1
|
Liu Y, Zhu Z, Wang W, Qian W, Wang Q, Lu W. Polyacrylonitrile-supported symmetrical configuration pyridine bridged bi-iron phthalocyanine nanofibers for efficient degradation of carbamazepine in the presence of peroxymonosulfate. J Colloid Interface Sci 2025; 687:158-167. [PMID: 39952108 DOI: 10.1016/j.jcis.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
In this study, the 4-aminopyridine (Py) was employed to link with terephthaloyl chloride (TPC) through amide bonding to generate the symmetric ligand Py-TPC, and the iron phthalocyanine (FePc) was axially coordinated with Py-TPC to synthetic the composite catalyst FePc-Py-TPC. By introducing Py-TPC, the π-π conjugated stack structure within phthalocyanine molecules was disrupted and more active sites were exposed. FePc-Py-TPC was dispersed in polyacrylonitrile (PAN) through electrospinning to obtain FePc-Py-TPC/PAN nanofibers, which solved the problem of difficult recycling and utilization of powder catalysts. FePc-Py-TPC/PAN can effectively activate peroxymonosulfate (PMS) at room temperature, and the removal rate of carbamazepine (CBZ) approaches 100 % within 40 min. After five recycles for CBZ degradation over the FePc-Py-TPC/PAN/PMS system, the removal ratios of CBZ remained at 90 %. O2- is the main active radical, SO4-, OH, and 1O2 play a secondary role. Six intermediate products and two final products of CBZ were identified by ultra-performance liquid chromatography and high-definition mass spectrometry, and the possible degradation pathways were speculated. All CBZ and the aromatic intermediates were eventually converted into small acids.
Collapse
Affiliation(s)
- Yu Liu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China.
| | - Wenjuan Wang
- Zhejiang Marine Ecology and Environment Monitoring Center (Zhejiang), Hangzhou 310018 China
| | - Wenjie Qian
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China
| | - Qian Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China
| |
Collapse
|
2
|
Zhong S, Kopec RE. Bioaccessibility and Caco-2 cell uptake of iron chlorophyllin using a biologically relevant digestion model. J Nutr Biochem 2024; 132:109698. [PMID: 38969147 DOI: 10.1016/j.jnutbio.2024.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Iron deficiency remains a top nutrient deficiency worldwide. Iron chlorophyllin (IC), a compound structurally analogous to heme, utilizes the protoporphyrin ring of chlorophyll to bind iron. IC has previously been shown to deliver more iron to Caco-2 cells than FeSO4, the most common form prescribed for supplementation. However, previous test conditions used digestive conditions outside of those observed in humans. This study sought to assess IC bioaccessibility and Caco-2 cell uptake using physiologically relevant digestive solutions, pH, and incubation time, as compared to other iron sources (i.e., FeSO4, and hemoglobin (Hb)). Co-digestion with ascorbic acid (AA) and albumin was also investigated. Following gastric, duodenal, and jejunal digestion, IC-bound iron was less bioaccessible than iron delivered as FeSO4, and IC-bound iron was less bioaccessible than Hb-bound iron. IC-bound iron bioaccessibility was not affected by AA and was enhanced 2x when co-digested with a low dose of albumin. However, Caco-2 cell incubation with IC-containing digesta increased cell ferritin 2.5x more than FeSO4 alone, and less than Hb. IC with AA or with 400 mg albumin also increased cell ferritin more than IC alone, with the greatest increases observed following incubation of digesta containing IC + AA + 400 mg albumin. These results suggest IC can serve as an improved source of iron for supplementation as compared to FeSO4. These results also support further in vivo investigations of IC-based iron delivery in populations at risk of iron deficiency.
Collapse
Affiliation(s)
- Siqiong Zhong
- Department of Human Sciences, OSU Interdisciplinary Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Rachel E Kopec
- Department of Human Sciences, OSU Interdisciplinary Nutrition Program, The Ohio State University, Columbus, Ohio, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
3
|
Shang Z, Zhu Z, Wang G, Lu W, Wu B, Li Q. Pyridine-bridged cobalt tetra-aminophthalocyanine to active peroxymonosulphate for efficient degrading carbamazepine. ENVIRONMENTAL TECHNOLOGY 2024; 45:4230-4242. [PMID: 37559566 DOI: 10.1080/09593330.2023.2245541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/11/2023] [Indexed: 08/11/2023]
Abstract
In this study, each cobalt tetra-aminophthalocyanine (CoTAPc) molecule was immobilised with four isonicotinic acid (INA) molecules by amide bonding, a novel and highly efficient catalyst pyridine-bridged cobalt tetra-aminophthalocyanine (CoTAPc-TINA) was synthesised. The introduction of INA molecules promoted CoTAPc to expose more active sites, and increased the electron cloud density of cobalt ions promoting O-O bond homolysis of PMS to generate more active species, which significantly enhanced catalytic activity. With the pharmaceutical of carbamazepine (CBZ) as model pollutant, 0.1 g/L CoTAPc-TINA in dark in the presence of 0.4 mM PMS, 98.8% CBZ was removed within 10 min. However, under the same conditions the removed of CBZ was only 58.9% by CoTAPc/PMS system. Radical capture experiments combined electron paramagnetic resonance technology demonstrate that hydroxyl radicals, sulphate radicals, superoxide radicals and singlet oxygen are the main active species in the CoTAPc-TINA/PMS system. As the reaction proceeded, all aromatic intermediates were transformed to small molecular acids by these active species. This investigation provided a new insight for application of metal phthalocyanine in wastewater treatment.
Collapse
Affiliation(s)
- Zhiguo Shang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Gangqiang Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Bingyao Wu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Qijian Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Steen CJ, Niklas J, Poluektov OG, Schaller RD, Fleming GR, Utschig LM. EPR Spin-Trapping for Monitoring Temporal Dynamics of Singlet Oxygen during Photoprotection in Photosynthesis. Biochemistry 2024; 63:1214-1224. [PMID: 38679935 PMCID: PMC11080054 DOI: 10.1021/acs.biochem.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).
Collapse
Affiliation(s)
- Collin J. Steen
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jens Niklas
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Richard D. Schaller
- Center
for Nanoscale Materials, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Graham R. Fleming
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lisa M. Utschig
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. PHOTOSYNTHESIS RESEARCH 2024; 159:133-152. [PMID: 37191762 DOI: 10.1007/s11120-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre,3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy
- A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1 Building 40, Moscow, Russia, 119992
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy.
| |
Collapse
|
6
|
Zhu Z, Qian W, Shang Z, Ma X, Wang Z, Lu W, Chen W. Efficient elimination of carbamazepine using polyacrylonitrile-supported pyridine bridged iron phthalocyanine nanofibers by activating peroxymonosulfate in dark condition. J Environ Sci (China) 2024; 137:224-236. [PMID: 37980010 DOI: 10.1016/j.jes.2022.10.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2023]
Abstract
The monoaminotrinitro iron phthalocyanine (FeMATNPc) is used to connect with isonicotinic acid (INA) for amide bonding and axial coordination to synthetic a unique catalyst FeMATNPc-INA, which is loaded in polyacrylonitrile (PAN) nanofibers by electrospinning. The introduction of INA destroys the π-π conjugated stack structure in phthalocyanine molecules and exposes more active sites. The FeMATNPc-INA structure is characterized by X-ray photoelectron spectroscopy and UV-visible absorption spectrum, and the FeMATNPc-INA/PAN structure is characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The FeMATNPc-INA/PAN can effectively activate peroxymonosulfate (PMS) to eliminate carbamazepine (CBZ) within 40 minutes (PMS 1.5 mmol/L) in the dark. The effects of catalyst dosage, PMS concentration, pH and inorganic anion on the degradation of CBZ are investigated. It has been confirmed by electron paramagnetic resonance, gas chromatography-mass spectroscopy and free radical capture experiments that the catalytic system is degraded by •OH, SO4•- and Fe (IV) = O are the major active species, the singlet oxygen (1O2) is the secondary active species. The degradation process of CBZ is analyzed by ultra-high performance liquid chromatography-mass spectrometry and the aromatic compounds have been degraded to small molecular acids.
Collapse
Affiliation(s)
- Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wenjie Qian
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiguo Shang
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoji Ma
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhendong Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Lucinski R, Dobrogojski J, Ishikawa T, Adamiec M. The role of EGY2 protease in response to high light stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23243. [PMID: 38190657 DOI: 10.1071/fp23243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
In this study, we investigated the importance of one of the intramembrane proteases, EGY2, for the proper functioning of PSII under short-term high light stress conditions. EGY2 is a chloroplast intramembrane protease of the S2P family, whose absence in Arabidopsis thaliana affects PSII protein composition. The egy2 mutants exhibited a slower degradation of PsbA and decreased content of PsbC and PsbD. During exposure to high light stress, these stoichiometric changes affect the functional state of PSII, leading to its higher sensitivity to photoinhibition of the PSII reaction centre and increased heat dissipation. Furthermore, we explored the relationship between EGY2 and the pTAC16 transcription factor, which is a potential EGY2 substrate. Under light stress, WT plants showed decreased levels of pTAC16, while it remained unchanged in the egy2 mutants. This finding suggests that EGY2 may release pTAC16 from thylakoid membranes through proteolytic cleavage. We also confirmed the physical interaction between EGY2 and pTAC16 using the yeast two-hybrid system, providing evidence of EGY2's involvement in the regulation of PsbA and PsbC/PsbD operons by releasing pTAC16 from the thylakoid membrane.
Collapse
Affiliation(s)
- Robert Lucinski
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, Poznan, Poland
| | - Jedrzej Dobrogojski
- University of Life Sciences, Faculty of Agronomy, Horticulture and Bioengineering, Department of Biochemistry and Biotechnology, Poznan, Poland
| | - Takao Ishikawa
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Malgorzata Adamiec
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, Poznan, Poland
| |
Collapse
|
8
|
Braslavsky SE. Outstanding women scientists who have broadened the knowledge on biological photoreceptors. Photochem Photobiol Sci 2023; 22:2799-2815. [PMID: 37864671 DOI: 10.1007/s43630-023-00487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/23/2023]
Abstract
Short biographical sketches are given of women born before 1955 who have contributed to our knowledge on the function, structure, and molecular basis of biological photoreceptors, both energy converters and photosensors.
Collapse
Affiliation(s)
- Silvia E Braslavsky
- Max Planck Institute for Chemical Energy Conversion, 45410, Mülheim an der Ruhr, Germany.
| |
Collapse
|
9
|
Khorobrykh A. A possible relationship between the effect of factors on photoactivation of photosystem II depleted of functional Mn and cytochrome b 559. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148997. [PMID: 37506995 DOI: 10.1016/j.bbabio.2023.148997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The photoassembly of the Mn4CaO5 cluster in Mn-depleted photosystem II preparations (photoactivation) was studied under the influence of oxidants, reductants and pH. New data on the effect of these factors on the photoactivation yield are presented. The presence of the oxidant, ferricyanide, negatively affected the photoactivation yield over the entire concentration range studied (0-1 mM). In contrast to ferricyanide, the addition of the reductant, ferrocyanide, up to 1 mM resulted in an increase in the photoactivation yield. Other reductants either did not significantly affect (diphenylcarbazide) or suppressed (ascorbate) the photoactivation yield. The effect of ferrocyanide on photoactivation were found to be similar dichlorophenolindophenol. Investigation of the photoactivation yield as a function of pH revealed that the maximum yield was observed at pH 6.5 in the presence of ferrocyanide and DCPIP, and at pH 5.5 without additives. In addition, the photoactivation yield at pH 5.5 was the same without and with the addition of ferrocyanide or dichlorophenolindophenol. Although ferricyanide suppressed the photoactivation, the photoactivation yield increased in the presence of ferricyanide by shifting the pH to the acidic region. The samples contained approximately 25 % of the HP cyt b559, which was in the reduced state, as the absorbance at 559 nm was decreased upon addition of ferricyanide and subsequent addition of ferrocyanide returned the spectrum to the baseline. A possible relationship between the effect of factors on the photoactivation and the involvement of cyt b559 in the protection of PSII from oxidative damage on the donor side is discussed.
Collapse
Affiliation(s)
- Andrey Khorobrykh
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino 142290, Moscow Region, Russia.
| |
Collapse
|
10
|
Takagi D, Tani S. Impact of growth light environment on oxygen sensitivity in rice: Pseudo-first-order response of photosystem I photoinhibition to O 2 partial pressure. PHYSIOLOGIA PLANTARUM 2023; 175:e14009. [PMID: 37882280 DOI: 10.1111/ppl.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 10/27/2023]
Abstract
Photosynthetic organisms generate reactive oxygen species (ROS) during photosynthetic electron transport reactions on the thylakoid membranes within both photosystems (PSI and PSII), leading to the impairment of photosynthetic activity, known as photoinhibition. In PSI, ROS production has been suggested to follow Michaelis-Menten- or second-order reaction-dependent kinetics in response to changes in the partial pressure of O2 . However, it remains unclear whether ROS-mediated PSI photoinhibition follows the kinetics mentioned above. In this study, we aimed to elucidate the ROS production kinetics from the aspect of PSI photoinhibition in vivo. For this research objective, we investigated the O2 dependence of PSI photoinhibition by examining intact rice leaves grown under varying photon flux densities. Subsequently, we found that the degree of O2 -dependent PSI photoinhibition linearly increased in response to the increase in O2 partial pressure. Furthermore, we observed that the higher photon flux density on plant growth reduced the O2 sensitivity of PSI photoinhibition. Based on the obtained data, we investigated the O2 -dependent kinetics of PSI photoinhibition by model fitting analysis to elucidate the mechanism of PSI photoinhibition in leaves grown under various photon flux densities. Remarkably, we found that the pseudo-first-order reaction formula successfully replicated the O2 -dependent PSI photoinhibition kinetics in intact leaves. These results suggest that ROS production, which triggers PSI photoinhibition, occurs by an electron-leakage reaction from electron carriers within PSI, consistent with previous in vitro studies.
Collapse
Affiliation(s)
- Daisuke Takagi
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
- Department of Agricultural Science, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Japan
| | - Saya Tani
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| |
Collapse
|
11
|
Mattila H, Mishra S, Tyystjärvi T, Tyystjärvi E. Singlet oxygen production by photosystem II is caused by misses of the oxygen evolving complex. THE NEW PHYTOLOGIST 2023; 237:113-125. [PMID: 36161283 PMCID: PMC10092662 DOI: 10.1111/nph.18514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/10/2022] [Indexed: 06/12/2023]
Abstract
Singlet oxygen (1 O2 ) is a harmful species that functions also as a signaling molecule. In chloroplasts, 1 O2 is produced via charge recombination reactions in photosystem II, but which recombination pathway(s) produce triplet Chl and 1 O2 remains open. Furthermore, the role of 1 O2 in photoinhibition is not clear. We compared temperature dependences of 1 O2 production, photoinhibition, and recombination pathways. 1 O2 production by pumpkin thylakoids increased from -2 to +35°C, ruling out recombination of the primary charge pair as a main contributor. S2 QA - or S2 QB - recombination pathways, in turn, had too steep temperature dependences. Instead, the temperature dependence of 1 O2 production matched that of misses (failures of the oxygen (O2 ) evolving complex to advance an S-state). Photoinhibition in vitro and in vivo (also in Synechocystis), and in the presence or absence of O2 , had the same temperature dependence, but ultraviolet (UV)-radiation-caused photoinhibition showed a weaker temperature response. We suggest that the miss-associated recombination of P680 + QA - is the main producer of 1 O2 . Our results indicate three parallel photoinhibition mechanisms. The manganese mechanism dominates in UV radiation but also functions in white light. Mechanisms that depend on light absorption by Chls, having 1 O2 or long-lived P680 + as damaging agents, dominate in red light.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Sujata Mishra
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Taina Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| |
Collapse
|
12
|
Mattila H, Tyystjärvi E. Light-induced damage to photosystem II at a very low temperature (195 K) depends on singlet oxygen. PHYSIOLOGIA PLANTARUM 2022; 174:e13824. [PMID: 36377045 PMCID: PMC10099935 DOI: 10.1111/ppl.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Photosynthetic organisms, like evergreen plants, may encounter strong light at low temperatures. Light, despite being the energy source of photosynthesis, irreversibly damages photosystem II (PSII). We illuminated plant thylakoid membranes and intact cyanobacterial cells at -78.5°C and assayed PSII activity with oxygen evolution or chlorophyll fluorescence, after thawing the sample. Both UV radiation and visible light damaged PSII of pumpkin (Cucurbita maxima) thylakoids at -78.5°C, but visible-light-induced photoinhibition at -78.5°C, unlike at +20°C, proceeded only in the presence of oxygen. A strong magnetic field that would decrease triplet chlorophyll formation by recombination of the primary radical pair slowed down photoinhibition at -78.5°C, suggesting that singlet oxygen produced via recombination of the primary pair is a major contributor to photoinhibition at -78.5°C. However, a magnetic field did not affect singlet oxygen production at +25°C. Thylakoids of winter leaves of an evergreen plant, Bergenia, were less susceptible to photoinhibition both at -78.5°C and +20°C, contained high amounts of carotenoids and produced little singlet oxygen (measured at +20°C), compared to thylakoids of summer leaves. In contrast, high carotenoid amount and low singlet oxygen yield did not protect a Synechocystis mutant from photoinhibition at -78.5°C. Thylakoids isolated from Arabidopsis thaliana grown under high light, which reduces PSII antenna size, were more resistant than control plants against photoinhibition at -78.5°C but not at +20°C, although carotenoid amounts were similar. The results indicate that visible-light-induced photoinhibition at -78.5°C depends on singlet oxygen, whereas photoinhibition at +20°C is largely independent of oxygen.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
13
|
Makhneva ZK, Smolova TN, Bolshakov MA, Moskalenko AA. LH2 Complex from Sulfur Bacteria Allochromatium vinosum – Natural Singlet Oxygen Sensor. BIOCHEMISTRY (MOSCOW) 2022; 87:1159-1168. [DOI: 10.1134/s0006297922100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Rodriguez-Heredia M, Saccon F, Wilson S, Finazzi G, Ruban AV, Hanke GT. Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions. PLANT PHYSIOLOGY 2022; 188:1028-1042. [PMID: 35060611 PMCID: PMC8825262 DOI: 10.1093/plphys/kiab550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Plant tolerance to high light and oxidative stress is increased by overexpression of the photosynthetic enzyme Ferredoxin:NADP(H) reductase (FNR), but the specific mechanism of FNR-mediated protection remains enigmatic. It has also been reported that the localization of this enzyme within the chloroplast is related to its role in stress tolerance. Here, we dissected the impact of FNR content and location on photoinactivation of photosystem I (PSI) and photosystem II (PSII) during high light stress of Arabidopsis (Arabidopsis thaliana). The reaction center of PSII is efficiently turned over during light stress, while damage to PSI takes much longer to repair. Our results indicate a PSI sepcific effect, where efficient oxidation of the PSI primary donor (P700) upon transition from darkness to light, depends on FNR recruitment to the thylakoid membrane tether proteins: thylakoid rhodanase-like protein (TROL) and translocon at the inner envelope of chloroplasts 62 (Tic62). When these interactions were disrupted, PSI photoinactivation occurred. In contrast, there was a moderate delay in the onset of PSII damage. Based on measurements of ΔpH formation and cyclic electron flow, we propose that FNR location influences the speed at which photosynthetic control is induced, resulting in specific impact on PSI damage. Membrane tethering of FNR therefore plays a role in alleviating high light stress, by regulating electron distribution during short-term responses to light.
Collapse
Affiliation(s)
| | - Francesco Saccon
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Sam Wilson
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National de Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Alexander V Ruban
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Guy T Hanke
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
15
|
Viola S, Roseby W, Santabarbara S, Nürnberg D, Assunção R, Dau H, Sellés J, Boussac A, Fantuzzi A, Rutherford AW. Impact of energy limitations on function and resilience in long-wavelength Photosystem II. eLife 2022; 11:79890. [PMID: 35852834 PMCID: PMC9439682 DOI: 10.7554/elife.79890] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 01/06/2023] Open
Abstract
Photosystem II (PSII) uses the energy from red light to split water and reduce quinone, an energy-demanding process based on chlorophyll a (Chl-a) photochemistry. Two types of cyanobacterial PSII can use chlorophyll d (Chl-d) and chlorophyll f (Chl-f) to perform the same reactions using lower energy, far-red light. PSII from Acaryochloris marina has Chl-d replacing all but one of its 35 Chl-a, while PSII from Chroococcidiopsis thermalis, a facultative far-red species, has just 4 Chl-f and 1 Chl-d and 30 Chl-a. From bioenergetic considerations, the far-red PSII were predicted to lose photochemical efficiency and/or resilience to photodamage. Here, we compare enzyme turnover efficiency, forward electron transfer, back-reactions and photodamage in Chl-f-PSII, Chl-d-PSII, and Chl-a-PSII. We show that: (i) all types of PSII have a comparable efficiency in enzyme turnover; (ii) the modified energy gaps on the acceptor side of Chl-d-PSII favour recombination via PD1+Phe- repopulation, leading to increased singlet oxygen production and greater sensitivity to high-light damage compared to Chl-a-PSII and Chl-f-PSII; (iii) the acceptor-side energy gaps in Chl-f-PSII are tuned to avoid harmful back reactions, favouring resilience to photodamage over efficiency of light usage. The results are explained by the differences in the redox tuning of the electron transfer cofactors Phe and QA and in the number and layout of the chlorophylls that share the excitation energy with the primary electron donor. PSII has adapted to lower energy in two distinct ways, each appropriate for its specific environment but with different functional penalties.
Collapse
Affiliation(s)
- Stefania Viola
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - William Roseby
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | | | | | | | - Holger Dau
- Physics Department, Freie Universität BerlinBerlinGermany
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne UniversitéParisFrance
| | - Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR9198, CEA SaclayGif-Sur-YvetteFrance
| | - Andrea Fantuzzi
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | | |
Collapse
|
16
|
Makhneva ZK, Bolshakov MA, Moskalenko AA. Carotenoids Do Not Protect Bacteriochlorophylls in Isolated Light-Harvesting LH2 Complexes of Photosynthetic Bacteria from Destructive Interactions with Singlet Oxygen. Molecules 2021; 26:5120. [PMID: 34500552 PMCID: PMC8434301 DOI: 10.3390/molecules26175120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
The effect of singlet oxygen on light-harvesting (LH) complexes has been studied for a number of sulfur (S+) and nonsulfur (S-) photosynthetic bacteria. The visible/near-IR absorption spectra of the standard LH2 complexes (B800-850) of Allochromatium (Alc.) vinosum (S+), Rhodobacter (Rba.) sphaeroides (S-), Rhodoblastus (Rbl.) acidophilus (S-), and Rhodopseudomonas (Rps.) palustris (S-), two types LH2/LH3 (B800-850 and B800-830) of Thiorhodospira (T.) sibirica (S+), and an unusual LH2 complex (B800-827) of Marichromatium (Mch.) purpuratum (S+) or the LH1 complex from Rhodospirillum (Rsp.) rubrum (S-) were measured in aqueous buffer suspensions in the presence of singlet oxygen generated by the illumination of the dye Rose Bengal (RB). The content of carotenoids in the samples was determined using HPLC analysis. The LH2 complex of Alc. vinosum and T. sibirica with a reduced content of carotenoids was obtained from cells grown in the presence of diphenylamine (DPA), and LH complexes were obtained from the carotenoidless mutant of Rba. sphaeroides R26.1 and Rps. rubrum G9. We found that LH2 complexes containing a complete set of carotenoids were quite resistant to the destructive action of singlet oxygen in the case of Rba. sphaeroides and Mch. purpuratum. Complexes of other bacteria were much less stable, which can be judged by a strong irreversible decrease in the bacteriochlorophyll (BChl) absorption bands (at 850 or 830 nm, respectively) for sulfur bacteria and absorption bands (at 850 and 800 nm) for nonsulfur bacteria. Simultaneously, we observe the appearance of the oxidized product 3-acetyl-chlorophyll (AcChl) absorbing near 700 nm. Moreover, a decrease in the amount of carotenoids enhanced the spectral stability to the action of singlet oxygen of the LH2 and LH3 complexes from sulfur bacteria and kept it at the same level as in the control samples for carotenoidless mutants of nonsulfur bacteria. These results are discussed in terms of the current hypothesis on the protective functions of carotenoids in bacterial photosynthesis. We suggest that the ability of carotenoids to quench singlet oxygen (well-established in vitro) is not well realized in photosynthetic bacteria. We compared the oxidation of BChl850 in LH2 complexes of sulfur bacteria under the action of singlet oxygen (in the presence of 50 μM RB) or blue light absorbed by carotenoids. These processes are very similar: {[BChl + (RB or carotenoid) + light] + O2} → AcChl. We speculate that carotenoids are capable of generating singlet oxygen when illuminated. The mechanism of this process is not yet clear.
Collapse
Affiliation(s)
| | | | - Andrey A. Moskalenko
- Institute of Basic Biological Problems RAS, 142290 Pushchino, Russia; (Z.K.M.); (M.A.B.)
| |
Collapse
|
17
|
Zavafer A. A theoretical framework of the hybrid mechanism of photosystem II photodamage. PHOTOSYNTHESIS RESEARCH 2021; 149:107-120. [PMID: 34338941 DOI: 10.1007/s11120-021-00843-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Photodamage of photosystem II is a significant physiological process that is prevalent in the fields of photobiology, photosynthesis research and plant/algal stress. Since its discovery, numerous efforts have been devoted to determine the causes and mechanisms of action of photosystem II photodamage. There are two contrasting hypotheses to explain photodamage: (1) the excitation pressure induced by light absorption by the photosynthetic pigments and (2) direct photodamage of the Mn cluster located at the water-splitting site, which is independent of excitation pressure. While these two hypotheses seemed mutually exclusive, during the last decade, several independent works have proposed an alternative approach indicating that both hypotheses are valid. This was termed the dual hypothesis of photosystem II photodamage, and it postulates that both excess excitation and direct Mn photodamage operate at the same time, independently or in a synergic manner, depending on the type of sample, temperature, light spectrum, or other environmental stressors. In this mini-review, a brief summary of the contrasting hypotheses is presented, followed by recapitulation of key discoveries in the field of photosystem II photodamage of the last decade, and a synthesis of how these works support a full hybrid framework (operation of several mechanisms and their permutations) to explain PSII photodamage. All these are in recognition of Prof. Wah Soon Chow (the Australian National University), one of the key proposers of the dual hypothesis.
Collapse
Affiliation(s)
- Alonso Zavafer
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia.
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
18
|
Havurinne V, Handrich M, Antinluoma M, Khorobrykh S, Gould SB, Tyystjärvi E. Genetic autonomy and low singlet oxygen yield support kleptoplast functionality in photosynthetic sea slugs. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5553-5568. [PMID: 33989402 PMCID: PMC8318255 DOI: 10.1093/jxb/erab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/12/2021] [Indexed: 05/04/2023]
Abstract
The kleptoplastic sea slug Elysia chlorotica consumes Vaucheria litorea, stealing its plastids, which then photosynthesize inside the animal cells for months. We investigated the properties of V. litorea plastids to understand how they withstand the rigors of photosynthesis in isolation. Transcription of specific genes in laboratory-isolated V. litorea plastids was monitored for 7 days. The involvement of plastid-encoded FtsH, a key plastid maintenance protease, in recovery from photoinhibition in V. litorea was estimated in cycloheximide-treated cells. In vitro comparison of V. litorea and spinach thylakoids was applied to investigate reactive oxygen species formation in V. litorea. In comparison to other tested genes, the transcripts of ftsH and translation elongation factor EF-Tu (tufA) decreased slowly in isolated V. litorea plastids. Higher levels of FtsH were also evident in cycloheximide-treated cells during recovery from photoinhibition. Charge recombination in PSII of V. litorea was found to be fine-tuned to produce only small quantities of singlet oxygen, and the plastids also contained reactive oxygen species-protective compounds. Our results support the view that the genetic characteristics of the plastids are crucial in creating a photosynthetic sea slug. The plastid's autonomous repair machinery is likely enhanced by low singlet oxygen production and elevated expression of FtsH.
Collapse
Affiliation(s)
- Vesa Havurinne
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Maria Handrich
- Department of Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Mikko Antinluoma
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sergey Khorobrykh
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sven B Gould
- Department of Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Esa Tyystjärvi
- Department of Biotechnology/Molecular Plant Biology, University of Turku, Turku, Finland
- Correspondence:
| |
Collapse
|
19
|
Tola AJ, Jaballi A, Missihoun TD. Protein Carbonylation: Emerging Roles in Plant Redox Biology and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1451. [PMID: 34371653 PMCID: PMC8309296 DOI: 10.3390/plants10071451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Plants are sessile in nature and they perceive and react to environmental stresses such as abiotic and biotic factors. These induce a change in the cellular homeostasis of reactive oxygen species (ROS). ROS are known to react with cellular components, including DNA, lipids, and proteins, and to interfere with hormone signaling via several post-translational modifications (PTMs). Protein carbonylation (PC) is a non-enzymatic and irreversible PTM induced by ROS. The non-enzymatic feature of the carbonylation reaction has slowed the efforts to identify functions regulated by PC in plants. Yet, in prokaryotic and animal cells, studies have shown the relevance of protein carbonylation as a signal transduction mechanism in physiological processes including hydrogen peroxide sensing, cell proliferation and survival, ferroptosis, and antioxidant response. In this review, we provide a detailed update on the most recent findings pertaining to the role of PC and its implications in various physiological processes in plants. By leveraging the progress made in bacteria and animals, we highlight the main challenges in studying the impacts of carbonylation on protein functions in vivo and the knowledge gap in plants. Inspired by the success stories in animal sciences, we then suggest a few approaches that could be undertaken to overcome these challenges in plant research. Overall, this review describes the state of protein carbonylation research in plants and proposes new research avenues on the link between protein carbonylation and plant redox biology.
Collapse
Affiliation(s)
| | | | - Tagnon D. Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada; (A.J.T.); (A.J.)
| |
Collapse
|
20
|
Rehman AU, Bashir F, Ayaydin F, Kóta Z, Páli T, Vass I. Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. PHYSIOLOGIA PLANTARUM 2021; 172:7-18. [PMID: 33161571 DOI: 10.1111/ppl.13265] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 05/24/2023]
Abstract
Proline is a versatile plant metabolite, which is produced in large amounts in plants exposed to osmotic and oxidative stress. Proline has been shown to provide protection against various reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals. On the other hand, its protective effect against singlet oxygen has been debated, and it is considered ineffective against superoxide. Here we used various methods for the detection of singlet oxygen (electron paramagnetic resonance, EPR, spin trapping by 2,2,6,6-tetramethyl-4-piperidone, fluorescence probing by singlet oxygen sensor green, SOSG, and oxygen uptake due to chemical trapping) and superoxide (oxygen uptake due to oxygen reduction) in vitro and in isolated thylakoids. We demonstrated that proline does quench both singlet oxygen and superoxide in vitro. By comparing the effects of chemical scavengers and physical quenchers, we concluded that proline eliminates singlet oxygen via a physical mechanism, with a bimolecular quenching rate of ca. 1.5-4 106 M-1 s-1 . Our data also show that proline can eliminate superoxide in vitro in a process that is likely to proceed via an electron transfer reaction. We could also show that proline does quench both singlet oxygen and superoxide produced in isolated thylakoids. The scavenging efficiency of proline is relatively small on a molar basis, but considering its presence in high amounts in plant cells under stress conditions it may provide a physiologically relevant contribution to ROS scavenging, supplementing other nonenzymatic ROS scavengers of plant cells.
Collapse
Affiliation(s)
- Ateeq Ur Rehman
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Faiza Bashir
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Ph.D. School in Biology of University of Szeged, Szeged, Hungary
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Centre, Szeged, Hungary
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Imre Vass
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
21
|
Sreeharsha RV, Venkata Mohan S. Symbiotic integration of bioprocesses to design a self-sustainable life supporting ecosystem in a circular economy framework. BIORESOURCE TECHNOLOGY 2021; 326:124712. [PMID: 33517050 DOI: 10.1016/j.biortech.2021.124712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Climate change, resource depletion and unsustainable crop productivity are major challenges that mankind is currently facing. Natural ecosystems of earth's biosphere are becoming vulnerable and there is a need to design Bioregenerative Life Support Systems (BLSS) which are ecologically engineered microcosms that could effectively deal with problems associated with urbanization and industrialization in a sustainable manner. The principles of BLSS could be integrated with waste fed biorefineries and solar energy to create a self-sustainable bioregenerative ecosystem (SSBE). Such engineered ecosystems will have potential to fulfil urban life essentials and climate change mitigation thus generating ecologically smart and resilient communities which can strengthen the global economy. This article provides a detailed overview on SSBE framework and its improvement in the contemporary era to achieve circular bioeconomy by means of effective resource recycling.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Bioengineering and Environmental Science Laboratory, Department of Energy and Environmental, Engineering, CSIR- Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Laboratory, Department of Energy and Environmental, Engineering, CSIR- Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| |
Collapse
|
22
|
Tavares-da-Silva E, Pereira E, Pires AS, Neves AR, Braz-Guilherme C, Marques IA, Abrantes AM, Gonçalves AC, Caramelo F, Silva-Teixeira R, Mendes F, Figueiredo A, Botelho MF. Cold Atmospheric Plasma, a Novel Approach against Bladder Cancer, with Higher Sensitivity for the High-Grade Cell Line. BIOLOGY 2021; 10:biology10010041. [PMID: 33435434 PMCID: PMC7828061 DOI: 10.3390/biology10010041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary Bladder cancer has a high incidence and mortality. Besides this, currently available therapies for this type of cancer have low efficacy and show considerable adverse effects, urging the need of new therapeutic approaches. Cold Atmospheric Plasma treatment presents itself as a promising alternative, having demonstrated antitumor effects against several types of cancer. The present work arises from a multidisciplinary team, namely, medical doctors and researchers, in an attempt to find new therapeutic strategies to fight bladder cancer. Therefore, our main objective is to evaluate Cold Atmospheric Plasma effects against bladder cancer, as well as the mechanisms by which it exerts its effects. The results obtained demonstrate that Cold Atmospheric Plasma treatment has a promising antitumor effect on bladder cancer, with higher sensitivity for the high-grade cell line. This new approach using Cold Atmospheric Plasma for the treatment of bladder cancer presents enormous clinical benefits, since it is able to selectively treat the tumor tissue, sparing the normal urothelium, with an additional glaring positive economic impact, since it entails a decrease in the cost of therapy in comparison with conventional therapeutic options. Abstract Antitumor therapies based on Cold Atmospheric Plasma (CAP) are an emerging medical field. In this work, we evaluated CAP effects on bladder cancer. Two bladder cancer cell lines were used, HT-1376 (stage III) and TCCSUP (stage IV). Cell proliferation assays were performed evaluating metabolic activity (MTT assay) and protein content (SRB assay). Cell viability, cell cycle, and mitochondrial membrane potential (Δψm) were assessed using flow cytometry. Reactive oxygen and nitrogen species (RONS) and reduced glutathione (GSH) were evaluated by fluorescence. The assays were carried out with different CAP exposure times. For both cell lines, we obtained a significant reduction in metabolic activity and protein content. There was a decrease in cell viability, as well as a cell cycle arrest in S phase. The Δψm was significantly reduced. There was an increase in superoxide and nitric oxide and a decrease in peroxide contents, while GSH content did not change. These results were dependent on the exposure time, with small differences for both cell lines, but overall, they were more pronounced in the TCCSUP cell line. CAP showed to have a promising antitumor effect on bladder cancer, with higher sensitivity for the high-grade cell line.
Collapse
Affiliation(s)
- Edgar Tavares-da-Silva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Urology and Renal Transplantation, 3004-561 Coimbra, Portugal
- Correspondence: (E.T.-d.-S.); (E.P.)
| | - Eurico Pereira
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Correspondence: (E.T.-d.-S.); (E.P.)
| | - Ana S. Pires
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana R. Neves
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Project Development Office, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), PO Box 513 5600 MB Eindhoven, The Netherlands
| | - Catarina Braz-Guilherme
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- University of Porto, Faculty of Medicine, 4200-319 Porto, Portugal
| | - Inês A. Marques
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Ana M. Abrantes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana C. Gonçalves
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinic of Hematology of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Biostatistics and Medical Informatics of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Rafael Silva-Teixeira
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Fernando Mendes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Arnaldo Figueiredo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Urology and Renal Transplantation, 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| |
Collapse
|
23
|
Jin R, Li G, Sharma S, Li Y, Du X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem Rev 2020; 121:567-648. [DOI: 10.1021/acs.chemrev.0c00495] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Sachil Sharma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
24
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
25
|
Tränkner M, Jamali Jaghdani S. Minimum magnesium concentrations for photosynthetic efficiency in wheat and sunflower seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:234-243. [PMID: 31590092 DOI: 10.1016/j.plaphy.2019.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/27/2023]
Abstract
Photosynthetic processes in the chloroplast depend on the abundance of magnesium (Mg) in relatively high amounts; hence chloroplasts might react more sensitive to Mg-deficiency than other physiological processes within other organelles. Most authors suggest a critical Mg concentration to be 1.5 mg g-1 DM for biomass and yield formation. However, it is not yet elucidated whether this value also applies to photosynthetic processes. The present study focused on the response of photosynthetic processes to different Mg tissue concentrations. Wheat (Triticum aestivum) and sunflower (Helianthus annuus) plants were grown hydroponically for 10 days with 8 different levels of Mg supply (1.0, 0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01 mM Mg). Specific leaf mass, SPAD values, assimilation rate, Fv/Fm, electron transport rate and photochemical and non-photochemical quenching parameters were determined on youngest mature leaves. Tissue Mg concentrations decreased with lowering Mg supply to lowest concentrations of 0.7 mg g-1 DM in wheat leaves, but photosynthetic capacity was not affected. In sunflower leaves, lowest Mg concentrations of 0.56 mg g-1 DM were achieved and a diminished photosynthetic capacity was observed. The study shows that a Mg tissue concentration of 1.5 mg g-1 DM did not induce a negative effect on the photosynthetic capacity of wheat and sunflower leaves under our experimental conditions and hence, the critical Mg concentration for photosynthetic processes might be lower than for biomass and yield formation.
Collapse
Affiliation(s)
- Merle Tränkner
- Institute of Applied Plant Nutrition (IAPN), Georg-August University Goettingen, 37075, Goettingen, Germany.
| | - Setareh Jamali Jaghdani
- Institute of Applied Plant Nutrition (IAPN), Georg-August University Goettingen, 37075, Goettingen, Germany
| |
Collapse
|
26
|
Yanykin DV, Malferrari M, Rapino S, Venturoli G, Semenov AY, Mamedov MD. Hydroxyectoine protects Mn-depleted photosystem II against photoinhibition acting as a source of electrons. PHOTOSYNTHESIS RESEARCH 2019; 141:165-179. [PMID: 30701483 DOI: 10.1007/s11120-019-00617-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
In the present study, we have investigated the effect of hydroxyectoine (Ect-OH), a heterocyclic amino acid, on oxygen evolution in photosystem II (PS II) membrane fragments and on photoinhibition of Mn-depleted PS II (apo-WOC-PS II) preparations. The degree of photoinhibition of apo-WOC-PS II preparations was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to restore the amplitude of light-induced changes of chlorophyll fluorescence yield (∆F). It was found that Ect-OH (i) stimulates the oxygen-evolving activity of PS II, (ii) accelerates the electron transfer from exogenous electron donors (K4[Fe(CN)6], DPC, TMPD, Fe2+, and Mn2+) to the reaction center of apo-WOC-PS II, (iii) enhances the protective effect of exogenous electron donors against donor-side photoinhibition of apo-WOC-PS II preparations. It is assumed that Ect-OH can serve as an artificial electron donor for apo-WOC-PS II, which does not directly interact with either the donor or acceptor side of the reaction center. We suggest that the protein conformation in the presence of Ect-OH, which affects the extent of hydration, becomes favorable for accepting electrons from exogenous donors. To our knowledge, this is the first study dealing with redox activity of Ect-OH towards photosynthetic pigment-protein complexes.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, Moscow Region, Russia, 142290.
| | - M Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - S Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - G Venturoli
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, 40126, Bologna, Italy
| | - A Yu Semenov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1-40, Moscow, Russia, 119992
| | - M D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1-40, Moscow, Russia, 119992
| |
Collapse
|
27
|
Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:353-369. [PMID: 31207496 DOI: 10.1016/j.plaphy.2019.04.039] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) - the byproducts of aerobic metabolism - influence numerous aspects of the plant life cycle and environmental response mechanisms. In plants, ROS act like a double-edged sword; they play multiple beneficial roles at low concentrations, whereas at high concentrations ROS and related redox-active compounds cause cellular damage through oxidative stress. To examine the dual role of ROS as harmful oxidants and/or crucial cellular signals, this review elaborates that (i) how plants sense and respond to ROS in various subcellular organelles and (ii) the dynamics of subsequent ROS-induced signaling processes. The recent understanding of crosstalk between various cellular compartments in mediating their redox state spatially and temporally is discussed. Emphasis on the beneficial effects of ROS in maintaining cellular energy homeostasis, regulating diverse cellular functions, and activating acclimation responses in plants exposed to abiotic and biotic stresses are described. The comprehensive view of cellular ROS dynamics covering the breadth and versatility of ROS will contribute to understanding the complexity of apparently contradictory ROS roles in plant physiological responses in less than optimum environments.
Collapse
Affiliation(s)
- Muhammad Ansar Farooq
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Adnan Khan Niazi
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
28
|
Shevela D, Ananyev G, Vatland AK, Arnold J, Mamedov F, Eichacker LA, Dismukes GC, Messinger J. 'Birth defects' of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. PHYSIOLOGIA PLANTARUM 2019; 166:165-180. [PMID: 30693529 DOI: 10.1111/ppl.12932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water-oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane-inlet mass spectrometry and O2 -polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these 'PSII birth defects' in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de-etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2 -polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB -inhibitor binding, and thermoluminescence studies indicate that the decline of the high-light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA - → QB during de-etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer-range energy transfer.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Gennady Ananyev
- The Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ann K Vatland
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Janine Arnold
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, S-75237, Uppsala, Sweden
| | - Lutz A Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - G Charles Dismukes
- The Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, S-75237, Uppsala, Sweden
| |
Collapse
|
29
|
Nakamura M, Boussac A, Sugiura M. Consequences of structural modifications in cytochrome b 559 on the electron acceptor side of Photosystem II. PHOTOSYNTHESIS RESEARCH 2019; 139:475-486. [PMID: 29779191 DOI: 10.1007/s11120-018-0521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Cytb559 in Photosystem II is a heterodimeric b-type cytochrome. The subunits, PsbE and PsbF, consist each in a membrane α-helix. Mutants were previously designed and studied in Thermosynechococcus elongatus (Sugiura et al., Biochim Biophys Acta 1847:276-285, 2015) either in which an axial histidine ligand of the haem-iron was substituted for a methionine, the PsbE/H23M mutant in which the haem was lacking, or in which the haem environment was modified, the PsbE/Y19F and PsbE/T26P mutants. All these mutants remained active showing that the haem has no structural role provided that PsbE and PsbF subunits are present. Here, we have carried on the characterization of these mutants. The following results were obtained: (i) the Y19F mutation hardly affect the Em of Cytb559, whereas the T26P mutation converts the haem into a form with a Em much below 0 mV (so low that it is likely not reducible by QB-) even in an active enzyme; (ii) in the PsbE/H23M mutant, and to a less extent in PsbE/T26P mutant, the electron transfer efficiency from QA- to QB is decreased; (iii) the lower Em of the QA/QA- couple in the PsbE/H23M mutant correlates with a higher production of singlet oxygen; (iv) the superoxide and/or hydroperoxide formation was not increased in the PsbE/H23M mutant lacking the haem, whereas it was significantly larger in the PsbE/T26P. These data are discussed in view of the literature to discriminate between structural and redox roles for the haem of Cytb559 in the production of reactive oxygen species.
Collapse
Affiliation(s)
- Makoto Nakamura
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Alain Boussac
- I2BC, CNRS UMR 9198, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Miwa Sugiura
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
- Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
30
|
Takegawa Y, Nakamura M, Nakamura S, Noguchi T, Sellés J, Rutherford AW, Boussac A, Sugiura M. New insights on Chl D1 function in Photosystem II from site-directed mutants of D1/T179 in Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:297-309. [PMID: 30703365 DOI: 10.1016/j.bbabio.2019.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/17/2018] [Accepted: 01/26/2019] [Indexed: 01/16/2023]
Abstract
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1- radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA- formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430 nm during the S-state cycle.
Collapse
Affiliation(s)
- Yuki Takegawa
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Makoto Nakamura
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shin Nakamura
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Alain Boussac
- I(2)BC, UMR CNRS 9198, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Miwa Sugiura
- Graduate School of Science and Technology, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
31
|
Tang CH, Shi SH, Lin CY, Li HH, Wang WH. Using lipidomic methodology to characterize coral response to herbicide contamination and develop an early biomonitoring model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1275-1283. [PMID: 30340273 DOI: 10.1016/j.scitotenv.2018.08.296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The use of omics technologies to profile an organism's systemic response to environmental changes can improve the effectiveness of biomonitoring. In cell physiology, the dynamic characteristics of membranes can be used to identify lipid profiles that detect environmental threats and assess the health problems associated with them. The efficacy of this approach was demonstrated by profiling glycerophosphocholines (GPCs, a major membrane lipid class) in the coral Seriatopora caliendrum after exposure to Irgarol 1051. A quantitative biomonitoring model for this photosystem II herbicide was developed by correlating variations in coral lipid profile with herbicide exposure levels and degree of photoinhibition. After 4 days of exposure, the predominant changes correlated with photoinhibition were an increase in lyso-GPCs and saturated GPCs and a decrease in phosphatidylcholines with unsaturated C18 chains or a polyunsaturated C22 chain. A time-course experiment showed that most of these lipid changes occurred opposite to the initial response and that the persistent changes can be attributed to photosynthetic shortages and the membrane accommodation of photoinhibition-induced oxidative conditions. These changes can help predict risk factors leading to coral bleaching. In this study, the application of a lipidomic methodology to characterize the adaptation of coral to ambient contamination serves as a basis for advancing environmental monitoring and assessment.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan; Institute of Marine Biology, National Dong Hwa University, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan.
| | - Shu-Han Shi
- Institute of Marine Biology, National Dong Hwa University, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, National Taiwan University, 17 Hsu-Chou Rd., Taipei City 100, Taiwan
| | - Hsing-Hui Li
- National Museum of Marine Biology and Aquarium, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan; Institute of Marine Biology, National Dong Hwa University, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, 2 Hou-Wan Rd., Checheng, Pingtung 944, Taiwan; Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, 70 Lien-Hai Rd., Kaohsiung 804, Taiwan.
| |
Collapse
|
32
|
Lu Y, Yao J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci 2018; 19:E3900. [PMID: 30563149 PMCID: PMC6321325 DOI: 10.3390/ijms19123900] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis, pathogen infection, and plant defense are three important biological processes that have been investigated separately for decades. Photosynthesis generates ATP, NADPH, and carbohydrates. These resources are utilized for the synthesis of many important compounds, such as primary metabolites, defense-related hormones abscisic acid, ethylene, jasmonic acid, and salicylic acid, and antimicrobial compounds. In plants and algae, photosynthesis and key steps in the synthesis of defense-related hormones occur in chloroplasts. In addition, chloroplasts are major generators of reactive oxygen species and nitric oxide, and a site for calcium signaling. These signaling molecules are essential to plant defense as well. All plants grown naturally are attacked by pathogens. Bacterial pathogens enter host tissues through natural openings or wounds. Upon invasion, bacterial pathogens utilize a combination of different virulence factors to suppress host defense and promote pathogenicity. On the other hand, plants have developed elaborate defense mechanisms to protect themselves from pathogen infections. This review summarizes recent discoveries on defensive roles of signaling molecules made by plants (primarily in their chloroplasts), counteracting roles of chloroplast-targeted effectors and phytotoxins elicited by bacterial pathogens, and how all these molecules crosstalk and regulate photosynthesis, pathogen infection, and plant defense, using chloroplasts as a major battlefield.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
33
|
Chen YE, Ma J, Wu N, Su YQ, Zhang ZW, Yuan M, Zhang HY, Zeng XY, Yuan S. The roles of Arabidopsis proteins of Lhcb4, Lhcb5 and Lhcb6 in oxidative stress under natural light conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:267-276. [PMID: 30032070 DOI: 10.1016/j.plaphy.2018.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 05/28/2023]
Abstract
Under light conditions, highly reactive oxygen species (ROS) can be generated in the antenna systems and the reaction center of photosystems (PS). The protective roles of Lhcb4 (CP29), Lhcb5 (CP26) and Lhcb6 (CP24), three minor chlorophyll binding antenna proteins during photoinhibition have been well studied. However, their regulatory mechanisms against oxidative damages under natural light conditions remain unknown. Here we investigated their specific roles in oxidative stress responses and photosynthetic adaptation by using the Arabidopsis thaliana knockout lines grown in the field condition. All three mutant lines exhibited decreased energy-transfer efficiency from the LHCII (light-harvesting complex II) to the PSII reaction center. Oxygen evolution capacity decreased slightly in the plants lacking Lhcb4 (koLHCB4) and Lhcb6 (koLHCB6). Photosynthetic rates and fitness for the plants lacking Lhcb5 (koLHCB5) or koLHCB6 grown in the field were affected, but not in the plants lacking Lhcb4. Antioxidant analysis indicated the lowest antioxidant enzyme activities and the lowest levels of non-enzymatic antioxidants in koLHCB6 plants. In addition, koLHCB6 plants accumulated much higher levels of superoxide and hydrogen, and suffered more severe oxidative-damages in the field. Our results clearly demonstrate that Lhcb6 may be involved in alleviating oxidative stress and photoprotection under natural conditions.
Collapse
Affiliation(s)
- Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jie Ma
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Nan Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Huai-Yu Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xian-Yin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
34
|
Townsend AJ, Ware MA, Ruban AV. Dynamic interplay between photodamage and photoprotection in photosystem II. PLANT, CELL & ENVIRONMENT 2018; 41:1098-1112. [PMID: 29210070 DOI: 10.1111/pce.13107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Photoinhibition is the light-induced reduction in photosynthetic efficiency and is usually associated with damage to the D1 photosystem II (PSII) reaction centre protein. This damage must either be repaired, through the PSII repair cycle, or prevented in the first place by nonphotochemical quenching (NPQ). Both NPQ and D1 repair contribute to light tolerance because they ensure the long-term maintenance of the highest quantum yield of PSII. However, the relative contribution of each of these processes is yet to be elucidated. The application of a pulse amplitude modulation fluorescence methodology, called protective NPQ, enabled us to evaluate of the protective effectiveness of the processes. Within this study, the contribution of NPQ and D1 repair to the photoprotective capacity of Arabidopsis thaliana was elucidated by using inhibitors and mutants known to affect each process. We conclude that NPQ contributes a greater amount to the maintenance of a high PSII yield than D1 repair under short periods of illumination. This research further supports the role of protective components of NPQ during light fluctuations and the value of protective NPQ and qPd as unambiguous fluorescence parameters, as opposed to qI and Fv /Fm , for quantifying photoinactivation of reaction centre II and light tolerance of photosynthetic organisms.
Collapse
Affiliation(s)
- Alexandra J Townsend
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E14NS, UK
| | - Maxwell A Ware
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E14NS, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E14NS, UK
| |
Collapse
|
35
|
Molecular mechanisms involved in plant photoprotection. Biochem Soc Trans 2018; 46:467-482. [DOI: 10.1042/bst20170307] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 11/17/2022]
Abstract
Photosynthesis uses sunlight to convert water and carbon dioxide into biomass and oxygen. When in excess, light can be dangerous for the photosynthetic apparatus because it can cause photo-oxidative damage and decreases the efficiency of photosynthesis because of photoinhibition. Plants have evolved many photoprotective mechanisms in order to face reactive oxygen species production and thus avoid photoinhibition. These mechanisms include quenching of singlet and triplet excited states of chlorophyll, synthesis of antioxidant molecules and enzymes and repair processes for damaged photosystem II and photosystem I reaction centers. This review focuses on the mechanisms involved in photoprotection of chloroplasts through dissipation of energy absorbed in excess.
Collapse
|
36
|
Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material. MATERIALS 2017; 11:ma11010028. [PMID: 29278357 PMCID: PMC5793526 DOI: 10.3390/ma11010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/27/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
Photosynthetic reaction center proteins (RCs) are the most efficient light energy converter systems in nature. The first steps of the primary charge separation in photosynthesis take place in these proteins. Due to their unique properties, combining RCs with nano-structures promising applications can be predicted in optoelectronic systems. In the present work RCs purified from Rhodobacter sphaeroides purple bacteria were immobilized on multiwalled carbon nanotubes (CNTs). Carboxyl—and amine-functionalised CNTs were used, so different binding procedures, physical sorption and chemical sorption as well, could be applied as immobilization techniques. Light-induced singlet oxygen production was measured in the prepared photoactive biocomposites in water-based suspension by histidine mediated chemical trapping. Carbon nanotubes were applied under different conditions in order to understand their role in the equilibration of singlet oxygen concentration in the suspension. CNTs acted as effective quenchers of 1O2 either by physical (resonance) energy transfer or by chemical (oxidation) reaction and their efficiency showed dependence on the diffusion distance of 1O2.
Collapse
|
37
|
Yanykin DV, Khorobrykh AA, Terentyev VV, Klimov VV. Two pathways of photoproduction of organic hydroperoxides on the donor side of photosystem 2 in subchloroplast membrane fragments. PHOTOSYNTHESIS RESEARCH 2017; 133:129-138. [PMID: 28349346 DOI: 10.1007/s11120-017-0373-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Earlier the catalase-insensitive formation of organic hydroperoxides (via the interaction of organic radicals produced due to redox activity of P680+· (or TyrZ·) with molecular oxygen) has been found in Mn-depleted PS2 preparations (apo-WOC-PS2) by Khorobrykh et al. (Biochemistry 50:10658-10665, 2011). The present work describes a second pathway of the photoproduction of organic peroxides on the donor side of PS2. It was shown that illumination of CaCl2-treated PS2 membranes (deprived of the PS2 extrinsic proteins without removal of the Mn-containing water-oxidizing complex) (CaCl2-PS2) led to the photoproduction of highly lipophilic organic hydroperoxides (LP-OOH) (in amount corresponding to 1.5 LP-OOH per one reaction center of PS2) which significantly increased upon the addition of exogenous electron acceptor potassium ferricyanide (to 4.2 LP-OOH per one reaction center). Addition of catalase (200 U/ml) before illumination inhibited ferricyanide-induced photoproduction of hydroperoxides while no effect was obtained by adding catalase after illumination or by adding inactivated catalase before illumination. The hydroperoxide photoproduction was inhibited by the addition of exogenous electron donor for PS2, diphenylcarbazide or diuron (inhibitor of the electron transfer in PS2). The addition of exogenous hydrogen peroxide to the CaCl2-PS2 led to the production of highly lipophilic organic hydroperoxides in the dark (3.2 LP-OOH per one reaction center). We suggest that the photoproduction of highly lipophilic organic hydroperoxides in CaCl2-PS2 preparations occurs via redox activity of H2O2 produced on the donor side of PS2.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| | - A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - V V Terentyev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
38
|
Donat F, Corbel S, Alem H, Pontvianne S, Balan L, Medjahdi G, Schneider R. ZnO nanoparticles sensitized by CuInZn x S 2+x quantum dots as highly efficient solar light driven photocatalysts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1080-1093. [PMID: 28685109 PMCID: PMC5480363 DOI: 10.3762/bjnano.8.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/11/2017] [Indexed: 05/27/2023]
Abstract
Alloyed CuInZn x S2+x (ZCIS) quantum dots (QDs) were successfully associated to ZnO nanoparticles by a thermal treatment at 400 °C for 15 min. The ZnO/ZCIS composite was characterized by TEM, SEM, XRD, XPS and UV-vis absorption spectroscopy. ZCIS QDs, with an average diameter of ≈4.5 nm, were found to be homogeneously distributed at the surface of ZnO nanoparticles. ZCIS-sensitized ZnO nanoparticles exhibit a high photocatalytic activity under simulated solar light irradiation for the degradation of Orange II dye (>95% degradation after 180 min of irradiation at an intensity of 5 mW/cm2). The heterojunction built between the ZnO nanoparticle and ZCIS QDs not only extends the light adsorption range by the photocatalyst but also acts to decrease electron/hole recombination. Interestingly, the ZnO/ZCIS composite was found to produce increased amounts of H2O2 and singlet oxygen 1O2 compared to ZnO, suggesting that these reactive oxygen species play a key role in the photodegradation mechanism. The activity of the ZnO/ZCIS composite is retained at over 90% of its original value after ten successive photocatalytic runs, indicating its high stability and its potential for practical photocatalytic applications.
Collapse
Affiliation(s)
- Florian Donat
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville 54001 Nancy, France
| | - Serge Corbel
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville 54001 Nancy, France
| | - Halima Alem
- CNRS and Université de Lorraine, Institut Jean Lamour (IJL), UMR CNRS 7198, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Steve Pontvianne
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville 54001 Nancy, France
| | - Lavinia Balan
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, 15 rue Jean Starcky, 68093 Mulhouse, France
| | - Ghouti Medjahdi
- CNRS and Université de Lorraine, Institut Jean Lamour (IJL), UMR CNRS 7198, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Raphaël Schneider
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville 54001 Nancy, France
| |
Collapse
|
39
|
Li Z, Liu C, Abroshan H, Kauffman DR, Li G. Au38S2(SAdm)20 Photocatalyst for One-Step Selective Aerobic Oxidations. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00239] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhimin Li
- Gold
Catalysis Research Centre, State Key Laboratory of Catalysis, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Chao Liu
- Gold
Catalysis Research Centre, State Key Laboratory of Catalysis, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Hadi Abroshan
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Douglas R. Kauffman
- National
Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Gao Li
- Gold
Catalysis Research Centre, State Key Laboratory of Catalysis, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
40
|
Stamatakis K, Papageorgiou GC. Effects of exogenous β-carotene, a chemical scavenger of singlet oxygen, on the millisecond rise of chlorophyll a fluorescence of cyanobacterium Synechococcus sp. PCC 7942. PHOTOSYNTHESIS RESEARCH 2016; 130:317-324. [PMID: 27034066 DOI: 10.1007/s11120-016-0255-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Singlet-excited oxygen (1O 2* ) has been recognized as the most destructive member of the reactive oxygen species (ROS) which are formed during oxygenic photosynthesis by plants, algae, and cyanobacteria. ROS and 1O 2* are known to damage protein and phospholipid structures and to impair photosynthetic electron transport and de novo protein synthesis. Partial protection is afforded to photosynthetic organism by the β-carotene (β-Car) molecules which accompany chlorophyll (Chl) a in the pigment-protein complexes of Photosystem II (PS II). In this paper, we studied the effects of exogenously added β-Car on the initial kinetic rise of Chl a fluorescence (10-1000 μs, the OJ segment) from the unicellular cyanobacterium Synechococcus sp. PCC7942. We show that the added β-Car enhances Chl a fluorescence when it is excited at an intensity of 3000 μmol photons m-2 s-1 but not when excited at 1000 μmol photons m-2 s-1. Since β-Car is an efficient scavenger of 1O 2* , as well as a quencher of 3Chl a * (precursor of 1O 2* ), both of which are more abundant at higher excitations, we assume that the higher Chl a fluorescence in its presence signifies a protective effect against photo-oxidative damages of Chl proteins. The protective effect of added β-Car is not observed in O2-depleted cell suspensions. Lastly, in contrast to β-Car, a water-insoluble molecule, a water-soluble scavenger of 1O 2* , histidine, provides no protection to Chl proteins during the same time period (10-1000 μs).
Collapse
Affiliation(s)
- Kostas Stamatakis
- Institute of Biosciences and Applications, National Center of Scientific Research "Demokritos", 15310, Athens, Greece
| | - George C Papageorgiou
- Institute of Biosciences and Applications, National Center of Scientific Research "Demokritos", 15310, Athens, Greece.
| |
Collapse
|
41
|
Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. JOURNAL OF APPLIED PHYCOLOGY 2016; 29:949-982. [PMID: 28458464 PMCID: PMC5387034 DOI: 10.1007/s10811-016-0974-5] [Citation(s) in RCA: 578] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, and seasons, all of which can substantially affect their dietary value. The second issue is quantifying which fractions of algal foods are bioavailable to humans, and which factors influence how food constituents are released, ranging from food preparation through genetic differentiation in the gut microbiome. Third is understanding how algal nutritional and functional constituents interact in human metabolism. Superimposed considerations are the effects of harvesting, storage, and food processing techniques that can dramatically influence the potential nutritive value of algal-derived foods. We highlight this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product. There are rich opportunities for phycologists in this emerging field, requiring exciting new experimental and collaborative approaches.
Collapse
Affiliation(s)
- Mark L. Wells
- School of Marine Sciences, University of Maine, Orono, ME 04469 USA
| | - Philippe Potin
- Integrative Biology of Marine Models, Station Biologique Roscoff, CNRS-Université Pierre et Marie Curie, Place Georges Teissier, 29680 Roscoff, France
| | - James S. Craigie
- National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| | - John A. Raven
- Division of Plant Sciences, University of Dundee (James Hutton Inst), Invergowrie, Dundee, DD2 5DA Scotland UK
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Sabeeha S. Merchant
- Department of Chemistry & Biochemistry, University of California-Los Angeles, 607 Charles E. Young Dr., East, Los Angeles, CA 90095-1569 USA
| | - Katherine E. Helliwell
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA UK
- Marine Biological Association of the UK, Citadel Hill, Plymouth, PL1 2PB UK
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA UK
| | - Mary Ellen Camire
- School of Food and Agriculture, University of Maine, Orono, ME 04469 USA
| | - Susan H. Brawley
- School of Marine Sciences, University of Maine, Orono, ME 04469 USA
| |
Collapse
|
42
|
Yanykin DV, Khorobrykh AA, Mamedov MD, Klimov VV. Trehalose protects Mn-depleted photosystem 2 preparations against the donor-side photoinhibition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:236-243. [PMID: 27693844 DOI: 10.1016/j.jphotobiol.2016.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Abstract
Recently, it has been shown that the addition of 1M trehalose leads to the increase of the rate of oxygen photoconsumption associated with activation of electron transport in the reaction center of photosystem 2 (PS2) in Mn-depleted PS2 membranes (apo-WOC-PS2) [37]. In the present work the effect of trehalose on photoinhibition of apo-WOC-PS2 preparations (which are characterized by a high sensitivity to the donor side photoinhibition of PS2) was investigated. The degree of photoinhibition was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to reactivate the electron transport (measured by light-induced changes of chlorophyll fluorescence yield (∆F)) in apo-WOC-PS2. It was found that 1M trehalose enhanced the Mn2+-dependent suppression of photoinhibition of apo-WOC-PS2: in the presence of trehalose the addition of 0.2μM Mn2+ (corresponding to 2 Mn2+ per one reaction center) was sufficient for an almost complete suppression of the donor side photoinhibition of the complex. In the absence of trehalose it was necessary to add 100μM Mn2+ to achieve a similar result. The effect of trehalose was observed during photoinhibition of apo-WOC-PS2 at low (15μmolphotons-1m-2) and high (200μmolphotons-1m-2) light intensity. When Mn2+ was replaced by other PS2 electron donors (ferrocyanide, DPC) as well as by Ca2+ the protective effect of trehalose was not observed. It was also found that 1M trehalose decreased photoinhibition of apo-WOC-PS2 if the samples contained endogenous manganese (1-2 Mn ions per one RC was enough for the maximum protection effect). It is concluded that structural changes in PS2 caused by the addition of trehalose enhance the capability of photochemical reaction centers of apo-WOC-PS2 to accept electrons from manganese (both exogenous and endogenous), which in turn leads to a considerable suppression of the donor side photoinhibition of PS2.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia.
| | - A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - M D Mamedov
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Moscow 119991, Russia
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
43
|
Mamone L, Di Venosa G, Sáenz D, Batlle A, Casas A. Methods for the detection of reactive oxygen species employed in the identification of plant photosensitizers. Methods 2016; 109:73-80. [DOI: 10.1016/j.ymeth.2016.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 01/16/2023] Open
|
44
|
Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc Natl Acad Sci U S A 2016; 113:E3792-800. [PMID: 27303039 DOI: 10.1073/pnas.1603562113] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Formation of singlet oxygen ((1)O2) has been implicated with damaging photosystem II (PSII) that needs to undergo continuous repair to maintain photosynthetic electron transport. In addition to its damaging effect, (1)O2 has also been shown to act as a signal that triggers stress acclimation and an enhanced stress resistance. A signaling role of (1)O2 was first documented in the fluorescent (flu) mutant of Arabidopsis It strictly depends on the chloroplast protein EXECUTER1 (EX1) and happens under nonphotoinhibitory light conditions. Under severe light stress, signaling is initiated independently of EX1 by (1)O2 that is thought to be generated at the acceptor side of active PSII within the core of grana stacks. The results of the present study suggest a second source of (1)O2 formation in grana margins close to the site of chlorophyll synthesis where EX1 is localized and the disassembly of damaged and reassembly of active PSII take place. The initiation of (1)O2 signaling in grana margins depends on EX1 and the ATP-dependent zinc metalloprotease FtsH. As FtsH cleaves also the D1 protein during the disassembly of damaged PSII, EX1- and (1)O2-mediated signaling seems to be not only spatially but also functionally associated with the repair of PSII.
Collapse
|
45
|
Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B, Küpper H. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. THE NEW PHYTOLOGIST 2016; 210:1244-1258. [PMID: 26840406 DOI: 10.1111/nph.13840] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv /Fm , light-acclimated PSII activity ΦPSII , and total Chl). Trimers of the PSII light-harvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.
Collapse
Affiliation(s)
- Elisa Andresen
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre of the CAS, Branišovská 31/1160, České Budějovice, CZ-37005, Czech Republic
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Sophie Kappel
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Hans-Joachim Stärk
- Department of Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, D-04318, Germany
| | - Ulrike Riegger
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Jakub Borovec
- Department of Hydrochemistry and Ecosystem Modelling, Institute of Hydrobiology, Biology Centre of the CAS, Na Sádkách 7, České Budějovice, CZ-37005, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-37005, Czech Republic
| | - Jürgen Mattusch
- Department of Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, D-04318, Germany
| | - Andrea Heinz
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), D-06120, Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, Halle (Saale), D-06120, Germany
| | - Šárka Matoušková
- Institute of Geology of the CAS, Rozvojová 269, Praha 6 - Lysolaje, CZ-16500, Czech Republic
| | - Bryan Dickinson
- Department of Chemistry, The University of Chicago, GCIS E 319A, 929 E. 57th St., Chicago, IL, 60637, USA
| | - Hendrik Küpper
- Department of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre of the CAS, Branišovská 31/1160, České Budějovice, CZ-37005, Czech Republic
- Department of Biology, University of Konstanz, Konstanz, D-78457, Germany
- Faculty of Biological Science, University of South Bohemia, Branišovská 31/1160, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
46
|
Yoshioka-Nishimura M. Close Relationships Between the PSII Repair Cycle and Thylakoid Membrane Dynamics. PLANT & CELL PHYSIOLOGY 2016; 57:1115-22. [PMID: 27017619 DOI: 10.1093/pcp/pcw050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/26/2016] [Indexed: 05/10/2023]
Abstract
In chloroplasts, a three-dimensional network of thylakoid membranes is formed by stacked grana and interconnecting stroma thylakoids. The grana are crowded with photosynthetic proteins, where PSII-light harvesting complex II (LHCII) supercomplexes often show semi-crystalline arrays for efficient energy trapping, transfer and use. Although light is essential for photosynthesis, PSII is damaged by reactive oxygen species that are generated from primary photochemical reactions when plants are exposed to excess light. Because PSII complexes are embedded in the lipid bilayers of thylakoid membranes, their functions are affected by the conditions of the lipids. Electron paramagnetic resonance (EPR) spin trapping measurements showed that singlet oxygen was formed through peroxidation of thylakoid lipids, suggesting that lipid peroxidation can damage proteins, including the D1 protein. After photodamage, PSII is restored by a specific repair system in thylakoid membranes. In the PSII repair cycle, phosphorylation and dephosphorylation of the PSII proteins control the timing of PSII disassembly and subsequent degradation of the D1 protein. Under light stress, stacked grana turn into unstacked thylakoids with bent grana margins. These structural changes may be closely linked to the mechanisms of the PSII repair cycle because PSII can move more easily from the grana core to the stroma thylakoids through an expanded stromal gap between each thylakoid. Thus, plants modulate the structure of thylakoid membranes under high light to carry out efficient PSII repair. This review focuses on the behavior of the PSII complex and the active role of structural changes to thylakoid membranes under light stress.
Collapse
Affiliation(s)
- Miho Yoshioka-Nishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
47
|
Weisz DA, Gross ML, Pakrasi HB. The Use of Advanced Mass Spectrometry to Dissect the Life-Cycle of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:617. [PMID: 27242823 PMCID: PMC4862242 DOI: 10.3389/fpls.2016.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/22/2016] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a photosynthetic membrane-protein complex that undergoes an intricate, tightly regulated cycle of assembly, damage, and repair. The available crystal structures of cyanobacterial PSII are an essential foundation for understanding PSII function, but nonetheless provide a snapshot only of the active complex. To study aspects of the entire PSII life-cycle, mass spectrometry (MS) has emerged as a powerful tool that can be used in conjunction with biochemical techniques. In this article, we present the MS-based approaches that are used to study PSII composition, dynamics, and structure, and review the information about the PSII life-cycle that has been gained by these methods. This information includes the composition of PSII subcomplexes, discovery of accessory PSII proteins, identification of post-translational modifications and quantification of their changes under various conditions, determination of the binding site of proteins not observed in PSII crystal structures, conformational changes that underlie PSII functions, and identification of water and oxygen channels within PSII. We conclude with an outlook for the opportunity of future MS contributions to PSII research.
Collapse
Affiliation(s)
- Daniel A. Weisz
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Himadri B. Pakrasi
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|
48
|
Tarahi Tabrizi S, Sawicki A, Zhou S, Luo M, Willows RD. GUN4-Protoporphyrin IX Is a Singlet Oxygen Generator with Consequences for Plastid Retrograde Signaling. J Biol Chem 2016; 291:8978-84. [PMID: 26969164 DOI: 10.1074/jbc.c116.719989] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 11/06/2022] Open
Abstract
The genomes uncoupled 4 (GUN4) protein is a nuclear-encoded, chloroplast-localized, porphyrin-binding protein implicated in retrograde signaling between the chloroplast and nucleus, although its exact role in this process is still unclear. Functionally, it enhances Mg-chelatase activity in the chlorophyll biosynthesis pathway. Because GUN4 is present only in organisms that carry out oxygenic photosynthesis and because it binds protoporphyrin IX (PPIX) and Mg-PPIX, it has been suggested that it prevents production of light- and PPIX- or Mg-PPIX-dependent reactive oxygen species. A chld-1/GUN4 mutant with elevated PPIX has a light-dependent up-regulation of GUN4, implicating this protein in light-dependent sensing of PPIX, with the suggestion that GUN4 reduces PPIX-generated singlet oxygen, O2(a(1)Δg), and subsequent oxidative damage (Brzezowski, P., Schlicke, H., Richter, A., Dent, R. M., Niyogi, K. K., and Grimm, B. (2014) Plant J. 79, 285-298). In direct contrast, our results show that purified GUN4 and oxidatively damaged ChlH increase the rate of PPIX-generated singlet oxygen production in the light, by a factor of 5 and 10, respectively, when compared with PPIX alone. Additionally, the functional GUN4-PPIX-ChlH complex and ChlH-PPIX complexes generate O2(a(1)Δg) at a reduced rate when compared with GUN4-PPIX. As O2(a(1)Δg) is a potential plastid-to-nucleus signal, possibly through second messengers, light-dependent O2(a(1)Δg) generation by GUN4-PPIX is proposed to be part of a signal transduction pathway from the chloroplast to the nucleus. GUN4 thus senses the availability and flux of PPIX through the chlorophyll biosynthetic pathway and also modulates Mg-chelatase activity. The light-dependent O2(a(1)Δg) generation from GUN4-PPIX is thus proposed as the first step in retrograde signaling from the chloroplast to the nucleus.
Collapse
Affiliation(s)
- Shabnam Tarahi Tabrizi
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Artur Sawicki
- the Department of Biophysics, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland, and
| | - Shuaixiang Zhou
- the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Meizhong Luo
- the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert D Willows
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia,
| |
Collapse
|
49
|
Moussa H, Merlin C, Dezanet C, Balan L, Medjahdi G, Ben-Attia M, Schneider R. Trace amounts of Cu²⁺ ions influence ROS production and cytotoxicity of ZnO quantum dots. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:532-542. [PMID: 26619052 DOI: 10.1016/j.jhazmat.2015.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
3-Aminopropyltrimethoxysilane (APTMS) was used as ligand to prepare ZnO@APTMS, Cu(2+)-doped ZnO (ZnO:Cu@APTMS) and ZnO quantum dots (QDs) with chemisorbed Cu(2+) ions at their surface (ZnO@APTMS/Cu). The dots have a diameter of ca. 5 nm and their crystalline and phase purities and composition were established by X-ray diffraction, transmission electron microscopy, UV-visible and fluorescence spectroscopies and by X-ray photoelectron spectroscopy. The effect of Cu(2+) location on the ability of the QDs to generate reactive oxygen species (ROS) under light irradiation was investigated. Results obtained demonstrate that all dots are able to produce ROS (OH, O2(-), H2O2 and (1)O2) and that ZnO@APTMS/Cu QDs generate more OH and O2(-) radicals and H2O2 than ZnO@APTMS and ZnO:Cu@APTMS QDs probably via mechanisms associating photo-induced charge carriers and Fenton reactions. In cytotoxicity experiments conducted in the dark or under light exposure, ZnO@APTMS/Cu QDs appeared slightly more deleterious to Escherichia coli cells than the two other QDs, therefore pointing out the importance of the presence of Cu(2+) ions at the periphery of the nanocrystals. On the other hand, with the lack of photo-induced toxicity, it can be inferred that ROS production cannot explain the cytotoxicity associated to the QDs. Our study demonstrates that both the production of ROS from ZnO QDs and their toxicity may be enhanced by chemisorbed Cu(2+) ions, which could be useful for medical or photocatalytic applications.
Collapse
Affiliation(s)
- Hatem Moussa
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy, France; Laboratoire de Biosurveillance de l'Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisia
| | - Christophe Merlin
- CNRS and Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), CNRS UMR 7564, 15 Avenue du Charmois, 54500 Vandœuvre-lès-Nancy, France
| | - Clément Dezanet
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy, France
| | - Lavinia Balan
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, 15 rue Jean Starcky, 68093 Mulhouse, France
| | - Ghouti Medjahdi
- CNRS and Université de Lorraine, Institut Jean Lamour (IJL), UMR CNRS 7198, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Mossadok Ben-Attia
- Laboratoire de Biosurveillance de l'Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte, Tunisia
| | - Raphaël Schneider
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy, France.
| |
Collapse
|
50
|
Mechanisms of Superoxide Generation and Signaling in Cytochrome bc Complexes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|