1
|
Westerbeke FHM, Attaye I, Rios‐Morales M, Nieuwdorp M. Glycaemic sugar metabolism and the gut microbiota: past, present and future. FEBS J 2025; 292:1421-1436. [PMID: 39359099 PMCID: PMC11927047 DOI: 10.1111/febs.17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Non-communicable diseases (NCDs), such as type 2 diabetes (T2D) and metabolic dysfunction-associated fatty liver disease, have reached epidemic proportions worldwide. The global increase in dietary sugar consumption, which is largely attributed to the production and widespread use of cheap alternatives such as high-fructose corn syrup, is a major driving factor of NCDs. Therefore, a comprehensive understanding of sugar metabolism and its impact on host health is imperative to rise to the challenge of reducing NCDs. Notably, fructose appears to exert more pronounced deleterious effects than glucose, as hepatic fructose metabolism induces de novo lipogenesis and insulin resistance through distinct mechanisms. Furthermore, recent studies have demonstrated an intricate relationship between sugar metabolism and the small intestinal microbiota (SIM). In contrast to the beneficial role of colonic microbiota in complex carbohydrate metabolism, sugar metabolism by the SIM appears to be less beneficial to the host as it can generate toxic metabolites. These fermentation products can serve as a substrate for fatty acid synthesis, imposing negative health effects on the host. Nevertheless, due to the challenging accessibility of the small intestine, our knowledge of the SIM and its involvement in sugar metabolism remains limited. This review presents an overview of the current knowledge in this field along with implications for future research, ultimately offering potential therapeutic avenues for addressing NCDs.
Collapse
Affiliation(s)
- Florine H. M. Westerbeke
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Melany Rios‐Morales
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| |
Collapse
|
2
|
Westerbeke FHM, Rios-Morales M, Attaye I, Nieuwdorp M. Fructose catabolism and its metabolic effects: Exploring host-microbiota interactions and the impact of ethnicity. J Physiol 2025. [PMID: 39805044 DOI: 10.1113/jp287316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis. Moreover, the fermentation of fructose by the gut microbiota can produce metabolites such as ethanol and acetate, both which serve as potential substrates for de novo lipogenesis (DNL) and could therefore contribute to the development of these metabolic conditions. Significant inter-ethnic differences in gut microbiota composition have been observed. Moreover, fructose consumption varies across ethnic groups, and fructose intake has been demonstrated to significantly alter gut microbiota composition, which can influence its fermenting properties and metabolic effects. Therefore, ethnic differences in gut microbiota composition, which may be influenced by variations in fructose consumption, could contribute to the observed health disparities. This review provides an overview of the complex interactions between host and microbial fructose catabolism, the role of ethnicity in shaping these metabolic processes and their impact on host health. Understanding these interactions could provide insights into the mechanisms driving ethnic health disparities to improve personalized nutrition strategies. KEY POINTS: Dietary fructose consumption has increased substantially over recent decades, which has been associated with the rising prevalence of obesity and non-communicable diseases (NCDs) such as type 2 diabetes and metabolic dysfunction-associated steatotic liver disease. Pronounced disparities among different ethnic groups in NCD prevalence and dietary fructose consumption underscore the need to elucidate the underlying mechanisms of fructose catabolism and its health effects. Together with the well-known toxic effects of hepatic fructose catabolism, emerging evidence highlights a role for the small intestinal microbiota in fermenting sugars like fructose into various bacterial products with potential deleterious metabolic effects. There are significant ethnic differences in gut microbiota composition that, combined with varying fructose consumption, could mediate the observed health disparities. To comprehensively understand the role of the gut microbiota in mediating fructose-induced adverse metabolic effects, future research should focus on the small intestinal microbiota. Future research on fructose - microbiota - host interactions should account for ethnic differences in dietary habits and microbial composition to elucidate the potential role of the gut microbiota in driving the mentioned health disparities.
Collapse
Affiliation(s)
- Florine H M Westerbeke
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Melany Rios-Morales
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Monteillet L, Perrot G, Evrard F, Miliano A, Silva M, Leblond A, Nguyen C, Terzi F, Mithieux G, Rajas F. Impaired Glucose Metabolism, Primary Cilium Defects, and Kidney Cystogenesis in Glycogen Storage Disease Type Ia. J Am Soc Nephrol 2024; 35:1639-1654. [PMID: 39141438 PMCID: PMC11617483 DOI: 10.1681/asn.0000000000000452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Key Points Metabolism adaptations due to glucose-6 phosphate accumulation in glycogen storage disease type Ia kidneys, toward a Warburg-like metabolism, promoted cell proliferation. Metabolic perturbations directly affected primary cilium structure and cystogenesis in glycogen storage disease type Ia kidneys. Background Glycogen storage disease type Ia (GSDIa) is a rare metabolic disorder caused by mutations in the catalytic subunit of glucose-6 phosphatase (G6PC1). This leads to severe hypoglycemia, and most young patients with GSDIa develop CKD. The kidney pathology is characterized by the development of cysts, which typically occur at an advanced stage of CKD. Methods To elucidate the molecular mechanisms responsible for cyst formation, we characterized renal metabolism, molecular pathways involved in cell proliferation, and primary cilium integrity using mice in which G6pc1 was specifically deleted in the kidney from an in utero stage. Results GSDIa mice exhibited kidney fibrosis, high inflammation, and cyst formation, leading to kidney dysfunction. In addition, the loss of G6PC1 led to the ectopic accumulation of glycogen and lipids in the kidneys and a metabolic shift toward a Warburg-like metabolism. This metabolic adaptation was due to an excess of glucose-6 phosphate, which supports cell proliferation, driven by the mitogen-activated protein kinase/extracellular signal–regulated kinases and protein kinase B/mammalian target of rapamycin pathways. Treatment of GSDIa mice with rapamycin, a target of the mammalian target of rapamycin pathway, reduced cell proliferation and kidney damage. Our results also identified lipocalin 2 as a contributor to renal inflammation and an early biomarker of CKD progression in GSDIa mice. Its inactivation partially prevented kidney lesions in GSDIa. Importantly, primary cilium defects were observed in the kidneys of GSDIa mice. Conclusions Metabolic adaptations because of glucose-6 phosphate accumulation in GSDIa renal tubules, toward a Warburg-like metabolism, promoted cell proliferation and cyst formation in a similar manner to that observed in various cystic kidney diseases. This was associated with downregulation of primary cilium gene expression and, consequently, altered cilium morphology.
Collapse
Affiliation(s)
- Laure Monteillet
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Gwendoline Perrot
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Félicie Evrard
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Alexane Miliano
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Marine Silva
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Alicia Leblond
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Clément Nguyen
- Université de Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département “Croissance et Signalisation,” Paris, France
| | - Fabiola Terzi
- Université de Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades, Département “Croissance et Signalisation,” Paris, France
| | - Gilles Mithieux
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| | - Fabienne Rajas
- Université Claude Bernard Lyon 1, INSERM, UMR_S1213, NUDICE, Villeurbanne, France
| |
Collapse
|
4
|
Holeček M. Origin and Roles of Alanine and Glutamine in Gluconeogenesis in the Liver, Kidneys, and Small Intestine under Physiological and Pathological Conditions. Int J Mol Sci 2024; 25:7037. [PMID: 39000145 PMCID: PMC11241752 DOI: 10.3390/ijms25137037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Alanine and glutamine are the principal glucogenic amino acids. Most originate from muscles, where branched-chain amino acids (valine, leucine, and isoleucine) are nitrogen donors and, under exceptional circumstances, a source of carbons for glutamate synthesis. Glutamate is a nitrogen source for alanine synthesis from pyruvate and a substrate for glutamine synthesis by glutamine synthetase. The following differences between alanine and glutamine, which can play a role in their use in gluconeogenesis, are shown: (i) glutamine appearance in circulation is higher than that of alanine; (ii) the conversion to oxaloacetate, the starting substance for glucose synthesis, is an ATP-consuming reaction for alanine, which is energetically beneficial for glutamine; (iii) most alanine carbons, but not glutamine carbons, originate from glucose; and (iv) glutamine acts a substrate for gluconeogenesis in the liver, kidneys, and intestine, whereas alanine does so only in the liver. Alanine plays a significant role during early starvation, exposure to high-fat and high-protein diets, and diabetes. Glutamine plays a dominant role in gluconeogenesis in prolonged starvation, acidosis, liver cirrhosis, and severe illnesses like sepsis and acts as a substrate for alanine synthesis in the small intestine. Interactions among muscles and the liver, kidneys, and intestine ensuring optimal alanine and glutamine supply for gluconeogenesis are suggested.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine, Charles University, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Corporeau C, Le Foll C, Cruciani-Guglielmacci C, Le Stunff H, Mithieux G, Magnan C, Delarue J. Fish oil minimises feed intake and improves insulin sensitivity in Zucker fa/fa rats. Br J Nutr 2024; 131:749-761. [PMID: 37877265 DOI: 10.1017/s0007114523002404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Long-chain n-3 PUFA (LC n-3 PUFA) prevent, in rodents, insulin resistance (IR) induced by a high-fat and/or fructose diet but not IR induced by glucocorticoids. In humans, contrasting effects have also been reported. We investigated their effects on insulin sensitivity, feed intake (FI) and body weight gain in genetically insulin resistant male obese (fa/fa) Zucker (ZO) rats during the development of obesity. ZO rats were fed a diet supplemented with 7 % fish oil (FO) + 1 % corn oil (CO) (wt/wt) (ZOFO), while the control group was fed a diet containing 8 % fat from CO (wt/wt) (ZOCO). Male lean Zucker (ZL) rats fed either FO (ZLFO) or CO (ZLCO) diet were used as controls. FO was a marine-derived TAG oil containing EPA 90 mg/g + DHA 430 mg/g. During an oral glucose tolerance test, glucose tolerance remained unaltered by FO while insulin response was reduced in ZOFO only. Liver insulin sensitivity (euglycaemic-hyperinsulinaemic clamp + 2 deoxyglucose) was improved in ZOFO rats, linked to changes in phosphoenolpyruvate carboxykinase expression, activity and glucose-6-phosphatase activity. FI in response to intra-carotid insulin/glucose infusion was decreased similarly in ZOFO and ZOCO. Hypothalamic ceramides levels were lower in ZOFO than in ZOCO. Our study demonstrates that LC n-3 PUFA can minimise weight gain, possibly by alleviating hypothalamic lipotoxicity, and liver IR in genetically obese Zucker rats.
Collapse
Affiliation(s)
- Charlotte Corporeau
- Department of Nutritional Sciences, Hospital University, Faculty of Medicine, University of Brest, Plouzané, France
- Present address: Ifremer, University of Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Christelle Le Foll
- Department of Nutritional Sciences, Hospital University, Faculty of Medicine, University of Brest, Plouzané, France
- Present address: Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | | | - Hervé Le Stunff
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
- Present address: Institut des Neurosciences Paris-Saclay-Université Paris-Saclay-CNRS UMR 9197, Gif-sur-Yvette, France
| | - Gilles Mithieux
- Inserm, U855, Lyon, F-69008, France
- University Lyon 1, Villeurbanne, F-69622, France
- University of Lyon, Lyon, F-69008, France
| | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Jacques Delarue
- Department of Nutritional Sciences, ER7479 SPURBO, Hospital University, Faculty of Medicine University of Brest, Plouzane, France
| |
Collapse
|
6
|
Jacouton E, Mondot S, Langella P, Bermúdez-Humarán LG. Impact of Oral Administration of Lactiplantibacillus plantarum Strain CNCM I-4459 on Obesity Induced by High-Fat Diet in Mice. Bioengineering (Basel) 2023; 10:1151. [PMID: 37892881 PMCID: PMC10604482 DOI: 10.3390/bioengineering10101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Recent evidence suggests that some lactobacilli strains, particularly Lactiplantibacillus plantarum, have a beneficial effect on obesity-associated syndromes. Several studies have investigated probiotic challenges in models of high-fat diet (HFD)-induced obesity, specifically with respect to its impact on hepatic and/or adipocyte metabolism, gut inflammation and epithelial barrier integrity, and microbiota composition. However, only a few studies have combined these aspects to generate a global understanding of how probiotics exert their protective effects. Here, we used the probiotic strain L. plantarum CNCM I-4459 and explored its impact on a mouse model of HFD-induced obesity. Briefly, mice were administered 1 × 109 CFUs/day and fed HFD for 12 weeks. Treatment with this strain improved insulin sensitivity by lowering serum levels of fasting glucose and fructosamine. Administration of the probiotic also affected the transport and metabolism of glucose, resulting in the downregulation of the hepatic Glut-4 and G6pase genes. Additionally, L. plantarum CNCM I-4459 promoted a decreased concentration of LDL-c and modulated hepatic lipid metabolism (downregulation of Fasn, Plin, and Cpt1α genes). Probiotic treatment also restored HFD-disrupted intestinal microbial composition by increasing microbial diversity and lowering the ratio of Firmicutes to Bacteroidetes. In conclusion, this probiotic strain represents a potential approach for at least partial restoration of the glucose sensitivity and lipid disruption that is associated with obesity.
Collapse
Affiliation(s)
| | | | | | - Luis G. Bermúdez-Humarán
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.J.); (S.M.); (P.L.)
| |
Collapse
|
7
|
Intestinal gluconeogenesis: metabolic benefits make sense in the light of evolution. Nat Rev Gastroenterol Hepatol 2023; 20:183-194. [PMID: 36470967 DOI: 10.1038/s41575-022-00707-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 03/02/2023]
Abstract
The intestine, like the liver and kidney, in various vertebrates and humans is able to carry out gluconeogenesis and release glucose into the blood. In the fed post-absorptive state, intestinal glucose is sensed by the gastrointestinal nervous system. The latter initiates a signal to the brain regions controlling energy homeostasis and stress-related behaviour. Intestinal gluconeogenesis (IGN) is activated by several complementary mechanisms, in particular nutritional situations (for example, when food is enriched in protein or fermentable fibre and after gastric bypass surgery in obesity). In these situations, IGN has several metabolic and behavioural benefits. As IGN is activated by nutrients capable of fuelling systemic gluconeogenesis, IGN could be a signal to the brain that food previously ingested is suitable for maintaining plasma glucose for a while. This process might account for the benefits observed. Finally, in this Perspective, we discuss how the benefits of IGN in fasting and fed states could explain why IGN emerged and was maintained in vertebrates by natural selection.
Collapse
|
8
|
Falode JA, Ajayi OI, Isinkaye TV, Adeoye AO, Ajiboye BO, Brai BIC, ADEOYE, Basiru Olaitan, AJIBOYE, BRAI BIC. Justicia carnea extracts ameliorated hepatocellular damage in streptozotocin-induced type 1 diabetic male rats via decrease in oxidative stress, inflammation and increasing other risk markers. Biomarkers 2023; 28:177-189. [PMID: 36511112 DOI: 10.1080/1354750x.2022.2157487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IntroductionDiabetes mellitus is still a raging disease not fully subdued globally, especially in Africa. Our study aims to evaluate the anti-diabetic potentials of Justicia carnea extracts [crude (JCC), free (JFP) and bound phenol (JBP) fractions], in streptozotocin (STZ)-induced type-1 diabetes in male albino rats.Materials and MethodsAbout thirty (30) animals were induced for type 1 diabetes with STZ; thereafter, treatment began for 14 days, after which the animals were euthanized, blood/serum was collected, the liver was removed and divided into two portions, for biochemical and histopathological analyses. Standard procedures were used to evaluate the liver biomarkers, like alanine transaminase (ALT), fructose-1,6-bisphosphatase, glucose-6- phosphatase, hexokinase activities, albumin, bilirubin, hepatic glucose concentrations; antioxidant status and pro- and anti-inflammatory cytokines were similarly assessed.ResultsThese results revealed that the extracts ameliorated the harmful effects of STZ-induced diabetes in the liver by enhancing the activities of liver-based biomarkers, reducing the concentrations of pro-inflammatory cytokines and increasing the anti-inflammatory cytokine.DiscussionThe results agreed with previous research, and the free phenol fraction showed excellent results compared to othersConclusionThese suggested that J. carnea could serve as an alternative remedy in ameliorating liver complications linked to oxidative damage and inflammation in STZ-induced type-1 diabetes.
Collapse
Affiliation(s)
- John Adeolu Falode
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Oluwaseun Igbekele Ajayi
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Tolulope Victoria Isinkaye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Akinwunmi Oluwaseun Adeoye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan Ajiboye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I C Brai
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - ADEOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - AJIBOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I. C. BRAI
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
9
|
Karlson O, Arnell H, Gudjonsdottir AH, Agardh D, Torinsson Naluai Å. Intestinal gluconeogenesis is downregulated in pediatric patients with celiac disease. BMC Med 2022; 20:440. [PMID: 36369023 PMCID: PMC9652951 DOI: 10.1186/s12916-022-02635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Untreated celiac disease (CD) patients have increased levels of blood glutamine and a lower duodenal expression of glutaminase (GLS). Intestinal gluconeogenesis (IGN) is a process through which glutamine is turned into glucose in the small intestine, for which GLS is crucial. Animal studies suggest impaired IGN may have long-term effects on metabolic control and be associated with the development of type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). The aim of this study was to thoroughly investigate IGN at the gene expression level in children with untreated celiac disease. METHODS Quantitative polymerase chain reaction (qPCR) was used to quantify the expression of 11 target genes related to IGN using the delta-delta Ct method with three reference genes (GUSB, IPO8, and YWHAZ) in duodenal biopsies collected from 84 children with untreated celiac disease and 58 disease controls. RESULTS Significantly lower expression of nine target genes involved in IGN was seen in duodenal biopsies from CD patients compared with controls: FBP1, G6PC, GLS, GPT1, PCK1, PPARGC1A, SLC2A2, SLC5A1, and SLC6A19. No significant difference in the expression was observed for G6PC3 or GOT1. CONCLUSIONS Children with untreated celiac disease have lower expression of genes important for IGN. Further studies are warranted to disentangle whether this is a consequence of intestinal inflammation or due to an impaired metabolic pathway shared with other chronic metabolic diseases. Impaired IGN could be a mechanism behind the increased risk of NAFLD seen in CD patients.
Collapse
Affiliation(s)
- Olof Karlson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Arnell
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Audur H Gudjonsdottir
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Unit of Celiac Disease and Diabetes, Lund University, Malmö, Sweden
| | - Åsa Torinsson Naluai
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Tong W, Hannou SA, Wang Y, Astapova I, Sargsyan A, Monn R, Thiriveedi V, Li D, McCann JR, Rawls JF, Roper J, Zhang GF, Herman MA. The intestine is a major contributor to circulating succinate in mice. FASEB J 2022; 36:e22546. [PMID: 36106538 PMCID: PMC9523828 DOI: 10.1096/fj.202200135rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 10/03/2023]
Abstract
The tricarboxylic acid (TCA) cycle is the epicenter of cellular aerobic metabolism. TCA cycle intermediates facilitate energy production and provide anabolic precursors, but also function as intra- and extracellular metabolic signals regulating pleiotropic biological processes. Despite the importance of circulating TCA cycle metabolites as signaling molecules, the source of circulating TCA cycle intermediates remains uncertain. We observe that in mice, the concentration of TCA cycle intermediates in the portal blood exceeds that in tail blood indicating that the gut is a major contributor to circulating TCA cycle metabolites. With a focus on succinate as a representative of a TCA cycle intermediate with signaling activities and using a combination of gut microbiota depletion mouse models and isotopomer tracing, we demonstrate that intestinal microbiota is not a major contributor to circulating succinate. Moreover, we demonstrate that endogenous succinate production is markedly higher than intestinal succinate absorption in normal physiological conditions. Altogether, these results indicate that endogenous succinate production within the intestinal tissue is a major physiological source of circulating succinate. These results provide a foundation for an investigation into the role of the intestine in regulating circulating TCA cycle metabolites and their potential signaling effects on health and disease.
Collapse
Affiliation(s)
- Wenxin Tong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Sarah A. Hannou
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - You Wang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Inna Astapova
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| | - Ashot Sargsyan
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Ruby Monn
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | | | - Diana Li
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Jessica R. McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Jatin Roper
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Guo-fang Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Mark A. Herman
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Joly-Amado A, Soty M, Philippe E, Lacombe A, Castel J, Pillot B, Vily-Petit J, Zitoun C, Mithieux G, Magnan C. Portal Glucose Infusion, Afferent Nerve Fibers, and Glucose and Insulin Tolerance of Insulin-Resistant Rats. J Nutr 2022; 152:1862-1871. [PMID: 35511216 DOI: 10.1093/jn/nxac097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The role of hepatoportal glucose sensors is poorly understood in the context of insulin resistance. OBJECTIVES We assessed the effects of glucose infusion in the portal vein on insulin tolerance in 2 rat models of insulin resistance, and the role of capsaicin sensitive nerves in this signal. METHODS Male Wistar rats, 8 weeks old, weighing 250-275 g, were used. Insulin and glucose tolerance were assessed following a 4-hour infusion of either glucose or saline through catheterization in the portal vein in 3 paradigms. In experiment 1, for diet-induced insulin resistance, rats were fed either a control diet (energy content: proteins = 22.5%, carbohydrates = 64.1%, and lipids = 13.4%) or a high-fat diet (energy content: proteins = 15.3%, carbohydrates = 40.3%, and lipids =44.4%) for 4 months. In experiment 2, for centrally induced peripheral insulin resistance, catheters were inserted in the carotid artery to deliver either an emulsion of triglycerides [intralipid (IL)] or saline towards the brain for 24 hours. In experiment 3, for testing the role of capsaicin-sensitive nerves, experiment 2 was repeated following a periportal treatment with capsaicin or vehicle. RESULTS In experiment 1, when compared to rats fed the control diet, rats fed the high-fat diet exhibited decreased insulin and glucose tolerance (P ≤ 0.05) that was restored with a glucose infusion in the portal vein (P ≤ 0.05). In experiment 2, infusion of a triglyceride emulsion towards the brain (IL rats) decreased insulin and glucose tolerance and increased hepatic endogenous production when compared to saline-infused rats (P ≤ 0.05). Glucose infusion in the portal vein in IL rats restored insulin and glucose tolerance, as well as hepatic glucose production, to controls levels (P ≤ 0.05). In experiment 3, portal infusion of glucose did not increase insulin tolerance in IL rats that received a periportal pretreatment with capsaicin. CONCLUSIONS Stimulation of hepatoportal glucose sensors increases insulin tolerance in rat models of insulin resistance and requires the presence of capsaicin-sensitive nerves.
Collapse
Affiliation(s)
- Aurélie Joly-Amado
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Maud Soty
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Erwann Philippe
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Amelie Lacombe
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Julien Castel
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| | - Bruno Pillot
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Justine Vily-Petit
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Carine Zitoun
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Christophe Magnan
- Université de Paris, Functional and Adaptive Biology Unit, UMR (Unite Mixte de Recherche) 8251, CNRS (Centre National de la Recherche Scientifique), Paris, France
| |
Collapse
|
12
|
Organ-Specific Glucose Uptake: Does Sex Matter? Cells 2022; 11:cells11142217. [PMID: 35883660 PMCID: PMC9323353 DOI: 10.3390/cells11142217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Glucose uptake by peripheral organs is essential for maintaining blood glucose levels within normal range. Impaired glucose uptake is a hallmark of type 2 diabetes (T2D) and metabolic syndrome and is characterized by insulin resistance. Male sex is an independent risk factor for the development of T2D. We tested whether sex and diet are independent variables for differential glucose uptake by various organs. Here, in a longitudinal study, we used 18F-fluorodeoxyglucose (FDG) and positron emission tomography (PET) to determine baseline differences in whole-body glucose uptake in young male and female mice on chow and high-fat diets. We report that sex and diet are important independent variables that account for differential glucose uptake in brown fat, skeletal muscle, liver, heart, kidney, and the stomach, but not the brain, lungs, pancreas, small intestine, or perigonadal adipose. Of the seven organs analyzed, two organs, namely brown fat, and the heart had the highest concentrations of FDG, followed by the brain, kidneys, and skeletal muscle on chow diet. Young female mice had 47% greater FDG uptake in the brown fat compared to male mice, whereas skeletal muscle FDG uptake was 49% greater in male mice. The high-fat diet inhibited FDG uptake in brown fat, skeletal muscle, and the heart, three major organs involved in uptake, whereas brain uptake was enhanced in both sexes. These foundational and groundbreaking findings suggest that mechanisms of glucose homeostasis are context- and organ-dependent and highlight the need to study sex-specific outcomes and mechanisms for diseases such as T2D, obesity, and metabolic syndrome.
Collapse
|
13
|
Zhu H, Cai H, Wang X, Chen T, Zhen C, Zhang Z, Ruan X, Li G. Sodium-glucose co-transporter 1 (SGLT1) differentially regulates gluconeogenesis and GLP-1 receptor (GLP-1R) expression in different diabetic rats: a preliminary validation of the hypothesis of "SGLT1 bridge" as an indication for "surgical diabetes". ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:481. [PMID: 35571394 PMCID: PMC9096370 DOI: 10.21037/atm-22-1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sodium-glucose co-transporter 1 (SGLT1) may play a synergistic role in gluconeogenesis (GNG) and glucagon-like peptide-1 (GLP-1) expression. We proposed the hypothesis of a "SGLT1 bridge" as an indication for "surgical diabetes" that was preliminary validated in the present study. METHODS We selected nonobese diabetic Goto-Kakizaki (GK) rats and Zuker diabetic fat (ZDF) rats to represent advanced and early diabetes, respectively. Based on glucose gavage with or without SGLT1 inhibitor phlorizin, the rats were divided into 4 groups: Gk-Glu, GK-P, ZDF-Glu, and ZDF-P. The expressions of SGLT1, GLP-1 receptor (GLP-1R), glucose-6 phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase-1 (Pck1) were determined by immunohistochemistry (IHC) or quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the effects of phlorizin were analyzed. RESULTS Glucose tolerance was worse in GK rats and the homeostasis model assessment-insulin resistance (HOMA-IR) was higher in ZDF rats, indicating different pathophysiological conditions between the different diabetic rats. GK rats showed higher activity of duodenal SGLT1 (P=0.022) and jejunal SGLT1 mRNA expression (P=0.000) and lower SGLT1 mRNA expression in the liver (P=0.000) and pancreas (P=0.000). Phlorizin effectively inhibited the activity of duodenal SGLT1 in both GK rats (P=0.000) and ZDF rats (P=0.000). In ZDF rats, the expression of GLP-1R mRNA was downregulated in the jejunum (P=0.001) and upregulated in the pancreas (P=0.021) by phlorizin, but there were no regulatory effects on GLP-1R mRNA in the jejunum and pancreas of GK rats. As for the regulatory effects on GNG, phlorizin upregulated Pck1 mRNA in the duodenum (P=0.000) and the jejunum (P=0.038), whereas it downregulated hepatic G6Pase mRNA in ZDF rats (P=0.005) and Pck1 mRNA expression in GK rats (P=0.001), suggesting that SGLT1 inhibitor may have upregulated intestinal GNG in ZDF rats and downregulated hepatic GNG in both ZDF and GK rats. CONCLUSIONS SGLT1 showed synergistic regulatory effects on the entero-insular axis (EIA) and the gut-brain-liver axis (GBLA), preliminarily validating the hypothesis of a "SGLT1 bridge". The distinct expression of SGLT1 and its differentially regulatory effects on diabetic rats with different pathophysiological conditions may provide probable potential indications involved in the "Surgical Diabetes" that is supposed as the inclusion for diabetic surgery.
Collapse
Affiliation(s)
- Hengliang Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of General Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Huajie Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Wang
- Department of Gastrointestinal & Hernia Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Tao Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaohui Zhen
- Department of General Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Zhenzhan Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojiao Ruan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Morrow NM, Trzaskalski NA, Hanson AA, Fadzeyeva E, Telford DE, Chhoker SS, Sutherland BG, Edwards JY, Huff MW, Mulvihill EE. Nobiletin Prevents High-Fat Diet-Induced Dysregulation of Intestinal Lipid Metabolism and Attenuates Postprandial Lipemia. Arterioscler Thromb Vasc Biol 2022; 42:127-144. [PMID: 34911361 DOI: 10.1161/atvbaha.121.316896] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nobiletin is a dietary flavonoid that improves insulin resistance and atherosclerosis in mice with metabolic dysfunction. Dysregulation of intestinal lipoprotein metabolism contributes to atherogenesis. The objective of the study was to determine if nobiletin targets the intestine to improve metabolic dysregulation in both male and female mice. Approach and Results: Triglyceride-rich lipoprotein (TRL) secretion, intracellular triglyceride kinetics, and intestinal morphology were determined in male and female LDL (low-density lipoprotein) receptor knockout (Ldlr-/-), and male wild-type mice fed a standard laboratory diet or high-fat, high-cholesterol (HFHC) diet ± nobiletin using an olive oil gavage, radiotracers, and electron microscopy. Nobiletin attenuated postprandial TRL levels in plasma and enhanced TRL clearance. Nobiletin reduced fasting jejunal triglyceride accumulation through accelerated TRL secretion and lower jejunal fatty acid synthesis with no impact on fatty acid oxidation. Fasting-refeeding experiments revealed that nobiletin led to higher levels of phosphorylated AKT (protein kinase B) and FoxO1 (forkhead box O1) and normal Srebf1c expression indicating increased insulin sensitivity. Intestinal length and weight were diminished by HFHC feeding and restored by nobiletin. Both fasting and postprandial plasma GLP-1 (glucagon-like peptide-1; and likely GLP-2) were elevated in response to nobiletin. Treatment with a GLP-2 receptor antagonist, GLP-2(3-33), reduced villus length in HFHC-fed mice but did not impact TRL secretion in any diet group. In contrast to males, nobiletin did not improve postprandial lipid parameters in female mice. CONCLUSIONS Nobiletin opposed the effects of the HFHC diet by normalizing intestinal de novo lipogenesis through improved insulin sensitivity. Nobiletin prevents postprandial lipemia because the enhanced TRL clearance more than compensates for increased TRL secretion.
Collapse
Affiliation(s)
- Nadya M Morrow
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Biochemistry (N.M.M., S.S.C., M.W.H.), The University of Western Ontario, London, Canada
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| | - Natasha A Trzaskalski
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| | - Antonio A Hanson
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| | - Evgenia Fadzeyeva
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| | - Dawn E Telford
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Medicine (D.E.T., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
| | - Sanjiv S Chhoker
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Biochemistry (N.M.M., S.S.C., M.W.H.), The University of Western Ontario, London, Canada
| | - Brian G Sutherland
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
| | - Jane Y Edwards
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Medicine (D.E.T., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
| | - Murray W Huff
- Molecular Medicine, Robarts Research Institute (N.M.M., D.E.T., S.S.C., B.G.S., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
- Department of Biochemistry (N.M.M., S.S.C., M.W.H.), The University of Western Ontario, London, Canada
- Department of Medicine (D.E.T., J.Y.E., M.W.H.), The University of Western Ontario, London, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, Ontario, Canada (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
- Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada (E.E.M)
- Montreal Diabetes Research Group, Montreal, Quebec, Canada (E.E.M)
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, ON (N.M.M., N.A.T., A.A.H., E.F., E.E.M.)
| |
Collapse
|
15
|
Geng X, Duan H, Kohls W, Ilagan R, Ding Y. Mini review: Hyperglycemia in ischemic stroke. ENVIRONMENTAL DISEASE 2022. [DOI: 10.4103/ed.ed_26_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
16
|
Vily-Petit J, Soty-Roca M, Silva M, Raffin M, Gautier-Stein A, Rajas F, Mithieux G. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 2020; 69:2193-2202. [PMID: 32205419 DOI: 10.1136/gutjnl-2019-319745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hepatic steatosis accompanying obesity is a major health concern, since it may initiate non-alcoholic fatty liver disease (NAFLD) and associated complications like cirrhosis or cancer. Intestinal gluconeogenesis (IGN) is a recently described function that contributes to the metabolic benefits of specific macronutrients as protein or soluble fibre, via the initiation of a gut-brain nervous signal triggering brain-dependent regulations of peripheral metabolism. Here, we investigate the effects of IGN on liver metabolism, independently of its induction by the aforementioned macronutrients. DESIGN To study the specific effects of IGN on hepatic metabolism, we used two transgenic mouse lines: one is knocked down for and the other overexpresses glucose-6-phosphatase, the key enzyme of endogenous glucose production, specifically in the intestine. RESULTS We report that mice with a genetic overexpression of IGN are notably protected from the development of hepatic steatosis and the initiation of NAFLD on a hypercaloric diet. The protection relates to a diminution of de novo lipogenesis and lipid import, associated with benefits at the level of inflammation and fibrosis and linked to autonomous nervous system. Conversely, mice with genetic suppression of IGN spontaneously exhibit increased hepatic triglyceride storage associated with activated lipogenesis pathway, in the context of standard starch-enriched diet. The latter is corrected by portal glucose infusion mimicking IGN. CONCLUSION We conclude that IGN per se has the capacity of preventing hepatic steatosis and its eventual evolution toward NAFLD.
Collapse
Affiliation(s)
- Justine Vily-Petit
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Maud Soty-Roca
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Marine Silva
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Margaux Raffin
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Amandine Gautier-Stein
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Fabienne Rajas
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Gilles Mithieux
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France .,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| |
Collapse
|
17
|
Pereira GA, Sodré FS, Murata GM, Amaral AG, Payolla TB, Campos CV, Sato FT, Anhê GF, Bordin S. Fructose Consumption by Adult Rats Exposed to Dexamethasone In Utero Changes the Phenotype of Intestinal Epithelial Cells and Exacerbates Intestinal Gluconeogenesis. Nutrients 2020; 12:nu12103062. [PMID: 33036430 PMCID: PMC7600908 DOI: 10.3390/nu12103062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
Fructose consumption by rodents modulates both hepatic and intestinal lipid metabolism and gluconeogenesis. We have previously demonstrated that in utero exposure to dexamethasone (DEX) interacts with fructose consumption during adult life to exacerbate hepatic steatosis in rats. The aim of this study was to clarify if adult rats born to DEX-treated mothers would display differences in intestinal gluconeogenesis after excessive fructose intake. To address this issue, female Wistar rats were treated with DEX during pregnancy and control (CTL) mothers were kept untreated. Adult offspring born to CTL and DEX-treated mothers were assigned to receive either tap water (Control-Standard Chow (CTL-SC) and Dexamethasone-Standard Chow (DEX-SC)) or 10% fructose in the drinking water (CTL-fructose and DEX-fructose). Fructose consumption lasted for 80 days. All rats were subjected to a 40 h fasting before sample collection. We found that DEX-fructose rats have increased glucose and reduced lactate in the portal blood. Jejunum samples of DEX-fructose rats have enhanced phosphoenolpyruvate carboxykinase (PEPCK) expression and activity, higher facilitated glucose transporter member 2 (GLUT2) and facilitated glucose transporter member 5 (GLUT5) content, and increased villous height, crypt depth, and proliferating cell nuclear antigen (PCNA) staining. The current data reveal that rats born to DEX-treated mothers that consume fructose during adult life have increased intestinal gluconeogenesis while recapitulating metabolic and morphological features of the neonatal jejunum phenotype.
Collapse
Affiliation(s)
- Gizela A. Pereira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Frhancielly S. Sodré
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Gilson M. Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Andressa G. Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Tanyara B. Payolla
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Carolina V. Campos
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, 13083-887 SP, Brazil; (C.V.C.); (G.F.A.)
| | - Fabio T. Sato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Gabriel F. Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, 13083-887 SP, Brazil; (C.V.C.); (G.F.A.)
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
- Correspondence: ; Tel.: +55-11-3091-7245
| |
Collapse
|
18
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
19
|
Guan W, Cui Y, Bu H, Liu J, Zhao S, Zhao Q, Ma X. Duodenal-Jejunal Exclusion Surgery Improves Type 2 Diabetes in a Rat Model Through Regulation of Early Glucose Metabolism. Can J Diabetes 2020; 44:401-406.e1. [PMID: 32279935 DOI: 10.1016/j.jcjd.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/25/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Metabolic surgery has been proven to be widely effective for the control of glucose and weight in patients with type 2 diabetes and obesity. However, the effects of bariatric surgery on nonobesity type 2 diabetes and its metabolism are still unclear. This study aimed to measure the effects of duodenal-jejunal exclusion on glycometabolism in nonobese rats with type 2 diabetes and to investigate its mechanisms. METHODS Goto-Kakizaki rats and Sprague-Dawley rats were divided into duodenal-jejunal exclusion operation groups and sham operation groups, respectively. The glucose-relative parameters were measured before and after operation. Eight weeks postoperation, the levels of the key regulators of intestinal gluconeogenesis and the crucial proteins of hepatic insulin signalling were evaluated. RESULTS Postoperatively, the concentrations of blood glucose declined, and the insulin sensitivity increased significantly in rats with diabetes. However, there was no obvious reduction in weight. Eight weeks postoperatively, the mRNA levels of glucose-6-phosphatase and phosphoenolpyruvate pyruvate kinase in the jejunum and the levels of insulin receptor substrate-2 and glucose transporter-2 in the liver were significantly increased compared with the rats that had undergone the sham operation. CONCLUSIONS Duodenal-jejunal exclusion surgery is an effective procedure for improving glucose metabolism independent of weight loss in nonobese rats with diabetes. The molecular mechanisms might be associated with a series of processes, including intestinal gluconeogenesis and the hepatic insulin signaling pathway.
Collapse
Affiliation(s)
- Wei Guan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuliang Cui
- Department of Endocrinology, the Dezhou People's Hospital, Dezhou, China
| | - Hemei Bu
- Department of Nutriology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Liu
- Department of Endocrinology, the Dezhou People's Hospital, Dezhou, China
| | - Sha Zhao
- Department of Nutriology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Zhao
- Department of Endocrinology, the Dezhou People's Hospital, Dezhou, China
| | - Xianghua Ma
- Department of Nutriology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Enhanced insulin signaling and its downstream effects in iron-overloaded primary hepatocytes from hepcidin knock-out mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118621. [DOI: 10.1016/j.bbamcr.2019.118621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
|
21
|
Jejunal Insulin Signalling Is Increased in Morbidly Obese Subjects with High Insulin Resistance and Is Regulated by Insulin and Leptin. J Clin Med 2020; 9:jcm9010196. [PMID: 31936857 PMCID: PMC7019979 DOI: 10.3390/jcm9010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Little is known about the jejunal insulin signalling pathways in insulin resistance/diabetes states and their possible regulation by insulin/leptin. We study in jejunum the relation between insulin signalling and insulin resistance in morbidly obese subjects with low (MO-low-IR) or with high insulin resistance (MO-high-IR), and with type 2 diabetes treated with metformin (MO-metf-T2DM)), and the effect of insulin/leptin on intestinal epithelial cells (IEC). Insulin receptor substrate-1 (IRS1) and the catalytic p110β subunit (p110β) of phosphatidylinositol 3-kinase (PI3K) were higher in MO-high-IR than in MO-low-IR. The regulatory p85α subunit of PI3K (p85α)/p110β ratio was lower in MO-high-IR and MO-metf-T2DM than in MO-low-IR. Akt-phosphorylation in Ser473 was reduced in MO-high-IR compared with MO-low-IR. IRS1 and p110-β were associated with insulin and leptin levels. The improvement of body mass index (BMI) and HOMA-IR (homeostasis model assessment of insulin resistance index) after bariatric surgery was associated with a higher IRS1 and a lower p85α/p110β ratio. IEC (intestinal epithelial cells) incubation with a high glucose + insulin dose produced an increase of p85α and p110β. High dose of leptin produced an increase of IRS1, p85α and p110β. In conclusion, despite the existence of insulin resistance, the jejunal expression of genes involved in insulin signalling was increased in MO-high-IR. Their expressions were regulated mainly by leptin. IRS1 and p85α/p110β ratio was associated with the evolution of insulin resistance after bariatric surgery.
Collapse
|
22
|
Merino B, Fernández-Díaz CM, Cózar-Castellano I, Perdomo G. Intestinal Fructose and Glucose Metabolism in Health and Disease. Nutrients 2019; 12:E94. [PMID: 31905727 PMCID: PMC7019254 DOI: 10.3390/nu12010094] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemics of obesity and diabetes have been linked to increased sugar consumption in humans. Here, we review fructose and glucose metabolism, as well as potential molecular mechanisms by which excessive sugar consumption is associated to metabolic diseases and insulin resistance in humans. To this end, we focus on understanding molecular and cellular mechanisms of fructose and glucose transport and sensing in the intestine, the intracellular signaling effects of dietary sugar metabolism, and its impact on glucose homeostasis in health and disease. Finally, the peripheral and central effects of dietary sugars on the gut-brain axis will be reviewed.
Collapse
Affiliation(s)
- Beatriz Merino
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Cristina M. Fernández-Díaz
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - German Perdomo
- Instituto de Biología y Genética Molecular-IBGM (CSIC-Universidad de Valladolid), Valladolid 47003, Spain; (B.M.); (C.M.F.-D.); (G.P.)
- Departamento de Ciencias de la Salud, Universidad de Burgos, Burgos 09001, Spain
| |
Collapse
|
23
|
Barataud A, Vily-Petit J, Goncalves D, Zitoun C, Duchampt A, Philippe E, Gautier-Stein A, Mithieux G. Metabolic benefits of gastric bypass surgery in the mouse: The role of fecal losses. Mol Metab 2019; 31:14-23. [PMID: 31918916 PMCID: PMC6880100 DOI: 10.1016/j.molmet.2019.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Objective Roux-en-Y gastric surgery (RYGB) promotes a rapid and sustained weight loss and amelioration of glucose control in obese patients. A high number of molecular hypotheses were previously tested using duodenal-jejunal bypass (DJB) performed in various genetic models of mice with knockouts for various hormones or receptors. The data were globally negative or inconsistent. Therefore, the mechanisms remained elusive. Intestinal gluconeogenesis is a gut function that has been suggested to contribute to the metabolic benefits of RYGB in obese patients. Methods We studied the effects of DJB on body weight and glucose control in obese mice fed a high fat-high sucrose diet. Wild type mice and mice with a genetic suppression of intestinal gluconeogenesis were studied in parallel using glucose- and insulin-tolerance tests. Fecal losses, including excretion of lipids, were studied from the feces recovered in metabolic cages. Results DJB induced a dramatic decrease in body weight and improvement in glucose control (glucose- and insulin-tolerance) in obese wild type mice fed a high calorie diet, for 25 days after the surgery. The DJB-induced decrease in food intake was transient and resumed to normal in 7–8 days, suggesting that decreased food intake could not account for the benefits. Total fecal losses were about 5 times and lipid losses 7 times higher in DJB-mice than in control (sham-operated and pair-fed) mice, and could account for the weight loss of mice. The results were comparable in mice with suppression of intestinal gluconeogenesis. There was no effect of DJB on food intake, body weight or fecal loss in lean mice fed a normal chow diet. Conclusions DJB in obese mice fed a high calorie diet promotes dramatic fecal loss, which could account for the dramatic weight loss and metabolic benefits observed. This could dominate the effects of the mouse genotype/phenotype. Thus, fecal energy loss should be considered as an essential process contributing to the metabolic benefits of DJB in obese mice. Duodenal-jejunal bypass (DJB) promotes weight loss in mice fed a high calorie diet. DJB induces dramatic fecal energy losses in mice fed a high calorie diet. DJB has no effect in mice fed a control (starch-based) diet. There is no fecal losses in DJB-mice fed a control diet. Fecal energy loss is a cause of body weight loss in DJB-mice fed high calorie diet.
Collapse
Affiliation(s)
- Aude Barataud
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Justine Vily-Petit
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Daisy Goncalves
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Carine Zitoun
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Adeline Duchampt
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Erwann Philippe
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon 1, Villeurbanne, F-69622, France.
| |
Collapse
|
24
|
Species-Specific Glucose-6-Phosphatase Activity in the Small Intestine-Studies in Three Different Mammalian Models. Int J Mol Sci 2019; 20:ijms20205039. [PMID: 31614497 PMCID: PMC6829527 DOI: 10.3390/ijms20205039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Besides the liver, which has always been considered the major source of endogenous glucose production in all post-absorptive situations, kidneys and intestines can also produce glucose in blood, particularly during fasting and under protein feeding. However, observations gained in different experimental animals have given ambiguous results concerning the presence of the glucose-6-phosphatase system in the small intestine. The aim of this study was to better define the species-related differences of this putative gluconeogenic organ in glucose homeostasis. The components of the glucose-6-phosphatase system (i.e., glucose-6-phosphate transporter and glucose-6-phosphatase itself) were analyzed in homogenates or microsomal fractions prepared from the small intestine mucosae and liver of rats, guinea pigs, and humans. Protein and mRNA levels, as well as glucose-6-phosphatase activities, were detected. The results showed that the glucose-6-phosphatase system is poorly represented in the small intestine of rats; on the other hand, significant expressions of glucose-6-phosphate transporter and of the glucose-6-phosphatase were found in the small intestine of guinea pigs and homo sapiens. The activity of the recently described fructose-6-phosphate transporter–intraluminal hexose isomerase pathway was also present in intestinal microsomes from these two species. The results demonstrate that the gluconeogenic role of the small intestine is highly species-specific and presumably dependent on feeding behavior (e.g., fructose consumption) and the actual state of metabolism.
Collapse
|
25
|
|
26
|
Potts A, Uchida A, Deja S, Berglund ED, Kucejova B, Duarte JA, Fu X, Browning JD, Magnuson MA, Burgess SC. Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine. Am J Physiol Gastrointest Liver Physiol 2018; 315:G249-G258. [PMID: 29631378 PMCID: PMC6139646 DOI: 10.1152/ajpgi.00039.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PEPCK) is a gluconeogenic enzyme that is highly expressed in the liver and kidney but is also expressed at lower levels in a variety of other tissues where it may play adjunct roles in fatty acid esterification, amino acid metabolism, and/or TCA cycle function. PEPCK is expressed in the enterocytes of the small intestine, but it is unclear whether it supports a gluconeogenic rate sufficient to affect glucose homeostasis. To examine potential roles of intestinal PEPCK, we generated an intestinal PEPCK knockout mouse. Deletion of intestinal PEPCK ablated ex vivo gluconeogenesis but did not significantly affect glycemia in chow, high-fat diet, or streptozotocin-treated mice. In contrast, postprandial triglyceride secretion from the intestine was attenuated in vivo, consistent with a role in fatty acid esterification. Intestinal amino acid profiles and 13C tracer appearance into these pools were significantly altered, indicating abnormal amino acid trafficking through the enterocyte. The data suggest that the predominant role of PEPCK in the small intestine of mice is not gluconeogenesis but rather to support nutrient processing, particularly with regard to lipids and amino acids. NEW & NOTEWORTHY The small intestine expresses gluconeogenic enzymes for unknown reasons. In addition to glucose synthesis, the nascent steps of this pathway can be used to support amino acid and lipid metabolisms. When phosphoenolpyruvate carboxykinase, an essential gluconeogenic enzyme, is knocked out of the small intestine of mice, glycemia is unaffected, but mice inefficiently absorb dietary lipid, have abnormal amino acid profiles, and inefficiently catabolize glutamine. Therefore, the initial steps of intestinal gluconeogenesis are used for processing dietary triglycerides and metabolizing amino acids but are not essential for maintaining blood glucose levels.
Collapse
Affiliation(s)
- Austin Potts
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aki Uchida
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stanislaw Deja
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Eric D. Berglund
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Blanka Kucejova
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joao A. Duarte
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaorong Fu
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey D. Browning
- 3Department of Clinical Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark A. Magnuson
- 5Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shawn C. Burgess
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas,4Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
27
|
van Stee MF, de Graaf AA, Groen AK. Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc Diabetol 2018; 17:94. [PMID: 29960584 PMCID: PMC6026339 DOI: 10.1186/s12933-018-0738-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes type 2 have an increased risk for cardiovascular disease and commonly use combination therapy consisting of the anti-diabetic drug metformin and a cholesterol-lowering statin. However, both drugs act on glucose and lipid metabolism which could lead to adverse effects when used in combination as compared to monotherapy. In this review, the proposed molecular mechanisms of action of statin and metformin therapy in patients with diabetes and dyslipidemia are critically assessed, and a hypothesis for mechanisms underlying interactions between these drugs in combination therapy is developed.
Collapse
Affiliation(s)
- Mariël F. van Stee
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert A. de Graaf
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Albert K. Groen
- Amsterdam Diabetes Center and Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Kaneko K, Soty M, Zitoun C, Duchampt A, Silva M, Philippe E, Gautier-Stein A, Rajas F, Mithieux G. The role of kidney in the inter-organ coordination of endogenous glucose production during fasting. Mol Metab 2018; 16:203-212. [PMID: 29960865 PMCID: PMC6157617 DOI: 10.1016/j.molmet.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 11/15/2022] Open
Abstract
Objective The respective contributions to endogenous glucose production (EGP) of the liver, kidney and intestine vary during fasting. We previously reported that the deficiency in either hepatic or intestinal gluconeogenesis modulates the repartition of EGP via glucagon secretion (humoral factor) and gut–brain–liver axis (neural factor), respectively. Considering renal gluconeogenesis reportedly accounted for approximately 50% of EGP during fasting, we examined whether a reduction in renal gluconeogenesis could promote alterations in the repartition of EGP in this situation. Methods We studied mice whose glucose-6-phosphatase (G6Pase) catalytic subunit (G6PC) is specifically knocked down in the kidneys (K-G6pc-/- mice) during fasting. We also examined the additional effects of intestinal G6pc deletion, renal denervation and vitamin D administration on the altered glucose metabolism in K-G6pc-/- mice. Results Compared with WT mice, K-G6pc-/- mice exhibited (1) lower glycemia, (2) enhanced intestinal but not hepatic G6Pase activity, (3) enhanced hepatic glucokinase (GK encoded by Gck) activity, (4) increased hepatic glucose-6-phosphate and (5) hepatic glycogen spared from exhaustion during fasting. Increased hepatic Gck expression in the post-absorptive state could be dependent on the enhancement of insulin signal (AKT phosphorylation) in K-G6pc-/- mice. In contrast, the increase in hepatic GK activity was not observed in mice with both kidney- and intestine-knockout (KI-G6pc-/- mice). Hepatic Gck gene expression and hepatic AKT phosphorylation were reduced in KI-G6pc-/- mice. Renal denervation by capsaicin did not induce any effect on glucose metabolism in K-G6pc-/- mice. Plasma level of 1,25 (OH)2 D3, an active form of vitamin D, was decreased in K-G6pc-/- mice. Interestingly, the administration of 1,25 (OH)2 D3 prevented the enhancement of intestinal gluconeogenesis and hepatic GK activity and blocked the accumulation of hepatic glycogen otherwise observed in K-G6pc-/- mice during fasting. Conclusions A diminution in renal gluconeogenesis that is accompanied by a decrease in blood vitamin D promotes a novel repartition of EGP among glucose producing organs during fasting, featured by increased intestinal gluconeogenesis that leads to sparing glycogen stores in the liver. Our data suggest a possible involvement of a crosstalk between the kidneys and intestine (via the vitamin D system) and the intestine and liver (via a neural gut-brain axis), which might take place in the situations of deficient renal glucose production, such as chronic kidney disease. Reduced renal G6Pase activity promotes increased hepatic glycogen during fasting. Reduced renal G6Pase activity enhances intestinal but not hepatic G6Pase activity. Reduced renal G6Pase activity results in low vitamin D level. Vitamin D injection restores metabolism in mice with reduced renal G6Pase activity.
Collapse
Affiliation(s)
- Keizo Kaneko
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon1, Villeurbanne, F-69622, France.
| | - Maud Soty
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon1, Villeurbanne, F-69622, France
| | - Carine Zitoun
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon1, Villeurbanne, F-69622, France
| | - Adeline Duchampt
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon1, Villeurbanne, F-69622, France
| | - Marine Silva
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon1, Villeurbanne, F-69622, France
| | - Erwann Philippe
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon1, Villeurbanne, F-69622, France
| | - Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon1, Villeurbanne, F-69622, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon1, Villeurbanne, F-69622, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France; Université de Lyon, Lyon, F-69008, France; Université Lyon1, Villeurbanne, F-69622, France.
| |
Collapse
|
29
|
Varghese J, James J, Vaulont S, Mckie A, Jacob M. Increased intracellular iron in mouse primary hepatocytes in vitro causes activation of the Akt pathway but decreases its response to insulin. Biochim Biophys Acta Gen Subj 2018; 1862:1870-1882. [PMID: 29859963 DOI: 10.1016/j.bbagen.2018.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND An iron-overloaded state has been reported to be associated with insulin resistance. On the other hand, conditions such as classical hemochromatosis (where iron overload occurs primarily in the liver) have been reported to be associated with increased insulin sensitivity. The reasons for these contradictory findings are unclear. In this context, the effects of increased intracellular iron per se on insulin signaling in hepatocytes are not known. METHODS Mouse primary hepatocytes were loaded with iron in vitro by incubation with ferric ammonium citrate (FAC). Intracellular events related to insulin signaling, as well as changes in gene expression and hepatocyte glucose production (HGP), were studied in the presence and absence of insulin and/or forskolin (a glucagon mimetic). RESULTS In vitro iron-loading of hepatocytes resulted in phosphorylation-mediated activation of Akt and AMP-activated protein kinase. This was associated with decreased basal and forskolin-stimulated HGP. Iron attenuated forskolin-mediated induction of the key gluconeogenic enzyme, glucose-6-phosphatase. It also attenuated activation of the Akt pathway in response to insulin, which was associated with decreased protein levels of insulin receptor substrates 1 and 2, constituting insulin resistance. CONCLUSIONS Increased intracellular iron has dual effects on insulin sensitivity in hepatocytes. It increased basal activation of the Akt pathway, but decreased activation of this pathway in response to insulin. GENERAL SIGNIFICANCE These findings may help explain why both insulin resistance and increased sensitivity have been observed in iron-overloaded states. They are of relevance to a variety of disease conditions characterized by hepatic iron overload and increased risk of diabetes.
Collapse
Affiliation(s)
- Joe Varghese
- Department of Biochemistry, Christian Medical College, Vellore 632002, India(1).
| | - Jithu James
- Department of Biochemistry, Christian Medical College, Vellore 632002, India(1)
| | | | - Andrew Mckie
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College, London, UK
| | - Molly Jacob
- Department of Biochemistry, Christian Medical College, Vellore 632002, India(1)
| |
Collapse
|
30
|
Tappy L, Rosset R. Fructose Metabolism from a Functional Perspective: Implications for Athletes. Sports Med 2018; 47:23-32. [PMID: 28332117 DOI: 10.1007/s40279-017-0692-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Substantial amounts of fructose are present in our diet. Unlike glucose, this hexose cannot be metabolized by most cells and has first to be converted into glucose, lactate or fatty acids by enterocytes, hepatocytes and kidney proximal tubule cells, which all express specific fructose-metabolizing enzymes. This particular metabolism may then be detrimental in resting, sedentary subjects; however, this may also present some advantages for athletes. First, since fructose and glucose are absorbed through distinct, saturable gut transporters, co-ingestion of glucose and fructose may increase total carbohydrate absorption and oxidation. Second, fructose is largely metabolized into glucose and lactate, resulting in a net local lactate release from splanchnic organs (mostly the liver). This 'reverse Cori cycle' may be advantageous by providing lactate as an additional energy substrate to the working muscle. Following exercise, co-ingestion of glucose and fructose mutually enhance their own absorption and storage.
Collapse
Affiliation(s)
- Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland. .,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland. .,Cardio-Metabolic Center, Broye Hospital, Estavayer-le-lac, Switzerland.
| | - Robin Rosset
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland
| |
Collapse
|
31
|
Foote AP, Keel BN, Zarek CM, Lindholm-Perry AK. Beef steers with average dry matter intake and divergent average daily gain have altered gene expression in the jejunum. J Anim Sci 2018; 95:4430-4439. [PMID: 29108031 DOI: 10.2527/jas2017.1804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to determine the association of differentially expressed genes (DEG) in the jejunum of steers with average DMI and high or low ADG. Feed intake and growth were measured in a cohort of 144 commercial Angus steers consuming a finishing diet containing (on a DM basis) 67.8% dry-rolled corn, 20% wet distillers grains with solubles, 8% alfalfa hay, and 4.2% vitamin/mineral supplement. From the cohort, a subset of steers with DMI within ±0.32 SD of the mean for DMI and the greatest (high) and least (low) ADG were chosen for slaughter and jejunum mucosa collection ( = 8 for each group). Dry matter intake (10.1 ± 0.05 kg/d) was not different ( = 0.41) but ADG was greater in the high-gain group (2.17 and 1.72 ± 0.02 kg/d for the high- and low-ADG groups, respectively; < 0.01). A total of 13,747 genes were found to be expressed in the jejunum, of which 64 genes were differentially expressed between the 2 groups (corrected < 0.05). Ten of the DEG were upregulated in the low-ADG group and 54 were upregulated in the high-ADG group. Gene ontology analysis determined that 24 biological process terms were overrepresented ( < 0.05), including digestion, drug and xenobiotic metabolism, and carbohydrate metabolism. Additionally, 89 molecular function terms were enriched ( < 0.05), including metallopeptidase activity, transporter activity, steroid hydrolase activity, glutathione transferase activity, and chemokine receptor binding. Metabolic pathways (28 pathways) impacted by the DEG ( < 0.05) included drug and xenobiotic metabolism by cytochrome P450, carbohydrate digestion and absorption, vitamin digestion and absorption, galactose metabolism, and linoleic acid metabolism. Results from this experiment indicate that cattle with average DMI and greater ADG likely have a greater capacity to handle foreign substances (xenobiotics). It is also possible that cattle with a greater ADG have a greater potential to digest and absorb nutrients in the small intestine.
Collapse
|
32
|
Investigation of the influence of high glucose on molecular and genetic responses: an in vitro study using a human intestine model. GENES AND NUTRITION 2018; 13:11. [PMID: 29736189 PMCID: PMC5928582 DOI: 10.1186/s12263-018-0602-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
Abstract
Background Dietary glucose consumption has increased worldwide. Long-term high glucose intake contributes to the development of obesity and type 2 diabetes mellitus (T2DM). Obese people tend to eat glucose-containing foods, which can lead to an addiction to glucose, increased glucose levels in the blood and intestine lumen, and exposure of intestinal enterocytes to high dietary glucose. Recent studies have documented a role for enterocytes in glucose sensing. However, the molecular and genetic relationship between high glucose levels and intestinal enterocytes has not been determined. We aimed to identify relevant target genes and molecular pathways regulated by high glucose in a well-established in vitro epithelial cell culture model of the human intestinal system (Caco-2 cells). Methods Cells were grown in a medium containing 5.5 and 25 mM glucose in a bicameral culture system for 21 days to mimic the human intestine. Transepithelial electrical resistance was used to control monolayer formation and polarization of the cells. Total RNA was isolated, and genome-wide mRNA expression profiles were determined. Molecular pathways were analyzed using the DAVID bioinformatics program. Gene expression levels were confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results Microarray gene expression data demonstrated that 679 genes (297 upregulated, 382 downregulated) were affected by high glucose treatment. Bioinformatics analysis indicated that intracellular protein export (p = 0.0069) and ubiquitin-mediated proteolysis (p = 0.024) pathways were induced, whereas glycolysis/gluconeogenesis (p < 0.0001), pentose phosphate (p = 0.0043), and fructose-mannose metabolism (p = 0.013) pathways were downregulated, in response to high glucose. Microarray analysis of gene expression showed that high glucose significantly induced mRNA expression levels of thioredoxin-interacting protein (TXNIP, p = 0.0001) and lipocalin 15 (LCN15, p = 0.0016) and reduced those of ATP-binding cassette, sub-family A member 1 (ABCA1, p = 0.0004), and iroquois homeobox 3 (IRX3, p = 0.0001). Conclusions To our knowledge, this is the first investigation of high glucose-regulated molecular responses in an intestinal enterocyte model. Our findings identify new target genes that may be important in the intestinal glucose absorption and metabolism during high glucose consumption.
Collapse
|
33
|
Koffert JP, Mikkola K, Virtanen KA, Andersson AMD, Faxius L, Hällsten K, Heglind M, Guiducci L, Pham T, Silvola JMU, Virta J, Eriksson O, Kauhanen SP, Saraste A, Enerbäck S, Iozzo P, Parkkola R, Gomez MF, Nuutila P. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: Results from a randomized clinical trial. Diabetes Res Clin Pract 2017; 131:208-216. [PMID: 28778047 DOI: 10.1016/j.diabres.2017.07.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022]
Abstract
AIMS Metformin therapy is associated with diffuse intestinal 18F-fluoro-deoxyglucose (FDG) accumulation in clinical diagnostics using routine FDG-PET imaging. We aimed to study whether metformin induced glucose uptake in intestine is associated with the improved glycaemic control in patients with type 2 diabetes. Therefore, we compared the effects of metformin and rosiglitazone on intestinal glucose metabolism in patients with type 2 diabetes in a randomized placebo controlled clinical trial, and further, to understand the underlying mechanism, evaluated the effect of metformin in rats. METHODS Forty-one patients with newly diagnosed type 2 diabetes were randomized to metformin (1g, b.i.d), rosiglitazone (4mg, b.i.d), or placebo in a 26-week double-blind trial. Tissue specific intestinal glucose uptake was measured before and after the treatment period using FDG-PET during euglycemic hyperinsulinemia. In addition, rats were treated with metformin or vehicle for 12weeks, and intestinal FDG uptake was measured in vivo and with autoradiography. RESULTS Glucose uptake increased 2-fold in the small intestine and 3-fold in the colon for the metformin group and associated with improved glycemic control. Rosiglitazone increased only slightly intestinal glucose uptake. In rodents, metformin treatment enhanced intestinal FDG retention (P=0.002), which was localized in the mucosal enterocytes of the small intestine. CONCLUSIONS Metformin treatment significantly enhances intestinal glucose uptake from the circulation of patients with type 2 diabetes. This intestine-specific effect is associated with improved glycemic control and localized to mucosal layer. These human findings demonstrate directs effect of metformin on intestinal metabolism and elucidate the actions of metformin. Clinical trial number NCT02526615.
Collapse
Affiliation(s)
- Jukka P Koffert
- Turku PET Centre, University of Turku, Turku, Finland; Department of Gastroenterology, Turunmaa Hospital, Southwest Finland Hospital District, Turku, Finland
| | - Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland
| | | | | | - Linda Faxius
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Sweden
| | | | - Mikael Heglind
- Department of Clinical and Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 40530 Gothenburg, Sweden
| | - Letizia Guiducci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Tam Pham
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Jenni Virta
- Turku PET Centre, University of Turku, Turku, Finland
| | - Olof Eriksson
- Turku PET Centre, University of Turku, Turku, Finland; Department of Biosciences, Åbo Akademi University, Turku, Finland; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Saila P Kauhanen
- Turku PET Centre, University of Turku, Turku, Finland; Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, Turku, Finland
| | - Sven Enerbäck
- Department of Clinical and Medical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE 40530 Gothenburg, Sweden
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Riitta Parkkola
- Department of Radiology, Turku University, Finland; Department of Radiology, Turku University Hospital, Finland
| | - Maria F Gomez
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Sweden
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
34
|
Chen YJ, Zhang TY, Chen HY, Lin SM, Luo L, Wang DS. Simultaneous stimulation of glycolysis and gluconeogenesis by feeding in the anterior intestine of the omnivorous GIFT tilapia, Oreochromis niloticus. Biol Open 2017; 6:818-824. [PMID: 28619994 PMCID: PMC5483027 DOI: 10.1242/bio.024836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The present study was performed to investigate the roles of anterior intestine in the postprandial glucose homeostasis of the omnivorous Genetically Improved Farmed Tilapia (GIFT). Sub-adult fish (about 173 g) were sampled at 0, 1, 3, 8 and 24 h post feeding (HPF) after 36 h of food deprivation, and the time course of changes in intestinal glucose transport, glycolysis, glycogenesis and gluconeogenesis at the transcription and enzyme activity level, as well as plasma glucose contents, were analyzed. Compared with 0 HPF (fasting for 36 h), the mRNA levels of both ATP-dependent sodium/glucose cotransporter 1 and facilitated glucose transporter 2 increased during 1-3 HPF, decreased at 8 HPF and then leveled off. These results indicated that intestinal uptake of glucose and its transport across the intestine to blood mainly occurred during 1-3 HPF, which subsequently resulted in the increase of plasma glucose level at the same time. Intestinal glycolysis was stimulated during 1-3 HPF, while glucose storage as glycogen was induced during 3-8 HPF. Unexpectedly, intestinal gluconeogenesis (IGNG) was also strongly induced during 1-3 HPF at the state of nutrient assimilation. The mRNA abundance and enzyme activities of glutamic-pyruvic and glutamic-oxaloacetic transaminases increased during 1-3 HPF, suggesting that the precursors of IGNG might originate from some amino acids. Taken together, it was concluded that the anterior intestine played an important role in the regulation of postprandial glucose homeostasis in omnivorous tilapia, as it represented significant glycolytic potential and glucose storage. It was interesting that postprandial IGNG was stimulated by feeding temporarily, and its biological significance remains to be elucidated in fish.
Collapse
Affiliation(s)
- Yong-Jun Chen
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China .,Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ti-Yin Zhang
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Hai-Yan Chen
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Shi-Mei Lin
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Li Luo
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - De-Shou Wang
- Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
35
|
Abstract
Intestinal gluconeogenesis is a recently identified function influencing energy homeostasis. Intestinal gluconeogenesis induced by specific nutrients releases glucose, which is sensed by the nervous system surrounding the portal vein. This initiates a signal positively influencing parameters involved in glucose control and energy management controlled by the brain. This knowledge has extended our vision of the gut-brain axis, classically ascribed to gastrointestinal hormones. Our work raises several questions relating to the conditions under which intestinal gluconeogenesis proceeds and may provide its metabolic benefits. It also leads to questions on the advantage conferred by its conservation through a process of natural selection.
Collapse
Affiliation(s)
- Maud Soty
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France.
| |
Collapse
|
36
|
Martins HA, Bazotte RB, Vicentini GE, Lima MM, Guarnier FA, Hermes-Uliana C, Frez FCV, Bossolani GDP, Fracaro L, Fávaro LDS, Manzano MI, Zanoni JN. l-Glutamine supplementation promotes an improved energetic balance in Walker-256 tumor-bearing rats. Tumour Biol 2017; 39:1010428317695960. [PMID: 28345452 DOI: 10.1177/1010428317695960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We evaluated the effects of supplementation with oral l-glutamine in Walker-256 tumor-bearing rats. A total of 32 male Wistar rats aged 54 days were randomly divided into four groups: rats without Walker-256 tumor, that is, control rats (C group); control rats supplemented with l-glutamine (CG group); Walker-256 tumor rats without l-glutamine supplementation (WT group); and WT rats supplemented with l-glutamine (WTG group). l-Glutamine was incorporated into standard food at a proportion of 2 g/100 g (2%). After 10 days of the experimental period, the jejunum and duodenum were removed and processed. Protein expression levels of key enzymes of gluconeogenesis, that is, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, were analyzed by western blot and immunohistochemical techniques. In addition, plasma corticosterone, glucose, insulin, and urea levels were evaluated. The WTG group showed significantly increased plasma glucose and insulin levels ( p < 0.05); however, plasma corticosterone and urea remained unchanged. Moreover, the WTG group showed increased immunoreactive staining for jejunal phosphoenolpyruvate carboxykinase and increased expression of duodenal glucose-6-phosphatase. Furthermore, the WTG group presented with less intense cancer cachexia and slower tumor growth. These results could be attributed, at least partly, to increased intestinal gluconeogenesis and insulinemia, and better glycemia maintenance during fasting in Walker-256 tumor rats on a diet supplemented with l-glutamine.
Collapse
Affiliation(s)
- Heber Amilcar Martins
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Roberto Barbosa Bazotte
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Mariana Machado Lima
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Catchia Hermes-Uliana
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | - Luciane Fracaro
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | | |
Collapse
|
37
|
Gutierrez-Repiso C, Garcia-Serrano S, Moreno-Ruiz FJ, Alcain-Martinez G, Rodriguez-Pacheco F, Garcia-Fuentes E. Jejunal gluconeogenesis associated with insulin resistance level and its evolution after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2017; 13:623-630. [DOI: 10.1016/j.soard.2016.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/28/2016] [Accepted: 11/26/2016] [Indexed: 01/16/2023]
|
38
|
Nicolas S, Blasco-Baque V, Fournel A, Gilleron J, Klopp P, Waget A, Ceppo F, Marlin A, Padmanabhan R, Iacovoni JS, Tercé F, Cani PD, Tanti JF, Burcelin R, Knauf C, Cormont M, Serino M. Transfer of dysbiotic gut microbiota has beneficial effects on host liver metabolism. Mol Syst Biol 2017; 13:921. [PMID: 28302863 PMCID: PMC5371731 DOI: 10.15252/msb.20167356] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gut microbiota dysbiosis has been implicated in a variety of systemic disorders, notably metabolic diseases including obesity and impaired liver function, but the underlying mechanisms are uncertain. To investigate this question, we transferred caecal microbiota from either obese or lean mice to antibiotic-free, conventional wild-type mice. We found that transferring obese-mouse gut microbiota to mice on normal chow (NC) acutely reduces markers of hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-inoculated mice, a phenotypic trait blunted in conventional NOD2 KO mice. Furthermore, transferring of obese-mouse microbiota changes both the gut microbiota and the microbiome of recipient mice. We also found that transferring obese gut microbiota to NC-fed mice then fed with a high-fat diet (HFD) acutely impacts hepatic metabolism and prevents HFD-increased hepatic gluconeogenesis compared to non-inoculated mice. Moreover, the recipient mice exhibit reduced hepatic PEPCK and G6Pase activity, fed glycaemia and adiposity. Conversely, transfer of lean-mouse microbiota does not affect markers of hepatic gluconeogenesis. Our findings provide a new perspective on gut microbiota dysbiosis, potentially useful to better understand the aetiology of metabolic diseases.
Collapse
Affiliation(s)
- Simon Nicolas
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France.,Faculté de Chirurgie Dentaire de Toulouse, Université Paul Sabatier, Toulouse Cedex, France
| | - Audren Fournel
- Toulouse III, Institut de Recherche en Santé Digestive (IRSD) Team 3, "Intestinal Neuroimmune Interactions" INSERM U1220, Université Paul Sabatier, Toulouse Cedex 3, France.,European Associated Laboratory NeuroMicrobiota (INSERM/UCL), Bâtiment B - Pavillon Lefebvre, Toulouse Cedex 3, France
| | - Jerome Gilleron
- INSERM Unité 1065/Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Pascale Klopp
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Aurelie Waget
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Franck Ceppo
- INSERM Unité 1065/Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Alysson Marlin
- Toulouse III, Institut de Recherche en Santé Digestive (IRSD) Team 3, "Intestinal Neuroimmune Interactions" INSERM U1220, Université Paul Sabatier, Toulouse Cedex 3, France.,European Associated Laboratory NeuroMicrobiota (INSERM/UCL), Bâtiment B - Pavillon Lefebvre, Toulouse Cedex 3, France
| | - Roshan Padmanabhan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Jason S Iacovoni
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - François Tercé
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Patrice D Cani
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-François Tanti
- INSERM Unité 1065/Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Claude Knauf
- Toulouse III, Institut de Recherche en Santé Digestive (IRSD) Team 3, "Intestinal Neuroimmune Interactions" INSERM U1220, Université Paul Sabatier, Toulouse Cedex 3, France.,European Associated Laboratory NeuroMicrobiota (INSERM/UCL), Bâtiment B - Pavillon Lefebvre, Toulouse Cedex 3, France
| | - Mireille Cormont
- INSERM Unité 1065/Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Matteo Serino
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France .,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| |
Collapse
|
39
|
Velmurugan G, Ramprasath T, Swaminathan K, Mithieux G, Rajendhran J, Dhivakar M, Parthasarathy A, Babu DDV, Thumburaj LJ, Freddy AJ, Dinakaran V, Puhari SSM, Rekha B, Christy YJ, Anusha S, Divya G, Suganya K, Meganathan B, Kalyanaraman N, Vasudevan V, Kamaraj R, Karthik M, Jeyakumar B, Abhishek A, Paul E, Pushpanathan M, Rajmohan RK, Velayutham K, Lyon AR, Ramasamy S. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biol 2017; 18:8. [PMID: 28115022 PMCID: PMC5260025 DOI: 10.1186/s13059-016-1134-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Organophosphates are the most frequently and largely applied insecticide in the world due to their biodegradable nature. Gut microbes were shown to degrade organophosphates and cause intestinal dysfunction. The diabetogenic nature of organophosphates was recently reported but the underlying molecular mechanism is unclear. We aimed to understand the role of gut microbiota in organophosphate-induced hyperglycemia and to unravel the molecular mechanism behind this process. RESULTS Here we demonstrate a high prevalence of diabetes among people directly exposed to organophosphates in rural India (n = 3080). Correlation and linear regression analysis reveal a strong association between plasma organophosphate residues and HbA1c but no association with acetylcholine esterase was noticed. Chronic treatment of mice with organophosphate for 180 days confirms the induction of glucose intolerance with no significant change in acetylcholine esterase. Further fecal transplantation and culture transplantation experiments confirm the involvement of gut microbiota in organophosphate-induced glucose intolerance. Intestinal metatranscriptomic and host metabolomic analyses reveal that gut microbial organophosphate degradation produces short chain fatty acids like acetic acid, which induces gluconeogenesis and thereby accounts for glucose intolerance. Plasma organophosphate residues are positively correlated with fecal esterase activity and acetate level of human diabetes. CONCLUSION Collectively, our results implicate gluconeogenesis as the key mechanism behind organophosphate-induced hyperglycemia, mediated by the organophosphate-degrading potential of gut microbiota. This study reveals the gut microbiome-mediated diabetogenic nature of organophosphates and hence that the usage of these insecticides should be reconsidered.
Collapse
Affiliation(s)
- Ganesan Velmurugan
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Research Science Center, Georgia State University, Atlanta, GA, 30303, USA
| | - Krishnan Swaminathan
- KMCH Research Foundation, Kovai Medical Centre and Hospital, Coimbatore, Tamil Nadu, 641014, India
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, 69372, France
| | - Jeyaprakash Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Mani Dhivakar
- Department of Immunology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Ayothi Parthasarathy
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - D D Venkatesh Babu
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Leishman John Thumburaj
- Department of Immunology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Allen J Freddy
- Deparment of Zoology, Madras Christian College, Chennai, Tamil Nadu, 600059, India
| | - Vasudevan Dinakaran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Shanavas Syed Mohamed Puhari
- Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Balakrishnan Rekha
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Yacob Jenifer Christy
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sivakumar Anusha
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Ganesan Divya
- Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Kannan Suganya
- Department of Microbial Technology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Boominathan Meganathan
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Narayanan Kalyanaraman
- Department of Immunology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Varadaraj Vasudevan
- Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Raju Kamaraj
- Department of Immunology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Maruthan Karthik
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Balakrishnan Jeyakumar
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Albert Abhishek
- Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Muthuirulan Pushpanathan
- Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Rajamani Koushick Rajmohan
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Kumaravel Velayutham
- Institute of Diabetes & Endocrinology, Alpha Hospital and Research Centre, Madurai, Tamil Nadu, 625009, India
| | - Alexander R Lyon
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Subbiah Ramasamy
- Department of Molecular Biology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
40
|
Liu Y, He S, Zeng T, Du X, Shen J, Zhao A, Lu L. Transcriptome analysis of the livers of ducklings hatched normally and with assistance. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:773-780. [PMID: 27809466 PMCID: PMC5411839 DOI: 10.5713/ajas.16.0528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/22/2016] [Accepted: 10/23/2016] [Indexed: 12/26/2022]
Abstract
Objective “Hatchability” is an important economic trait in domestic poultry. Studies on poultry hatchability focus mainly on the genetic background, egg quality, and incubation conditions, whereas the molecular mechanisms behind the phenomenon that some ducklings failed to break their eggshells are poorly understood. Methods In this study, the transcriptional differences between the livers of normally hatched and assisted ducklings were systematically analyzed. Results The results showed that the clean reads were de novo assembled into 161,804 and 159,083 unigenes (≥200-bp long) by using Trinity, with an average length of 1,206 bp and 882 bp, respectively. The defined criteria of the absolute value of log2 fold-change ≥1 and false discovery rate≤0.05 were differentially expressed and were significant. As a result, 1,629 unigenes were identified, the assisted ducklings showed 510 significantly upregulated and 1,119 significantly down-regulated unigenes. In general, the metabolic rate in the livers of the assisted ducklings was lower than that in the normal ducklings; however, compared to normal ducklings, glucose-6-phosphatase and ATP synthase subunit alpha 1 associated with energy metabolism were significantly upregulated in the assisted group. The genes involved in immune defense such as major histocompatibility complex (MHC) class I antigen alpha chain and MHC class II beta chain 1 were downregulated in the assisted ducklings. Conclusion These data provide abundant sequence resources for studying the functional genome of the livers in ducks and other poultry. In addition, our study provided insight into the molecular mechanism by which the phenomenon of weak embryos is regulated.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.,Zhejiang Animal Husbandry Techniques Extension Station, Hangzhou, Zhejiang 310020, China
| | - Shishan He
- Zhejiang Animal Husbandry Techniques Extension Station, Hangzhou, Zhejiang 310020, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Xue Du
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Junda Shen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Linan, Zhejiang 311300, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
41
|
Stefanucci A, Mollica A, Macedonio G, Zengin G, Ahmed AA, Novellino E. Exogenous opioid peptides derived from food proteins and their possible uses as dietary supplements: A critical review. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1225220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Giorgia Macedonio
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdelkareem A. Ahmed
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
42
|
Chaturvedi S, Singh AK, Keshari AK, Maity S, Sarkar S, Saha S. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach. SCIENTIFICA 2016; 2016:9828672. [PMID: 27051561 PMCID: PMC4804091 DOI: 10.1155/2016/9828672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 05/30/2023]
Abstract
One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Ashok K. Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Amit K. Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Siddhartha Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Srimanta Sarkar
- Dr. Reddy's Laboratories Limited, Bachupally, Hyderabad, Telangana 502325, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| |
Collapse
|
43
|
Abstract
OBJECTIVE To evaluate the role of bile routing modification on the beneficial effects of gastric bypass surgery on glucose and energy metabolism. BACKGROUND Gastric bypass surgery (GBP) promotes early improvements in glucose and energy homeostasis in obese diabetic patients. A suggested mechanism associates a decrease in hepatic glucose production to an enhanced intestinal gluconeogenesis. Moreover, plasma bile acids are elevated after GBP and bile acids are inhibitors of gluconeogenesis. METHODS In male Sprague-Dawley rats, we performed bile diversions from the bile duct to the midjejunum or the mid-ileum to match the modified bile delivery in the gut occurring in GBP. Body weight, food intake, glucose tolerance, insulin sensitivity, and food preference were analyzed. The expression of gluconeogenesis genes was evaluated in both the liver and the intestine. RESULTS Bile diversions mimicking GBP promote an increase in plasma bile acids and a marked improvement in glucose control. Bile bioavailability modification is causal because a bile acid sequestrant suppresses the beneficial effects of bile diversions on glucose control. In agreement with the inhibitory role of bile acids on gluconeogenesis, bile diversions promote a blunting in hepatic glucose production, whereas intestinal gluconeogenesis is increased in the gut segments devoid of bile. In rats fed a high-fat-high-sucrose diet, bile diversions improve glucose control and dramatically decrease food intake because of an acquired disinterest in fatty food. CONCLUSIONS This study shows that bile routing modification is a key mechanistic feature in the beneficial outcomes of GBP.
Collapse
|
44
|
Fructose–Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives. Sports Med 2015; 45:1561-76. [DOI: 10.1007/s40279-015-0381-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Iozzo P. Metabolic imaging in obesity: underlying mechanisms and consequences in the whole body. Ann N Y Acad Sci 2015; 1353:21-40. [PMID: 26335600 DOI: 10.1111/nyas.12880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Obesity is a phenotype resulting from a series of causative factors with a variable risk of complications. Etiologic diversity requires personalized prevention and treatment. Imaging procedures offer the potential to investigate the interplay between organs and pathways underlying energy intake and consumption in an integrated manner, and may open the perspective to classify and treat obesity according to causative mechanisms. This review illustrates the contribution provided by imaging studies to the understanding of human obesity, starting with the regulation of food intake and intestinal metabolism, followed by the role of adipose tissue in storing, releasing, and utilizing substrates, including the interconversion of white and brown fat, and concluding with the examination of imaging risk indicators related to complications, including type 2 diabetes, liver pathologies, cardiac and kidney diseases, and sleep disorders. The imaging modalities include (1) positron emission tomography to quantify organ-specific perfusion and substrate metabolism; (2) computed tomography to assess tissue density as an indicator of fat content and browning/ whitening; (3) ultrasounds to examine liver steatosis, stiffness, and inflammation; and (4) magnetic resonance techniques to assess blood oxygenation levels in the brain, liver stiffness, and metabolite contents (triglycerides, fatty acids, glucose, phosphocreatine, ATP, and acetylcarnitine) in a variety of organs.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy.,The Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
46
|
Rajas F, Clar J, Gautier-Stein A, Mithieux G. Lessons from new mouse models of glycogen storage disease type 1a in relation to the time course and organ specificity of the disease. J Inherit Metab Dis 2015; 38:521-7. [PMID: 25164786 PMCID: PMC5522669 DOI: 10.1007/s10545-014-9761-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
Patients with glycogen storage diseases type 1 (GSD1) suffer from life-threatening hypoglycaemia, when left untreated. Despite an intensive dietary treatment, patients develop severe complications, such as liver tumors and renal failure, with aging. Until now, the animal models available for studying the GSD1 did not survive after weaning. To gain further insights into the molecular mechanisms of the disease and to evaluate potential treatment strategies, we have recently developed novel mouse models in which the catalytic subunit of glucose-6 phosphatase (G6pc) is deleted in each glucose-producing organ specifically. For that, B6.G6pc(ex3lox/ex3lox) mice were crossed with transgenic mice expressing a recombinase under the control of the serum albumin, the kidney androgen protein or the villin promoter, in order to obtain liver, kidney or intestine G6pc(-/-) mice, respectively. As opposed to total G6pc knockout mice, tissue-specific G6pc deficiency allows mice to maintain their blood glucose by inducing glucose production in the other gluconeogenic organs. Even though it is considered that glucose is produced mainly by the liver, liver G6pc(-/-) mice are perfectly viable and exhibit the same hepatic pathological features as GSD1 patients, including the late development of hepatocellular adenomas and carcinomas. Interestingly, renal G6pc(-/-) mice developed renal symptoms similar to the early human GSD1 nephropathy. This includes glycogen overload that leads to nephromegaly and morphological and functional alterations in the kidneys. Thus, our data suggest that renal G6Pase deficiency per se is sufficient to induce the renal pathology of GSD1. Therefore, these new mouse models should allow us to improve the strategies of treatment on both nutritional and pharmacological points of view.
Collapse
Affiliation(s)
- Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, 69008, France,
| | | | | | | |
Collapse
|
47
|
Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, Plovier H, Castel J, Denis RGP, Bergiers M, Druart C, Alhouayek M, Delzenne NM, Muccioli GG, Demoulin JB, Luquet S, Cani PD. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun 2015; 6:6495. [PMID: 25757720 PMCID: PMC4382707 DOI: 10.1038/ncomms7495] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders. Endocannabinoids are bioactive lipid molecules produced in the body. Here, Geurts et al. create mice lacking the endocannabinoid-producing enzyme NAPE-PLD in adipocytes and report defects in adipose-induced browning, which are mediated by alterations in the gut microbiome.
Collapse
Affiliation(s)
- Lucie Geurts
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Ahmed Essaghir
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium
| | - Thibaut Duparc
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Sébastien Matamoros
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Julien Castel
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Raphael G P Denis
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Marie Bergiers
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Céline Druart
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 72 B1.72.11, 1200 Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 72 B1.72.11, 1200 Brussels, Belgium
| | - Jean-Baptiste Demoulin
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate, 74 B1.74.05, 1200 Brussels, Belgium
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA, UMR8251, CNRS, F-75205 Paris, France
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium
| |
Collapse
|
48
|
Clar J, Mutel E, Gri B, Creneguy A, Stefanutti A, Gaillard S, Ferry N, Beuf O, Mithieux G, Nguyen TH, Rajas F. Hepatic lentiviral gene transfer prevents the long-term onset of hepatic tumours of glycogen storage disease type 1a in mice. Hum Mol Genet 2015; 24:2287-96. [DOI: 10.1093/hmg/ddu746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
49
|
Soty M, Penhoat A, Amigo-Correig M, Vinera J, Sardella A, Vullin-Bouilloux F, Zitoun C, Houberdon I, Mithieux G. A gut-brain neural circuit controlled by intestinal gluconeogenesis is crucial in metabolic health. Mol Metab 2014; 4:106-17. [PMID: 25685698 PMCID: PMC4314540 DOI: 10.1016/j.molmet.2014.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/19/2022] Open
Abstract
Objectives Certain nutrients positively regulate energy homeostasis via intestinal gluconeogenesis (IGN). The objective of this study was to evaluate the impact of a deficient IGN in glucose control independently of nutritional environment. Methods We used mice deficient in the intestine glucose-6 phosphatase catalytic unit, the key enzyme of IGN (I-G6pc−/− mice). We evaluated a number of parameters involved in energy homeostasis, including insulin sensitivity (hyperinsulinemic euglycaemic clamp), the pancreatic function (insulin secretion in vivo and in isolated islets) and the hypothalamic homeostatic function (leptin sensitivity). Results Intestinal-G6pc−/− mice exhibit slight fasting hyperglycaemia and hyperinsulinemia, glucose intolerance, insulin resistance and a deteriorated pancreatic function, despite normal diet with no change in body weight. These defects evoking type 2 diabetes (T2D) derive from the basal activation of the sympathetic nervous system (SNS). They are corrected by treatment with an inhibitor of α-2 adrenergic receptors. Deregulation in a key target of IGN, the homeostatic hypothalamic function (highlighted here through leptin resistance) is a mechanistic link. Hence the leptin resistance and metabolic disorders in I-G6pc−/− mice are corrected by rescuing IGN by portal glucose infusion. Finally, I-G6pc−/− mice develop the hyperglycaemia characteristic of T2D more rapidly under high fat/high sucrose diet. Conclusions Intestinal gluconeogenesis is a mandatory function for the healthy neural control of glucose homeostasis.
Collapse
Affiliation(s)
- Maud Soty
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France
- Université de Lyon, Lyon, F-69008, France
- Université Lyon1, Villeurbanne, F-69622, France
| | - Armelle Penhoat
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France
- Université de Lyon, Lyon, F-69008, France
- Université Lyon1, Villeurbanne, F-69622, France
| | - Marta Amigo-Correig
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France
- Université de Lyon, Lyon, F-69008, France
- Université Lyon1, Villeurbanne, F-69622, France
| | - Jennifer Vinera
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France
- Université de Lyon, Lyon, F-69008, France
- Université Lyon1, Villeurbanne, F-69622, France
| | - Anne Sardella
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France
- Université de Lyon, Lyon, F-69008, France
- Université Lyon1, Villeurbanne, F-69622, France
| | - Fanny Vullin-Bouilloux
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France
- Université de Lyon, Lyon, F-69008, France
- Université Lyon1, Villeurbanne, F-69622, France
| | - Carine Zitoun
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France
- Université de Lyon, Lyon, F-69008, France
- Université Lyon1, Villeurbanne, F-69622, France
| | - Isabelle Houberdon
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France
- Université de Lyon, Lyon, F-69008, France
- Université Lyon1, Villeurbanne, F-69622, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, F-69008, France
- Université de Lyon, Lyon, F-69008, France
- Université Lyon1, Villeurbanne, F-69622, France
- Corresponding author. Inserm U855, Faculté de Médecine Laennec, 7 rue Guillaume Paradin, 69372, Lyon cedex 08, France. Tel.: +33 478 77 10 28; fax: +33 478 77 87 62.
| |
Collapse
|
50
|
Ling Y, van Herpt TTW, van Hoek M, Dehghan A, Hofman A, Uitterlinden AG, Jiang S, Lieverse AG, Bravenboer B, Lu D, van Duijn CM, Gao X, Sijbrands EJG. A genetic variant in SLC6A20 is associated with Type 2 diabetes in white-European and Chinese populations. Diabet Med 2014; 31:1350-6. [PMID: 24958070 DOI: 10.1111/dme.12528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/01/2014] [Accepted: 06/19/2014] [Indexed: 11/29/2022]
Abstract
AIMS To investigate whether polymorphisms in SLC6A20 are associated with susceptibility to Type 2 diabetes. METHODS In the Rotterdam Study, a prospective, population-based cohort (n = 5974), 22 tagging polymorphisms with minor allele frequencies>0.05 across SLC6A20 were studied. Replication studies were performed in an independent Dutch case-control study (DiaGene-Rotterdam Study 2 n = 3133), and in a Chinese Han case-control population (n = 2279). A meta-analysis of the results was performed. RESULTS In the Rotterdam study, the minor alleles of rs13062383, rs10461016 and rs2286489 increased the risk of Type 2 diabetes (hazard ratio 1.37, 95% CI 1.15-1.63, hazard ratio 1.30 95% CI 1.09-1.54 and hazard ratio 1.20, 95% CI 1.07-1.35, respectively). In the DiaGene/Rotterdam Study 2, the A allele of rs13062383 increased the risk of Type 2 diabetes (odds ratio 1.45, 95% CI 1.19-1.76). In the Chinese Han study, the rs13062383 A allele also increased the risk of Type 2 diabetes (odds ratio 1.21, 95% CI 1.03-1.42). Meta-analysis showed a highly significant association of rs13062383 with Type 2 diabetes (odds ratio 1.35, 95% CI 1.21-1.47; P = 3.3 × 10⁻⁸). CONCLUSIONS In conclusion, rs13062383 in SLC6A20 increased the susceptibility to Type 2 diabetes in populations with different genetic backgrounds.
Collapse
Affiliation(s)
- Y Ling
- Department of Endocrinology and Metabolism, Zhongshan hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|