1
|
Vieiros M, Navarro-Tapia E, Ramos-Triguero A, García-Meseguer À, Martínez L, García-Algar Ó, Andreu-Fernández V. Analysis of alcohol-metabolizing enzymes genetic variants and RAR/RXR expression in patients diagnosed with fetal alcohol syndrome: a case-control study. BMC Genomics 2024; 25:610. [PMID: 38886650 PMCID: PMC11184718 DOI: 10.1186/s12864-024-10516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Understanding the mechanisms underlying alcohol metabolism and its regulation, including the effect of polymorphisms in alcohol-metabolizing enzymes, is crucial for research on Fetal Alcohol Spectrum Disorders. The aim of this study was to identify specific single nucleotide polymorphisms in key alcohol-metabolizing enzymes in a cohort of 71 children, including children with fetal alcohol syndrome, children prenatally exposed to ethanol but without fetal alcohol spectrum disorder, and controls. We hypothesized that certain genetic variants related to alcohol metabolism may be fixed in these populations, giving them a particular alcohol metabolism profile. In addition, the difference in certain isoforms of these enzymes determines their affinity for alcohol, which also affects the metabolism of retinoic acid, which is key to the proper development of the central nervous system. Our results showed that children prenatally exposed to ethanol without fetal alcohol spectrum disorder traits had a higher frequency of the ADH1B*3 and ADH1C*1 alleles, which are associated with increased alcohol metabolism and therefore a protective factor against circulating alcohol in the fetus after maternal drinking, compared to FAS children who had an allele with a lower affinity for alcohol. This study also revealed the presence of an ADH4 variant in the FAS population that binds weakly to the teratogen, allowing increased circulation of the toxic agent and direct induction of developmental abnormalities in the fetus. However, both groups showed dysregulation in the expression of genes related to the retinoic acid pathway, such as retinoic acid receptor and retinoid X receptor, which are involved in the development, regeneration, and maintenance of the nervous system. These findings highlight the importance of understanding the interplay between alcohol metabolism, the retinoic acid pathway and genetic factors in the development of fetal alcohol syndrome.
Collapse
Affiliation(s)
- Melina Vieiros
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- IdiPAZ - Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Department de Cirurgia i Especialitats Mèdico-Quirúrgiques, Universitat de Barcelona, Barcelona, Spain
| | - Elisabet Navarro-Tapia
- IdiPAZ - Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain.
- Faculty of Health Sciences, Valencian International University, Valencia, Spain.
| | - Anna Ramos-Triguero
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Àgueda García-Meseguer
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Leopoldo Martínez
- IdiPAZ - Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Óscar García-Algar
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Biosanitary Research Institute, Valencian International University, Valencia, Spain.
| |
Collapse
|
2
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
3
|
Grigoryan EN, Markitantova YV. Tail and Spinal Cord Regeneration in Urodelean Amphibians. Life (Basel) 2024; 14:594. [PMID: 38792615 PMCID: PMC11122520 DOI: 10.3390/life14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Urodelean amphibians can regenerate the tail and the spinal cord (SC) and maintain this ability throughout their life. This clearly distinguishes these animals from mammals. The phenomenon of tail and SC regeneration is based on the capability of cells involved in regeneration to dedifferentiate, enter the cell cycle, and change their (or return to the pre-existing) phenotype during de novo organ formation. The second critical aspect of the successful tail and SC regeneration is the mutual molecular regulation by tissues, of which the SC and the apical wound epidermis are the leaders. Molecular regulatory systems include signaling pathways components, inflammatory factors, ECM molecules, ROS, hormones, neurotransmitters, HSPs, transcriptional and epigenetic factors, etc. The control, carried out by regulatory networks on the feedback principle, recruits the mechanisms used in embryogenesis and accompanies all stages of organ regeneration, from the moment of damage to the completion of morphogenesis and patterning of all its structures. The late regeneration stages and the effects of external factors on them have been poorly studied. A new model for addressing this issue is herein proposed. The data summarized in the review contribute to understanding a wide range of fundamentally important issues in the regenerative biology of tissues and organs in vertebrates including humans.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
4
|
Yang C, Qi Y, Sun Z. The Role of Sonic Hedgehog Pathway in the Development of the Central Nervous System and Aging-Related Neurodegenerative Diseases. Front Mol Biosci 2021; 8:711710. [PMID: 34307464 PMCID: PMC8295685 DOI: 10.3389/fmolb.2021.711710] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
The Sonic hedgehog (SHH) pathway affects neurogenesis and neural patterning during the development of the central nervous system. Dysregulation of the SHH pathway in the brain contributes to aging-related neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. At present, the SHH signaling pathway can be divided into the canonical signaling pathway and non-canonical signaling pathway, which directly or indirectly mediates other related pathways involved in the development of neurodegenerative diseases. Hence, an in-depth knowledge of the SHH signaling pathway may open an avenue of possibilities for the treatment of neurodegenerative diseases. Here, we summarize the role and mechanism of the SHH signaling pathway in the development of the central nervous system and aging-related neurodegenerative diseases. In this review, we will also highlight the potential of the SHH pathway as a therapeutic target for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Yang
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhitang Sun
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Moreau N, Boucher Y. Hedging against Neuropathic Pain: Role of Hedgehog Signaling in Pathological Nerve Healing. Int J Mol Sci 2020; 21:ijms21239115. [PMID: 33266112 PMCID: PMC7731127 DOI: 10.3390/ijms21239115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/23/2022] Open
Abstract
The peripheral nervous system has important regenerative capacities that regulate and restore peripheral nerve homeostasis. Following peripheral nerve injury, the nerve undergoes a highly regulated degeneration and regeneration process called Wallerian degeneration, where numerous cell populations interact to allow proper nerve healing. Recent studies have evidenced the prominent role of morphogenetic Hedgehog signaling pathway and its main effectors, Sonic Hedgehog (SHH) and Desert Hedgehog (DHH) in the regenerative drive following nerve injury. Furthermore, dysfunctional regeneration and/or dysfunctional Hedgehog signaling participate in the development of chronic neuropathic pain that sometimes accompanies nerve healing in the clinical context. Understanding the implications of this key signaling pathway could provide exciting new perspectives for future research on peripheral nerve healing.
Collapse
Affiliation(s)
- Nathan Moreau
- Department of Oral Medicine and Oral Surgery, Bretonneau Hospital (AP-HP), 75018 Paris, France;
- Faculty of Dental Medicine-Montrouge, University of Paris, 92120 Montrouge, France
| | - Yves Boucher
- Department of Dental Medicine, Pitié-Salpêtrière Hospital (AP-HP), 75013 Paris, France
- Faculty of Dental Medicine-Garancière, University of Paris, 75006 Paris, France
- Correspondence:
| |
Collapse
|
6
|
Pillaiyar T, Meenakshisundaram S, Manickam M, Sankaranarayanan M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. Eur J Med Chem 2020; 195:112275. [PMID: 32283298 PMCID: PMC7156148 DOI: 10.1016/j.ejmech.2020.112275] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Drug repurposing is a strategy consisting of finding new indications for already known marketed drugs used in various clinical settings or highly characterized compounds despite they can be failed drugs. Recently, it emerges as an alternative approach for the rapid identification and development of new pharmaceuticals for various rare and complex diseases for which lack the effective drug treatments. The success rate of drugs repurposing approach accounts for approximately 30% of new FDA approved drugs and vaccines in recent years. This review focuses on the status of drugs repurposing approach for various diseases including skin diseases, infective, inflammatory, cancer, and neurodegenerative diseases. Efforts have been made to provide structural features and mode of actions of drugs.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| | | | - Manoj Manickam
- Department of Chemistry, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India
| | - Murugesan Sankaranarayanan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| |
Collapse
|
7
|
Su X, Gu X, Zhang Z, Li W, Wang X. Retinoic acid receptor gamma is targeted by microRNA-124 and inhibits neurite outgrowth. Neuropharmacology 2020; 163:107657. [PMID: 31170403 DOI: 10.1016/j.neuropharm.2019.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
During brain development, neurite outgrowth is required for brain development and is regulated by many factors. All-trans retinoic acid (RA) is an important regulator of cell growth and differentiation. MicroRNA-124 (miR-124), a brain-specific microRNA, has been implicated in stimulating neurite growth. In this study, we found that retinoic acid receptor gamma (RARG) expression was decreased, whereas miR-124 expression was increased during neural differentiation in mouse Neuroblastoma (N2a) Cells, P19 embryonal carcinoma (P19) cells, and mouse brain, as detected by immunoblotting or RT-qPCR. And we proved that miR-124 inhibited RARG expression by binding to the 3' UTR of RARG with a luciferase reporter assay. Upregulation of miR-124 (using miR-124 overexpressing plasmid and miR-124 mimic) led to a significant decrease in RARG protein in N2a cells and primary neurons. Therefore, we asked whether and how the miR-124/RARG axis regulates neuronal outgrowth, which is poorly understood. Strikingly, RARG knockdown by shRNA stimulated neurite growth in N2a cells and primary neurons, whereas RARG overexpression (without 3' UTR) inhibited neurite growth in N2a cells, P19 cells, and primary neurons. Furthermore, RARG knockdown could partially eliminate neurite outgrowth defects caused by the inhibitor of miR-124, while RARG overexpression could reverse the neurite outgrowth enhancing effect of the upregulation of miR-124. Collectively, the data reveal that miR-124/RARG axis is critical for neurite outgrowth. RARG emerges as a new target regulated by miR-124 that modulates neurite outgrowth, providing a novel context in which these two molecules function.
Collapse
Affiliation(s)
- Xiaohong Su
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xi Gu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiduo Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weipeng Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Muniswami DM, Kanthakumar P, Kanakasabapathy I, Tharion G. Motor Recovery after Transplantation of Bone Marrow Mesenchymal Stem Cells in Rat Models of Spinal Cord Injury. Ann Neurosci 2018; 25:126-140. [PMID: 30814821 DOI: 10.1159/000487069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 12/26/2018] [Indexed: 12/25/2022] Open
Abstract
Background Neuronal tissue has a limited potential to self-renew or get repaired after damage. Cell therapies using stem cells are promising approaches for the treatment of central nervous system (CNS) injuries. However, the clinical use of embryonic stem cells is limited by ethical concerns and other scientific consequences. Bone marrow mesenchymal stromal cells (BM-MSC) could represent an alternative source of stem cells for replacement therapy. Indeed, many studies have demonstrated that MSCs can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Purpose Motor recovery by transplantation of bone marrow MSCs in rat models of spinal cord injury (SCI). Methods Bone marrow was collected from the femur of albino Wistar rats. MSCs were separated using the Ficoll-Paque density gradient method and cultured in Dulbecco's Modified Eagle Medium supplemented with 20% fetal bovine serum. Cultured MSC was characterized by immunohistochemistry and flow cytometry and neuronal-induced cells were further characterized for neural markers. Cultured MSCs were transplanted into the experimentally injured spinal cord of Wistar rats. Control (injured, but without cell transplantation) and transplanted rats were followed up to 8 weeks, analyzed using the Basso, Beattie, Bresnahan (BBB) scale and electromyography (EMG) for behavioral and physiological status of the injured spinal cord. Finally, the tissue was evaluated histologically. Results Rat MSCs expressed positivity for a panel of MSC markers CD29, CD54, CD90, CD73, and CD105, and negativity for hematopoietic markers CD34, CD14, and CD45. In vitro neuronal transdifferentiated MSCs express positivity for β III tubulin, MAP2, NF, NeuN, Nav1.1, oligodendrocyte (O4), and negativity for glial fibrillary acid protein. All the treated groups show promising hind-limb motor recovery BBB score, except the control group. There was increased EMG amplitude in treated groups as compared to the control group. Green fluorescent protein (GFP)-labeled MSC survived and differentiated into neurons in the injured spinal cord, which is responsible for functional recovery. Conclusion Our results demonstrate that BM-MSC has the potential to repair the injured cord in rat models of SCI. Thus, BM-MSC appears to be a promising candidate for cell-based therapy in CNS injury.
Collapse
Affiliation(s)
- Durai Murugan Muniswami
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | | | | | - George Tharion
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| |
Collapse
|
9
|
Goncalves MB, Wu Y, Trigo D, Clarke E, Malmqvist T, Grist J, Hobbs C, Carlstedt TP, Corcoran JPT. Retinoic acid synthesis by NG2 expressing cells promotes a permissive environment for axonal outgrowth. Neurobiol Dis 2017; 111:70-79. [PMID: 29274429 PMCID: PMC5803510 DOI: 10.1016/j.nbd.2017.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022] Open
Abstract
Stimulation of retinoic acid (RA) mediated signalling pathways following neural injury leads to regeneration in the adult nervous system and numerous studies have shown that the specific activation of the retinoic acid receptor β (RARβ) is required for this process. Here we identify a novel mechanism by which neuronal RARβ activation results in the endogenous synthesis of RA which is released in association with exosomes and acts as a positive cue to axonal/neurite outgrowth. Using an established rodent model of RARβ induced axonal regeneration, we show that neuronal RARβ activation upregulates the enzymes involved in RA synthesis in a cell specific manner; alcohol dehydrogenase7 (ADH7) in neurons and aldehyde dehydrogenase 2 (Raldh2) in NG2 expressing cells (NG2 + cells). These release RA in association with exosomes providing a permissive substrate to neurite outgrowth. Conversely, deletion of Raldh2 in the NG2 + cells in our in vivo regeneration model is sufficient to compromise axonal outgrowth. This hitherto unidentified RA paracrine signalling is required for axonal/neurite outgrowth and is initiated by the activation of neuronal RARβ signalling. Raldh2, the enzyme for retinoic acid synthesis, is upregulated in NG2 + cells during axonal regeneration. Deletion of Raldh2 in NG2 + cells prevents regeneration. RA signalling modulates axonal pathfinding. Fine-tuned regulation of RA distribution via exosome transport
Collapse
Affiliation(s)
- Maria B Goncalves
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Yue Wu
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Diogo Trigo
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Earl Clarke
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Tony Malmqvist
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - John Grist
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Carl Hobbs
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Thomas P Carlstedt
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Jonathan P T Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom.
| |
Collapse
|
10
|
Pistone A, Sagnella A, Chieco C, Bertazza G, Varchi G, Formaggio F, Posati T, Saracino E, Caprini M, Bonetti S, Toffanin S, Di Virgilio N, Muccini M, Rossi F, Ruani G, Zamboni R, Benfenati V. Silk fibroin film from golden-yellow Bombyx mori is a biocomposite that contains lutein and promotes axonal growth of primary neurons. Biopolymers 2016; 105:287-99. [PMID: 26756916 DOI: 10.1002/bip.22806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/21/2015] [Accepted: 01/06/2016] [Indexed: 12/28/2022]
Abstract
The use of doped silk fibroin (SF) films and substrates from Bombyx mori cocoons for green nanotechnology and biomedical applications has been recently highlighted. Cocoons from coloured strains of B. mori, such as Golden-Yellow, contain high levels of pigments that could have a huge potential for the fabrication of SF based biomaterials targeted to photonics, optoelectronics and neuroregenerative medicine. However, the features of extracted and regenerated SF from cocoons of B. mori Golden-Yellow strain have never been reported. Here we provide a chemophysical characterization of regenerated silk fibroin (RSF) fibers, solution, and films obtained from cocoons of a Golden-Yellow strain of B. mori, by SEM, (1) H-NMR, HPLC, FT-IR, Raman and UV-Vis spectroscopy. We found that the extracted solution and films from B. mori Golden-Yellow fibroin displayed typical Raman spectroscopic and optical features of carotenoids. HPLC-analyses revealed that lutein was the carotenoid contained in the fiber and RSF biopolymer from yellow cocoons. Notably, primary neurons cultured on yellow SF displayed a threefold higher neurite length than those grown of white SF films. The results we report pave the way to expand the potential use of yellow SF in the field of neuroregenerative medicine and provide green chemistry approaches in biomedicine.
Collapse
Affiliation(s)
- Assunta Pistone
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy.,Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Anna Sagnella
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy.,Laboratory MIST E-R, via P. Gobetti 101, Bologna, 40129, Italy
| | - Camilla Chieco
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), via P. Gobetti 101, Bologna, 40129, Italy
| | - Gianpaolo Bertazza
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), via P. Gobetti 101, Bologna, 40129, Italy
| | - Greta Varchi
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy
| | - Francesco Formaggio
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Tamara Posati
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy
| | - Emanuela Saracino
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Marco Caprini
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy.,Department of Pharmacy and Biotechnology, via S. Donato 19/2, University of Bologna, Bologna, 40127, Italy
| | - Simone Bonetti
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Stefano Toffanin
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Nicola Di Virgilio
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), via P. Gobetti 101, Bologna, 40129, Italy
| | - Michele Muccini
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Federica Rossi
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), via P. Gobetti 101, Bologna, 40129, Italy
| | - Giampiero Ruani
- Institute of Nanostructured Materials, National Research Council of Italy (CNR-ISMN), via P. Gobetti 101, Bologna, 40129, Italy
| | - Roberto Zamboni
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy
| | - Valentina Benfenati
- Institute of the Organic Synthesis and Photoreactivity, National Research Council of Italy (CNR-ISOF), via P. Gobetti 101, Bologna, 40129, Italy
| |
Collapse
|
11
|
Ross CL, Syed I, Smith TL, Harrison BS. The regenerative effects of electromagnetic field on spinal cord injury. Electromagn Biol Med 2016; 36:74-87. [DOI: 10.3109/15368378.2016.1160408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Corbett A, Williams G, Ballard C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer's disease. Pharmaceuticals (Basel) 2013; 6:1304-21. [PMID: 24275851 PMCID: PMC3817602 DOI: 10.3390/ph6101304] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia, affecting approximately two thirds of the 35 million people worldwide with the condition. Despite this, effective treatments are lacking, and there are no drugs that elicit disease modifying effects to improve outcome. There is an urgent need to develop and evaluate more effective pharmacological treatments. Drug repositioning offers an exciting opportunity to repurpose existing licensed treatments for use in AD, with the benefit of providing a far more rapid route to the clinic than through novel drug discovery approaches. This review outlines the current most promising candidates for repositioning in AD, their supporting evidence and their progress through trials to date. Furthermore, it begins to explore the potential of new transcriptomic and microarray techniques to consider the future of drug repositioning as a viable approach to drug discovery.
Collapse
Affiliation(s)
- Anne Corbett
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London SE1 1UL, UK.
| | | | | |
Collapse
|
13
|
Blum N, Begemann G. The roles of endogenous retinoid signaling in organ and appendage regeneration. Cell Mol Life Sci 2013; 70:3907-27. [PMID: 23479131 PMCID: PMC11113817 DOI: 10.1007/s00018-013-1303-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/29/2013] [Accepted: 02/14/2013] [Indexed: 12/20/2022]
Abstract
The ability to regenerate injured or lost body parts has been an age-old ambition of medical science. In contrast to humans, teleost fish and urodele amphibians can regrow almost any part of the body with seeming effortlessness. Retinoic acid is a molecule that has long been associated with these impressive regenerative capacities. The discovery 30 years ago that addition of retinoic acid to regenerating amphibian limbs causes "super-regeneration" initiated investigations into the presumptive roles of retinoic acid in regeneration of appendages and other organs. However, the evidence favoring or dismissing a role for endogenous retinoids in regeneration processes remained sparse and ambiguous. Now, the availability of genetic tools to manipulate and visualize the retinoic acid signaling pathway has opened up new routes to dissect its roles in regeneration. Here, we review the current understanding on endogenous functions of retinoic acid in regeneration and discuss key questions to be addressed in future research.
Collapse
Affiliation(s)
- Nicola Blum
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Gerrit Begemann
- Developmental Biology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
14
|
Wright-Jin EC, Grider JR, Duester G, Heuckeroth RO. Retinaldehyde dehydrogenase enzymes regulate colon enteric nervous system structure and function. Dev Biol 2013; 381:28-37. [PMID: 23806210 DOI: 10.1016/j.ydbio.2013.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/24/2022]
Abstract
The enteric nervous system (ENS) forms from the neural crest-derived precursors that colonize the bowel before differentiating into a network of neurons and glia that control intestinal function. Retinoids are essential for normal ENS development, but the role of retinoic acid (RA) metabolism in development remains incompletely understood. Because RA is produced locally in the tissues where it acts by stimulating RAR and RXR receptors, RA signaling during development is absolutely dependent on the rate of RA synthesis and degradation. RA is produced by three different enzymes called retinaldehyde dehydrogenases (RALDH1, RALDH2 and RALDH3) that are all expressed in the developing bowel. To determine the relative importance of these enzymes for ENS development, we analyzed whole mount preparations of adult (8-12-week old) myenteric and submucosal plexus stained with NADPH diaphorase (neurons and neurites), anti-TuJ1 (neurons and neurites), anti-HuC/HuD (neurons), and anti-S100β (glia) in an allelic series of mice with mutations in Raldh1, Raldh2, and Raldh3. We found that Raldh1-/-, Raldh2+/-, Raldh3+/- (R1(KO)R2(Het)R3(Het)) mutant mice had a reduced colon myenteric neuron density, reduced colon myenteric neuron to glia ratio, reduced colon submucosal neuron density, and increased colon myenteric fibers per neuron when compared to the wild type (WT; Raldh1WT, Raldh2WT, Raldh3WT) mice. These defects are unlikely to be due to defective ENS precursor migration since R1(KO)R2(Het)R3(KO) mice had increased enteric neuron progenitor migration into the distal colon compared to WT during development. RALDH mutant mice also have reduced contractility in the colon compared to WT mice. These data suggest that RALDH1, RALDH2 and RALDH3 each contribute to ENS development and function.
Collapse
Affiliation(s)
- Elizabeth C Wright-Jin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis 63110, MO, USA
| | | | | | | |
Collapse
|
15
|
Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P, Hagan JJ, Holmes C, Jones E, Katona C, Kearns I, Kehoe P, Mudher A, Passmore A, Shepherd N, Walsh F, Ballard C. Drug repositioning for Alzheimer's disease. Nat Rev Drug Discov 2012; 11:833-46. [PMID: 23123941 DOI: 10.1038/nrd3869] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Existing drugs for Alzheimer's disease provide symptomatic benefit for up to 12 months, but there are no approved disease-modifying therapies. Given the recent failures of various novel disease-modifying therapies in clinical trials, a complementary strategy based on repositioning drugs that are approved for other indications could be attractive. Indeed, a substantial body of preclinical work indicates that several classes of such drugs have potentially beneficial effects on Alzheimer's-like brain pathology, and for some drugs the evidence is also supported by epidemiological data or preliminary clinical trials. Here, we present a formal consensus evaluation of these opportunities, based on a systematic review of published literature. We highlight several compounds for which sufficient evidence is available to encourage further investigation to clarify an optimal dose and consider progression to clinical trials in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Anne Corbett
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Akanuma H, Qin XY, Nagano R, Win-Shwe TT, Imanishi S, Zaha H, Yoshinaga J, Fukuda T, Ohsako S, Sone H. Identification of Stage-Specific Gene Expression Signatures in Response to Retinoic Acid during the Neural Differentiation of Mouse Embryonic Stem Cells. Front Genet 2012; 3:141. [PMID: 22891073 PMCID: PMC3413097 DOI: 10.3389/fgene.2012.00141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/12/2012] [Indexed: 01/23/2023] Open
Abstract
We have previously established a protocol for the neural differentiation of mouse embryonic stem cells (mESCs) as an efficient tool to evaluate the neurodevelopmental toxicity of environmental chemicals. Here, we described a multivariate bioinformatic approach to identify the stage-specific gene sets associated with neural differentiation of mESCs. We exposed mESCs (B6G-2 cells) to 10−8 or 10−7 M of retinoic acid (RA) for 4 days during embryoid body formation and then performed morphological analysis on day of differentiation (DoD) 8 and 36, or genomic microarray analysis on DoD 0, 2, 8, and 36. Three gene sets, namely a literature-based gene set (set 1), an analysis-based gene set (set 2) using self-organizing map and principal component analysis, and an enrichment gene set (set 3), were selected by the combined use of knowledge from literatures and gene information selected from the microarray data. A gene network analysis for each gene set was then performed using Bayesian statistics to identify stage-specific gene expression signatures in response to RA during mESC neural differentiation. Our results showed that RA significantly increased the size of neurosphere, neuronal cells, and glial cells on DoD 36. In addition, the gene network analysis showed that glial fibrillary acidic protein, a neural marker, remarkably up-regulates the other genes in gene set 1 and 3, and Gbx2, a neural development marker, significantly up-regulates the other genes in gene set 2 on DoD 36 in the presence of RA. These findings suggest that our protocol for identification of developmental stage-specific gene expression and interaction is a useful method for the screening of environmental chemical toxicity during neurodevelopmental periods.
Collapse
Affiliation(s)
- Hiromi Akanuma
- Health Risk Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Visualization of retinoic acid signaling in transgenic axolotls during limb development and regeneration. Dev Biol 2012; 368:63-75. [PMID: 22627291 DOI: 10.1016/j.ydbio.2012.05.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/26/2012] [Accepted: 05/10/2012] [Indexed: 12/16/2022]
Abstract
Retinoic acid (RA) plays a necessary role in limb development and regeneration, but the precise mechanism by which it acts during these processes is unclear. The role of RA in limb regeneration was first highlighted by the remarkable effect that it has on respecifying the proximodistal axis of the regenerating limb so that serially repeated limbs are produced. To facilitate the study of RA signaling during development and then during regeneration of the same structure we have turned to the axolotl, the master of vertebrate regeneration, and generated transgenic animals that fluorescently report RA signaling in vivo. Characterization of these animals identified an anterior segment of the developing embryo where RA signaling occurs revealing conserved features of the early vertebrate embryo. During limb development RA signaling was present in the developing forelimb bud mesenchyme, but was not detected during hindlimb development. During limb regeneration, RA signaling was surprisingly almost exclusively observed in the apical epithelium suggesting a different role of RA during limb regeneration. After the addition of supplemental RA to regenerating limbs that leads to pattern duplications, the fibroblast stem cells of the blastema responded showing that they are capable of transcriptionally responding to RA. These findings are significant because it means that RA signaling may play a multifunctional role during forelimb development and regeneration and that the fibroblast stem cells that regulate proximodistal limb patterning during regeneration are targets of RA signaling.
Collapse
|
18
|
Lowry N, Goderie SK, Lederman P, Charniga C, Gooch MR, Gracey KD, Banerjee A, Punyani S, Silver J, Kane RS, Stern JH, Temple S. The effect of long-term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice. Biomaterials 2012; 33:2892-901. [DOI: 10.1016/j.biomaterials.2011.12.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/27/2011] [Indexed: 01/08/2023]
|
19
|
Paschaki M, Lin SC, Wong RLY, Finnell RH, Dollé P, Niederreither K. Retinoic acid-dependent signaling pathways and lineage events in the developing mouse spinal cord. PLoS One 2012; 7:e32447. [PMID: 22396766 PMCID: PMC3292566 DOI: 10.1371/journal.pone.0032447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
Studies in avian models have demonstrated an involvement of retinoid signaling in early neural tube patterning. The roles of this signaling pathway at later stages of spinal cord development are only partly characterized. Here we use Raldh2-null mouse mutants rescued from early embryonic lethality to study the consequences of lack of endogenous retinoic acid (RA) in the differentiating spinal cord. Mid-gestation RA deficiency produces prominent structural and molecular deficiencies in dorsal regions of the spinal cord. While targets of Wnt signaling in the dorsal neuronal lineage are unaltered, reductions in Fibroblast Growth Factor (FGF) and Notch signaling are clearly observed. We further provide evidence that endogenous RA is capable of driving stem cell differentiation. Raldh2 deficiency results in a decreased number of spinal cord derived neurospheres, which exhibit a reduced differentiation potential. Raldh2-null neurospheres have a decreased number of cells expressing the neuronal marker β-III-tubulin, while the nestin-positive cell population is increased. Hence, in vivo retinoid deficiency impaired neural stem cell growth. We propose that RA has separable functions in the developing spinal cord to (i) maintain high levels of FGF and Notch signaling and (ii) drive stem cell differentiation, thus restricting both the numbers and the pluripotent character of neural stem cells.
Collapse
Affiliation(s)
- Marie Paschaki
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Song-Chang Lin
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca Lee Yean Wong
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, The Texas A&M University System Health Science Center, Houston, Texas, United States of America
| | - Richard H. Finnell
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, Texas, United States of America
| | - Pascal Dollé
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Karen Niederreither
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Puttagunta R, Di Giovanni S. Retinoic acid signaling in axonal regeneration. Front Mol Neurosci 2012; 4:59. [PMID: 22287943 PMCID: PMC3249608 DOI: 10.3389/fnmol.2011.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/22/2011] [Indexed: 01/28/2023] Open
Abstract
Following an acute central nervous system (CNS) injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA) signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transcription factor RA receptor β2 (RARβ2), to induce axonal regeneration following spinal cord injury (SCI). Recently, it has been shown that in dorsal root ganglion neurons (DRGs), cAMP levels were greatly increased by lentiviral RARβ2 expression and contributed to neurite outgrowth. Moreover, RARβagonists, in cerebellar granule neurons (CGN) and in the brain in vivo, induced phosphoinositide 3-kinase dependent phosphorylation of AKT that was involved in RARβ-dependent neurite outgrowth. More recently, RA-RARβpathways were shown to directly transcriptionally repress a member of the inhibitory Nogo receptor (NgR) complex, Lingo-1, under an axonal growth inhibitory environment in vitro as well as following spinal injury in vivo. This perspective focuses on these newly discovered molecular mechanisms and future directions in the field.
Collapse
Affiliation(s)
- Radhika Puttagunta
- Laboratory for Neuroregeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen Tuebingen, Germany
| | | |
Collapse
|
21
|
Pederiva F, Martinez L, Tovar JA. Retinoic acid rescues deficient airway innervation and peristalsis of hypoplastic rat lung explants. Neonatology 2012; 101:132-9. [PMID: 21952554 DOI: 10.1159/000329613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 05/22/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bronchial peristalsis modulates lung growth and is deficient in hypoplastic nitrofen-exposed rat lung explants. Retinoic acid (RA) rescues lung hypoplasia. This study examines whether decreased bronchial innervation contributes to this developmental deficiency and if RA is able to recover bronchial innervation and motility. MATERIAL AND METHODS After IRB approval, pregnant rats received either 100 mg nitrofen or vehicle on gestational day 9.5 (E9.5). Embryonic lung primordia harvested on E13 were cultured for 72 h and RA was added daily to the medium when appropriate. Lung growth was assessed by counting the number of terminal buds and measuring explant surface, total DNA and protein in control, control + RA, nitrofen and nitrofen + RA groups. Peristaltic contractions were recorded for 10 min under an inverted microscope. Lung explants stained for anti-protein gene product 9.5 (PGP 9.5) and smooth muscle α-actin were examined under a confocal microscope for depicting the specific relationship between neural and smooth muscle cells. PGP 9.5 and smooth muscle α-actin levels were quantified by Western blot analysis for assessing the neural and muscle cell expressions. Comparisons between groups were made with non-parametric tests. RESULTS The number of terminal buds, the explants' surface and the DNA and protein contents were significantly decreased in nitrofen-exposed lungs in comparison with controls. In contrast, these measurements were normal in explants exposed to both nitrofen and RA. Bronchial peristalsis (contractions/min) was significantly decreased in nitrofen-exposed lungs in comparison with controls; in contrast, in nitrofen + RA lungs it was similar to controls. In all study groups, the airways were surrounded by smooth muscle and ensheathed in a plexus of nerve fibers containing ganglia. PGP 9.5 protein levels were decreased in nitrofen-exposed lungs, but they normalized when RA was added. No differences were found in α-actin protein levels. Explants exposed only to RA were similar to control. CONCLUSIONS Lung growth, bronchial innervation and peristalsis are decreased in nitrofen-exposed lung explants and are rescued by RA. If deficient airway innervation contributing to dysmotility and pulmonary hypoplasia can be pharmacologically rescued, new relatively simple prenatal interventions could be envisioned.
Collapse
Affiliation(s)
- Federica Pederiva
- Department of Pediatric Surgery and Research Laboratory, Hospital Universitario La Paz, Madrid, Spain
| | | | | |
Collapse
|
22
|
Peterson R, Turnbull J. Sonic hedgehog is cytoprotective against oxidative challenge in a cellular model of amyotrophic lateral sclerosis. J Mol Neurosci 2011; 47:31-41. [PMID: 21979788 DOI: 10.1007/s12031-011-9660-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/26/2011] [Indexed: 01/08/2023]
Abstract
We have previously demonstrated that primary cilia on spinal motor neurons are reduced in G93A SOD1 (mSOD) mice, a mouse model of amyotrophic lateral sclerosis (ALS). Sonic hedgehog (Shh) signaling involves the primary cilium and Shh has been shown to be cytoprotective in models of other neurodegenerative diseases. Thus, the Shh signaling pathway may bear further study in ALS. Accordingly, we established that interference with the Shh pathway (with the Shh antagonist cyclopamine or with miRNA 3245p) sensitized HT22 cells, while augmentation of the Shh pathway (with Shh or the Shh agonist purmorphamine) protected cells against hydrogen peroxide (H₂O₂) challenge. We ectopically expressed mSOD, human wild-type SOD1 (wtSOD), or an empty vector in HT22 cells. Compared to empty vector, wtSOD decreased cell death and mSOD increased cell death in response to H₂O₂ challenge. Treatment with cyclopamine or miRNA 3245p sensitized all three transfections to H₂O₂ challenge. Treatment with recombinant human Shh or purmorphamine decreased cell death after H₂O₂ challenge, an effect more pronounced in mSOD cells. Compared with empty vector, overexpression of wtSOD increased Shh and Gli transcript levels and increased activity in a Gli-responsive reporter assay. Overexpression of mSOD did not change Shh transcript levels, but decreased Gli transcript levels, especially Gli3, and reduced activity in a Gli reporter assay. These results suggest that overexpression of mSOD but not wtSOD reduces signaling in the Shh pathway and renders mSOD cells more susceptible to H₂O₂ challenge, and that treatment with Shh or Shh agonists is cytoprotective to mSOD cells. Shh or Shh agonists merit further consideration as potential therapy in ALS.
Collapse
Affiliation(s)
- Randy Peterson
- Department of Medicine, McMaster University Medical Centre, Rm 4U7, 1200 Main St West, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
23
|
RAR/RXR and PPAR/RXR Signaling in Spinal Cord Injury. PPAR Res 2011; 2007:29275. [PMID: 18060014 PMCID: PMC1950239 DOI: 10.1155/2007/29275] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Accepted: 02/28/2007] [Indexed: 12/24/2022] Open
Abstract
The retinoid
acid receptors (RAR) and peroxisome proliferator-activated receptors (PPAR)
have been implicated in the regulation of inflammatory reactions. Both receptor families contain ligand-activated transcription factors which form heterodimers with retinoid X receptors (RXR). We review data that imply RAR/RXR and PPAR/RXR pathways in physiological reactions after spinal cord injury. Experiments show how RAR signaling may improve axonal regeneration and modulate reactions of glia cells. While anti-inflammatory properties of PPAR are well documented in the periphery, their possible roles in the central nervous system have only recently become evident. Due to its anti-inflammatory function this transcription factor family promises to be a useful target after spinal cord or brain lesions.
Collapse
|
24
|
Robson LG, Dyall SC, Sidloff D, Michael-Titus AT. Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals. Neurobiol Aging 2010; 31:678-87. [PMID: 18620782 DOI: 10.1016/j.neurobiolaging.2008.05.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 05/07/2008] [Accepted: 05/28/2008] [Indexed: 01/25/2023]
Abstract
Polyunsaturated fatty acids (PUFA) of the omega-3 series and omega-6 series modulate neurite outgrowth in immature neurones. However, it has not been determined if their neurotrophic effects persist in adult and aged tissue. We prepared cultures of primary sensory neurones from male and female rat dorsal root ganglia (DRG), isolated at different ages: post-natal day 3 (P3) and day 9 (P9), adult (2-4 months) and aged (18-20 months). Cultures were incubated with the omega-6 PUFA arachidonic acid (AA) and the omega-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), at 0.8, 4, 8 and 40muM. PUFA increased neurite outgrowth throughout the developmental stages studied. The effects of omega-3 PUFA, in particular DHA, were still prominent in aged tissue. The amplitude of the effects was comparable to that of nerve growth factor (NGF; 50ng/ml) and all-trans-retinoic acid (ATRA; 0.1muM). The effects of PUFA were similar in cells positive or negative for the N52 neurofilament marker. Our results show that omega-3 PUFA have a marked neurite-promoting potential in neurones from adult and aged animals.
Collapse
Affiliation(s)
- Lesley G Robson
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, United Kingdom
| | | | | | | |
Collapse
|
25
|
Agudo M, Yip P, Davies M, Bradbury E, Doherty P, McMahon S, Maden M, Corcoran JP. A retinoic acid receptor beta agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord. Neurobiol Dis 2010; 37:147-55. [PMID: 19800972 PMCID: PMC2789321 DOI: 10.1016/j.nbd.2009.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/27/2009] [Indexed: 01/12/2023] Open
Abstract
After spinal cord injury in the adult mammal, axons do not normally regrow and this commonly leads to paralysis. Retinoic acid (RA) can stimulate neurite outgrowth in vitro of both the embryonic central and peripheral nervous system, via activation of the retinoic acid receptor (RAR) beta2. We show here that regions of the adult CNS, including the cerebellum and cerebral cortex, express RARbeta2. We show that when cerebellar neurons are grown in the presence of myelin-associated glycoprotein (MAG) which inhibits neurite outgrowth, RARbeta can be activated in a dose dependent manner by a RARbeta agonist (CD2019) and neurite outgrowth can occur via phosphoinositide 3-kinase (PI3K) signalling. In a model of spinal cord injury CD2019 also acts through PI3K signalling to induce axonal outgrowth of descending corticospinal fibres and promote functional recovery. Our data suggest that RARbeta agonists may be of therapeutic potential for human spinal cord injuries.
Collapse
Affiliation(s)
- Marta Agudo
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Ping Yip
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Meirion Davies
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Elizabeth Bradbury
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Patrick Doherty
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Stephen McMahon
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Malcolm Maden
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Jonathan P.T. Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
26
|
Vaillant C, Monard D. SHH pathway and cerebellar development. THE CEREBELLUM 2009; 8:291-301. [PMID: 19224309 DOI: 10.1007/s12311-009-0094-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/14/2009] [Indexed: 12/22/2022]
Abstract
The morphogenetic factor Sonic hedgehog (SHH) has been discovered as one of the masterplayers in cerebellar patterning and was subjected to intensive investigation during the last decade. During early postnatal development, this continuously secreted cholesterol-modified protein drives the expansion of the largest neuronal population of the brain, the granular cells. Moreover, it acts on Bergmann glia differentiation and would potentially affect Purkinje cells homeostasis at adult age. The cerebellar cortex constituted an ideal developmental model to dissect out the upstream mechanisms and downstream targets of this complex pathway. Its deep understanding discloses some of the mechanistic disorders underlying pediatric tumorigenesis, congenital ataxia, and mental retardation. Therapeutical use of its regulators has been consolidated on murine transgenic models and is now considered as a realistic human clinical application. Here, we will review the most recent advances made in the comprehensive understanding of SHH involvement in cerebellar development and pathology.
Collapse
Affiliation(s)
- Catherine Vaillant
- Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | | |
Collapse
|
27
|
Sato Y, Heuckeroth RO. Retinoic acid regulates murine enteric nervous system precursor proliferation, enhances neuronal precursor differentiation, and reduces neurite growth in vitro. Dev Biol 2008; 320:185-98. [PMID: 18561907 PMCID: PMC2586054 DOI: 10.1016/j.ydbio.2008.05.524] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 02/01/2023]
Abstract
Enteric nervous system (ENS) precursors undergo a complex process of cell migration, proliferation, and differentiation to form an integrated network of neurons and glia within the bowel wall. Although retinoids regulate ENS development, molecular and cellular mechanisms of retinoid effects on the ENS are not well understood. We hypothesized that retinoids might directly affect ENS precursor differentiation and proliferation, and tested that hypothesis using immunoselected fetal ENS precursors in primary culture. We now demonstrate that all retinoid receptors and many retinoid biosynthetic enzymes are present in the fetal bowel at about the time that migrating ENS precursors reach the distal bowel. We further demonstrate that retinoic acid (RA) enhances proliferation of subsets of ENS precursors in a time-dependent fashion and increases neuronal differentiation. Surprisingly, however, enteric neurons that develop in retinoid deficient media have dramatically longer neurites than those exposed to RA. This difference in neurite growth correlates with increased RhoA protein at the neurite tip, decreased Smurf1 (a protein that targets RhoA for degradation), and dramatically decreased Smurf1 mRNA in response to RA. Collectively these data demonstrate diverse effects of RA on ENS precursor development and suggest that altered fetal retinoid availability or metabolism could contribute to intestinal motility disorders.
Collapse
Affiliation(s)
- Yoshiharu Sato
- Department of Pediatrics, Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis MO 63110
| | - Robert O. Heuckeroth
- Department of Pediatrics, Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis MO 63110
| |
Collapse
|
28
|
Kim S, Im WS, Kang L, Lee ST, Chu K, Kim BI. The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells. J Neurosci Methods 2008; 174:91-6. [PMID: 18682261 DOI: 10.1016/j.jneumeth.2008.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/22/2008] [Accepted: 07/02/2008] [Indexed: 01/05/2023]
Abstract
Electric and magnetic fields have been known to influence cellular behavior. In the present study, we hypothesized that the application of static magnetic fields to neurons will cause neurites to grow in a specific direction. In cultured human neuronal SH-SY5Y cells or PC12 cells, neurite outgrowth was induced by forskolin, retinoic acid, or nerve growth factor (NGF). We applied static magnetic fields to the neurons and analyzed the direction and morphology of newly formed neuronal processes. In the presence of the magnetic field, neurites grew in a direction perpendicular to the direction of the magnetic field, as revealed by the higher orientation index of neurites grown under the magnetic field compared to that of the neurites grown in the absence of the magnetic field. The neurites parallel to the magnetic field appeared to be dystrophic, beaded or thickened, suggesting that they would hinder further elongation processes. The co-localized areas of microtubules and actin filaments were arranged into the vertical axis to the magnetic field, while the levels of neurofilament and synaptotagmin were not altered. Our results suggest that the application of magnetic field can be used to modulate the orientation and direction of neurite formation in cultured human neuronal cells.
Collapse
|
29
|
Bohl D, Liu S, Blanchard S, Hocquemiller M, Haase G, Heard JM. Directed evolution of motor neurons from genetically engineered neural precursors. Stem Cells 2008; 26:2564-75. [PMID: 18635866 DOI: 10.1634/stemcells.2008-0371] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stem cell-based therapies hold therapeutic promise for degenerative motor neuron diseases, such as amyotrophic lateral sclerosis, and for spinal cord injury. Fetal neural progenitors present less risk of tumor formation than embryonic stem cells but inefficiently differentiate into motor neurons, in line with their low expression of motor neuron-specific transcription factors and poor response to soluble external factors. To overcome this limitation, we genetically engineered fetal rat spinal cord neurospheres to express the transcription factors HB9, Nkx6.1, and Neurogenin2. Enforced expression of the three factors rendered neural precursors responsive to Sonic hedgehog and retinoic acid and directed their differentiation into cholinergic motor neurons that projected axons and formed contacts with cocultured myotubes. When transplanted in the injured adult rat spinal cord, a model of acute motor neuron degeneration, the engineered precursors transiently proliferated, colonized the ventral horn, expressed motor neuron-specific differentiation markers, and projected cholinergic axons in the ventral root. We conclude that genetic engineering can drive the differentiation of fetal neural precursors into motor neurons that efficiently engraft in the spinal cord. The strategy thus holds promise for cell replacement in motor neuron and related diseases. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Delphine Bohl
- Département Neuroscience, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale U622, Unité Rétrovirus et Transfert Génétique, Paris, France.
| | | | | | | | | | | |
Collapse
|
30
|
Wang G, Scott SA. Retinoid signaling is involved in governing the waiting period for axons in chick hindlimb. Dev Biol 2008; 321:216-26. [PMID: 18602384 DOI: 10.1016/j.ydbio.2008.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/12/2008] [Accepted: 06/12/2008] [Indexed: 01/01/2023]
Abstract
During embryonic development in chick, axons pause in a plexus region for approximately 1 day prior to invading the limb. We have previously shown that this "waiting period" is governed by maturational changes in the limb. Here we provide a detailed description of the spatiotemporal pattern of Raldh2 expression in lumbosacral motoneurons and in the limb, and show that retinoid signaling in the limb contributes significantly to terminating the waiting period. Raldh2, indicative of retinoid signaling, first appears in hindlimb mesenchyme near the end of the waiting period. Transcripts are more abundant in connective tissue associated with predominantly fast muscles than predominantly slow muscles, but are not expressed in muscle cells themselves. The tips of ingrowing axons are always found in association with domains of Raldh2, but development of Raldh2 expression is not regulated by the axons. Instead, retinoid signaling appears to regulate axon entry into the limb. Supplying exogenous retinoic acid to proximal limb during the waiting period caused both motor and sensory axons to invade the limb prematurely and altered the normal stereotyped pattern of axon ingrowth without obvious effects on limb morphogenesis or motoneuron specification. Conversely, locally decreasing retinoid synthesis reduced axon growth into the limb. Retinoic acid significantly enhanced motor axon growth in vitro, suggesting that retinoic acid may directly promote axon growth into the limb in vivo. In addition, retinoid signaling may indirectly affect the waiting period by regulating the maturation of other gate keeping or guidance molecules in the limb. Together these findings reveal a novel function of retinoid signaling in governing the timing and patterning of axon growth into the limb.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
31
|
van Neerven S, Kampmann E, Mey J. RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog Neurobiol 2008; 85:433-51. [PMID: 18554773 DOI: 10.1016/j.pneurobio.2008.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/12/2008] [Accepted: 04/28/2008] [Indexed: 01/09/2023]
Abstract
Retinoids are important signals in brain development. They regulate gene transcription by binding to retinoic acid receptors (RAR) and, as was discovered recently, a peroxisome proliferator-activated receptor (PPAR). Traditional ligands of PPAR are best known for their functions in lipid metabolism and inflammation. RAR and PPAR are ligand-activated transcription factors, which share members of the retinoid X receptor (RXR) family as heterodimeric partners. Both signal transduction pathways have recently been implicated in the progression of neurodegenerative and psychiatric diseases. Since inflammatory processes contribute to various neurodegenerative diseases, the anti-inflammatory activity of retinoids and PPARgamma agonists recommends them as potential therapeutic targets. In addition, genetic linkage studies, transgenic mouse models and experiments with vitamin A deprivation provide evidence that retinoic acid signaling is directly involved in physiology and pathology of motoneurons, of the basal ganglia and of cognitive functions. The activation of PPAR/RXR and RAR/RXR transcription factors has therefore been proposed as a therapeutic strategy in disorders of the central nervous system.
Collapse
|
32
|
Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007; 8:755-65. [PMID: 17882253 DOI: 10.1038/nrn2212] [Citation(s) in RCA: 639] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA) is involved in the induction of neural differentiation, motor axon outgrowth and neural patterning. Like other developmental molecules, RA continues to play a role after development has been completed. Elevated RA signalling in the adult triggers axon outgrowth and, consequently, nerve regeneration. RA is also involved in the maintenance of the differentiated state of adult neurons, and disruption of RA signalling in the adult leads to the degeneration of motor neurons (motor neuron disease), the development of Alzheimer's disease and, possibly, the development of Parkinson's disease. The data described here strongly suggest that RA could be used as a therapeutic molecule for the induction of axon regeneration and the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Malcolm Maden
- MRC Centre for Developmental Neurobiology, fourth floor New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
33
|
Kern J, Schrage K, Koopmans GC, Joosten EA, McCaffery P, Mey J. Characterization of retinaldehyde dehydrogenase‐2 induction in NG2‐positive glia after spinal cord contusion injury. Int J Dev Neurosci 2007; 25:7-16. [PMID: 17239557 DOI: 10.1016/j.ijdevneu.2006.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/16/2006] [Accepted: 11/28/2006] [Indexed: 11/15/2022] Open
Abstract
The transcriptional activator retinoic acid (RA) supports axonal regeneration of several neuronal cell populations in vitro, and it has been suggested that its receptor RARbeta2 may be used to support axonal regeneration in the adult mammalian spinal cord. We have previously shown that spinal cord injury induces activity of the RA synthesizing enzyme retinaldehyde dehydrogenase (RALDH)2 in NG2-positive cells. This report quantifies the increase of RALDH2 protein in the injured spinal cord and characterizes the RALDH2/NG2 expressing cells probably as a unique RA synthesizing subpopulation of activated oligodendrocyte precursors or "polydendrocytes". In the uninjured spinal cord low levels of RALDH2 are present in oligodendrocytes as well as in the meninges and in blood vessels. Following injury there is a significant increase in RALDH2 in these latter two tissues and, given that the RALDH2/NG2 positive cells are clustered in the same area, this implies that these are specific foci of RA synthesis. It is presumed that these cells release RA in a paracrine fashion in the region of the wound; however, the RALDH2/NG2-immunoreactive cells expressed the retinoid receptors RARalpha, RARbeta, RXRalpha and RXRbeta, suggesting that RA also serves an autocrine function.
Collapse
|
34
|
Park CH, Kang JS, Shin YH, Chang MY, Chung S, Koh HC, Zhu MH, Oh SB, Lee YS, Panagiotakos G, Tabar V, Studer L, Lee SH. Acquisition of in vitro and in vivo functionality of Nurr1-induced dopamine neurons. FASEB J 2006; 20:2553-5. [PMID: 17077287 DOI: 10.1096/fj.06-6159fje] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural precursor cells provide an expandable source of neurons and glia for basic and translational applications. However, little progress has been made in directing naive neural precursors toward specific neuronal fates such as midbrain dopamine (DA) neurons. We have recently demonstrated that transgenic expression of the nuclear orphan receptor Nurr1 is sufficient to drive dopaminergic differentiation of forebrain embryonic rat neural precursors in vitro. However, Nurr1-induced DA neurons exhibit immature neuronal morphologies and functional properties and are unable to induce behavioral recovery in rodent models of Parkinson's disease (PD). Here, we report on the identification of key genetic factors that drive morphological and functional differentiation of Nurr1-derived DA neurons. We show that coexpression of Nurr1, Bcl-XL, and Sonic hedgehog (SHH) or Nurr1 and the proneural bHLH factor Mash1 is sufficient to drive naive rat forebrain precursors into neurons exhibiting the biochemical, electrophysiological, and functional properties of DA neuron in vitro. On transplantation into the striatum of Parkinsonian rats, precursor cells engineered with Nurr1/SHH/Bcl-XL or Nurr1/Mash1 survived in vivo and differentiated into mature DA neurons that can reverse the behavioral deficits in the grafted animals.
Collapse
Affiliation(s)
- Chang-Hwan Park
- Department of Microbiology, College of Medicine, Hanyang University, Sungdong-gu, Seoul 133-791, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|