 clinical trials. Tirzepatide is the first approved dual agonist (GLP-1/GIP) for T2D and obesity management. EXPERT OPINION We are in a new era in T2D management where entero-pancreatic hormone-based treatments can result in ≥15% WL and euglycemia for many people with T2D. Multiple molecules with different mechanisms of action are under development for T2D, obesity and other metabolic complications. Data on their cardio-renal benefits, long-term efficacy and safety as well as their cost-effectiveness will better inform their position in treatment algorithms.
Collapse
Affiliation(s)
- Prathima Gogineni
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Eka Melson
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | | | - Melanie Davies
- Diabetes Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| |
Collapse
|
22
|
Swadźba J, Panek A, Wąsowicz P, Anyszek T, Martin E. High Concentration of Anti-SARS-CoV-2 Antibodies 2 Years after COVID-19 Vaccination Stems Not Only from Boosters but Also from Widespread, Often Unrecognized, Contact with the Virus. Vaccines (Basel) 2024; 12:471. [PMID: 38793722 PMCID: PMC11125768 DOI: 10.3390/vaccines12050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
This study follows 99 subjects vaccinated with Pfizer/BioNTech COVID-19 vaccines over two years, with particular focus on the last year of observation (between days 360 and 720). The response to the vaccination was assessed with Diasorin's SARS-CoV-2 TrimericSpike IgG. Screening for SARS-CoV-2 infection was performed with Abbott's SARS-CoV-2 Nucleocapsid IgG immunoassay. Data from questionnaires were also analyzed. Two years after the first vaccine dose administration, 100% of the subjects were positive for anti-spike SARS-CoV-2 IgG and the median antibody level was still high (3600 BAU/mL), dropping insignificantly over the last year. Simultaneously, a substantial increase in seropositivity in anti-nucleocapsid SARS-CoV-2 IgG was noted, reaching 33%. There was no statistically significant agreement between anti-N seropositivity and reported COVID-19. Higher anti-spike concentrations and lower COVID-19 incidence was seen in the older vaccinees. It was noted that only subjects boosted between days 360 and 720 showed an increase in anti-spike IgG concentrations. The higher antibody concentrations (median 7440 BAU/mL) on day 360 were noted in participants not infected over the following year. Vaccination, including booster administrations, and natural, even unrecognized, contact with SARS-CoV-2 entwined two years after the primary vaccination, leading to high anti-spike antibody concentrations.
Collapse
Affiliation(s)
- Jakub Swadźba
- Medical Faculty, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (J.S.); (T.A.)
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| | - Andrzej Panek
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| | - Paweł Wąsowicz
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| | - Tomasz Anyszek
- Medical Faculty, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland; (J.S.); (T.A.)
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| | - Emilia Martin
- Medical Department Diagnostyka S.A., 31-864 Krakow, Poland; (A.P.); (P.W.)
| |
Collapse
|
23
|
Wang X, Zhang M, Wei K, Li C, Yang J, Jiang S, Zhao C, Zhao X, Qiao R, Cui Y, Chen Y, Li J, Cai G, Liu C, Yu J, Zhang W, Xie F, Wang P, Zhang Y. Longitudinal Analysis of Humoral and Cellular Immune Response up to 6 Months after SARS-CoV-2 BA.5/BF.7/XBB Breakthrough Infection and BA.5/BF.7-XBB Reinfection. Vaccines (Basel) 2024; 12:464. [PMID: 38793715 PMCID: PMC11125724 DOI: 10.3390/vaccines12050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The rapid mutation of SARS-CoV-2 has led to multiple rounds of large-scale breakthrough infection and reinfection worldwide. However, the dynamic changes of humoral and cellular immunity responses to several subvariants after infection remain unclear. In our study, a 6-month longitudinal immune response evaluation was conducted on 118 sera and 50 PBMC samples from 49 healthy individuals who experienced BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection. By studying antibody response, memory B cell, and IFN-γ secreting CD4+/CD8+ T cell response to several SARS-CoV-2 variants, we observed that each component of immune response exhibited distinct kinetics. Either BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection induces relatively high level of binding and neutralizing antibody titers against Omicron subvariants at an early time point, which rapidly decreases over time. Most of the individuals at 6 months post-breakthrough infection completely lost their neutralizing activities against BQ.1.1, CH.1.1, BA.2.86, JN.1 and XBB subvariants. Individuals with BA.5/BF.7-XBB reinfection exhibit immune imprinting shifting and recall pre-existing BA.5/BF.7 neutralization antibodies. In the BA.5 breakthrough infection group, the frequency of BA.5 and XBB.1.16-RBD specific memory B cells, resting memory B cells, and intermediate memory B cells gradually increased over time. On the other hand, the frequency of IFN-γ secreting CD4+/CD8+ T cells induced by WT/BA.5/XBB.1.16 spike trimer remains stable over time. Overall, our research indicates that individuals with breakthrough infection have rapidly declining antibody levels but have a relatively stable cellular immunity that can provide some degree of protection from future exposure to new antigens.
Collapse
Affiliation(s)
- Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Meng Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Kaifeng Wei
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Jinghui Yang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Shujun Jiang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Chaoyue Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Yuchen Cui
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Guonan Cai
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Changyi Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Jizhen Yu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases and Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai 200437, China;
| | - Faren Xie
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200437, China; (X.W.); (C.L.); (C.Z.); (X.Z.); (R.Q.); (Y.C.); (Y.C.); (J.L.); (G.C.); (C.L.); (J.Y.)
| | - Yanliang Zhang
- Department of Infectious Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210023, China; (M.Z.); (J.Y.); (S.J.)
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing 210001, China
| |
Collapse
|
24
|
Scheim DE, Parry PI, Rabbolini DJ, Aldous C, Yagisawa M, Clancy R, Borody TJ, Hoy WE. Back to the Basics of SARS-CoV-2 Biochemistry: Microvascular Occlusive Glycan Bindings Govern Its Morbidities and Inform Therapeutic Responses. Viruses 2024; 16:647. [PMID: 38675987 PMCID: PMC11054389 DOI: 10.3390/v16040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Consistent with the biochemistry of coronaviruses as well established over decades, SARS-CoV-2 makes its initial attachment to host cells through the binding of its spike protein (SP) to sialylated glycans (containing the monosaccharide sialic acid) on the cell surface. The virus can then slide over and enter via ACE2. SARS-CoV-2 SP attaches particularly tightly to the trillions of red blood cells (RBCs), platelets and endothelial cells in the human body, each cell very densely coated with sialic acid surface molecules but having no ACE2 or minimal ACE2. These interlaced attachments trigger the blood cell aggregation, microvascular occlusion and vascular damage that underlie the hypoxia, blood clotting and related morbidities of severe COVID-19. Notably, the two human betacoronaviruses that express a sialic acid-cleaving enzyme are benign, while the other three-SARS, SARS-CoV-2 and MERS-are virulent. RBC aggregation experimentally induced in several animal species using an injected polysaccharide caused most of the same morbidities of severe COVID-19. This glycan biochemistry is key to disentangling controversies that have arisen over the efficacy of certain generic COVID-19 treatment agents and the safety of SP-based COVID-19 vaccines. More broadly, disregard for the active physiological role of RBCs yields unreliable or erroneous reporting of pharmacokinetic parameters as routinely obtained for most drugs and other bioactive agents using detection in plasma, with whole-blood levels being up to 30-fold higher. Appreciation of the active role of RBCs can elucidate the microvascular underpinnings of other health conditions, including cardiovascular disease, and therapeutic opportunities to address them.
Collapse
Affiliation(s)
- David E. Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060, USA
| | - Peter I. Parry
- Children’s Health Research Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia;
- Department of Psychiatry, Flinders University, Bedford Park, SA 5042, Australia
| | - David J. Rabbolini
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Morimasa Yagisawa
- Satoshi Omura Memorial Research Institute, Kitasato University, Tokyo 108-8641, Japan
- Louis Pasteur Center for Medical Research, Kyoto 606-8225, Japan
| | - Robert Clancy
- Emeritus Professor, School of Medicine and Public Health, University of Newcastle, Newcastle, NE1 7RU, Australia
| | | | - Wendy E. Hoy
- Emeritus Professor of Medicine, University of Queensland, Herston, QLD 4029, Australia
| |
Collapse
|
25
|
Chisty ZA, Li DD, Haile M, Houston H, DaSilva J, Overton R, Schuh AJ, Haynie J, Clemente J, Branch AG, Arons MM, Tsang CA, Pellegrini GJ, Bugrysheva J, Ilutsik J, Mohelsky R, Comer P, Hundia SB, Oh H, Stuckey MJ, Bohannon CD, Rasheed MAU, Epperson M, Thornburg NJ, McDonald LC, Brown AC, Kutty PK. Immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination among nursing home residents-Georgia, October 2020-July 2022. PLoS One 2024; 19:e0301367. [PMID: 38625908 PMCID: PMC11020945 DOI: 10.1371/journal.pone.0301367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Understanding the immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination is important in nursing home (NH) residents, a high-risk population. METHODS An observational longitudinal evaluation of 37 consenting vaccinated NH residents with/without SARS-CoV-2 infection from October 2020 to July 2022 was conducted to characterize the immune response to spike protein due to infection and/or mRNA COVID-19 vaccine. Antibodies (IgG) to SARS-CoV-2 full-length spike, nucleocapsid, and receptor binding domain protein antigens were measured, and surrogate virus neutralization capacity was assessed using Meso Scale Discovery immunoassays. The participant's spike exposure status varied depending on the acquisition of infection or receipt of a vaccine dose. Longitudinal linear mixed effects modeling was used to describe trajectories based on the participant's last infection or vaccination; the primary series mRNA COVID-19 vaccine was considered two spike exposures. Mean antibody titer values from participants who developed an infection post receipt of mRNA COVID-19 vaccine were compared with those who did not. In a subset of participants (n = 15), memory B cell (MBC) S-specific IgG (%S IgG) responses were assessed using an ELISPOT assay. RESULTS The median age of the 37 participants at enrollment was 70.5 years; 30 (81%) had prior SARS-CoV-2 infection, and 76% received Pfizer-BioNTech and 24% Moderna homologous vaccines. After an observed augmented effect with each spike exposure, a decline in the immune response, including %S IgG MBCs, was observed over time; the percent decline decreased with increasing spike exposures. Participants who developed an infection at least two weeks post-receipt of a vaccine were observed to have lower humoral antibody levels than those who did not develop an infection post-receipt. CONCLUSIONS These findings suggest that understanding the durability of immune responses in this vulnerable NH population can help inform public health policy regarding the timing of booster vaccinations as new variants display immune escape.
Collapse
Affiliation(s)
- Zeshan A. Chisty
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Deana D. Li
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melia Haile
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hollis Houston
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Juliana DaSilva
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Rahsaan Overton
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amy J. Schuh
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jenn Haynie
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Goldbelt C6, LLC, Chesapeake, Virginia, United States of America
| | - Jacob Clemente
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alicia G. Branch
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melissa M. Arons
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Clarisse A. Tsang
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Gerald J. Pellegrini
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Julia Bugrysheva
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Justina Ilutsik
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Goldbelt C6, LLC, Chesapeake, Virginia, United States of America
| | - Romy Mohelsky
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Patricia Comer
- A.G. Rhodes Wesley Woods Heath and Rehab, Atlanta, Georgia, United States of America
| | | | - Hyungseok Oh
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Matthew J. Stuckey
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Caitlin D. Bohannon
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mohammed Ata Ur Rasheed
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Monica Epperson
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Natalie J. Thornburg
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - L. Clifford McDonald
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Allison C. Brown
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Preeta K. Kutty
- COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
26
|
Grigoryan L, Feng Y, Bellusci L, Lai L, Wali B, Ellis M, Yuan M, Arunachalam PS, Hu M, Kowli S, Gupta S, Maysel-Auslender S, Maecker HT, Samaha H, Rouphael N, Wilson IA, Moreno AC, Suthar MS, Khurana S, Pillet S, Charland N, Ward BJ, Pulendran B. AS03 adjuvant enhances the magnitude, persistence, and clonal breadth of memory B cell responses to a plant-based COVID-19 vaccine in humans. Sci Immunol 2024; 9:eadi8039. [PMID: 38579013 PMCID: PMC11732256 DOI: 10.1126/sciimmunol.adi8039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.
Collapse
Affiliation(s)
- Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - Lilin Lai
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | - Bushra Wali
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | - Madison Ellis
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sheena Gupta
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sofia Maysel-Auslender
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Hady Samaha
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Hope Clinic of Emory Vaccine Center, Emory University, Decatur, GA, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Alberto C. Moreno
- Department of Medicine, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, 30329 USA
| | - Mehul S. Suthar
- Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory School of Medicine, Atlanta, GA, 30329 USA
| | | | - Stéphane Pillet
- Medicago Inc., Québec, QC, Canada
- Research Institute of the McGill University Health Center, 1001 Decarie St, Montréal, QC, Canada H4A 3J1
| | | | - Brian J. Ward
- Medicago Inc., Québec, QC, Canada
- Research Institute of the McGill University Health Center, 1001 Decarie St, Montréal, QC, Canada H4A 3J1
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
27
|
Yang ML, Yuan TZ, Chan KY, Ding L, Han Z, Franco H, Holliday C, Kannan S, Davidson E, Doranz BJ, Chandran K, Miller EH, Plante JA, Weaver SC, Cho E, Kailasan S, Marsalek L, Giang H, Abdiche Y, Sato AK. A VHH single-domain platform enabling discovery and development of monospecific antibodies and modular neutralizing bispecifics against SARS-CoV-2 variants. Antib Ther 2024; 7:164-176. [PMID: 38933534 PMCID: PMC11200683 DOI: 10.1093/abt/tbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, escape coronavirus disease 2019 therapeutics and vaccines, and jeopardize public health. To combat SARS-CoV-2 antigenic escape, we developed a rapid, high-throughput pipeline to discover monospecific VHH antibodies and iteratively develop VHH-Fc-VHH bispecifics capable of neutralizing emerging SARS-CoV-2 variants. By panning VHH single-domain phage libraries against ancestral or beta spike proteins, we discovered high-affinity VHH antibodies with unique target epitopes. Combining two VHHs into a tetravalent bispecific construct conferred broad neutralization activity against multiple variants and was more resistant to antigenic escape than the monospecific antibody alone. Following the rise of the Omicron variant, a VHH in the original bispecific construct was replaced with another VHH discovered against the Omicron BA.1 receptor binding domain; the resulting bispecific exhibited neutralization against both BA.1 and BA.5 sublineage variants. A heavy chain-only tetravalent VHH-Fc-VHH bispecific platform derived from humanized synthetic libraries held a myriad of unique advantages: (i) synthetic preconstructed libraries minimized risk of liabilities and maximized discovery speed, (ii) VHH scaffolds allowed for a modular "plug-and-play" format that could be rapidly iterated upon as variants of concern arose, (iii) natural dimerization of single VHH-Fc-VHH polypeptides allowed for straightforward bispecific production and purification methods, and (iv) multivalent approaches enhanced avidity boosting effects and neutralization potency, and conferred more robust resistance to antigenic escape than monovalent approaches against specific variants. This iterative platform of rapid VHH discovery combined with modular bispecific design holds promise for long-term viral control efforts.
Collapse
Affiliation(s)
- Marisa L Yang
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Tom Z Yuan
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Kara Y Chan
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Lin Ding
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Zhen Han
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Hector Franco
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Carson Holliday
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Shruthi Kannan
- Integral Molecular, Philadelphia, PA 19104, United States
| | - Edgar Davidson
- Integral Molecular, Philadelphia, PA 19104, United States
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Emily Happy Miller
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Jessica A Plante
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Eunice Cho
- Integrated Biotherapeutics, Rockville, MD 20850, United States
| | - Shweta Kailasan
- Integrated Biotherapeutics, Rockville, MD 20850, United States
| | | | - Hoa Giang
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| | - Yasmina Abdiche
- Revelar Biotherapeutics, Inc., Bethesda, MD 20817, United States
| | - Aaron K Sato
- Biopharma Department, Twist Bioscience, South San Francisco, CA 94080, United States
| |
Collapse
|
28
|
Monteiro MES, Lechuga GC, Napoleão-Pêgo P, Carvalho JPRS, Gomes LR, Morel CM, Provance DW, De-Simone SG. Humoral Immune Response to SARS-CoV-2 Spike Protein Receptor-Binding Motif Linear Epitopes. Vaccines (Basel) 2024; 12:342. [PMID: 38675725 PMCID: PMC11055068 DOI: 10.3390/vaccines12040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD's crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses.
Collapse
Affiliation(s)
- Maria E. S. Monteiro
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - João P. R. S. Carvalho
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| | - Larissa R. Gomes
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (M.E.S.M.); (G.C.L.); (P.N.-P.); (J.P.R.S.C.); (L.R.G.); (C.M.M.); (D.W.P.)
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
| |
Collapse
|
29
|
Gardner BJ, Kilpatrick AM. Predicting Vaccine Effectiveness for Hospitalization and Symptomatic Disease for Novel SARS-CoV-2 Variants Using Neutralizing Antibody Titers. Viruses 2024; 16:479. [PMID: 38543844 PMCID: PMC10975673 DOI: 10.3390/v16030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The emergence of new virus variants, including the Omicron variant (B.1.1.529) of SARS-CoV-2, can lead to reduced vaccine effectiveness (VE) and the need for new vaccines or vaccine doses if the extent of immune evasion is severe. Neutralizing antibody titers have been shown to be a correlate of protection for SARS-CoV-2 and other pathogens, and could be used to quickly estimate vaccine effectiveness for new variants. However, no model currently exists to provide precise VE estimates for a new variant against severe disease for SARS-CoV-2 using robust datasets from several populations. We developed predictive models for VE against COVID-19 symptomatic disease and hospitalization across a 54-fold range of mean neutralizing antibody titers. For two mRNA vaccines (mRNA-1273, BNT162b2), models fit without Omicron data predicted that infection with the BA.1 Omicron variant increased the risk of hospitalization 2.8-4.4-fold and increased the risk of symptomatic disease 1.7-4.2-fold compared to the Delta variant. Out-of-sample validation showed that model predictions were accurate; all predictions were within 10% of observed VE estimates and fell within the model prediction intervals. Predictive models using neutralizing antibody titers can provide rapid VE estimates, which can inform vaccine booster timing, vaccine design, and vaccine selection for new virus variants.
Collapse
Affiliation(s)
- Billy J. Gardner
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
30
|
Zhao J, Zhang H, Jiang L, Cheng F, Li W, Wang Z, Liu H, Li S, Jiang Y, Li M, Li Y, Liu S, Fang M, Zhou X, Ye X, Zhao S, Zheng Y, Meng S. Increased antibody titers but induced T cell AICD and apoptosis response in COVID-19 convalescents by inactivated vaccine booster. Microbiol Spectr 2024; 12:e0243523. [PMID: 38319108 PMCID: PMC10913726 DOI: 10.1128/spectrum.02435-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
It is urgently needed to evaluate the necessity and benefits of booster vaccination against the coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2) Omicron to facilitate clinical decision-making for 2019 coronavirus disease (COVID-19) convalescents. We conducted a multicenter, prospective clinical trial (registration number: ChiCTR2100045810) in the first patients with COVID-19 from 28 January 2020 to 20 February 2020 to assess the long-term durability of neutralizing antibodies against live Omicron BA.5 and further assess the efficiency and safety of CoronaVac in the convalescent group. A total of 96 COVID-19 convalescents were enrolled in this study. Neutralizing antibody titers in convalescents were significantly reduced in 9-10 months. A dose-refreshing vaccination in 28 convalescents with an antibody titer below 96 significantly induced neutralizing antibodies against live Omicron by 4.84-fold. Meanwhile, the abundance of naive T cells increased dramatically, and TEMRA and TEM cells gradually decreased after vaccination. Activation-induced cell death and apoptosis-related genes were significantly elevated after vaccination in all T-cell subtypes. One-dose booster vaccination was effective in inducing a robust antibody response against SARS-CoV-2 Omicron in COVID-19 convalescents with low antibody titers. However, vaccine-mediated T-cell consumption and regeneration patterns may be detrimental to the antiviral response.IMPORTANCEThe globally dominant coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2) Omicron variant raises the possibility of repeat infections among 2019 coronavirus disease (COVID-19) convalescents with low neutralizing antibody titers. The importance of this multicenter study lies in its evaluation of the long-term durability of neutralizing antibodies in COVID-19 convalescents and the efficacy of a booster vaccination against the live Omicron. The findings suggest that a one-dose booster vaccination is effective in inducing a robust antibody response against SARS-CoV-2 Omicron in convalescents with low antibody titers. However, the study also highlights the potential detrimental effects on the antiviral response due to vaccine-mediated T-cell consumption and regeneration patterns. These results are crucial for facilitating clinical decision-making for COVID-19 convalescents and informing public health policies regarding booster vaccinations.
Collapse
Affiliation(s)
- Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lina Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fang Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyang Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shaohua Li
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yiyun Jiang
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Meiling Li
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Min Fang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Ye
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shousong Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuxuan Zheng
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Padilla-Bórquez DL, Matuz-Flores MG, Hernández-Bello J, Sánchez-Zuno GA, García-Arellano S, Oregon-Romero E, Herrera-Godina MG, González-Estevez G, Adan-Bante NP, Rosas-Rodríguez JA, Muñoz-Valle JF. Seroprevalence of IgM/IgG and Neutralizing Antibodies against SARS-CoV-2 in Unvaccinated Young Adults from Mexico Who Reported Not Having Had a Previous COVID-19 Infection. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8871439. [PMID: 38384428 PMCID: PMC10881245 DOI: 10.1155/2024/8871439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19). It is estimated that more than half of new infections are transmitted by asymptomatic people; therefore, the isolation of symptomatic people is not enough to control the spread of the disease. Methods A total of 171 unvaccinated young adults (18-35 years) from Sonora, Mexico, who underwent a structured survey to identify prior COVID-19 infections, were included in this study. A qualitative determination of anti-SARS-CoV-2 antibodies in serum was performed by lateral flow immunoassay (Certum IgG/IgM Rapid Test™ cassette kit) and neutralizing antibodies were also determined (GenScript cPass assay). Results A total of 36 people reported a history of COVID-19 infection, and 135 reported no history of COVID-19. In contrast, 49.6% (67/135) of individuals who had not reported a previous SARS-CoV-2 infection were seropositive to the rapid anti-SARS-CoV-2 antibody test, and 48.1% (65/135) of them had neutralizing antibodies. Conclusions These results suggest that in young adults, SARS-CoV-2 infections could be asymptomatic in a high percentage of individuals, which could contribute in part to the slow control of the current pandemic due to the large number of asymptomatic cases that are contagious and that could be a silent spread of the virus.
Collapse
Affiliation(s)
- Diana Lourdes Padilla-Bórquez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mónica Guadalupe Matuz-Flores
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Gabriela Athziri Sánchez-Zuno
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Edith Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Melva Guadalupe Herrera-Godina
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Guillermo González-Estevez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Norma Patricia Adan-Bante
- Departamento de Ciencias Químicas, Biológicas y Agropecuarias, Unidad Regional Sur, Universidad de Sonora, Navojoa, Sonora 85880, Mexico
| | - Jesús Alfredo Rosas-Rodríguez
- Departamento de Ciencias Químicas, Biológicas y Agropecuarias, Unidad Regional Sur, Universidad de Sonora, Navojoa, Sonora 85880, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
32
|
Abela IA, Schwarzmüller M, Ulyte A, Radtke T, Haile SR, Ammann P, Raineri A, Rueegg S, Epp S, Berger C, Böni J, Manrique A, Audigé A, Huber M, Schreiber PW, Scheier T, Fehr J, Weber J, Rusert P, Günthard HF, Kouyos RD, Puhan MA, Kriemler S, Trkola A, Pasin C. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024; 15:e0272223. [PMID: 38270455 PMCID: PMC10865973 DOI: 10.1128/mbio.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Numerous clinical parameters link to severe coronavirus disease 2019, but factors that prevent symptomatic disease remain unknown. We investigated the impact of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and endemic human coronavirus (HCoV) antibody responses on symptoms in a longitudinal children cohort (n = 2,917) and a cross-sectional cohort including children and adults (n = 882), all first exposed to SARS-CoV-2 (March 2020 to March 2021) in Switzerland. Saliva (n = 4,993) and plasma (n = 7,486) antibody reactivity to the four HCoVs (subunit S1 [S1]) and SARS-CoV-2 (S1, receptor binding domain, subunit S2 [S2], nucleocapsid protein) was determined along with neutralizing activity against SARS-CoV-2 Wuhan, Alpha, Delta, and Omicron (BA.2) in a subset of individuals. Inferred recent SARS-CoV-2 infection was associated with a strong correlation between mucosal and systemic SARS-CoV-2 anti-spike responses. Individuals with pre-existing HCoV-S1 reactivity exhibited significantly higher antibody responses to SARS-CoV-2 in both plasma (IgG regression coefficients = 0.20, 95% CI = [0.09, 0.32], P < 0.001) and saliva (IgG regression coefficient = 0.60, 95% CI = [0.088, 1.11], P = 0.025). Saliva neutralization activity was modest but surprisingly broad, retaining activity against Wuhan (median NT50 = 32.0, 1Q-3Q = [16.4, 50.2]), Alpha (median NT50 = 34.9, 1Q-3Q = [26.0, 46.6]), and Delta (median NT50 = 28.0, 1Q-3Q = [19.9, 41.7]). In line with a rapid mucosal defense triggered by cross-reactive HCoV immunity, asymptomatic individuals presented with higher pre-existing HCoV-S1 activity in plasma (IgG HKU1, odds ratio [OR] = 0.53, 95% CI = [0.29,0.97], P = 0.038) and saliva (total HCoV, OR = 0.55, 95% CI = [0.33, 0.91], P = 0.019) and higher SARS-CoV-2 reactivity in saliva (IgG S2 fold change = 1.26, 95% CI = [1.03, 1.54], P = 0.030). By investigating the systemic and mucosal immune responses to SARS-CoV-2 and HCoVs in a population without prior exposure to SARS-CoV-2 or vaccination, we identified specific antibody reactivities associated with lack of symptom development.IMPORTANCEKnowledge of the interplay between human coronavirus (HCoV) immunity and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is critical to understanding the coexistence of current endemic coronaviruses and to building knowledge potential future zoonotic coronavirus transmissions. This study, which retrospectively analyzed a large cohort of individuals first exposed to SARS-CoV-2 in Switzerland in 2020-2021, revealed several key findings. Pre-existing HCoV immunity, particularly mucosal antibody responses, played a significant role in improving SARS-CoV-2 immune response upon infection and reducing symptoms development. Mucosal neutralizing activity against SARS-CoV-2, although low in magnitude, retained activity against SARS-CoV-2 variants underlining the importance of maintaining local mucosal immunity to SARS-CoV-2. While the cross-protective effect of HCoV immunity was not sufficient to block infection by SARS-CoV-2, the present study revealed a remarkable impact on limiting symptomatic disease. These findings support the feasibility of generating pan-protective coronavirus vaccines by inducing potent mucosal immune responses.
Collapse
Affiliation(s)
- Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Priska Ammann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Amapola Manrique
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| |
Collapse
|
33
|
Boon J, Soudani N, Bricker T, Darling T, Seehra K, Patel N, Guebre-Xabier M, Smith G, Suthar M, Ellebedy A, Davis-Gardner M. Immunogenicity and efficacy of XBB.1.5 rS vaccine against EG.5.1 variant of SARS-CoV-2 in Syrian hamsters. RESEARCH SQUARE 2024:rs.3.rs-3873514. [PMID: 38405749 PMCID: PMC10889075 DOI: 10.21203/rs.3.rs-3873514/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The continued emergence of SARS-CoV-2 variants necessitates updating COVID-19 vaccines to match circulating strains. The immunogenicity and efficacy of these vaccines must be tested in pre-clinical animal models. In Syrian hamsters, we measured the humoral and cellular immune response after immunization with the nanoparticle recombinant Spike (S) protein-based COVID-19 vaccine (Novavax, Inc.). We also compared the efficacy of the updated monovalent XBB.1.5 variant vaccine to previous COVID-19 vaccines for the induction of XBB.1.5 and EG.5.1 neutralizing antibodies and protection against a challenge with the EG.5.1 variant of SARS-CoV-2. Immunization induced high levels of spike-specific serum IgG and IgA antibodies, S-specific IgG and IgA antibody secreting cells, and antigen specific CD4 + T-cells. The XBB.1.5 and XBB.1.16 vaccines, but not the Prototype vaccine, induced high levels of neutralizing antibodies against XBB.1.5 and EG.5.1 variants of SARS-CoV-2. Upon challenge with the Omicron EG.5.1 variant, the XBB.1.5 and XBB.1.16 vaccines reduced the virus load in the lungs, nasal turbinates, trachea and nasal washes. The bivalent vaccine continued to offer protection in the trachea and lungs, but protection was reduced in the upper airways. In contrast, the monovalent Prototype vaccine no longer offered good protection, and breakthrough infections were observed in all animals and tissues. Thus, the protein-based XBB.1.5 vaccine is immunogenic and can protect against the Omicron EG.5.1 variant in the Syrian hamster model.
Collapse
Affiliation(s)
- Jacco Boon
- Washington University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mead MN, Seneff S, Wolfinger R, Rose J, Denhaerynck K, Kirsch S, McCullough PA. COVID-19 mRNA Vaccines: Lessons Learned from the Registrational Trials and Global Vaccination Campaign. Cureus 2024; 16:e52876. [PMID: 38274635 PMCID: PMC10810638 DOI: 10.7759/cureus.52876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Our understanding of COVID-19 vaccinations and their impact on health and mortality has evolved substantially since the first vaccine rollouts. Published reports from the original randomized phase 3 trials concluded that the COVID-19 mRNA vaccines could greatly reduce COVID-19 symptoms. In the interim, problems with the methods, execution, and reporting of these pivotal trials have emerged. Re-analysis of the Pfizer trial data identified statistically significant increases in serious adverse events (SAEs) in the vaccine group. Numerous SAEs were identified following the Emergency Use Authorization (EUA), including death, cancer, cardiac events, and various autoimmune, hematological, reproductive, and neurological disorders. Furthermore, these products never underwent adequate safety and toxicological testing in accordance with previously established scientific standards. Among the other major topics addressed in this narrative review are the published analyses of serious harms to humans, quality control issues and process-related impurities, mechanisms underlying adverse events (AEs), the immunologic basis for vaccine inefficacy, and concerning mortality trends based on the registrational trial data. The risk-benefit imbalance substantiated by the evidence to date contraindicates further booster injections and suggests that, at a minimum, the mRNA injections should be removed from the childhood immunization program until proper safety and toxicological studies are conducted. Federal agency approval of the COVID-19 mRNA vaccines on a blanket-coverage population-wide basis had no support from an honest assessment of all relevant registrational data and commensurate consideration of risks versus benefits. Given the extensive, well-documented SAEs and unacceptably high harm-to-reward ratio, we urge governments to endorse a global moratorium on the modified mRNA products until all relevant questions pertaining to causality, residual DNA, and aberrant protein production are answered.
Collapse
Affiliation(s)
- M Nathaniel Mead
- Biology and Nutritional Epidemiology, Independent Research, Copper Hill, USA
| | - Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA
| | - Russ Wolfinger
- Biostatistics and Epidemiology, Independent Research, Research Triangle Park, USA
| | - Jessica Rose
- Immunology and Public Health Research, Independent Research, Ottawa, CAN
| | - Kris Denhaerynck
- Epidemiology and Biostatistics, Independent Research, Basel, CHE
| | - Steve Kirsch
- Data Science, Independent Research, Los Angeles, USA
| | - Peter A McCullough
- Cardiology, Epidemiology, and Public Health, McCullough Foundation, Dallas, USA
- Cardiology, Epidemiology, and Public Health, Truth for Health Foundation, Tucson, USA
| |
Collapse
|
35
|
Holdenrieder S, Dos Santos Ferreira CE, Izopet J, Theel ES, Wieser A. Clinical and laboratory considerations: determining an antibody-based composite correlate of risk for reinfection with SARS-CoV-2 or severe COVID-19. Front Public Health 2023; 11:1290402. [PMID: 38222091 PMCID: PMC10788057 DOI: 10.3389/fpubh.2023.1290402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Much of the global population now has some level of adaptive immunity to SARS-CoV-2 induced by exposure to the virus (natural infection), vaccination, or a combination of both (hybrid immunity). Key questions that subsequently arise relate to the duration and the level of protection an individual might expect based on their infection and vaccination history. A multi-component composite correlate of risk (CoR) could inform individuals and stakeholders about protection and aid decision making. This perspective evaluates the various elements that need to be accommodated in the development of an antibody-based composite CoR for reinfection with SARS-CoV-2 or development of severe COVID-19, including variation in exposure dose, transmission route, viral genetic variation, patient factors, and vaccination status. We provide an overview of antibody dynamics to aid exploration of the specifics of SARS-CoV-2 antibody testing. We further discuss anti-SARS-CoV-2 immunoassays, sample matrices, testing formats, frequency of sampling and the optimal time point for such sampling. While the development of a composite CoR is challenging, we provide our recommendations for each of these key areas and highlight areas that require further work to be undertaken.
Collapse
Affiliation(s)
- Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | | | - Jacques Izopet
- Laboratory of Virology, Toulouse University Hospital and INFINITY Toulouse Institute for Infections and Inflammatory Diseases, INSERM UMR 1291 CNRS UMR 5051, University Toulouse III, Toulouse, France
| | - Elitza S. Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- Faculty of Medicine, Max Von Pettenkofer Institute, LMU Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich, Germany
| |
Collapse
|
36
|
Stecher M, Kristoffersen AB, Lie K, Andersen SR, Meijerink H, Starrfelt J. Effectiveness and durability of a second COVID-19 booster against severe outcomes among older people in Norway: a population-based cohort study comparing mono- and bivalent booster doses. Int J Epidemiol 2023; 52:1716-1724. [PMID: 37608733 PMCID: PMC10749769 DOI: 10.1093/ije/dyad114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Evidence on the durability of the protection of a fourth dose of a monovalent or bivalent messenger ribonucleic acid (mRNA) vaccine against coronavirus disease 2019 (COVID-19) among older people during the predominant Omicron period is needed. METHODS We performed a population-based cohort study in Norway covering the time from 1 July 2022 to 15 January 2023, including individuals ≥75 years of age who had received at least a third dose. Using Cox proportional hazard models on severe COVID-19-associated outcome measures and all-cause mortality, we estimated the vaccine effectiveness of mono- and bivalent vaccines, comparing fourth- to third-dose recipients (>24 weeks ago). Vaccine status was included as a time-varying covariate and models were adjusted for potential confounders. RESULTS We included 408 073 individuals. A fourth dose with either monovalent or bivalent mRNA vaccine showed increased protection against COVID-19-associated mortality relative to a third dose in individuals ≥75 years of age. We estimated a protective effect for the bivalent BA.1 vaccine [adjusted hazard ratio (aHR) 0.08, 95% CI 0.02-0.32] relative to the bivalent BA.4-5 (aHR 0.27, 95% CI 0.14-0.56) and a monovalent dose (aHR 0.34, 95% CI 0.26-0.45) 2-9 weeks after vaccination compared with recipients with a third dose >24 weeks ago. The increased protective effect waned with no added protection for the monovalent vaccine after 33 weeks compared with a third dose. CONCLUSIONS Our results indicate an increased protective effect of a fourth dose against severe outcomes compared with a third dose, with decreasing effect with time since the last dose.
Collapse
Affiliation(s)
- Melanie Stecher
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
- ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | - Kristian Lie
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
| | - Svein Rune Andersen
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
| | - Hinta Meijerink
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
| | - Jostein Starrfelt
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
37
|
Yamamoto S, Matsuda K, Maeda K, Horii K, Okudera K, Oshiro Y, Inamura N, Nemoto T, Takeuchi JS, Li Y, Konishi M, Tsuchiya K, Gatanaga H, Oka S, Mizoue T, Sugiyama H, Aoyanagi N, Mitsuya H, Sugiura W, Ohmagari N. Preinfection Neutralizing Antibodies, Omicron BA.5 Breakthrough Infection, and Long COVID: A Propensity Score-Matched Analysis. J Infect Dis 2023; 228:1652-1661. [PMID: 37756608 DOI: 10.1093/infdis/jiad317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Data are limited on the role of preinfection humoral immunity protection against Omicron BA.5 infection and long coronavirus disease (COVID) development. METHODS We conducted nested case-control analysis among tertiary hospital staff in Tokyo who donated blood samples in June 2022 (1 month before Omicron BA.5 wave), approximately 6 months after receiving a third dose of COVID-19 mRNA vaccine. We measured live virus-neutralizing antibody titers against wild type and Omicron BA.5, and anti-receptor-binding domain (RBD) antibody titers at preinfection, and compared them between cases and propensity-matched controls. Among the breakthrough cases, we examined association between preinfection antibody titers and incidence of long COVID. RESULTS Preinfection anti-RBD and neutralizing antibody titers were lower in cases than controls. Neutralizing titers against wild type and Omicron BA.5 were 64% (95% confidence interval [CI], 42%-77%) and 72% (95% CI, 53%-83%) lower, respectively, in cases than controls. Individuals with previous Omicron BA.1/BA.2 infections were more frequent among controls than cases (10.3% vs 0.8%), and their Omicron BA.5 neutralizing titers were 12.8-fold higher than infection-naive individuals. Among cases, preinfection antibody titers were not associated with incidence of long COVID. CONCLUSIONS Preinfection immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may play a role in protecting against the Omicron BA.5 infection but not preventing long COVID.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kouki Matsuda
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Japan Foundation for AIDS Prevention, Tokyo, Japan
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kumi Horii
- Infection Control Office, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Kaori Okudera
- Infection Control Office, Kohnodai Hospital of the National Center for the Global Health and Medicine, Chiba, Japan
| | - Yusuke Oshiro
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Natsumi Inamura
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Takashi Nemoto
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Junko S Takeuchi
- Department of Academic-Industrial Partnerships Promotion, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yunfei Li
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maki Konishi
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Haruhito Sugiyama
- Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Nobuyoshi Aoyanagi
- Kohnodai Hospital of the National Center for the Global Health and Medicine, Chiba, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Jin J, Wang X, Li Y, Yang X, Wang H, Han X, Sun J, Ma Z, Duan J, Zhang G, Huang T, Zhang T, Wu H, Zhang X, Su B. Weak SARS-CoV-2-specific responses of TIGIT-expressing CD8 + T cells in people living with HIV after a third dose of a SARS-CoV-2 inactivated vaccine. Chin Med J (Engl) 2023; 136:2938-2947. [PMID: 37963586 PMCID: PMC10752475 DOI: 10.1097/cm9.0000000000002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domains (TIGIT), an inhibitory receptor expressed on T cells, plays a dysfunctional role in antiviral infection and antitumor activity. However, it is unknown whether TIGIT expression on T cells influences the immunological effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivated vaccines. METHODS Forty-five people living with HIV (PLWH) on antiretroviral therapy (ART) for more than two years and 31 healthy controls (HCs), all received a third dose of a SARS-CoV-2 inactivated vaccine, were enrolled in this study. The amounts, activation, proportion of cell subsets, and magnitude of the SARS-CoV-2-specific immune response of TIGIT + CD4 + and TIGIT + CD8 + T cells were investigated before the third dose but 6 months after the second vaccine dose (0W), 4 weeks (4W) and 12 weeks (12W) after the third dose. RESULTS Compared to that in HCs, the frequency of TIGIT + CD8 + T cells in the peripheral blood of PLWH increased at 12W after the third dose of the inactivated vaccine, and the immune activation of TIGIT + CD8 + T cells also increased. A decrease in the ratio of both T naïve (T N ) and central memory (T CM ) cells among TIGIT + CD8 + T cells and an increase in the ratio of the effector memory (T EM ) subpopulation were observed at 12W in PLWH. Interestingly, particularly at 12W, a higher proportion of TIGIT + CD8 + T cells expressing CD137 and CD69 simultaneously was observed in HCs than in PLWH based on the activation-induced marker assay. Compared with 0W, SARS-CoV-2-specific TIGIT + CD8 + T-cell responses in PLWH were not enhanced at 12W but were enhanced in HCs. Additionally, at all time points, the SARS-CoV-2-specific responses of TIGIT + CD8 + T cells in PLWH were significantly weaker than those of TIGIT - CD8 + T cells. However, in HCs, the difference in the SARS-CoV-2-specific responses induced between TIGIT + CD8 + T cells and TIGIT - CD8 + T cells was insignificant at 4W and 12W, except at 0W. CONCLUSIONS TIGIT expression on CD8 + T cells may hinder the T-cell immune response to a booster dose of an inactivated SARS-CoV-2 vaccine, suggesting weakened resistance to SARS-CoV-2 infection, especially in PLWH. Furthermore, TIGIT may be used as a potential target to increase the production of SARS-CoV-2-specific CD8 + T cells, thereby enhancing the effectiveness of vaccination.
Collapse
Affiliation(s)
- Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoxu Han
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jin Sun
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Duan
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guanghui Zhang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tao Huang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
39
|
Beitari S, Agbayani G, Hewitt M, Duque D, Bavananthasivam J, Sandhu JK, Akache B, Hadžisejdić I, Tran A. Effectiveness of VSV vectored SARS-CoV-2 spike when administered through intranasal, intramuscular or a combination of both. Sci Rep 2023; 13:21390. [PMID: 38049498 PMCID: PMC10695950 DOI: 10.1038/s41598-023-48397-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023] Open
Abstract
A critical feature of the VSV vector platform is the ability to pseudotype the virus with different glycoproteins from other viruses, thus altering cellular tropism of the recombinant virus. The route of administration is critical in triggering local and systemic immune response and protection. Most of the vaccine platforms used at the forefront are administered by intramuscular injection. However, it is not known at what level ACE2 is expressed on the surface of skeletal muscle cells, which will have a significant impact on the efficiency of a VSV-SARS-CoV-2 spike vaccine to mount a protective immune response when administered intramuscularly. In this study, we investigate the immunogenicity and efficacy of a prime-boost immunization regimen administered intranasally (IN), intramuscularly (IM), or combinations of the two. We determined that the prime-boost combinations of IM followed by IN immunization (IM + IN) or IN followed by IN immunization (IN + IN) exhibited strong spike-specific IgG, IgA and T cell response in vaccinated K18 knock-in mice. Hamsters vaccinated with two doses of VSV expressing SARS-CoV-2 spike, both delivered by IN or IM + IN, showed strong protection against SARS-CoV-2 variants of concern Alpha and Delta. This protection was also observed in aged hamsters. Our study underscores the highly crucial role immunization routes have with the VSV vector platform to elicit a strong and protective immune response.
Collapse
Affiliation(s)
- Saina Beitari
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Immunomodulation, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Melissa Hewitt
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Diana Duque
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jegarubee Bavananthasivam
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Jagdeep K Sandhu
- Preclinical Imaging, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Bassel Akache
- Immunomodulation, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Ita Hadžisejdić
- Clinical Department of Pathology and Cytology Clinical Hospital Center Rijeka, University of Rijeka, Rijeka, Croatia
| | - Anh Tran
- Infectious Diseases, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
40
|
Zhang Y, Zhao Y, Liang H, Xu Y, Zhou C, Yao Y, Wang H, Yang X. Innovation-driven trend shaping COVID-19 vaccine development in China. Front Med 2023; 17:1096-1116. [PMID: 38102402 DOI: 10.1007/s11684-023-1034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/15/2023] [Indexed: 12/17/2023]
Abstract
Confronted with the Coronavirus disease 2019 (COVID-19) pandemic, China has become an asset in tackling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and mutation, with several innovative platforms, which provides various technical means in this persisting combat. Derived from collaborated researches, vaccines based on the spike protein of SARS-CoV-2 or inactivated whole virus are a cornerstone of the public health response to COVID-19. Herein, we outline representative vaccines in multiple routes, while the merits and plights of the existing vaccine strategies are also summarized. Likewise, new technologies may provide more potent or broader immunity and will contribute to fight against hypermutated SARS-CoV-2 variants. All in all, with the ultimate aim of delivering robust and durable protection that is resilient to emerging infectious disease, alongside the traditional routes, the discovery of innovative approach to developing effective vaccines based on virus properties remains our top priority.
Collapse
Affiliation(s)
- Yuntao Zhang
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Yuxiu Zhao
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Hongyang Liang
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Ying Xu
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Chuge Zhou
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Yuzhu Yao
- China National Biotec Group Company Limited, Beijing, 100029, China
| | - Hui Wang
- China National Biotec Group Company Limited, Beijing, 100029, China.
| | - Xiaoming Yang
- China National Biotec Group Company Limited, Beijing, 100029, China.
- National Engineering Technology Research Center of Combined Vaccines, Wuhan, 430207, China.
| |
Collapse
|
41
|
Kingstad-Bakke B, Cleven T, Bussan H, Yount BL, Uraki R, Iwatsuki-Horimoto K, Koga M, Yamamoto S, Yotsuyanagi H, Park H, Mishra JS, Kumar S, Baric RS, Halfmann PJ, Kawaoka Y, Suresh M. Airway surveillance and lung viral control by memory T cells induced by COVID-19 mRNA vaccine. JCI Insight 2023; 8:e172510. [PMID: 37796612 PMCID: PMC10721330 DOI: 10.1172/jci.insight.172510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
Although SARS-CoV-2 evolution seeds a continuous stream of antibody-evasive viral variants, COVID-19 mRNA vaccines provide robust protection against severe disease and hospitalization. Here, we asked whether mRNA vaccine-induced memory T cells limit lung SARS-CoV-2 replication and severe disease. We show that mice and humans receiving booster BioNTech mRNA vaccine developed potent CD8 T cell responses and showed similar kinetics of expansion and contraction of granzyme B/perforin-expressing effector CD8 T cells. Both monovalent and bivalent mRNA vaccines elicited strong expansion of a heterogeneous pool of terminal effectors and memory precursor effector CD8 T cells in spleen, inguinal and mediastinal lymph nodes, pulmonary vasculature, and most surprisingly in the airways, suggestive of systemic and regional surveillance. Furthermore, we document that: (a) CD8 T cell memory persists in multiple tissues for > 200 days; (b) following challenge with pathogenic SARS-CoV-2, circulating memory CD8 T cells rapidly extravasate to the lungs and promote expeditious viral clearance, by mechanisms that require CD4 T cell help; and (c) adoptively transferred splenic memory CD8 T cells traffic to the airways and promote lung SARS-CoV-2 clearance. These findings provide insights into the critical role of memory T cells in preventing severe lung disease following breakthrough infections with antibody-evasive SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hailey Bussan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Boyd L. Yount
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | | | - Michiko Koga
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, and
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shinya Yamamoto
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, and
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jay S. Mishra
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - M. Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
42
|
Sandford R, Yadav R, Noble EK, Sumner K, Joshi D, Tartof SY, Wernli KJ, Martin ET, Gaglani M, Zimmerman RK, Talbot HK, Grijalva CG, Belongia EA, Carlson C, Coughlin M, Flannery B, Pearce B, Rogier E. Antibody response to symptomatic infection with SARS-CoV-2 Omicron variant viruses, December 2021-June 2022. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.17.23298700. [PMID: 38014151 PMCID: PMC10680903 DOI: 10.1101/2023.11.17.23298700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To describe humoral immune responses to symptomatic SARS-CoV-2 infection, we assessed immunoglobulin G binding antibody levels using a commercial multiplex bead assay against SARS-CoV-2 ancestral spike protein receptor binding domain (RBD) and nucleocapsid protein (N). We measured binding antibody units per mL (BAU/mL) during acute illness within 5 days of illness onset and during convalescence in 105 ambulatory patients with laboratory-confirmed SARS-CoV-2 infection with Omicron variant viruses. Comparing acute- to convalescent phase antibody concentrations, geometric mean anti-N antibody concentrations increased 47-fold from 5.5 to 259 BAU/mL. Anti-RBD antibody concentrations increased 2.5-fold from 1258 to 3189 BAU/mL.
Collapse
Affiliation(s)
- Ryan Sandford
- Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
- Rollins School of Public Health, Atlanta, GA, USA
| | - Ruchi Yadav
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emma K Noble
- Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Kelsey Sumner
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Devyani Joshi
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sara Y Tartof
- Kaiser Permanente Southern California, Department of Research & Evaluation
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Karen J Wernli
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Emily T Martin
- University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University College of Medicine, Temple, TX, USA
| | | | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | - Brad Pearce
- Rollins School of Public Health, Atlanta, GA, USA
| | - Eric Rogier
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
43
|
Shi H, Sun J, Zeng Y, Wang X, Liu S, Zhang L, Shao E. Immune escape of SARS-CoV-2 variants to therapeutic monoclonal antibodies: a system review and meta-analysis. Virol J 2023; 20:266. [PMID: 37968649 PMCID: PMC10652597 DOI: 10.1186/s12985-023-01977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/25/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Omicron's high transmissibility and variability present new difficulties for COVID-19 vaccination prevention and therapy. In this article, we analyzed the sensitivity of vaccine-induced antibodies as well as the effect of booster vaccinations against Omicron sublineages. METHODS We looked for Randomized Controlled Trials and cohort studies that reported the COVID-19 vaccines against Omicron sublineages up to 28 July 2022 through PubMed, the Cochrane Library, EMBASE, and Web of Science. Quantitative synthesis was carried out using Stata 16.0 and RevMa5.3, then the serum NT50 and antibody sensitivity to neutralize Omicron sublineages were assessed before and after booster vaccination. This study was registered with PROSPERO number CRD42022350477. RESULTS This meta-analysis included 2138 patients from 20 studies, and the booster vaccination against Omicron sublineages showed a significant difference compared to 2 dosage: BA.1/BA.1.1 (SMD = 0.80, 95% CI: 0.75-0.85, P = 0.00), BA.2/BA.2.12.1 (SMD = 0.77, 95% CI: 0.69-0.85, P = 0.00), BA.3 (SMD = 0.91, 95% CI: 0.83-1.0, P = 0.00), and BA.4/5 (SMD = 0.77, 95% CI: 0.60-0.94, P = 0.00). The sensitivity of vaccines-induced antibodies decreased by at least 5-folds after booster vaccination, particularly in the case of BA.4/5 which had the most notable decline in vaccine effectiveness. CONCLUSION After the booster vaccination, the NT50 and the neutralization ability of vaccine-induced antibodies increased, but the susceptibility of antibodies decreased compared with the control virus, which may be a clue for future Omicron sublineages prevention.
Collapse
Affiliation(s)
- Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jiajia Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450099, China
| | - Yigang Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xiaomeng Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Shanshan Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Enming Shao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
44
|
Saito H, Yoshimura H, Yoshida M, Tani Y, Kawashima M, Uchiyama T, Zhao T, Yamamoto C, Kobashi Y, Sawano T, Imoto S, Park H, Nakamura N, Iwami S, Kaneko Y, Nakayama A, Kodama T, Wakui M, Kawamura T, Tsubokura M. Antibody Profiling of Microbial Antigens in the Blood of COVID-19 mRNA Vaccine Recipients Using Microbial Protein Microarrays. Vaccines (Basel) 2023; 11:1694. [PMID: 38006026 PMCID: PMC10674746 DOI: 10.3390/vaccines11111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Although studies have demonstrated that infections with various viruses, bacteria, and parasites can modulate the immune system, no study has investigated changes in antibodies against microbial antigens after the COVID-19 mRNA vaccination. IgG antibodies against microbial antigens in the blood of vaccinees were comprehensively analyzed using microbial protein microarrays that carried approximately 5000 microbe-derived proteins. Changes in antibodies against microbial antigens were scrutinized in healthy participants enrolled in the Fukushima Vaccination Community Survey conducted in Fukushima Prefecture, Japan, after their second and third COVID-19 mRNA vaccinations. Antibody profiling of six groups stratified by antibody titer and the remaining neutralizing antibodies was also performed to study the dynamics of neutralizing antibodies against SARS-CoV-2 and the changes in antibodies against microbial antigens. The results showed that changes in antibodies against microbial antigens other than SARS-CoV-2 antigens were extremely limited after COVID-19 vaccination. In addition, antibodies against a staphylococcal complement inhibitor have been identified as microbial antigens that are associated with increased levels of neutralizing antibodies against SARS-CoV-2. These antibodies may be a predictor of the maintenance of neutralizing antibodies following the administration of a COVID-19 mRNA vaccine.
Collapse
Affiliation(s)
- Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- Department of Internal Medicine, Soma Central Hospital, Soma, Fukushima 976-0016, Japan
| | - Hiroki Yoshimura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- School of Medicine, Hiroshima University, Hiroshima, Hiroshima 739-8511, Japan
| | - Makoto Yoshida
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- Faculty of Medicine, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yuta Tani
- Medical Governance Research Institute, Minato-ku, Tokyo 108-0074, Japan
- Department of Laboratory Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Taiga Uchiyama
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- Department of Internal Medicine, Serireikai Group Hirata Central Hospital, Ishikawa County, Fukushima 963-8202, Japan
| | - Toyoaki Sawano
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hyeongki Park
- Interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan (S.I.)
| | - Naotoshi Nakamura
- Interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan (S.I.)
| | - Shingo Iwami
- Interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan (S.I.)
| | - Yudai Kaneko
- Medical & Biological Laboratories Co., Ltd., Minato-ku, Tokyo 105-0012, Japan
- Laboratory for Systems Biology and Medicine, Research Centre for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Aya Nakayama
- Isotope Science Centre, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Centre for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Kawamura
- Laboratory for Systems Biology and Medicine, Research Centre for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
- Isotope Science Centre, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Fukushima 960-1247, Japan
- Department of Internal Medicine, Soma Central Hospital, Soma, Fukushima 976-0016, Japan
- Department of Internal Medicine, Serireikai Group Hirata Central Hospital, Ishikawa County, Fukushima 963-8202, Japan
- Minamisoma Municipal General Hospital, Minamisoma, Fukushima 975-0033, Japan
| |
Collapse
|
45
|
Li W, Wang T, Rajendrakumar AM, Acharya G, Miao Z, Varghese BP, Yu H, Dhakal B, LeRoith T, Karunakaran A, Tuo W, Zhu X. An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission. Nat Commun 2023; 14:7114. [PMID: 37932271 PMCID: PMC10628175 DOI: 10.1038/s41467-023-42796-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023] Open
Abstract
SARS-CoV-2 is primarily transmitted through droplets and airborne aerosols, and in order to prevent infection and reduce viral spread vaccines should elicit protective immunity in the airways. The neonatal Fc receptor (FcRn) transfers IgG across epithelial barriers and can enhance mucosal delivery of antigens. Here we explore FcRn-mediated respiratory delivery of SARS-CoV-2 spike (S). A monomeric IgG Fc was fused to a stabilized spike; the resulting S-Fc bound to S-specific antibodies and FcRn. Intranasal immunization of mice with S-Fc and CpG significantly induced antibody responses compared to the vaccination with S alone or PBS. Furthermore, we intranasally immunized mice or hamsters with S-Fc. A significant reduction of virus replication in nasal turbinate, lung, and brain was observed following nasal challenges with SARS-CoV-2 and its variants. Intranasal immunization also significantly reduced viral airborne transmission in hamsters. Nasal IgA, neutralizing antibodies, lung-resident memory T cells, and bone-marrow S-specific plasma cells mediated protection. Hence, FcRn delivers an S-Fc antigen effectively into the airway and induces protection against SARS-CoV-2 infection and transmission.
Collapse
Affiliation(s)
- Weizhong Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Tao Wang
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Arunraj M Rajendrakumar
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Gyanada Acharya
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Zizhen Miao
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Berin P Varghese
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Hailiang Yu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Bibek Dhakal
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA
| | - Athira Karunakaran
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
46
|
Hogan AB, Wu SL, Toor J, Olivera Mesa D, Doohan P, Watson OJ, Winskill P, Charles G, Barnsley G, Riley EM, Khoury DS, Ferguson NM, Ghani AC. Long-term vaccination strategies to mitigate the impact of SARS-CoV-2 transmission: A modelling study. PLoS Med 2023; 20:e1004195. [PMID: 38016000 PMCID: PMC10715640 DOI: 10.1371/journal.pmed.1004195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/12/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Vaccines have reduced severe disease and death from Coronavirus Disease 2019 (COVID-19). However, with evidence of waning efficacy coupled with continued evolution of the virus, health programmes need to evaluate the requirement for regular booster doses, considering their impact and cost-effectiveness in the face of ongoing transmission and substantial infection-induced immunity. METHODS AND FINDINGS We developed a combined immunological-transmission model parameterised with data on transmissibility, severity, and vaccine effectiveness. We simulated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and vaccine rollout in characteristic global settings with different population age-structures, contact patterns, health system capacities, prior transmission, and vaccine uptake. We quantified the impact of future vaccine booster dose strategies with both ancestral and variant-adapted vaccine products, while considering the potential future emergence of new variants with modified transmission, immune escape, and severity properties. We found that regular boosting of the oldest age group (75+) is an efficient strategy, although large numbers of hospitalisations and deaths could be averted by extending vaccination to younger age groups. In countries with low vaccine coverage and high infection-derived immunity, boosting older at-risk groups was more effective than continuing primary vaccination into younger ages in our model. Our study is limited by uncertainty in key parameters, including the long-term durability of vaccine and infection-induced immunity as well as uncertainty in the future evolution of the virus. CONCLUSIONS Our modelling suggests that regular boosting of the high-risk population remains an important tool to reduce morbidity and mortality from current and future SARS-CoV-2 variants. Our results suggest that focusing vaccination in the highest-risk cohorts will be the most efficient (and hence cost-effective) strategy to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Alexandra B. Hogan
- School of Population Health, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Sean L. Wu
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States of America
| | - Jaspreet Toor
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Daniela Olivera Mesa
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Patrick Doohan
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver J. Watson
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Giovanni Charles
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Gregory Barnsley
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Eleanor M. Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David S. Khoury
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Neil M. Ferguson
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Azra C. Ghani
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Jacobsen H, Sitaras I, Katzmarzyk M, Cobos Jiménez V, Naughton R, Higdon MM, Deloria Knoll M. Systematic review and meta-analysis of the factors affecting waning of post-vaccination neutralizing antibody responses against SARS-CoV-2. NPJ Vaccines 2023; 8:159. [PMID: 37863890 PMCID: PMC10589259 DOI: 10.1038/s41541-023-00756-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Mass COVID-19 vaccination and continued introduction of new SARS-CoV-2 variants increased prevalence of hybrid immunity at various stages of waning protection. We systematically reviewed waning of post-vaccination neutralizing antibody titers in different immunological settings to investigate differences. We searched published and pre-print studies providing post-vaccination neutralizing antibody responses against the Index strain or Omicron BA.1. We used random effects meta-regression to estimate fold-reduction from months 1 to 6 post last dose by primary vs booster regimen and infection-naïve vs hybrid-immune cohorts. Among 26 eligible studies, 65 cohorts (range 3-21 per stratum) were identified. Month-1 titers varied widely across studies within each cohort and by vaccine platform, number of doses and number of prior infections. In infection-naïve cohorts, the Index strain waned 5.1-fold (95%CI: 3.4-7.8; n = 19 cohorts) post-primary regimen and 3.8-fold (95%CI: 2.4-5.9; n = 21) post-booster from months 1 to 6, and against Omicron BA.1 waned 5.9-fold (95%CI: 3.8-9.0; n = 16) post-booster; Omicron BA.1 titers post-primary were too low to assess. In hybrid-immune, post-primary cohorts, titers waned 3.7-fold (95%CI: 1.7-7.9; n = 8) against the Index strain and 5.0-fold (95%CI: 1.1-21.8; n = 6) against Omicron BA.1; post-booster studies of hybrid-immune cohorts were too few (n = 3 cohorts each strain) to assess. Waning was similar across vaccination regimen and prior-infection status strata but was faster for Omicron BA.1 than Index strains, therefore, more recent sub-variants should be monitored. Wide differences in peak titers by vaccine platform and prior infection status mean titers drop to non-protective levels sooner in some instances, which may affect policy.
Collapse
Affiliation(s)
- Henning Jacobsen
- Department of Viral Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.
| | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | - Melissa M Higdon
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maria Deloria Knoll
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
48
|
Liu M, Zhao T, Mu Q, Zhang R, Liu C, Xu F, Liang L, Zhao L, Zhao S, Cai X, Wang M, Huang N, Feng T, Lei S, Yang G, Cui F. Immune-Boosting Effect of the COVID-19 Vaccine: Real-World Bidirectional Cohort Study. JMIR Public Health Surveill 2023; 9:e47272. [PMID: 37819703 PMCID: PMC10569382 DOI: 10.2196/47272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND As the SARS-CoV-2 attenuates and antibodies from the COVID-19 vaccine decline, long-term attention should be paid to the durability of primary booster administration and the preventive effect of the second or multiple booster doses of the COVID-19 vaccine. OBJECTIVE This study aimed to explore the durability of primary booster administration and the preventive effect of second or multiple booster doses of the COVID-19 vaccine. METHODS We established a bidirectional cohort in Guizhou Province, China. Eligible participants who had received the primary booster dose were enrolled for blood sample collection and administration of the second booster dose. A retrospective cohort for the time of administration was constructed to evaluate antibody attenuation 6-12 months after the primary booster dose, while a prospective cohort on the vaccine effect of the second booster dose was constructed for 4 months after the second administration. RESULTS Between September 21, 2022, and January 30, 2023, a total of 327 participants were included in the final statistical analysis plan. The retrospective cohort revealed that approximately 6-12 months after receiving the primary booster, immunoglobulin G (IgG) slowly declined with time, while immunoglobulin A (IgA) remained almost constant. The prospective cohort showed that 28 days after receiving the second booster, the antibody levels were significantly improved. Higher levels of IgG and IgA were associated with better protection against COVID-19 infection for vaccine recipients. Regarding the protection of antibody levels against post-COVID-19 symptoms, the increase of the IgG had a protective effect on brain fog and sleep quality, while IgA had a protective effect on shortness of breath, brain fog, impaired coordination, and physical pain. CONCLUSIONS The IgG and IgA produced by the second booster dose of COVID-19 vaccines can protect against SARS-CoV-2 infection and may alleviate some post-COVID-19 symptoms. Further data and studies on secondary booster administration are required to confirm these conclusions.
Collapse
Affiliation(s)
- Ming Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Tianshuo Zhao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| | - Qiuyue Mu
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Ruizhi Zhang
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Chunting Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Fei Xu
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Luxiang Liang
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Linglu Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Suye Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Xianming Cai
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| | - Mingting Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| | - Ninghua Huang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| | - Tian Feng
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Shiguang Lei
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Guanghong Yang
- Guizhou Center for Disease Control and Prevention, Guiyang, China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
- Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Center for Infectious Diseases and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
49
|
Wilks SH, Mühlemann B, Shen X, Türeli S, LeGresley EB, Netzl A, Caniza MA, Chacaltana-Huarcaya JN, Corman VM, Daniell X, Datto MB, Dawood FS, Denny TN, Drosten C, Fouchier RAM, Garcia PJ, Halfmann PJ, Jassem A, Jeworowski LM, Jones TC, Kawaoka Y, Krammer F, McDanal C, Pajon R, Simon V, Stockwell MS, Tang H, van Bakel H, Veguilla V, Webby R, Montefiori DC, Smith DJ. Mapping SARS-CoV-2 antigenic relationships and serological responses. Science 2023; 382:eadj0070. [PMID: 37797027 DOI: 10.1126/science.adj0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.
Collapse
Affiliation(s)
- Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoju Daniell
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael B Datto
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | | | - Patricia J Garcia
- School of Public Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Agatha Jassem
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Lara M Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlene McDanal
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, and Department of Population and Family Health, Mailman School of Public Health, New York, NY, USA
| | - Haili Tang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vic Veguilla
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
50
|
Ferranna M, Robinson LA, Cadarette D, Eber MR, Bloom DE. The benefits and costs of U.S. employer COVID-19 vaccine mandates. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:2053-2068. [PMID: 36649917 DOI: 10.1111/risa.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In 2021, the Biden Administration issued mandates requiring COVID-19 vaccinations for U.S. federal employees and contractors and for some healthcare and private sector workers. These mandates have been challenged in court; some have been halted or delayed. However, their costs and benefits have not been rigorously appraised. This study helps fill that gap. We estimate the direct costs and health-related benefits that would have accrued if these vaccination requirements had been implemented as intended. Compared with the January 2022 vaccination rates, we find that the mandates could have led to 15 million additional vaccinated individuals, increasing the overall proportion of the fully vaccinated U.S. population from 64% to 68%. The associated net benefits depend on the subsequent evolution of the pandemic-information unavailable ex ante to analysts or policymakers. In scenarios involving the emergence of a novel, more transmissible variant, against which vaccination and previous infection offer moderate protection, the estimated net benefits are potentially large. They reach almost $20,000 per additional vaccinated individual, with more than 20,000 total deaths averted over the 6-month period assessed. In scenarios involving a fading pandemic, existing vaccination-acquired or infection-acquired immunity provides sufficient protection, and the mandates' benefits are unlikely to exceed their costs. Thus, mandates may be most useful when the consequences of inaction are catastrophic. However, we do not compare the effects of mandates with alternative policies for increasing vaccination rates or for promoting other protective measures, which may receive stronger public support and be less likely to be overturned by litigation.
Collapse
Affiliation(s)
- Maddalena Ferranna
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Lisa A Robinson
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | | | - Michael R Eber
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - David E Bloom
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|