1
|
Schubert FR, Dietrich S. Naturally occurring, rostrally conjoining chicken twins attempt to make a forebrain. Dev Biol 2025; 520:171-179. [PMID: 39848482 DOI: 10.1016/j.ydbio.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Conjoined twinning is a special case of monozygotic, monoamniotic twinning. Human conjoined twinning, and vertebrate conjoined twinning in general, is a very rare phenomenon. It has been suggested that the risk of conjoined twinning increases with some medication and upon assisted reproduction. Survival rates are low. When conjoined twins occur in the chicken, they most often present with fused heads, anatomically unrecognisable brains and two normal bodies. Recent studies suggested that forebrain, midbrain and rostral hindbrain identities are established in the early epiblast before neural induction and independent from caudal hindbrain and spinal cord identities. Therefore, it is unclear whether in conjoined twins, the aberrant brain anatomy is a result of the rostral fusion, or whether the brains failed to develop in the first place. Here, we collected conjoined twins as they spontaneously appeared in eggs incubated for stages HH4 (late primitive steak stage) to HH13 (early pharyngula). The twinned embryos and stage-matched normal embryos were analysed for the expression of the rostral epiblast and forebrain-midbrain marker Otx2 and the ventral forebrain marker Six3. We found normal anatomy and marker gene expression that lasted up to stage HH9. By HH12-13, the brain anatomy had deteriorated, but marker genes remained expressed. This suggests that the fusing embryos attempted to generate a brain including the forebrain. Besides addressing forebrain development, our work for the first time provides a time frame to study the mechanisms underlying the interaction and fusion of conjoined twins, which will pave the way to a better understanding and management of risk factors in humans.
Collapse
Affiliation(s)
- Frank R Schubert
- Institute of Life Sciences and Health (ILSH), School of the Environment and Life Sciences (SELS), University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Susanne Dietrich
- Institute of Life Sciences and Health (ILSH), School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
2
|
Lu HC, Trevers KE, Solovieva T, Anderson C, Pérez-Campos L, Filipkova L, Arimia V, Colle C, De Oliveira NMM, Dale L, Stern CD. The organizer as a cooperative of signaling cells for neural induction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641623. [PMID: 40093132 PMCID: PMC11908251 DOI: 10.1101/2025.03.05.641623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The "organizer", discovered 100 years ago by Hans Spemann and Hilde Mangold, is a special region of vertebrate embryos at the gastrula stage; it emits signals that can re-direct the fate of neighboring cells to acquire neural plate identity. It is generally imagined as unique population of cells producing one or a few signaling molecules, responsible for neural induction and for patterning the neural plate and the mesoderm. Here we use single cell and tissue transcriptomics to explore the expression of signaling molecules in the node (the amniote organizer). Although all organizer cells express the homeobox gene Goosecoid, node cells show a diversity of transcription factor signatures associated with expression of subsets of many signaling molecules, suggesting distinct cell sub-populations. Using a recently described Gene Regulatory Network (GRN) of 175 transcriptional responses to neural induction, we explore the activities of 22 of these signals and find that some of them regulate the expression of components of the GRN that are not responsive to previously described pathways associated with neural induction. These results suggest that rather than a single, static, homogeneous population, the organizer comprises a diverse collective of specialized cells that emit cooperating signals to instruct receiving neighbors to adopt their new identities.
Collapse
Affiliation(s)
- Hui-Chun Lu
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Katherine E Trevers
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Tatiana Solovieva
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Claire Anderson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Linette Pérez-Campos
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Lenka Filipkova
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Vlad Arimia
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Charlotte Colle
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Nidia M M De Oliveira
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Leslie Dale
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
3
|
Stern CD. Cell biology of the chick organizer: Origins, composition, population dynamics and fate. Cells Dev 2025:204017. [PMID: 40043777 DOI: 10.1016/j.cdev.2025.204017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
The year 2024 celebrates 100 years of perhaps one of the most important and influential papers in the field of developmental biology: Spemann and Mangold's publication reporting the discovery of the "organizer", which can induce and pattern the nervous system and also pattern the axial-lateral axis of the mesoderm. While many papers have investigated, and many others reviewed, the signalling aspects of the organizer, relatively fewer have concentrated on the cell biology of organizer cells. Here we survey more than 12 decades of knowledge on the chick organizer, including the cellular origins, fates, composition, cell movements, cell population properties and molecular dynamics of the chick organizer (the tip of the primitive streak). What emerges is a picture of an extremely complex and dynamic population of cells whose properties change over space and time, quite different from the "textbook" view of a static group of cells set aside during early development to perform a particular function in the normal embryo before being swept aside. Some of these findings also have more general implications for the interpretation of results from single cell RNA sequencing experiments.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Abstract
In avian and mammalian embryos the "organizer" property associated with neural induction of competent ectoderm into a neural plate and its subsequent patterning into rostro-caudal domains resides at the tip of the primitive streak before neurulation begins, and before a morphological Hensen's node is discernible. The same region and its later derivatives (like the notochord) also have the ability to "dorsalize" the adjacent mesoderm, for example by converting lateral plate mesoderm into paraxial (pre-somitic) mesoderm. Both neural induction and dorsalization of the mesoderm involve inhibition of BMP, and the former also requires other signals. This review surveys the key experiments done to elucidate the functions of the organizer and the mechanisms of neural induction in amniotes. We conclude that the mechanisms of neural induction in amniotes and anamniotes are likely to be largely the same; apparent differences are likely to be due to differences in experimental approaches dictated by embryo topology and other practical constraints. We also discuss the relationships between "neural induction" assessed by grafts of the organizer and normal neural plate development, as well as how neural induction relates to the generation of neuronal cells from embryonic and other stem cells in vitro.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
5
|
Thawani A, Maunsell HR, Zhang H, Ankamreddy H, Groves AK. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border. Development 2023; 150:dev202047. [PMID: 37756587 PMCID: PMC10617604 DOI: 10.1242/dev.202047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Helen R. Maunsell
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Koontz A, Urrutia HA, Bronner ME. Making a head: Neural crest and ectodermal placodes in cranial sensory development. Semin Cell Dev Biol 2023; 138:15-27. [PMID: 35760729 PMCID: PMC10224775 DOI: 10.1016/j.semcdb.2022.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 01/04/2023]
Abstract
During development of the vertebrate sensory system, many important components like the sense organs and cranial sensory ganglia arise within the head and neck. Two progenitor populations, the neural crest, and cranial ectodermal placodes, contribute to these developing vertebrate peripheral sensory structures. The interactions and contributions of these cell populations to the development of the lens, olfactory, otic, pituitary gland, and cranial ganglia are vital for appropriate peripheral nervous system development. Here, we review the origins of both neural crest and placode cells at the neural plate border of the early vertebrate embryo and investigate the molecular and environmental signals that influence specification of different sensory regions. Finally, we discuss the underlying molecular pathways contributing to the complex vertebrate sensory system from an evolutionary perspective, from basal vertebrates to amniotes.
Collapse
Affiliation(s)
- Alison Koontz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo A Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
7
|
Gras-Peña R, Danzl NM, Khosravi-Maharlooei M, Campbell SR, Ruiz AE, Parks CA, Suen Savage WM, Holzl MA, Chatterjee D, Sykes M. Human stem cell-derived thymic epithelial cells enhance human T-cell development in a xenogeneic thymus. J Allergy Clin Immunol 2021; 149:1755-1771. [PMID: 34695489 PMCID: PMC9023620 DOI: 10.1016/j.jaci.2021.09.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Generation of thymic tissue from pluripotent stem cells would provide therapies for acquired and congenital thymic insufficiency states. OBJECTIVES This study aimed to generate human thymic epithelial progenitors from human embryonic stem cells (hES-TEPs) and to assess their thymopoietic function in vivo. METHODS This study differentiated hES-TEPs by mimicking developmental queues with FGF8, retinoic acid, SHH, Noggin, and BMP4. Their function was assessed in reaggregate cellular grafts under the kidney capsule and in hybrid thymi by incorporating them into swine thymus (SwTHY) grafts implanted under the kidney capsules of immunodeficient mice that received human hematopoietic stem and progenitor cells (hHSPCs) intravenously. RESULTS Cultured hES-TEPs expressed FOXN1 and formed colonies expressing EPCAM and both cortical and medullary thymic epithelial cell markers. In thymectomized immunodeficient mice receiving hHSPCs, hES-TEPs mixed with human thymic mesenchymal cells supported human T-cell development. Hypothesizing that support from non-epithelial thymic cells might allow long-term function of hES-TEPs, the investigators injected them into SwTHY tissue, which supports human thymopoiesis in NOD severe combined immunodeficiency IL2Rγnull mice receiving hHSPCs. hES-TEPs integrated into SwTHY grafts, enhanced human thymopoiesis, and increased peripheral CD4+ naive T-cell reconstitution. CONCLUSIONS This study has developed and demonstrated in vivo thymopoietic function of hES-TEPs generated with a novel differentiation protocol. The SwTHY hybrid thymus model demonstrates beneficial effects on human thymocyte development of hES-TEPs maturing in the context of a supportive thymic structure.
Collapse
Affiliation(s)
- Rafael Gras-Peña
- Columbia Center for Human Development, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY; Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY.
| | - Nichole M Danzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Sean R Campbell
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Amanda E Ruiz
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Christopher A Parks
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - William Meng Suen Savage
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Markus A Holzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Debanjana Chatterjee
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY; Department of Surgery and Department of Microbiology and Immunology, Columbia University, New York, NY.
| |
Collapse
|
8
|
Abstract
Neural crest stem/progenitor cells arise early during vertebrate embryogenesis at the border of the forming central nervous system. They subsequently migrate throughout the body, eventually differentiating into diverse cell types ranging from neurons and glia of the peripheral nervous system to bones of the face, portions of the heart, and pigmentation of the skin. Along the body axis, the neural crest is heterogeneous, with different subpopulations arising in the head, neck, trunk, and tail regions, each characterized by distinct migratory patterns and developmental potential. Modern genomic approaches like single-cell RNA- and ATAC-sequencing (seq) have greatly enhanced our understanding of cell lineage trajectories and gene regulatory circuitry underlying the developmental progression of neural crest cells. Here, we discuss how genomic approaches have provided new insights into old questions in neural crest biology by elucidating transcriptional and posttranscriptional mechanisms that govern neural crest formation and the establishment of axial level identity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA; ,
| |
Collapse
|
9
|
Sox2 knockdown in the neonatal retina causes cell fate to switch from amacrine to bipolar. Brain Res 2021; 1752:147265. [PMID: 33422527 DOI: 10.1016/j.brainres.2020.147265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 11/20/2022]
Abstract
Transcription factor Sox2 is widely recognized for its critical roles in the nervous system, including the neural retina. Here, we aimed to reveal the function of Sox2 in the process of mouse postnatal development. After the suppression of Sox2 at P0, there was an increase number in bipolar cells but a decrease in amacrine cells. Inhibited Sox2 expression also led to decreased visual function. Furthermore, we found a distinctive type of retinal cells expressing the characteristic proteins of both bipolar cells and amacrine cells at P6, which may be an intermediate state in which amacrine cells were transforming into bipolar cells. Transcription factors associated with the development of bipolar cells and amacrine cells also support those changes. Our work indicated that inhibition of Sox2 could change cell fate by affecting transcription factors in the development of bipolar cells and amacrine cells, may provide new directions for the study and treatment of retinal genetic diseases and retinal dysplasia.
Collapse
|
10
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Cell fate decisions during the development of the peripheral nervous system in the vertebrate head. Curr Top Dev Biol 2020; 139:127-167. [PMID: 32450959 DOI: 10.1016/bs.ctdb.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensory placodes and neural crest cells are among the key cell populations that facilitated the emergence and diversification of vertebrates throughout evolution. Together, they generate the sensory nervous system in the head: both form the cranial sensory ganglia, while placodal cells make major contributions to the sense organs-the eye, ear and olfactory epithelium. Both are instrumental for integrating craniofacial organs and have been key to drive the concentration of sensory structures in the vertebrate head allowing the emergence of active and predatory life forms. Whereas the gene regulatory networks that control neural crest cell development have been studied extensively, the signals and downstream transcriptional events that regulate placode formation and diversity are only beginning to be uncovered. Both cell populations are derived from the embryonic ectoderm, which also generates the central nervous system and the epidermis, and recent evidence suggests that their initial specification involves a common molecular mechanism before definitive neural, neural crest and placodal lineages are established. In this review, we will first discuss the transcriptional networks that pattern the embryonic ectoderm and establish these three cell fates with emphasis on sensory placodes. Second, we will focus on how sensory placode precursors diversify using the specification of otic-epibranchial progenitors and their segregation as an example.
Collapse
|
12
|
Lee HC, Lu HC, Turmaine M, Oliveira NMM, Yang Y, De Almeida I, Stern CD. Molecular anatomy of the pre-primitive-streak chick embryo. Open Biol 2020; 10:190299. [PMID: 32102607 PMCID: PMC7058932 DOI: 10.1098/rsob.190299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
The early stages of development of the chick embryo, leading to primitive streak formation (the start of gastrulation), have received renewed attention recently, especially for studies of the mechanisms of large-scale cell movements and those that position the primitive streak in the radial blastodisc. Over the long history of chick embryology, the terminology used to define different regions has been changing, making it difficult to relate studies to each other. To resolve this objectively requires precise definitions of the regions based on anatomical and functional criteria, along with a systematic molecular map that can be compared directly to the functional anatomy. Here, we undertake these tasks. We describe the characteristic cell morphologies (using scanning electron microscopy and immunocytochemistry for cell polarity markers) in different regions and at successive stages. RNAseq was performed for 12 regions of the blastodisc, from which a set of putative regional markers was selected. These were studied in detail by in situ hybridization. Together this provides a comprehensive resource allowing the community to define the regions unambiguously and objectively. In addition to helping with future experimental design and interpretation, this resource will also be useful for evolutionary comparisons between different vertebrate species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudio D. Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
13
|
Vermillion KL, Bacher R, Tannenbaum AP, Swanson S, Jiang P, Chu LF, Stewart R, Thomson JA, Vereide DT. Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes. Dev Biol 2018; 439:30-41. [PMID: 29678445 DOI: 10.1016/j.ydbio.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023]
Abstract
During vertebrate development, progenitor cells give rise to tissues and organs through a complex choreography that commences at gastrulation. A hallmark event of gastrulation is the formation of the primitive streak, a linear assembly of cells along the anterior-posterior (AP) axis of the developing organism. To examine the primitive streak at a single-cell resolution, we measured the transcriptomes of individual chick cells from the streak or the surrounding tissue (the rest of the area pellucida) in Hamburger-Hamilton stage 4 embryos. The single-cell transcriptomes were then ordered by the statistical method Wave-Crest to deduce both the relative position along the AP axis and the prospective lineage of single cells. The ordered transcriptomes reveal intricate patterns of gene expression along the primitive streak.
Collapse
Affiliation(s)
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA
| | | | - Scott Swanson
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell&Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Molecular, Cellular,&Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
14
|
Abstract
As the embryonic ectoderm is induced to form the neural plate, cells inside this epithelium acquire restricted identities that will dictate their behavior and progressive differentiation. The first behavior adopted by most neural plate cells is called neurulation, a morphogenetic movement shaping the neuroepithelium into a tube. One cell population is not adopting this movement: the eye field. Giving eye identity to a defined population inside the neural plate is therefore a key neural fate decision. While all other neural population undergo neurulation similarly, converging toward the midline, the eye field moves outwards, away from the rest of the forming neural tube, to form vesicles. Thus, while delay in acquisition of most other fates would not have significant morphogenetic consequences, defect in the establishment of the eye field would dramatically impact the formation of the eye. Yet, very little is understood of the molecular and cellular mechanisms driving them. Here, we summarize what is known across vertebrate species and propose a model highlighting what is required to form the essential vesicles that initiate the vertebrate eyes.
Collapse
Affiliation(s)
- Florence A Giger
- Department of Developmental Neurobiology, Centre for Developmental Neurobiology and MRC Centre for Developmental Disorders, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Corinne Houart
- Department of Developmental Neurobiology, Centre for Developmental Neurobiology and MRC Centre for Developmental Disorders, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| |
Collapse
|
15
|
Neural induction by the node and placode induction by head mesoderm share an initial state resembling neural plate border and ES cells. Proc Natl Acad Sci U S A 2017; 115:355-360. [PMID: 29259119 DOI: 10.1073/pnas.1719674115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Around the time of gastrulation in higher vertebrate embryos, inductive interactions direct cells to form central nervous system (neural plate) or sensory placodes. Grafts of different tissues into the periphery of a chicken embryo elicit different responses: Hensen's node induces a neural plate whereas the head mesoderm induces placodes. How different are these processes? Transcriptome analysis in time course reveals that both processes start by induction of a common set of genes, which later diverge. These genes are remarkably similar to those induced by an extraembryonic tissue, the hypoblast, and are normally expressed in the pregastrulation stage epiblast. Explants of this epiblast grown in the absence of further signals develop as neural plate border derivatives and eventually express lens markers. We designate this state as "preborder"; its transcriptome resembles embryonic stem cells. Finally, using sequential transplantation experiments, we show that the node, head mesoderm, and hypoblast are interchangeable to begin any of these inductions while the final outcome depends on the tissue emitting the later signals.
Collapse
|
16
|
Conserved and divergent expression patterns of markers of axial development in the laboratory opossum,Monodelphis domestica. Dev Dyn 2016; 245:1176-1188. [DOI: 10.1002/dvdy.24459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 11/07/2022] Open
|
17
|
Yoshida M, Kajikawa E, Kurokawa D, Noro M, Iwai T, Yonemura S, Kobayashi K, Kiyonari H, Aizawa S. Conserved and divergent expression patterns of markers of axial development in reptilian embryos: Chinese soft-shell turtle and Madagascar ground gecko. Dev Biol 2016; 415:122-142. [DOI: 10.1016/j.ydbio.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
|
18
|
Bouzas SO, Marini MS, Torres Zelada E, Buzzi AL, Morales Vicente DA, Strobl-Mazzulla PH. Epigenetic activation of Sox2 gene in the developing vertebrate neural plate. Mol Biol Cell 2016; 27:1921-7. [PMID: 27099369 PMCID: PMC4907725 DOI: 10.1091/mbc.e16-01-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
The in vivo requirement of the histone demethylase JmjD2A, together with the kinase MSK1, results in a series of epigenetic events necessary for early activation of Sox2 and subsequent neural fate commitment in vertebrates. One of the earliest manifestations of neural induction is onset of expression of the neural marker Sox2, mediated by the activation of the enhancers N1 and N2. By using loss and gain of function, we find that Sox2 expression requires the activity of JmjD2A and the Msk1 kinase, which can respectively demethylate the repressive H3K9me3 mark and phosphorylate the activating H3S10 (H3S10ph) mark. Bimolecular fluorescence complementation reveals that the adaptor protein 14-3-3, known to bind to H3S10ph, interacts with JMJD2A and may be involved in its recruitment to regulatory regions of the Sox2 gene. Chromatin immunoprecipitation reveals dynamic binding of JMJD2A to the Sox2 promoter and N-1 enhancer at the time of neural plate induction. Finally, we show a clear temporal antagonism on the occupancy of H3K9me3 and H3S10ph modifications at the promoter of the Sox2 locus before and after the neural plate induction. Taken together, our results propose a series of epigenetic events necessary for the early activation of the Sox2 gene in neural progenitor cells.
Collapse
Affiliation(s)
- Santiago O Bouzas
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Melisa S Marini
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Eliana Torres Zelada
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Ailín L Buzzi
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - David A Morales Vicente
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), 7130 Chascomús, Argentina
| |
Collapse
|
19
|
Yoshida M, Kajikawa E, Kurokawa D, Tokunaga T, Onishi A, Yonemura S, Kobayashi K, Kiyonari H, Aizawa S. Conserved and divergent expression patterns of markers of axial development in eutherian mammals. Dev Dyn 2015; 245:67-86. [PMID: 26404161 DOI: 10.1002/dvdy.24352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/12/2015] [Accepted: 09/12/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Mouse embryos are cup shaped, but most nonrodent eutherian embryos are disk shaped. Extraembryonic ectoderm (ExEc), which may have essential roles in anterior-posterior (A-P) axis formation in mouse embryos, does not develop in many eutherian embryos. To assess A-P axis formation in eutherians, comparative analyses were made on rabbit, porcine, and Suncus embryos. RESULTS All embryos examined expressed Nodal initially throughout epiblast and visceral endoderm; its expression became restricted to the posterior region before gastrulation. Anterior visceral endoderm (AVE) genes were expressed in Otx2-positive visceral endoderm, with Dkk1 expression being most anterior. The mouse pattern of AVE formation was conserved in rabbit embryos, but had diverged in porcine and Suncus embryos. No structure that was molecularly equivalent to Bmp-positive ExEc, existed in rabbit or pig embryos. In Suncus embryos, A-P axis was determined at prehatching stage, and these embryos attached to uterine wall at future posterior side. CONCLUSIONS Nodal, but not Bmp, functions in epiblast and visceral endoderm development may be conserved in eutherians. AVE functions may also be conserved, but the pattern of its formation has diverged among eutherians. Roles of BMP and NODAL gradients in AVE formation seem to have been established in a subset of rodents.
Collapse
Affiliation(s)
- Michio Yoshida
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Eriko Kajikawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan.,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, Japan
| | - Tomoyuki Tokunaga
- Animal Development and Differentiation Research Unit, Animal Research Division, National Institute of Agrobiological Sciences (NIAS), Tsukuba-shi, Ibaraki, Japan
| | - Akira Onishi
- Laboratory of Animal Reproduction, Department of Animal Science and Resources, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, Biosystem Dynamics Group, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Chuo-ku, Kobe, Japan
| | - Kensaku Kobayashi
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Shinichi Aizawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan.,Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| |
Collapse
|
20
|
van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis AK, Nowotschin S, Turner DA, Martinez Arias A. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2015; 141:4231-42. [PMID: 25371360 PMCID: PMC4302915 DOI: 10.1242/dev.113001] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’.
Collapse
Affiliation(s)
| | | | - Tina Balayo
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - David A Turner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
21
|
Otto A, Pieper T, Viebahn C, Tsikolia N. Early left-right asymmetries during axial morphogenesis in the chick embryo. Genesis 2014; 52:614-25. [PMID: 24648137 DOI: 10.1002/dvg.22773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/08/2014] [Accepted: 03/17/2014] [Indexed: 11/07/2022]
Abstract
The primitive node is the "hub" of early left-right patterning in the chick embryo: (1) it undergoes asymmetrical morphogenesis immediately after its appearance at Stage 4; (2) it is closely linked to the emerging asymmetrical expression of nodal and shh at Stage 5; and (3) its asymmetry is spatiotemporally related to the emerging notochord, the midline barrier maintaining molecular left-right patterning from Stage 6 onward. Here, we study the correlation of node asymmetry to notochord marker expression using high-resolution histology, and we test pharmacological inhibition of shh signaling using cyclopamine at Stages 4 and 5. Just as noggin expression mirrors an intriguing structural continuity between the right node shoulder and the notochord, shh expression in the left node shoulder confirms a similar continuity with the future floor plate. Shh inhibition at Stage 4 or 5 suppressed nodal in both its paraxial or lateral plate mesoderm domains, respectively, and resulted in randomized heart looping. Thus, the "primordial" paraxial nodal asymmetry at Stage 4/5 (1) appears to be dependent on, but not instructed by, shh signaling and (2) may be fixed by asymmetrical roots of the notochord and the floor plate, thereby adding further twists to the node's pivotal role during left-right patterning.
Collapse
Affiliation(s)
- Annalena Otto
- Anatomy and Embryology, University of Göttingen, Kreuzbergring 36, Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Papanayotou C, De Almeida I, Liao P, Oliveira NMM, Lu SQ, Kougioumtzidou E, Zhu L, Shaw A, Sheng G, Streit A, Yu D, Wah Soong T, Stern CD. Calfacilitin is a calcium channel modulator essential for initiation of neural plate development. Nat Commun 2013; 4:1837. [PMID: 23673622 PMCID: PMC3674269 DOI: 10.1038/ncomms2864] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/10/2013] [Indexed: 11/09/2022] Open
Abstract
Calcium fluxes have been implicated in the specification of the vertebrate embryonic nervous system for some time, but how these fluxes are regulated and how they relate to the rest of the neural induction cascade is unknown. Here we describe Calfacilitin, a transmembrane calcium channel facilitator that increases calcium flux by generating a larger window current and slowing inactivation of the L-type CaV1.2 channel. Calfacilitin binds to this channel and is co-expressed with it in the embryo. Regulation of intracellular calcium by Calfacilitin is required for expression of the neural plate specifiers Geminin and Sox2 and for neural plate formation. Loss-of-function of Calfacilitin can be rescued by ionomycin, which increases intracellular calcium. Our results elucidate the role of calcium fluxes in early neural development and uncover a new factor in the modulation of calcium signalling.
Collapse
Affiliation(s)
- Costis Papanayotou
- Department of Cell and Developmental Biology, University College London, Gower Street (Anatomy Building), London WC1E 6BT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Setting appropriate boundaries: fate, patterning and competence at the neural plate border. Dev Biol 2013; 389:2-12. [PMID: 24321819 DOI: 10.1016/j.ydbio.2013.11.027] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/20/2022]
Abstract
The neural crest and craniofacial placodes are two distinct progenitor populations that arise at the border of the vertebrate neural plate. This border region develops through a series of inductive interactions that begins before gastrulation and progressively divide embryonic ectoderm into neural and non-neural regions, followed by the emergence of neural crest and placodal progenitors. In this review, we describe how a limited repertoire of inductive signals-principally FGFs, Wnts and BMPs-set up domains of transcription factors in the border region which establish these progenitor territories by both cross-inhibitory and cross-autoregulatory interactions. The gradual assembly of different cohorts of transcription factors that results from these interactions is one mechanism to provide the competence to respond to inductive signals in different ways, ultimately generating the neural crest and cranial placodes.
Collapse
|
24
|
Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70:3739-52. [PMID: 23397132 PMCID: PMC3781296 DOI: 10.1007/s00018-013-1269-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
Abstract
Research from the last 15 years has provided a working model for how the anterior forebrain is induced and specified during the early stages of embryogenesis. This model relies on three basic processes: (1) induction of the neural plate from naive ectoderm requires the inhibition of BMP/TGFβ signaling; (2) induced neural tissue initially acquires an anterior identity (i.e., anterior forebrain); (3) maintenance and expansion of the anterior forebrain depends on the antagonism of posteriorizing signals that would otherwise transform this tissue into posterior neural fates. In this review, we present a historical perspective examining some of the significant experiments that have helped to delineate this molecular model. In addition, we discuss the function of the relevant tissues that act prior to and during gastrulation to ensure proper anterior forebrain formation. Finally, we elaborate data, mainly obtained from the analyses of mouse mutants, supporting a role for transcriptional repressors in the regulation of cell competence within the anterior forebrain. The aim of this review is to provide the reader with a general overview of the signals as well as the signaling centers that control the development of the anterior neural plate.
Collapse
Affiliation(s)
- Cynthia Lilian Andoniadou
- Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | | |
Collapse
|
25
|
Yardley N, García-Castro MI. FGF signaling transforms non-neural ectoderm into neural crest. Dev Biol 2012; 372:166-77. [PMID: 23000357 PMCID: PMC3541687 DOI: 10.1016/j.ydbio.2012.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/29/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in response to FGF the non-neural ectoderm can ectopically express several early neural crest markers (Pax7, Msx1, Dlx5, Sox9, FoxD3, Snail2, and Sox10). Importantly this response to FGF signaling can occur without inducing ectopic mesodermal tissues. Furthermore, the non-neural ectoderm responds to FGF by expressing the prospective neural marker Sox3, but it does not express definitive markers of neural or anterior neural (Sox2 and Otx2) tissues. These results suggest that the non-neural ectoderm can launch the neural crest program in the absence of mesoderm, without acquiring definitive neural character. Finally, we report that prior to the upregulation of these neural crest markers, the non-neural ectoderm upregulates both BMP and Wnt molecules in response to FGF. Our results provide the first effort to understand the molecular events leading to neural crest development via the non-neural ectoderm in amniotes and present a distinct response to FGF signaling.
Collapse
Affiliation(s)
- Nathan Yardley
- KBT 1100, Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520-8103, USA
| | - Martín I. García-Castro
- KBT 1100, Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
26
|
Beccari L, Marco-Ferreres R, Bovolenta P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 2012; 130:95-111. [PMID: 23111324 DOI: 10.1016/j.mod.2012.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/09/2012] [Indexed: 01/19/2023]
Abstract
The vertebrate forebrain or prosencephalon is patterned at the beginning of neurulation into four major domains: the telencephalic, hypothalamic, retinal and diencephalic anlagen. These domains will then give rise to the majority of the brain structures involved in sensory integration and the control of higher intellectual and homeostatic functions. Understanding how forebrain pattering arises has thus attracted the interest of developmental neurobiologists for decades. As a result, most of its regulators have been identified and their hierarchical relationship is now the object of active investigation. Here, we summarize the main morphogenetic pathways and transcription factors involved in forebrain specification and propose the backbone of a possible gene regulatory network (GRN) governing its specification, taking advantage of the GRN principles elaborated by pioneer studies in simpler organisms. We will also discuss this GRN and its operational logic in the context of the remarkable morphological and functional diversification that the forebrain has undergone during evolution.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c/Nicolas Cabrera, 1, Madrid 28049, Spain
| | | | | |
Collapse
|
27
|
Godard BG, Mazan S. Early patterning in a chondrichthyan model, the small spotted dogfish: towards the gnathostome ancestral state. J Anat 2012; 222:56-66. [PMID: 22905913 DOI: 10.1111/j.1469-7580.2012.01552.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 01/09/2023] Open
Abstract
In the past few years, the small spotted dogfish has become the primary model for analyses of early development in chondrichthyans. Its phylogenetic position makes it an ideal outgroup to reconstruct the ancestral gnathostome state by comparisons with established vertebrate model organisms. It is also a suitable model to address the molecular bases of lineage-specific diversifications such as the rise of extraembryonic tissues, as it is endowed with a distinct extraembryonic yolk sac and yolk duct ensuring exchanges between the embryo and a large undivided vitelline mass. Experimental or functional approaches such as cell marking or in ovo pharmacological treatments are emerging in this species, but recent analyses of early development in this species have primarily concentrated on molecular descriptions. These data show the dogfish embryo exhibits early polarities reflecting the dorso-ventral axis of amphibians and teleosts at early blastula stages and an atypical anamniote molecular pattern during gastrulation, independently of the presence of extraembryonic tissues. They also highlight unexpected relationships with amniotes, with a strikingly similar Nodal-dependent regional pattern in the extraembryonic endoderm. In this species, extraembryonic cell fates seem to be determined by differential cell behaviors, which lead to cell allocation in extraembryonic and embryonic tissues, rather than by cell regional identity. We suggest that this may exemplify an early evolutionary step in the rise of extraembryonic tissues, possibly related to quantitative differences in the signaling activities, which shape the early embryo. These results highlight the conservation across gnathostomes of a highly constrained core genetic program controlling early patterning. This conservation may be obscured in some lineages by taxa-specific diversifications such as specializations of extraembryonic nutritive tissues.
Collapse
Affiliation(s)
- B G Godard
- Development and Evolution of Vertebrates, CNRS-UPMC-UMR 7150, Station Biologique, Roscoff, France
| | | |
Collapse
|
28
|
Grocott T, Tambalo M, Streit A. The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective. Dev Biol 2012; 370:3-23. [PMID: 22790010 DOI: 10.1016/j.ydbio.2012.06.028] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.
Collapse
Affiliation(s)
- Timothy Grocott
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | | | |
Collapse
|
29
|
Sanchez-Arrones L, Stern CD, Bovolenta P, Puelles L. Sharpening of the anterior neural border in the chick by rostral endoderm signalling. Development 2012; 139:1034-44. [PMID: 22318633 DOI: 10.1242/dev.067934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The anterior border of the neural plate, presumed to contain the prospective peripheral portion (roof) of the prospective telencephalon, emerges within a vaguely defined proneural ectodermal region. Fate maps carried out at HH4 in the chick reveal that this region still produces indistinctly neural, placodal and non-neural derivatives; it does not express neural markers. We examined how the definitive anterior border domain of the rostral forebrain becomes established and comes to display a neural molecular profile, whereas local non-neural derivatives become separated. The process, interpreted as a border sharpening mechanism via intercalatory cell movements, was studied using fate mapping, time-lapse microscopy and in situ hybridization. Separation of neural and non-neural domains proceeds along stages HH4-HH4+, is well advanced at HH5, and is accompanied by a novel dorsoventral intercalation, oriented orthogonal to the border, that distributes transitional cells into molecularly distinct neural and non-neural fields. Meanwhile, neuroectodermal Sox2 expression spreads peripherally from the neighbourhood of the node, reaching the nascent anterior border domain at HH5. We also show that concurrent signals from the endodermal layer are necessary to position and sharpen the neural border, and suggest that FGF8 might be a component of this signalling.
Collapse
Affiliation(s)
- Luisa Sanchez-Arrones
- Department of Human Anatomy and Psychobiology, University of Murcia, School of Medicine, Murcia, Spain.
| | | | | | | |
Collapse
|
30
|
Mey A, Acloque H, Lerat E, Gounel S, Tribollet V, Blanc S, Curton D, Birot AM, Nieto MA, Samarut J. The endogenous retrovirus ENS-1 provides active binding sites for transcription factors in embryonic stem cells that specify extra embryonic tissue. Retrovirology 2012; 9:21. [PMID: 22420414 PMCID: PMC3362752 DOI: 10.1186/1742-4690-9-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 03/15/2012] [Indexed: 01/01/2023] Open
Abstract
Background Long terminal repeats (LTR) from endogenous retroviruses (ERV) are source of binding sites for transcription factors which affect the host regulatory networks in different cell types, including pluripotent cells. The embryonic epiblast is made of pluripotent cells that are subjected to opposite transcriptional regulatory networks to give rise to distinct embryonic and extraembryonic lineages. To assess the transcriptional contribution of ERV to early developmental processes, we have characterized in vitro and in vivo the regulation of ENS-1, a host adopted and developmentally regulated ERV that is expressed in chick embryonic stem cells. Results We show that Ens-1 LTR activity is controlled by two transcriptional pathways that drive pluripotent cells to alternative developmental fates. Indeed, both Nanog that maintains pluripotency and Gata4 that induces differentiation toward extraembryonic endoderm independently activate the LTR. Ets coactivators are required to support Gata factors' activity thus preventing inappropriate activation before epigenetic silencing occurs during differentiation. Consistent with their expression patterns during chick embryonic development, Gata4, Nanog and Ets1 are recruited on the LTR in embryonic stem cells; in the epiblast the complementary expression of Nanog and Gata/Ets correlates with the Ens-1 gene expression pattern; and Ens-1 transcripts are also detected in the hypoblast, an extraembryonic tissue expressing Gata4 and Ets2, but not Nanog. Accordingly, over expression of Gata4 in embryos induces an ectopic expression of Ens-1. Conclusion Our results show that Ens-1 LTR have co-opted conditions required for the emergence of extraembryonic tissues from pluripotent epiblasts cells. By providing pluripotent cells with intact binding sites for Gata, Nanog, or both, Ens-1 LTR may promote distinct transcriptional networks in embryonic stem cells subpopulations and prime the separation between embryonic and extraembryonic fates.
Collapse
Affiliation(s)
- Anne Mey
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
When amniotes appeared during evolution, embryos freed themselves from intracellular nutrition; development slowed, the mid-blastula transition was lost and maternal components became less important for polarity. Extra-embryonic tissues emerged to provide nutrition and other innovations. One such tissue, the hypoblast (visceral endoderm in mouse), acquired a role in fixing the body plan: it controls epiblast cell movements leading to primitive streak formation, generating bilateral symmetry. It also transiently induces expression of pre-neural markers in the epiblast, which also contributes to delay streak formation. After gastrulation, the hypoblast might protect prospective forebrain cells from caudalizing signals. These functions separate mesendodermal and neuroectodermal domains by protecting cells against being caught up in the movements of gastrulation.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell and Developmental Biology, University College London, GowerStreet (Anatomy Building), London WC1E 6BT, UK.
| | | |
Collapse
|
32
|
Rogers CD, Ferzli GS, Casey ES. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module. BMC DEVELOPMENTAL BIOLOGY 2011; 11:74. [PMID: 22172147 PMCID: PMC3271986 DOI: 10.1186/1471-213x-11-74] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/15/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes. Although additional signals may be involved in neural induction and patterning, here we focus on the roles of BMP inhibition and FGF8a. RESULTS To address the question of necessity and sufficiency of BMP inhibition and FGF signaling, we compared the temporal expression of the five earliest genes expressed in the neuroectoderm and determined their requirements for induction at the onset of neural plate formation in Xenopus. Our results demonstrate that the onset and peak of expression of the genes vary and that they have different regulatory requirements and are therefore unlikely to share a conserved neural induction regulatory module. Even though all require inhibition of BMP for expression, some also require FGF signaling; expression of the early-onset pan-neural genes sox2 and foxd5α requires FGF signaling while other early genes, sox3, geminin and zicr1 are induced by BMP inhibition alone. CONCLUSIONS We demonstrate that BMP inhibition and FGF signaling induce neural genes independently of each other. Together our data indicate that although the spatiotemporal expression patterns of early neural genes are similar, the mechanisms involved in their expression are distinct and there are different signaling requirements for the expression of each gene.
Collapse
Affiliation(s)
- Crystal D Rogers
- Department of Biology, Georgetown University, Washington DC, USA
| | - George S Ferzli
- Department of Biology, Georgetown University, Washington DC, USA
| | - Elena S Casey
- Department of Biology, Georgetown University, Washington DC, USA
| |
Collapse
|
33
|
Stuhlmiller TJ, García-Castro MI. FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction. Development 2011; 139:289-300. [PMID: 22129830 DOI: 10.1242/dev.070276] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neural crest induction involves the combinatorial inputs of the FGF, BMP and Wnt signaling pathways. Recently, a two-step model has emerged where BMP attenuation and Wnt activation induces the neural crest during gastrulation, whereas activation of both pathways maintains the population during neurulation. FGF is proposed to act indirectly during the inductive phase by activating Wnt ligand expression in the mesoderm. Here, we use the chick model to investigate the role of FGF signaling in the amniote neural crest for the first time and uncover a novel requirement for FGF/MAPK signaling. Contrary to current models, we demonstrate that FGF is required within the prospective neural crest epiblast during gastrulation and is unlikely to operate through mesodermal tissues. Additionally, we show that FGF/MAPK activity in the prospective neural plate prevents the ectopic expression of lateral ectoderm markers, independently of its role in neural specification. We then investigate the temporal participation of BMP/Smad signaling and suggest a later involvement in neural plate border development, likely due to widespread FGF/MAPK activity in the gastrula epiblast. Our results identify an early requirement for FGF/MAPK signaling in amniote neural crest induction and suggest an intriguing role for FGF-mediated Smad inhibition in ectodermal development.
Collapse
Affiliation(s)
- Timothy J Stuhlmiller
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
34
|
Guillemot F, Zimmer C. From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 2011; 71:574-88. [PMID: 21867876 DOI: 10.1016/j.neuron.2011.08.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2011] [Indexed: 01/08/2023]
Abstract
The generation of a functional nervous system involves a multitude of steps that are controlled by just a few families of extracellular signaling molecules. Among these, the fibroblast growth factor (FGF) family is particularly prominent for the remarkable diversity of its functions. FGFs are best known for their roles in the early steps of patterning of the neural primordium and proliferation of neural progenitors. However, other equally important functions have emerged more recently, including in the later steps of neuronal migration, axon navigation, and synaptogenesis. We review here these diverse functions and discuss the mechanisms that account for this unusual range of activities. FGFs are essential components of most protocols devised to generate therapeutically important neuronal populations in vitro or to stimulate neuronal repair in vivo. How FGFs promote the development of the nervous system and maintain its integrity will thus remain an important focus of research in the future.
Collapse
Affiliation(s)
- François Guillemot
- Division of Molecular Neurobiology, Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK.
| | | |
Collapse
|
35
|
Pinho S, Simonsson PR, Trevers KE, Stower MJ, Sherlock WT, Khan M, Streit A, Sheng G, Stern CD. Distinct steps of neural induction revealed by Asterix, Obelix and TrkC, genes induced by different signals from the organizer. PLoS One 2011; 6:e19157. [PMID: 21559472 PMCID: PMC3084772 DOI: 10.1371/journal.pone.0019157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/21/2011] [Indexed: 01/19/2023] Open
Abstract
The amniote organizer (Hensen's node) can induce a complete nervous system when grafted into a peripheral region of a host embryo. Although BMP inhibition has been implicated in neural induction, non-neural cells cannot respond to BMP antagonists unless previously exposed to a node graft for at least 5 hours before BMP inhibitors. To define signals and responses during the first 5 hours of node signals, a differential screen was conducted. Here we describe three early response genes: two of them, Asterix and Obelix, encode previously undescribed proteins of unknown function but Obelix appears to be a nuclear RNA-binding protein. The third is TrkC, a neurotrophin receptor. All three genes are induced by a node graft within 4-5 hours but they differ in the extent to which they are inducible by FGF: FGF is both necessary and sufficient to induce Asterix, sufficient but not necessary to induce Obelix and neither sufficient nor necessary for induction of TrkC. These genes are also not induced by retinoic acid, Noggin, Chordin, Dkk1, Cerberus, HGF/SF, Somatostatin or ionomycin-mediated Calcium entry. Comparison of the expression and regulation of these genes with other early neural markers reveals three distinct "epochs", or temporal waves, of gene expression accompanying neural induction by a grafted organizer, which are mirrored by specific stages of normal neural plate development. The results are consistent with neural induction being a cascade of responses elicited by different signals, culminating in the formation of a patterned nervous system.
Collapse
Affiliation(s)
- Sonia Pinho
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Pamela R. Simonsson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Katherine E. Trevers
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Matthew J. Stower
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - William T. Sherlock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Mohsin Khan
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Andrea Streit
- Department of Craniofacial Development, King's College London, London, United Kingdom
| | - Guojun Sheng
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Claudio D. Stern
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
36
|
Engberg N, Kahn M, Petersen DR, Hansson M, Serup P. Retinoic acid synthesis promotes development of neural progenitors from mouse embryonic stem cells by suppressing endogenous, Wnt-dependent nodal signaling. Stem Cells 2010; 28:1498-509. [PMID: 20665854 DOI: 10.1002/stem.479] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Embryonic stem (ES) cells differentiate spontaneously toward a neuroectodermal fate in serum-free, adherent monocultures. Here, we show that this spontaneous neural fate requires retinoic acid (RA) synthesis. We monitor ES cells containing reporter genes for markers of the early neural plate as well as the primitive streak and its progeny to determine the cell fates induced when RA signaling is perturbed. We demonstrate that the spontaneous neural commitment of mouse ES cells requires endogenous RA production from vitamin A (vitA) in the medium. Formation of neural progenitors is inhibited by removing vitA from the medium, by inhibiting the enzymes that catalyze the synthesis of RA, or by inhibiting RA receptors. We show that subnanomolar concentrations of RA restore neuroectodermal differentiation when RA synthesis is blocked. We demonstrate that a neural to mesodermal fate change occurring when RA signaling is inhibited is dependent on Nodal-, Wnt-, and fibroblast growth factor-signaling. We show that Nodal suppresses neural development in a Wnt-dependent manner and that Wnt-mediated inhibition of neural development is reversed by inhibition of Nodal signaling. Together, our results show that neural induction in ES cells requires RA at subnanomolar levels to suppress Nodal signaling and suggest that the mechanism by which Wnt signaling suppresses neural development is through facilitation of Nodal signaling.
Collapse
Affiliation(s)
- Nina Engberg
- Department of Stem Cell Biology, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | |
Collapse
|
37
|
Fernandez-Diaz LC, Laurent A, Girasoli S, Turco M, Longobardi E, Iotti G, Jenkins NA, Fiorenza MT, Copeland NG, Blasi F. The absence of Prep1 causes p53-dependent apoptosis of mouse pluripotent epiblast cells. Development 2010; 137:3393-403. [PMID: 20826531 DOI: 10.1242/dev.050567] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disruption of mouse Prep1, which codes for a homeodomain transcription factor, leads to embryonic lethality during post-implantation stages. Prep1(-/-) embryos stop developing after implantation and before anterior visceral endoderm (AVE) formation. In Prep1(-/-) embryos at E6.5 (onset of gastrulation), the AVE is absent and the proliferating extra-embryonic ectoderm and epiblast, marked by Bmp4 and Oct4, respectively, are reduced in size. At E.7.5, Prep1(-/-) embryos are small and very delayed, showing no evidence of primitive streak or of differentiated embryonic lineages. Bmp4 is expressed residually, while the reduced number of Oct4-positive cells is constant up to E8.5. At E6.5, Prep1(-/-) embryos retain a normal mitotic index but show a major increase in cleaved caspase 3 and TUNEL staining, indicating apoptosis. Therefore, the mouse embryo requires Prep1 when undergoing maximal expansion in cell number. Indeed, the phenotype is partially rescued in a p53(-/-), but not in a p16(-/-), background. Apoptosis is probably due to DNA damage as Atm downregulation exacerbates the phenotype. Despite this early lethal phenotype, Prep1 is not essential for ES cell establishment. A differential embryonic expression pattern underscores the unique function of Prep1 within the Meis-Prep family.
Collapse
Affiliation(s)
- Luis C Fernandez-Diaz
- IFOM, FIRC Institute of Molecular Oncology Foundation, IFOM-IEO Campus, via Adamello 16, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
FGF dependent regulation of Zfhx1b gene expression promotes the formation of definitive neural stem cells in the mouse anterior neurectoderm. Neural Dev 2010; 5:13. [PMID: 20459606 PMCID: PMC2883982 DOI: 10.1186/1749-8104-5-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/06/2010] [Indexed: 12/12/2022] Open
Abstract
Background Mouse definitive neural stem cells (NSCs) are derived from a population of LIF-responsive primitive neural stem cells (pNSCs) within the neurectoderm, yet details on the early signaling and transcriptional mechanisms that control this lineage transition are lacking. Here we tested whether FGF and Wnt signaling pathways can regulate Zfhx1b expression to control early neural stem cell development. Results By microinjecting FGF8b into the pro-amniotic cavity ex vivo at 7.0 days post-coitum (dpc) and culturing whole embryos, we demonstrate that neurectoderm-specific gene expression (for example, Sox2, Nestin, Zfhx1b) is increased, whereas Wnt3a represses neurectoderm gene expression. To determine whether FGF signaling also mediates the lineage transition from a pNSC to a NSC, 7.0-dpc embryos were microinjected with either FGF8b or inhibitors of the FGF receptor-MAP kinase signaling pathway ex vivo, cultured as whole embryos to approximately 8.5 dpc and assayed for clonal NSC colony formation. We show that pre-activation of FGF signaling in the anterior neurectoderm causes an increase in the number of colony forming NSCs derived later from the anterior neural plate, whereas inhibition of FGF signaling significantly reduces the number of NSC colonies. Interestingly, inhibition of FGF signaling causes the persistence of LIF-responsive pNSCs within the anterior neural plate and over-expression of Zfhx1b in these cells is sufficient to rescue the transition from a LIF-responsive pNSC to an FGF-responsive NSC. Conclusion Our data suggest that definitive NSC fate specification in the mouse neurectoderm is facilitated by FGF activation of Zfhx1b.
Collapse
|
39
|
Kurokawa D, Ohmura T, Ogino H, Takeuchi M, Inoue A, Inoue F, Suda Y, Aizawa S. Evolutionary origin of the Otx2 enhancer for its expression in visceral endoderm. Dev Biol 2010; 342:110-20. [PMID: 20353765 DOI: 10.1016/j.ydbio.2010.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/27/2022]
Abstract
In the mouse, the Otx2 gene has been shown to play essential roles in the visceral endoderm during anterior-posterior axis formation and head induction. While these are primary processes in vertebrate embryogenesis, the visceral endoderm is a tissue unique to mammals. Two enhancers (VE and CM) have been previously found to direct Otx2 expression during early embryogenesis. This study demonstrates that in anterior visceral endoderm the CM enhancer does not have an activity by itself, but enhances the activity of the VE enhancer. These two enhancers also cooperate for the activities in anterior mesendoderm and cephalic mesenchyme. Comparative studies suggest that VE enhancer function was most likely established before the divergence of sarcopterygians into Actinistia, Dipnoi and tetrapods, while the nucleotide sequence corresponding to the VE enhancer was already present in the last common ancestor of bony fishes. The CM enhancer sequence and function would have been also established in ancestral sarcopterygians. The VE/CM enhancers and their gene cascades in the ancestral sarcopterygian head organizer would then have been co-opted by amphibian deep endoderm cells and mammalian visceral endoderm cells for the head development.
Collapse
Affiliation(s)
- Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, 2-2-3 Minatojima Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Axial differentiation and early gastrulation stages of the pig embryo. Differentiation 2009; 78:301-11. [DOI: 10.1016/j.diff.2009.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 11/23/2022]
|
41
|
Egea J, Erlacher C, Montanez E, Burtscher I, Yamagishi S, Hess M, Hampel F, Sanchez R, Rodriguez-Manzaneque MT, Bösl MR, Fässler R, Lickert H, Klein R. Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation. Genes Dev 2009; 22:3349-62. [PMID: 19056886 DOI: 10.1101/gad.486708] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During early mouse development, the anterior visceral endoderm (AVE) secretes inhibitor and activator signals that are essential for establishing the anterior-posterior (AP) axis of the embryo and for restricting mesoderm formation to the posterior epiblast in the primitive streak (PS) region. Here we show that AVE cells have an additional morphogenetic function. These cells express the transmembrane protein FLRT3. Genetic ablation of FLRT3 did not affect the signaling functions of the AVE according to the normal expression pattern of Nodal and Wnt and the establishment of a proper AP patterning in the epiblast. However, FLRT3(-/-) embryos showed a highly disorganized basement membrane (BM) in the AVE region. Subsequently, adjacent anterior epiblast cells displayed an epithelial-to-mesenchymal transition (EMT)-like process characterized by the loss of cell polarity, cell ingression, and the up-regulation of the EMT and the mesodermal marker genes Eomes, Brachyury/T, and FGF8. These results suggest that the AVE acts as a morphogenetic boundary to prevent EMT and mesoderm induction in the anterior epiblast by maintaining the integrity of the BM. We propose that this novel function cooperates with the signaling activities of the AVE to restrict EMT and mesoderm induction to the posterior epiblast.
Collapse
Affiliation(s)
- Joaquim Egea
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kiecker C, Lumsden A. Recent advances in neural development. F1000 BIOLOGY REPORTS 2009; 1:1. [PMID: 20948677 PMCID: PMC3100780 DOI: 10.3410/b1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A surprisingly small number of signalling pathways are used reiteratively during neural development, eliciting very different responses depending on the cellular context. Thus, the way a neural cell responds to a given signal is as important as the signal itself and this responsiveness, also called competence, changes with time. Here we describe recent advances in elucidating the signalling pathways that operate in brain development.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental NeurobiologyKing's College London, London SE1 1ULUK
| | - Andrew Lumsden
- MRC Centre for Developmental NeurobiologyKing's College London, London SE1 1ULUK
| |
Collapse
|
43
|
Bertocchini F, Stern CD. A differential screen for genes expressed in the extraembryonic endodermal layer of pre-primitive streak stage chick embryos reveals expression of Apolipoprotein A1 in hypoblast, endoblast and endoderm. Gene Expr Patterns 2008; 8:477-80. [PMID: 18672094 DOI: 10.1016/j.gep.2008.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 11/25/2022]
Abstract
The lower layer of the pre-gastrulating chick embryo is an extra-embryonic tissue made up of two different cell populations, the hypoblast and the endoblast. The hypoblast is characterized by the expression of inhibitory signalling molecules (e.g. Cerberus, Dickkopf1, Crescent) and others (e.g. Otx2, goosecoid, Hex, Hesx1/RPX, FGF8). However, no genes expressed in the endoblast have yet been found. We designed a differential screen to identify markers differentially expressed in these two cell populations. This only revealed one novel gene, Apolipoprotein A1 (APO A1) with restricted endodermal layer expression. Expression of APO A1 begins very early throughout the lower layer (both hypoblast and endoblast). At later stages it is also expressed in the endoderm and its derivatives, the anterior intestinal portal endoderm and the growing liver bud.
Collapse
Affiliation(s)
- Federica Bertocchini
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, Gower Street (Anatomy Building), London WC1E 6BT, UK
| | | |
Collapse
|
44
|
Papanayotou C, Mey A, Birot AM, Saka Y, Boast S, Smith JC, Samarut J, Stern CD. A mechanism regulating the onset of Sox2 expression in the embryonic neural plate. PLoS Biol 2008; 6:e2. [PMID: 18184035 PMCID: PMC2174969 DOI: 10.1371/journal.pbio.0060002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/26/2007] [Indexed: 12/12/2022] Open
Abstract
In vertebrate embryos, the earliest definitive marker for the neural plate, which will give rise to the entire central nervous system, is the transcription factor Sox2. Although some of the extracellular signals that regulate neural plate fate have been identified, we know very little about the mechanisms controlling Sox2 expression and thus neural plate identity. Here, we use electroporation for gain- and loss-of-function in the chick embryo, in combination with bimolecular fluorescence complementation, two-hybrid screens, chromatin immunoprecipitation, and reporter assays to study protein interactions that regulate expression of N2, the earliest enhancer of Sox2 to be activated and which directs expression to the largest part of the neural plate. We show that interactions between three coiled-coil domain proteins (ERNI, Geminin, and BERT), the heterochromatin proteins HP1alpha and HP1gamma acting as repressors, and the chromatin-remodeling enzyme Brm acting as activator control the N2 enhancer. We propose that this mechanism regulates the timing of Sox2 expression as part of the process of establishing neural plate identity.
Collapse
Affiliation(s)
- Costis Papanayotou
- Department of Anatomy & Developmental Biology, University College London, London, United Kingdom
| | - Anne Mey
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, CNRS/INRA, Lyon, France
| | - Anne-Marie Birot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, CNRS/INRA, Lyon, France
| | - Yasushi Saka
- Wellcome/Cancer Research UK Gurdon Institute for Cancer and Developmental Biology, Cambridge, United Kingdom
| | - Sharon Boast
- Department of Anatomy & Developmental Biology, University College London, London, United Kingdom
| | - Jim C Smith
- Wellcome/Cancer Research UK Gurdon Institute for Cancer and Developmental Biology, Cambridge, United Kingdom
| | - Jacques Samarut
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, CNRS/INRA, Lyon, France
| | - Claudio D Stern
- Department of Anatomy & Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
45
|
Mason I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 2007; 8:583-96. [PMID: 17637802 DOI: 10.1038/nrn2189] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
From a wealth of experimental findings, derived from both in vitro and in vivo experiments, it is becoming clear that fibroblast growth factors regulate processes that are central to all aspects of nervous system development. Some of these functions are well known, whereas others, such as the roles of these proteins in axon guidance and synaptogenesis, have been established only recently. The emergent picture is one of remarkable economy, in which this family of ligands is deployed and redeployed at successive developmental stages to sculpt the nervous system.
Collapse
Affiliation(s)
- Ivor Mason
- MRC Centre for Developmental Neurobiology, King's College London, Fourth floor New Hunt's House, Guy's Hospital Campus, London, SE1 1UL, UK.
| |
Collapse
|
46
|
Repin VS, Saburina IN, Sukhikh GT. Cell biology of fetal tissues and fundamental medicine. Bull Exp Biol Med 2007; 144:108-17. [DOI: 10.1007/s10517-007-0268-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Coolen M, Sauka-Spengler T, Nicolle D, Le-Mentec C, Lallemand Y, Silva CD, Plouhinec JL, Robert B, Wincker P, Shi DL, Mazan S. Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan. PLoS One 2007; 2:e374. [PMID: 17440610 PMCID: PMC1847705 DOI: 10.1371/journal.pone.0000374] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 03/22/2007] [Indexed: 12/31/2022] Open
Abstract
The genetic mechanisms that control the establishment of early polarities and their link with embryonic axis specification and patterning seem to substantially diverge across vertebrates. In amphibians and teleosts, the establishment of an early dorso-ventral polarity determines both the site of axis formation and its rostro-caudal orientation. In contrast, amniotes retain a considerable plasticity for their site of axis formation until blastula stages and rely on signals secreted by extraembryonic tissues, which have no clear equivalents in the former, for the establishment of their rostro-caudal pattern. The rationale for these differences remains unknown. Through detailed expression analyses of key development genes in a chondrichthyan, the dogfish Scyliorhinus canicula, we have reconstructed the ancestral pattern of axis specification in jawed vertebrates. We show that the dogfish displays compelling similarities with amniotes at blastula and early gastrula stages, including the presence of clear homologs of the hypoblast and extraembryonic ectoderm. In the ancestral state, these territories are specified at opposite poles of an early axis of bilateral symmetry, homologous to the dorso-ventral axis of amphibians or teleosts, and aligned with the later forming embryonic axis, from head to tail. Comparisons with amniotes suggest that a dorsal expansion of extraembryonic ectoderm, resulting in an apparently radial symmetry at late blastula stages, has taken place in their lineage. The synthesis of these results with those of functional analyses in model organisms supports an evolutionary link between the dorso-ventral polarity of amphibians and teleosts and the embryonic-extraembryonic organisation of amniotes. It leads to a general model of axis specification in gnathostomes, which provides a comparative framework for a reassessment of conservations both among vertebrates and with more distant metazoans.
Collapse
Affiliation(s)
- Marion Coolen
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
| | - Tatjana Sauka-Spengler
- Equipe Développement et Evolution des Vertébrés, UPRES-A 8080, Université Paris-Sud, Orsay, France
| | - Delphine Nicolle
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
| | - Chantal Le-Mentec
- Equipe Développement et Evolution des Vertébrés, UPRES-A 8080, Université Paris-Sud, Orsay, France
| | - Yvan Lallemand
- Unité de Génétique Moléculaire de la Morphogenèse, URA Centre National de la Recherche Scientifique (CNRS) 2578, Institut Pasteur, Paris, France
| | - Corinne Da Silva
- Genoscope and UMR Centre National de la Recherche Scientifique (CNRS) 8030, Evry, France
| | - Jean-Louis Plouhinec
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
| | - Benoît Robert
- Unité de Génétique Moléculaire de la Morphogenèse, URA Centre National de la Recherche Scientifique (CNRS) 2578, Institut Pasteur, Paris, France
| | - Patrick Wincker
- Genoscope and UMR Centre National de la Recherche Scientifique (CNRS) 8030, Evry, France
| | - De-Li Shi
- UMR7622, Université Pierre et Marie Curie, Paris, France
| | - Sylvie Mazan
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Albazerchi A, Cinquin O, Stern CD. A new method to transfect the hypoblast of the chick embryo reveals conservation of the regulation of an Otx2 enhancer between mouse and chick extraembryonic endoderm. BMC DEVELOPMENTAL BIOLOGY 2007; 7:25. [PMID: 17407554 PMCID: PMC1852305 DOI: 10.1186/1471-213x-7-25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 04/02/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mouse anterior visceral endoderm (AVE) and the chick hypoblast are thought to have homologous roles in the early stages of neural induction and primitive streak formation. In mouse, many regulatory elements directing gene expression to the AVE have been identified. However, there is no technique to introduce DNA into the chick hypoblast that would enable a comparison of their activity and this has hampered a direct comparison of the regulation of gene expression in the mouse and chick extraembryonic endoderm. RESULTS Here we describe a new method to introduce DNA into the chick hypoblast, using lipofectamine-mediated transfection. We show that the hypoblast can be easily transfected and that it starts to express a luciferase reporter within 2 hours of transfection. The validity of technique is tested by following the movement and fate of hypoblast cells, which reveals their translocation to the anterior germinal crescent. We then introduce a vector containing GFP driven by the mouse VEcis-Otx2 enhancer (which directs gene expression to the mouse AVE) and we detect activity in the hypoblast. CONCLUSION The new technique for delivering expression constructs to the chick hypoblast will enable studies on gene activity and regulation to be performed in this tissue, which has proved difficult to transfect by electroporation. Our findings also reveal that regulatory elements that direct gene expression to the mouse AVE are active in chick hypoblast, supporting the idea that these two tissues have homologous functions.
Collapse
Affiliation(s)
- Amanda Albazerchi
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT. UK
- Laboratory of Genetics, 425-G Henry Mall, University of Wisconsin, Madison, WI 53706, USA
| | - Olivier Cinquin
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT. UK
- Deparment of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Claudio D Stern
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT. UK
| |
Collapse
|
49
|
Abstract
During early mouse embryogenesis, temporal and spatial regulation of gene expression and cell signalling influences lineage specification, embryonic polarity, the patterning of tissue progenitors and the morphogenetic movement of cells and tissues. Uniquely in mammals, the extraembryonic tissues are the source of signals for lineage specification and tissue patterning. Here we discuss recent discoveries about the lead up to gastrulation, including early manifestations of asymmetry, coordination of cell and tissue movements and the interactions of transcription factors and signalling activity for lineage allocation and germ-layer specification.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and Faculty of Medicine, University of Sydney, Westmead, NSW 2145, Australia.
| | | |
Collapse
|