1
|
Shihora A, Elias RD, Hammond JA, Ghirlando R, Deshmukh L. ALS Variants of Annexin A11's Proline-Rich Domain Impair Its S100A6-Mediated Fibril Dissolution. ACS Chem Neurosci 2023; 14:2583-2589. [PMID: 37433222 PMCID: PMC10401653 DOI: 10.1021/acschemneuro.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
Mutations in the proline-rich domain (PRD) of annexin A11 are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, and generate abundant neuronal A11 inclusions by an unknown mechanism. Here, we demonstrate that recombinant A11-PRD and its ALS-associated variants form liquidlike condensates that transform into β-sheet-rich amyloid fibrils. Surprisingly, these fibrils dissolved in the presence of S100A6, an A11 binding partner overexpressed in ALS. The ALS variants of A11-PRD showed longer fibrillization half-times and slower dissolution, even though their binding affinities for S100A6 were not significantly affected. These findings indicate a slower fibril-to-monomer exchange for these ALS variants, resulting in a decreased level of S100A6-mediated fibril dissolution. These ALS-A11 variants are thus more likely to remain aggregated despite their slower fibrillization.
Collapse
Affiliation(s)
- Aman Shihora
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Ruben D. Elias
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - John A. Hammond
- Scripps
Research Biophysics and Biochemistry Core, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Rodolfo Ghirlando
- Laboratory
of Molecular Biology, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Lalit Deshmukh
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Sung W, Nahm M, Lim SM, Noh MY, Lee S, Hwang SM, Kim YH, Park J, Oh KW, Ki CS, Kim YE, Kim SH. Clinical and genetic characteristics of amyotrophic lateral sclerosis patients with ANXA11 variants. Brain Commun 2022; 4:fcac299. [PMID: 36458208 PMCID: PMC9707645 DOI: 10.1093/braincomms/fcac299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/26/2022] [Accepted: 11/16/2022] [Indexed: 08/12/2023] Open
Abstract
Increasing genetic evidence supports the hypothesis that variants in the annexin A11 gene (ANXA11 ) contribute to amyotrophic lateral sclerosis pathogenesis. Therefore, we studied the clinical aspects of sporadic amyotrophic lateral sclerosis patients carrying ANXA11 variants. We also implemented functional experiments to verify the pathogenicity of the hotspot variants associated with amyotrophic lateral sclerosis-frontotemporal dementia. Korean patients diagnosed with amyotrophic lateral sclerosis (n = 882) underwent genetic evaluations through next-generation sequencing, which identified 16 ANXA11 variants in 26 patients. We analysed their clinical features, such as the age of onset, progression rate, initial symptoms and cognitive status. To evaluate the functional significance of the ANXA11 variants in amyotrophic lateral sclerosis-frontotemporal dementia pathology, we additionally utilized patient fibroblasts carrying frontotemporal dementia-linked ANXA11 variants (p.P36R and p.D40G ) to perform a series of in vitro studies, including calcium imaging, stress granule dynamics and protein translation. The frequency of the pathogenic or likely pathogenic variants of ANXA11 was 0.3% and the frequency of variants classified as variants of unknown significance was 2.6%. The patients with variants in the low-complexity domain presented unique clinical features, including late-onset, a high prevalence of amyotrophic lateral sclerosis-frontotemporal dementia, a fast initial progression rate and a high tendency for bulbar-onset compared with patients carrying variants in the C-terminal repeated annexin homology domains. In addition, functional studies using amyotrophic lateral sclerosis-frontotemporal dementia patient fibroblasts revealed that the ANXA11 variants p.P36R and p.D40G impaired intracellular calcium homeostasis, stress granule disassembly and protein translation. This study suggests that the clinical manifestations of amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia spectrum patients with ANXA11 variants could be distinctively characterized depending upon the location of the variant.
Collapse
Affiliation(s)
- Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sanggon Lee
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Johari M, Papadimas G, Papadopoulos C, Xirou S, Kanavaki A, Chrysanthou-Piterou M, Rusanen S, Savarese M, Hackman P, Udd B. Adult-onset dominant muscular dystrophy in Greek families caused by Annexin A11. Ann Clin Transl Neurol 2022; 9:1660-1667. [PMID: 36134701 PMCID: PMC9539373 DOI: 10.1002/acn3.51665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Mutations in the prion‐like domain of RNA binding proteins cause dysfunctional stress responses and associated aggregate pathology in patients with neurogenic and myopathic phenotypes. Recently, mutations in ANXA11 have been reported in patients with amyotrophic lateral sclerosis and multisystem proteinopathy. Here we studied families with an autosomal dominant muscle disease caused by ANXA11:c.118G > T;p.D40Y. Methods We performed deep phenotyping and exome sequencing of patients from four large Greek families, including seven affected individuals with progressive muscle disease but no family history of multi‐organ involvement or ALS. Results In our study, all patients presented with an autosomal dominant muscular dystrophy without any Paget disease of bone nor signs of frontotemporal dementia or Parkinson's disease. Histopathological analysis showed rimmed vacuoles with annexin A11 accumulations. Electron microscopy analysis showed myofibrillar abnormalities with disorganization of the sarcomeric structure and Z‐disc dissolution, and subsarcolemmal autophagic material with myeloid formations. Molecular genetic analysis revealed ANXA11:c.118G > T;p.D40Y segregating with the phenotype. Interpretation Although the pathogenic mechanisms associated with p.D40Y mutation in the prion‐like domain of Annexin A11 need to be further clarified, our study provides robust and clear genetic evidence to support the expansion of the phenotypic spectrum of ANXA11.
Collapse
Affiliation(s)
- Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - George Papadimas
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Papadopoulos
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Xirou
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Margarita Chrysanthou-Piterou
- Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
4
|
Herta T, Kersten R, Chang JC, Hubers L, Go S, Tolenaars D, Paulusma CC, Nathanson MH, Elferink RO, van de Graaf SFJ, Beuers U. Role of the IgG4-related cholangitis autoantigen annexin A11 in cholangiocyte protection. J Hepatol 2022; 76:319-331. [PMID: 34718050 PMCID: PMC10804347 DOI: 10.1016/j.jhep.2021.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Annexin A11 was identified as autoantigen in IgG4-related cholangitis (IRC), a B-cell driven disease. Annexin A11 modulates calcium-dependent exocytosis, a crucial mechanism for insertion of proteins into their target membranes. Human cholangiocytes form an apical 'biliary bicarbonate umbrella' regarded as defense against harmful hydrophobic bile acid influx. The bicarbonate secretory machinery comprises the chloride/bicarbonate exchanger AE2 and the chloride channel ANO1. We aimed to investigate the expression and function of annexin A11 in human cholangiocytes and a potential role of IgG1/IgG4-mediated autoreactivity against annexin A11 in the pathogenesis of IRC. METHODS Expression of annexin A11 in human liver was studied by immunohistochemistry and immunofluorescence. In human control and ANXA11 knockdown H69 cholangiocytes, intracellular pH, AE2 and ANO1 surface expression, and bile acid influx were examined using ratio microspectrofluorometry, cell surface biotinylation, and 22,23-3H-glycochenodeoxycholic acid permeation, respectively. The localization of annexin A11-mEmerald and ANO1-mCherry was investigated by live-cell microscopy in H69 cholangiocytes after incubation with IRC patient serum containing anti-annexin A11 IgG1/IgG4-autoantibodies or disease control serum. RESULTS Annexin A11 was strongly expressed in human cholangiocytes, but not hepatocytes. Knockdown of ANXA11 led to reduced plasma membrane expression of ANO1, but not AE2, alkalization of intracellular pH and uncontrolled bile acid influx. High intracellular calcium conditions led to annexin A11 membrane shift and colocalization with ANO1. Incubation with IRC patient serum inhibited annexin A11 membrane shift and reduced ANO1 surface expression. CONCLUSION Cholangiocellular annexin A11 mediates apical membrane abundance of the chloride channel ANO1, thereby supporting biliary bicarbonate secretion. Insertion is inhibited by IRC patient serum containing anti-annexin A11 IgG1/IgG4-autoantibodies. Anti-annexin A11 autoantibodies may contribute to the pathogenesis of IRC by weakening the 'biliary bicarbonate umbrella'. LAY SUMMARY We previously identified annexin A11 as a specific autoantigen in immunoglobulin G4-related cholangitis (IRC), a B-cell driven disease affecting the bile ducts. Human cholangiocytes are protected against harmful hydrophobic bile acid influx by a defense mechanism referred to as the 'biliary bicarbonate umbrella'. We found that annexin A11 is required for the formation of a robust bicarbonate umbrella. Binding of patient-derived annexin A11 autoantibodies inhibits annexin A11 function, possibly contributing to bile duct damage by weakening the biliary bicarbonate umbrella in patients with IRC.
Collapse
Affiliation(s)
- Toni Herta
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Remco Kersten
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands; Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Jung-Chin Chang
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Lowiek Hubers
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Simei Go
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Dagmar Tolenaars
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Ronald Oude Elferink
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Stan F J van de Graaf
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology and Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Nahm M, Lim SM, Kim YE, Park J, Noh MY, Lee S, Roh JE, Hwang SM, Park CK, Kim YH, Lim G, Lee J, Oh KW, Ki CS, Kim SH. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci Transl Med 2021; 12:12/566/eaax3993. [PMID: 33087501 DOI: 10.1126/scitranslmed.aax3993] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/15/2019] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
Dysregulation of calcium ion homeostasis and abnormal protein aggregation have been proposed as major pathogenic hallmarks underpinning selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). Recently, mutations in annexin A11 (ANXA11), a gene encoding a Ca2+-dependent phospholipid-binding protein, have been identified in familial and sporadic ALS. However, the physiological and pathophysiological roles of ANXA11 remain unknown. Here, we report functions of ANXA11 related to intracellular Ca2+ homeostasis and stress granule dynamics. We analyzed the exome sequences of 500 Korean patients with sALS and identified nine ANXA11 variants in 13 patients. The amino-terminal variants p.G38R and p.D40G within the low-complexity domain of ANXA11 enhanced aggregation propensity, whereas the carboxyl-terminal ANX domain variants p.H390P and p.R456H altered Ca2+ responses. Furthermore, all four variants in ANXA11 underwent abnormal phase separation to form droplets with aggregates and led to the alteration of the biophysical properties of ANXA11. These functional defects caused by ALS-linked variants induced alterations in both intracellular Ca2+ homeostasis and stress granule disassembly. We also revealed that p.G228Lfs*29 reduced ANXA11 expression and impaired Ca2+ homeostasis, as caused by missense variants. Ca2+-dependent interaction and coaggregation between ANXA11 and ALS-causative RNA-binding proteins, FUS and hnRNPA1, were observed in motor neuron cells and brain from a patient with ALS-FUS. The expression of ALS-linked ANXA11 variants in motor neuron cells caused cytoplasmic sequestration of endogenous FUS and triggered neuronal apoptosis. Together, our findings suggest that disease-associated ANXA11 mutations can contribute to ALS pathogenesis through toxic gain-of-function mechanisms involving abnormal protein aggregation.
Collapse
Affiliation(s)
- Minyeop Nahm
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea.,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea.,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea.,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Sanggon Lee
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ju Eun Roh
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - GyuTae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | | | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea. .,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
6
|
Yamamoto M, Kondo R, Hozumi H, Doi S, Denda M, Magari M, Kanayama N, Hatano N, Morishita R, Tokumitsu H. Identification and Biochemical Characterization of High Mobility Group Protein 20A as a Novel Ca 2+/S100A6 Target. Biomolecules 2021; 11:biom11040510. [PMID: 33808200 PMCID: PMC8103281 DOI: 10.3390/biom11040510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022] Open
Abstract
During screening of protein-protein interactions, using human protein arrays carrying 19,676 recombinant glutathione s-transferase (GST)-fused human proteins, we identified the high-mobility protein group 20A (HMG20A) as a novel S100A6 binding partner. We confirmed the Ca2+-dependent interaction of HMG20A with S100A6 by the protein array method, biotinylated S100A6 overlay, and GST-pulldown assay in vitro and in transfected COS-7 cells. Co-immunoprecipitation of S100A6 with HMG20A from HeLa cells in a Ca2+-dependent manner revealed the physiological relevance of the S100A6/HMG20A interaction. In addition, HMG20A has the ability to interact with S100A1, S100A2, and S100B in a Ca2+-dependent manner, but not with S100A4, A11, A12, and calmodulin. S100A6 binding experiments using various HMG20A mutants revealed that Ca2+/S100A6 interacts with the C-terminal region (residues 311–342) of HMG20A with stoichiometric binding (HMG20A:S100A6 dimer = 1:1). This was confirmed by the fact that a GST-HMG20A mutant lacking the S100A6 binding region (residues 311–347, HMG20A-ΔC) failed to interact with endogenous S100A6 in transfected COS-7 cells, unlike wild-type HMG20A. Taken together, these results identify, for the first time, HMG20A as a target of Ca2+/S100 proteins, and may suggest a novel linkage between Ca2+/S100 protein signaling and HMG20A function, including in the regulation of neural differentiation.
Collapse
Affiliation(s)
- Maho Yamamoto
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (M.Y.); (R.K.); (S.D.); (M.M.); (N.K.); (N.H.)
| | - Rina Kondo
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (M.Y.); (R.K.); (S.D.); (M.M.); (N.K.); (N.H.)
| | - Haruka Hozumi
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama 700-8530, Japan;
| | - Seita Doi
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (M.Y.); (R.K.); (S.D.); (M.M.); (N.K.); (N.H.)
| | - Miwako Denda
- Cell Free Sciences Co., Ltd., Matsuyama 790-8577, Japan; (M.D.); (R.M.)
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (M.Y.); (R.K.); (S.D.); (M.M.); (N.K.); (N.H.)
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (M.Y.); (R.K.); (S.D.); (M.M.); (N.K.); (N.H.)
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (M.Y.); (R.K.); (S.D.); (M.M.); (N.K.); (N.H.)
| | - Ryo Morishita
- Cell Free Sciences Co., Ltd., Matsuyama 790-8577, Japan; (M.D.); (R.M.)
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (M.Y.); (R.K.); (S.D.); (M.M.); (N.K.); (N.H.)
- Correspondence: ; Tel.: +81-86-251-8197
| |
Collapse
|
7
|
Weisz J, Uversky VN. Zooming into the Dark Side of Human Annexin-S100 Complexes: Dynamic Alliance of Flexible Partners. Int J Mol Sci 2020; 21:ijms21165879. [PMID: 32824294 PMCID: PMC7461550 DOI: 10.3390/ijms21165879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Annexins and S100 proteins form two large families of Ca2+-binding proteins. They are quite different both structurally and functionally, with S100 proteins being small (10–12 kDa) acidic regulatory proteins from the EF-hand superfamily of Ca2+-binding proteins, and with annexins being at least three-fold larger (329 ± 12 versus 98 ± 7 residues) and using non-EF-hand-based mechanism for calcium binding. Members of both families have multiple biological roles, being able to bind to a large cohort of partners and possessing a multitude of functions. Furthermore, annexins and S100 proteins can interact with each other in either a Ca2+-dependent or Ca2+-independent manner, forming functional annexin-S100 complexes. Such functional polymorphism and binding indiscrimination are rather unexpected, since structural information is available for many annexins and S100 proteins, which therefore are considered as ordered proteins that should follow the classical “one protein–one structure–one function” model. On the other hand, the ability to be engaged in a wide range of interactions with multiple, often unrelated, binding partners and possess multiple functions represent characteristic features of intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs); i.e., functional proteins or protein regions lacking unique tertiary structures. The aim of this paper is to provide an overview of the functional roles of human annexins and S100 proteins, and to use the protein intrinsic disorder perspective to explain their exceptional multifunctionality and binding promiscuity.
Collapse
Affiliation(s)
- Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-5816 (ext. 123); Fax: +1-813-974-7357
| |
Collapse
|
8
|
Abstract
S100A6 is a member of the EF-hand Ca2+-binding protein family, which plays important roles in a wide variety of Ca2+ signaling in the cells, as well as in pathophysiological conditions. Herein, we describe analytical protocols for evaluating the interaction of S100A6 with multiple target proteins in vitro, including biotinylated S100A6 overlay, glutathione-S-transferase (GST)-precipitation, surface plasmon resonance, and a GST-precipitation assay in living cells. These methods will elucidate the detailed molecular mechanisms of S100A6/target interactions and further improve our understanding of the physiological significance of S100A6-mediated Ca2+ signaling. Moreover, they may be used to evaluate other physical S100/target interactions.
Collapse
|
9
|
Identification and characterization of a centrosomal protein, FOR20 as a novel S100A6 target. Biochem Biophys Res Commun 2017; 491:980-985. [PMID: 28765046 DOI: 10.1016/j.bbrc.2017.07.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 11/21/2022]
Abstract
S100A6 is a Ca2+-signal transducer that interacts with numerous proteins and regulates their biochemical functions. Here we identified a centrosomal protein, FOR20 (FOP-related protein of 20 kDa) as a novel S100A6 target by screening protein microarrays carrying 19,676 recombinant GST-fused human proteins. Binding experiments revealed that S100A6 interacts with the N-terminal region (residues 1-30) of FOR20 in a Ca2+-dependent manner in vitro and in living cells. Several S100 proteins including S100A1, A2, A4, A11, B also exhibited Ca2+-dependent interactions with FOR20 as well as S100A6. We found that two distantly related centrosomal proteins, FOP and OFD1, also possess N-terminal regions with a significant sequence similarity to the putative S100A6-binding site (residues 1-30) in FOR20 and are capable of binding to S100A6 in a Ca2+-dependent manner. Taken together, these results may indicate that S100A6 interacts with FOR20 and related centrosomal proteins through a conserved N-terminal domain, suggesting a novel Ca2+-dependent regulation of centrosomal function.
Collapse
|
10
|
Mirsaeidi M, Gidfar S, Vu A, Schraufnagel D. Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis. J Transl Med 2016; 14:89. [PMID: 27071553 PMCID: PMC4830063 DOI: 10.1186/s12967-016-0843-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
Annexins are Ca2+-regulated phospholipid-binding proteins that play an important role in the cell life cycle, exocytosis, and apoptosis. Annexin A11 is one of the oldest vertebrate annexins that has a crucial role in sarcoidosis pathogenesis. The mechanism of effect in sarcoidosis granuloma cells may be due to alterations in apoptosis. Immune cells with a specific mutation at protein location 230 are resistant to apoptosis and consequently have continued effects on inflammation and progression of sarcoidosis. The mechanism of action of annexin A11 may be based upon alterations in delivering calcium to two different apoptosis pathways (caspase and P53).
Collapse
Affiliation(s)
- Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Miami, Miller School of Medicine, 1600 NW 10th Ave # 7060A, Miami, FL, 33136, USA.
| | - Sanaz Gidfar
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ann Vu
- Department of Medicine, University of Miami, Miami, FL, USA
| | - Dean Schraufnagel
- Division of Pulmonary and Critical Care, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Abstract
Autoantibodies are extremely promising diagnostic and prognostic biomarkers of cancer, and have the potential to promote early diagnosis and to make a large impact by improving patient outcome and decreasing mortality. Moreover, autoantibodies may be useful reagents in the identification of subjects at risk for cancer, bearing premalignant tissue changes. Great efforts are being made in many laboratories to validate diagnostic panels of autoantibodies with high sensitivity and specificity that could be useful in a clinical setting. It is likely that prospective studies of sufficiently large cohorts of patients and controls using high-throughput technology may allow the identification of biomarkers with diagnostic significance, and perhaps of discrete antigen phenotypes with clinical significance. The identification of TAAs may also be essential for the development of anticancer vaccines, because autoantibodies found in cancer sera target molecules involved in signal transduction, cell-cycle regulation, cell proliferation, and apoptosis, playing important roles in carcinogenesis. On this basis, molecular studies of antigenantibody systems in cancer promise to yield valuable information on the carcinogenic process. TAAs identified by serum antibodies in cancer sera can be natural immunogenic molecules, useful as targets for cancer immunotherapy. An important problem encountered in the practice of medicine is the identification of healthy individuals in the general population who unknowingly are at high risk of developing cancer. For the rheumatologist, a related problem is the identification of those patients with rheumatic diseases who are at high risk for developing a malignant process. These problems encountered in the fields of cancer and the rheumatic diseases can in the future be helped by new diagnostic instruments based on antibodies. The need for promoting the early diagnosis of cancer is a recognized major public health problem in need of significant research support for the validation of multiple promising but inconclusive studies, with the intention of producing diagnostic panels of autoantibodies in various types of cancers. Cancer developing in patients with rheumatic diseases is also an important problem requiring prospective longterm follow-up studies of patients with rheumatic diseases, particularly because some of the new biologic therapies seem to increase the cancer risk. It is possible that a panel of autoantibodies common to patients with cancer and the rheumatic diseases may prove to be of value in the identification of those patients with ADs at high risk for neoplasms.
Collapse
|
12
|
Lee KO, Kim WJ, Na SJ, Heo JH, Lee KY. Clinical significance of anti-annexin V antibody in acute cerebral ischemia. J Neurol Sci 2011; 305:53-6. [DOI: 10.1016/j.jns.2011.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/01/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
|
13
|
Identification of regions responsible for the open conformation of S100A10 using chimaeric S100A11-S100A10 proteins. Biochem J 2011; 434:37-48. [PMID: 21269277 DOI: 10.1042/bj20100887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
S100A11 is a dimeric EF-hand calcium-binding protein. Calcium binding to S100A11 results in a large conformational change that uncovers a broad hydrophobic surface used to interact with phospholipid-binding proteins (annexins A1 and A2) and facilitate membrane vesiculation events. In contrast with other S100 proteins, S100A10 is unable to bind calcium due to deletion and substitution of calcium-ligating residues. Despite this, calcium-free S100A10 assumes an 'open' conformation that is very similar to S100A11 in its calcium-bound state. To understand how S100A10 is able to adopt an open conformation in the absence of calcium, seven chimaeric proteins were constructed where regions from calcium-binding sites I and II, and helices II-IV in S100A11 were replaced with the corresponding regions of S100A10. The chimaeric proteins having substitutions in calcium-binding site II displayed increased hydrophobic surface exposure as assessed by bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'disulfonic acid, dipotassium salt) fluorescence and phenyl-Sepharose binding in the absence of calcium. This response is similar to that observed for Ca2+-S100A11 and calcium-free S100A10. Further, this substitution resulted in calcium-insensitive binding to annexin A2 for one chimaeric protein. The results indicate that residues within site II are important in stabilizing the open conformation of S100A10 and presentation of its target binding site. In contrast, S100A11 chimaeric proteins with helical substitutions displayed poorer hydrophobic surface exposure and, consequently, unobservable annexin A2 binding. The present study represents a first attempt to systematically understand the molecular basis for the calcium-insensitive open conformation of S100A10.
Collapse
|
14
|
Abstract
S100 proteins and annexins both constitute groups of Ca2+-binding proteins, each of which comprises more than 10 members. S100 proteins are small, dimeric, EF-hand-type Ca2+-binding proteins that exert both intracellular and extracellular functions. Within the cells, S100 proteins regulate various reactions, including phosphorylation, in response to changes in the intracellular Ca2+ concentration. Although S100 proteins are known to be associated with many diseases, exact pathological contributions have not been proven in detail. Annexins are non-EF-hand-type Ca2+-binding proteins that exhibit Ca2+-dependent binding to phospholipids and membranes in various tissues. Annexins bring different membranes into proximity and assist them to fuse, and therefore are believed to play a role in membrane trafficking and organization. Several S100 proteins and annexins are known to interact with each other in either a Ca2+-dependent or Ca2+-independent manner, and form complexes that exhibit biological activities. This review focuses on the interaction between S100 proteins and annexins, and the possible biological roles of these complexes. Recent studies have shown that S100-annexin complexes have a role in the differentiation of gonad cells and neurological disorders, such as depression. These complexes regulate the organization of membranes and vesicles, and thereby may participate in the appropriate disposition of membrane-associated proteins, including ion channels and/or receptors.
Collapse
Affiliation(s)
- Naofumi Miwa
- Department of Physiology, School of Medicine, Toho University, Tokyo, Japan
| | | | | |
Collapse
|
15
|
Abstract
Annexins and S100 proteins represent two large, but distinct, calcium-binding protein families. Annexins are made up of a highly alpha-helical core domain that binds calcium ions, allowing them to interact with phospholipid membranes. Furthermore, some annexins, such as annexins A1 and A2, contain an N-terminal region that is expelled from the core domain on calcium binding. These events allow for the interaction of the annexin N-terminus with target proteins, such as S100. In addition, when an S100 protein binds calcium ions, it undergoes a structural reorientation of its helices, exposing a hydrophobic patch capable of interacting with its targets, including the N-terminal sequences of annexins. Structural studies of the complexes between members of these two families have revealed valuable details regarding the mechanisms of the interactions, including the binding surfaces and conformation of the annexin N-terminus. However, other S100-annexin interactions, such as those between S100A11 and annexin A6, or between dicalcin and annexins A1, A2 and A5, appear to be more complicated, involving the annexin core region, perhaps in concert with the N-terminus. The diversity of these interactions indicates that multiple forms of recognition exist between S100 proteins and annexins. S100-annexin interactions have been suggested to play a role in membrane fusion events by the bridging together of two annexin proteins, bound to phospholipid membranes, by an S100 protein. The structures and differential interactions of S100-annexin complexes may indicate that this process has several possible modes of protein-protein recognition.
Collapse
|
16
|
Pattarini R, Rong Y, Qu C, Morgan JI. Distinct mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine resistance revealed by transcriptome mapping in mouse striatum. Neuroscience 2008; 155:1174-94. [PMID: 18675323 PMCID: PMC2632608 DOI: 10.1016/j.neuroscience.2008.06.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/10/2008] [Accepted: 06/20/2008] [Indexed: 12/20/2022]
Abstract
The etiology of idiopathic Parkinson's disease is thought to involve interplay between environmental factors and predisposing genetic traits, although the identification of genetic risk factors remain elusive. The neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) produces parkinsonian-like symptoms and pathology in mice and humans. As sensitivity to MPTP is genetically determined in mice this provides an opportunity to identify genes and biological mechanisms that modify the response to an exogenous agent that produces a Parkinson's disease-like condition. MPTP primarily targets dopaminergic nerve terminals in the striatum and elicits changes in striatal gene expression. Therefore, we used Affymetrix and qRT-PCR technology to characterize temporal mRNA changes in striatum in response to MPTP in genetically MPTP-sensitive, C57BL/6J, and MPTP-resistant Swiss Webster and BCL2-associated X protein (Bax)-/- mice. We identified three phases of mRNA expression changes composed of largely distinct gene sets. An early response (5 h) occurred in all strains of mice and multiple brain regions. In contrast, intermediate (24 h) and late (72 h) phases were striatum specific and much reduced in Swiss Webster, indicating these genes contribute and/or are responsive to MPTP-induced pathology. However, Bax-/- mice have robust intermediate responses. We propose a model in which the acute entry of MPP+ into dopaminergic nerve terminals damages them but is insufficient per se to kill the neurons. Rather, we suggest that the compromised nerve terminals elicit longer lasting transcriptional responses in surrounding cells involving production of molecules that feedback on the terminals to cause additional damage that results in cell death. In Swiss Webster, resistance lies upstream in the cascade of events triggered by MPTP and uncouples the acute events elicited by MPTP from the damaging secondary responses. In contrast, in Bax-/- mice resistance lies downstream in the cascade and suggests enhanced tolerance to the secondary insult rather than its attenuation.
Collapse
Affiliation(s)
- Roberto Pattarini
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Chunxu Qu
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - James I. Morgan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| |
Collapse
|
17
|
Rintala-Dempsey AC, Santamaria-Kisiel L, Liao Y, Lajoie G, Shaw GS. Insights into S100 target specificity examined by a new interaction between S100A11 and annexin A2. Biochemistry 2007; 45:14695-705. [PMID: 17144662 DOI: 10.1021/bi061754e] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S100 proteins are a group of EF-hand calcium-signaling proteins, many of which interact with members of the calcium- and phospholipid-binding annexin family of proteins. This calcium-sensitive interaction enables two neighboring membrane surfaces, complexed to different annexin proteins, to be brought into close proximity for membrane reorganization, using the S100 protein as a bridging molecule. S100A11 and S100A10 are two members of the S100 family found to interact with the N-termini of annexins A1 and A2, respectively. Despite the high degree of structural similarity between these two complexes and the sequences of the peptides, earlier studies have shown that there is little or no cross-reactivity between these two S100s and the annexin peptides. In the current work the specificity and the affinity of the interaction of the N-terminal sequences of annexins A1 and A2 with Ca2+-S100A11 were investigated. Through the use of alanine-scanning peptide array experiments and NMR spectroscopy, an approximate 5-fold tighter interaction was identified between Ca2+-S100A11 and annexin A2 (approximately 3 microM) compared to annexin A1 (approximately 15 microM). Chemical shift mapping revealed that the binding site for annexin A2 on S100A11 was similar to that observed for the annexin A1 but with distinct differences involving the C-terminus of the annexin A2 peptide. In addition, kinetic measurements based on NMR titration data showed that annexin A2 binding to Ca2+-S100A11 occurs at a comparable rate (approximately 120 s(-1)) to that observed for membrane fusion processes such as endo- and exocytosis.
Collapse
Affiliation(s)
- Anne C Rintala-Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
18
|
Santamaria-Kisiel L, Rintala-Dempsey A, Shaw G. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 2006; 396:201-14. [PMID: 16683912 PMCID: PMC1462724 DOI: 10.1042/bj20060195] [Citation(s) in RCA: 466] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 12/12/2022]
Abstract
The S100 proteins comprise at least 25 members, forming the largest group of EF-hand signalling proteins in humans. Although the proteins are expressed in many tissues, each S100 protein has generally been shown to have a preference for expression in one particular tissue or cell type. Three-dimensional structures of several S100 family members have shown that the proteins assume a dimeric structure consisting of two EF-hand motifs per monomer. Calcium binding to these S100 proteins, with the exception of S100A10, results in an approx. 40 degrees alteration in the position of helix III, exposing a broad hydrophobic surface that enables the S100 proteins to interact with a variety of target proteins. More than 90 potential target proteins have been documented for the S100 proteins, including the cytoskeletal proteins tubulin, glial fibrillary acidic protein and F-actin, which have been identified mostly from in vitro experiments. In the last 5 years, efforts have concentrated on quantifying the protein interactions of the S100 proteins, identifying in vivo protein partners and understanding the molecular specificity for target protein interactions. Furthermore, the S100 proteins are the only EF-hand proteins that are known to form both homo- and hetero-dimers, and efforts are underway to determine the stabilities of these complexes and structural rationales for their formation and potential differences in their biological roles. This review highlights both the calcium-dependent and -independent interactions of the S100 proteins, with a focus on the structures of the complexes, differences and similarities in the strengths of the interactions, and preferences for homo- compared with hetero-dimeric S100 protein assembly.
Collapse
Affiliation(s)
| | - Anne C. Rintala-Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Gary S. Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
19
|
Williams LH, McClive PJ, Van Den Bergen JA, Sinclair AH. Annexin XI co-localises with calcyclin in proliferating cells of the embryonic mouse testis. Dev Dyn 2006; 234:432-7. [PMID: 16127703 DOI: 10.1002/dvdy.20548] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mammalian sex determination relies on the expression of SRY, which triggers a tightly regulated cascade of gene expression leading to male differentiation. Many elements of this pathway remain to be identified. Here, we characterise Annexin XI (Anxa11), a gene whose major site of embryonic expression was within the undifferentiated and differentiating testis. Lower level expression was also observed in both sexes in the Müllerian and Wolffian ducts, the somitic dermamyotome, and the dorsal intermediate zone of the neural tube. Anxa11 transcripts were detected in the indifferent gonad from 10.5 days post coitum (dpc), becoming male specific as development proceeded. Expression was within the testis cords, initially in germ cells, and then in both Sertoli and germ cells. Annexin XI protein was seen in the testis cords from 12.5 dpc, localising to the cytoplasm of the Sertoli cells. Expression of calcyclin (S100a6), shown previously to interact with annexin XI in vitro, was also observed in proliferating cells of the embryonic testis, supporting a possible in vivo interaction.
Collapse
Affiliation(s)
- Louise H Williams
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
20
|
Abstract
Ca(2+) is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca(2+) balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average 1 g Ca(2+) daily from which 0.35 g is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca(2+) balance, the kidney must excrete the same amount of Ca(2+) that the small intestine absorbs. This is accomplished by a combination of filtration of Ca(2+) across the glomeruli and subsequent reabsorption of the filtered Ca(2+) along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca(2+) fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D(3)) and parathyroid hormone. Until recently, the mechanism by which Ca(2+) enter the absorptive epithelia was unknown. A major breakthrough in completing the molecular details of these pathways was the identification of the epithelial Ca(2+) channel family consisting of two members: TRPV5 and TRPV6. Functional analysis indicated that these Ca(2+) channels constitute the rate-limiting step in Ca(2+)-transporting epithelia. They form the prime target for hormonal control of the active Ca(2+) flux from the intestinal lumen or urine space to the blood compartment. This review describes the characteristics of epithelial Ca(2+) transport in general and highlights in particular the distinctive features and the physiological relevance of the new epithelial Ca(2+) channels accumulating in a comprehensive model for epithelial Ca(2+) absorption.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Moecular Life Sciences, University Medical Center Nijmegen, The Netherlands
| | | | | |
Collapse
|
21
|
Hatakeyama T, Okada M, Shimamoto S, Kubota Y, Kobayashi R. Identification of intracellular target proteins of the calcium-signaling protein S100A12. ACTA ACUST UNITED AC 2004; 271:3765-75. [PMID: 15355353 DOI: 10.1111/j.1432-1033.2004.04318.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this report, we have focused our attention on identifying intracellular mammalian proteins that bind S100A12 in a Ca2+-dependent manner. Using S100A12 affinity chromatography, we have identified cytosolic NADP+-dependent isocitrate dehydrogenase (IDH), fructose-1,6-bisphosphate aldolase A (aldolase), glyceraldehyde-3-phosphate dehydrogenese (GAPDH), annexin V, S100A9, and S100A12 itself as S100A12-binding proteins. Immunoprecipitation experiments indicated the formation of stable complexes between S100A12 and IDH, aldolase, GAPDH, annexin V and S100A9 in vivo. Surface plasmon resonance analysis showed that the binding to S100A12, of S100A12, S100A9 and annexin V, was strictly Ca2+-dependent, whereas that of GAPDH and IDH was only weakly Ca2+-dependent. To localize the site of S100A12 interaction, we examined the binding of a series of C-terminal truncation mutants to the S100A12-immobilized sensor chip. The results indicated that the S100A12-binding site on S100A12 itself is located at the C-terminus (residues 87-92). However, cross-linking experiments with the truncation mutants indicated that residues 87-92 were not essential for S100A12 dimerization. Thus, the interaction between S100A12 and S100A9 or immobilized S100A12 should not be viewed as a typical S100 homo- or heterodimerization model. Ca2+-dependent affinity chromatography revealed that C-terminal residues 75-92 are not necessary for the interaction of S100A12 with IDH, aldolase, GAPDH and annexin V. To analyze the functional properties of S100A12, we studied its action in protein folding reactions in vitro. The thermal aggregation of IDH or GAPDH was facilitated by S100A12 in the absence of Ca2+, whereas in the presence of Ca2+ the protein suppressed the aggregation of aldolase to less than 50%. These results suggest that S100A12 may have a chaperone/antichaperone-like function which is Ca2+-dependent.
Collapse
Affiliation(s)
- Takashi Hatakeyama
- Department of Signal Transduction Sciences, Kagawa University Faculty of Medicine, Japan
| | | | | | | | | |
Collapse
|
22
|
Tomas A, Futter C, Moss SE. Annexin 11 is required for midbody formation and completion of the terminal phase of cytokinesis. ACTA ACUST UNITED AC 2004; 165:813-22. [PMID: 15197175 PMCID: PMC2172404 DOI: 10.1083/jcb.200311054] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Annexins are Ca(2+)-binding, membrane-fusogenic proteins with diverse but poorly understood functions. Here, we show that during cell cycle progression annexin 11 translocates from the nucleus to the spindle poles in metaphase and to the spindle midzone in anaphase. Annexin 11 is recruited to the midbody in late telophase, where it forms part of the detergent-resistant matrix that also contains CHO1. To investigate the significance of these observations, we used RNA interference to deplete cells of annexin 11. A combination of confocal and video time-lapse microscopy revealed that cells lacking annexin 11 fail to establish a functional midbody. Instead, daughter cells remain connected by intercellular bridges that contain bundled microtubules and cytoplasmic organelles but exclude normal midbody components such as MKLP1 and Aurora B. Annexin 11-depleted cells failed to complete cytokinesis and died by apoptosis. These findings demonstrate an essential role for annexin 11 in the terminal phase of cytokinesis.
Collapse
Affiliation(s)
- Alejandra Tomas
- Division of Cell Biology, Institute of Ophthalmology, 11-43 Bath St., London EC1V 9EL, England, UK
| | | | | |
Collapse
|
23
|
Farnaes L, Ditzel HJ. Dissecting the cellular functions of annexin XI using recombinant human annexin XI-specific autoantibodies cloned by phage display. J Biol Chem 2003; 278:33120-6. [PMID: 12805373 DOI: 10.1074/jbc.m210852200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional studies of cellular proteins are often complicated by the lack of well-defined monoclonal antibodies, the production of which is hampered by the highly conserved nature of these cellular proteins across species. Annexin XI, a member of the Ca2+-dependent, phospholipid-binding protein family, is an example of such a protein and was used in studies to devise a strategy using human autoimmune phage display libraries to generate reagents for biological studies of conserved cellular proteins. An IgG phage display library was generated from bone marrow of an autoimmune patient with high serum antibody titer against annexin XI, which was identified recently as an autoantigen targeted by autoantibodies in several systemic autoimmune diseases. From this phage library, a panel of human monoclonal annexin XI-specific Fabs were isolated and applied to studies of the cellular functions of annexin XI. Confocal microscopy showed a cell cycle-specific redistribution of annexin XI from the cytoplasm to the mitotic spindle. In metaphase, annexin XI was up-regulated and costained with alpha-tubulin. The subcellular distribution of annexin XI in COS-7 cells was shown to be Ca2+-dependent, and exhibited a predominantly nuclear pattern at low concentrations and a cytoplasmic pattern at high Ca2+ concentrations. Calcyclin, found previously to bind annexin XI in vitro, in vivo coated the nuclear membrane of cultured cell lines and did not colocalize with annexin XI. Ultrastructural analysis by immunoelectron microscopy revealed that annexin XI associated with specific granules in both neutrophils and eosinophils, suggesting a role in the exocytotic pathway. Our results illuminate the multifunctional nature of human annexin XI, provide the first evidence that annexin XI associates with the mitotic spindles and might play a role in cell division, and clearly illustrate the potential of phage display-derived human autoantibodies in broader analyses of the function of highly conserved cellular proteins.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Annexins/chemistry
- Annexins/physiology
- Antibodies, Monoclonal/chemistry
- Autoantibodies/chemistry
- Autoantibodies/immunology
- Blotting, Western
- COS Cells
- Calcium/metabolism
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Fluorescein-5-isothiocyanate/pharmacology
- Fluorescent Dyes/pharmacology
- Gene Library
- HeLa Cells
- Humans
- Immunohistochemistry
- Microscopy, Confocal
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Mitosis
- Molecular Sequence Data
- Mutation
- Peptide Library
- Phospholipids/metabolism
- Protein Binding
- Recombinant Proteins/chemistry
- Sequence Homology, Amino Acid
- Spindle Apparatus/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Lauge Farnaes
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
24
|
Abstract
The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes.
Collapse
Affiliation(s)
- Steven A Farber
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
Annexins are Ca2+ and phospholipid binding proteins forming an evolutionary conserved multigene family with members of the family being expressed throughout animal and plant kingdoms. Structurally, annexins are characterized by a highly alpha-helical and tightly packed protein core domain considered to represent a Ca2+-regulated membrane binding module. Many of the annexin cores have been crystallized, and their molecular structures reveal interesting features that include the architecture of the annexin-type Ca2+ binding sites and a central hydrophilic pore proposed to function as a Ca2+ channel. In addition to the conserved core, all annexins contain a second principal domain. This domain, which NH2-terminally precedes the core, is unique for a given member of the family and most likely specifies individual annexin properties in vivo. Cellular and animal knock-out models as well as dominant-negative mutants have recently been established for a number of annexins, and the effects of such manipulations are strikingly different for different members of the family. At least for some annexins, it appears that they participate in the regulation of membrane organization and membrane traffic and the regulation of ion (Ca2+) currents across membranes or Ca2+ concentrations within cells. Although annexins lack signal sequences for secretion, some members of the family have also been identified extracellularly where they can act as receptors for serum proteases on the endothelium as well as inhibitors of neutrophil migration and blood coagulation. Finally, deregulations in annexin expression and activity have been correlated with human diseases, e.g., in acute promyelocytic leukemia and the antiphospholipid antibody syndrome, and the term annexinopathies has been coined.
Collapse
Affiliation(s)
- Volker Gerke
- Institute for Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | |
Collapse
|
26
|
Satoh H, Shibata H, Nakano Y, Kitaura Y, Maki M. ALG-2 interacts with the amino-terminal domain of annexin XI in a Ca(2+)-dependent manner. Biochem Biophys Res Commun 2002; 291:1166-72. [PMID: 11883939 DOI: 10.1006/bbrc.2002.6600] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The apoptosis-linked protein ALG-2 is a Ca(2+)-binding protein that belongs to the penta-EF-hand protein family. ALG-2 forms a homodimer, a heterodimer with another penta-EF-hand protein, peflin, and a complex with its interacting protein, named AIP1 or Alix. By yeast two-hybrid screening using human ALG-2 as bait, we isolated a cDNA of a novel ALG-2-interacting protein, which turned out to be annexin XI. Deletion analysis revealed that ALG-2 interacted with the N-terminal domain of annexin XI (AnxN), which has an amino acid sequence similar to that of the C-terminal region of AIP1/Alix. Using recombinant biotin-tagged ALG-2 and the glutathione S-transferase (GST) fusion protein of AnxN, the direct interaction was analyzed by an ALG-2 overlay assay and by real-time interaction analysis with a surface plasmon resonance (SPR) biosensor. The dissociation constant (K(d)) was estimated to be approximately 70 nM. The Ca(2+)-dependent fluorescence change of ALG-2 in the presence of the hydrophobicity fluorescent probe 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was inhibited by mixing with GST-AnxN, suggesting that the Pro/Gly/Tyr/Ala-rich hydrophobic region in AnxN masked the Ca(2+)-dependently exposed hydrophobic surface of ALG-2.
Collapse
Affiliation(s)
- Hirokazu Satoh
- Laboratory of Molecular and Cellular Regulation, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
27
|
Sopkova-de Oliveira Santos J, Oling FK, Réty S, Brisson A, Smith JC, Lewit-Bentley A. S100 protein-annexin interactions: a model of the (Anx2-p11)(2) heterotetramer complex. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:181-91. [PMID: 11108962 DOI: 10.1016/s0167-4889(00)00095-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The (Anx2)(2)(p11)(2) heterotetramer has been implicated in endo- and exocytosis in vivo and in liposome aggregation in vitro. Here we report on the modelling of the heterotetramer complex using docking algorithms. Two types of models are generated-heterotetramer and heterooctamer. On the basis of the agreement between the calculated (X-ray) electron density and the observed projected density from cryo-electron micrographs on the one hand, and calculated energy criteria on the other hand, the heterotetramer models are proposed as the most probable, and one of them is selected as the best model. Analysis of this model at an atomic level suggests that the interaction between the Anx2 core and p11 has an electrostatic character, being stabilised primarily through charged residues.
Collapse
|
28
|
Nowotny M, Bhattacharya S, Filipek A, Krezel AM, Chazin W, Kuznicki J. Characterization of the interaction of calcyclin (S100A6) and calcyclin-binding protein. J Biol Chem 2000; 275:31178-82. [PMID: 10884380 DOI: 10.1074/jbc.m001622200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calcyclin (S100A6) is an S100 calcium-binding protein whose expression is up-regulated in proliferating and differentiating cells. A novel 30-kDa protein exhibiting calcium-dependent calcyclin-binding (calcyclin-binding protein, CacyBP) had been identified, purified, and cloned previously (Filipek, A., and Kuznicki, J. (1998) J. Neurochem. 70, 1793-1798). Here, we have defined the calcyclin binding region using limited proteolysis and a set of deletion mutants of CacyBP. A fragment encompassing residues 178-229 (CacyBP-(178-229)) was capable of full binding to calcyclin. CacyBP-(178-229) was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified. The protein fragment cleaved from the glutathione S-transferase fusion protein was shown by CD to contain 5% alpha-helix, 15% beta -sheet, and 81% random coil. Fluorescence spectroscopy was used to determine calcyclin dissociation constants of 0.96 and 1.2 microm for intact CacyBP and CacyBP-(178-229), respectively, indicating that the fragment can be used for characterization of calcyclin-CacyBP interactions. NMR analysis of CacyBP-(178-229) binding-induced changes in the chemical shifts of (15)N-enriched calcyclin revealed that CacyBP binding occurs at a discrete site on calcyclin with micromolar affinity.
Collapse
Affiliation(s)
- M Nowotny
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
29
|
Jastrzebska B, Filipek A, Nowicka D, Kaczmarek L, Kúznicki J. Calcyclin (S100A6) binding protein (CacyBP) is highly expressed in brain neurons. J Histochem Cytochem 2000; 48:1195-202. [PMID: 10950876 DOI: 10.1177/002215540004800903] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The expression of a novel calcyclin (S100A6) binding protein (CacyBP) in different rat tissues was determined by Western and Northern blotting. Polyclonal antibodies against recombinant CacyBP purified from E. coli exhibited the highest reaction in the brain and weaker reaction in liver, spleen, and stomach. CacyBP immunoreactivity was also detected in lung and kidney. Densitometric analysis showed that the concentration of CacyBP in the soluble fractions of total brain and cerebellum is approximately 0.17 and 0. 34 ng/microg protein, respectively. Northern blotting with a specific cDNA probe confirmed the high level of CacyBP expression in the rat brain and lower levels in other tissues examined. Immunohistochemistry and in situ hybridization of rat brain sections revealed strong expression of CacyBP in neurons of the cerebellum, hippocampus, and cortex. The in situ hybridization detected CacyBP in hippocampus as early as P7 (postnatal day 7) and a peak of expression at P21, and the expression signal was preserved until adulthood. In the entorhinal cortex, the peak of expression was observed at P7, whereas in the cerebellum it was seen at P21. The results presented here show that CacyBP is predominantly a neuronal protein. (J Histochem Cytochem 48:1195-1202)
Collapse
Affiliation(s)
- B Jastrzebska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
30
|
Iino S, Sudo T, Niwa T, Fukasawa T, Hidaka H, Niki I. Annexin XI may be involved in Ca2+ - or GTP-gammaS-induced insulin secretion in the pancreatic beta-cell. FEBS Lett 2000; 479:46-50. [PMID: 10940386 DOI: 10.1016/s0014-5793(00)01877-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate possible involvement of annexin XI in the insulin secretory machinery. In fluorescence immunocytochemistry, annexin XI was found in the cytoplasm of pancreatic endocrine cells and a pancreatic beta-cell line, MIN6, in a granular pattern. MIN6 cells also possessed weak and diffused annexin XI immunoreactivity in the cytoplasm. Immunoelectron microscopy revealed annexin XI in the insulin granules. Insulin secretion from streptolysin-O-permeabilized MIN6 cells was inhibited by anti-annexin XI antibody, when the release was stimulated by either Ca2+ or GTP-gammaS, but not by a protein kinase C-activating phorbol ester. Inhibition of insulin release by anti-annexin XI antibody was reproduced in permeabilized rat islets. These findings suggest that annexin XI may be involved in the regulation of insulin secretion from the pancreatic beta-cells.
Collapse
Affiliation(s)
- S Iino
- First Department of Anatomy, Nagoya University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Stradal TB, Troxler H, Heizmann CW, Gimona M. Mapping the zinc ligands of S100A2 by site-directed mutagenesis. J Biol Chem 2000; 275:13219-27. [PMID: 10788426 DOI: 10.1074/jbc.275.18.13219] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S100 family proteins are characterized by short individual N and C termini and a conserved central part, harboring two Ca(2+)-binding EF-hands, one of them highly conserved among EF-hand family proteins and the other characteristic for S100 proteins. In addition to Ca(2+), several members of the S100 protein family, including S100A2, bind Zn(2+). Two regions in the amino acid sequences of S100 proteins, namely the helices of the N-terminal EF-hand motif and the very C-terminal loop are believed to be involved in Zn(2+)-binding due to the presence of histidine and/or cysteine residues. Human S100A2 contains four cysteine residues, each of them located at positions that may be important for Zn(2+) binding. We have now constructed and purified 10 cysteine-deficient mutants of human S100A2 by site-directed mutagenesis and investigated the contribution of the individual cysteine residues to Zn(2+) binding. Here we show that Cys(1(3)) (the number in parentheses indicating the position in the sequence of S100A2) is the crucial determinant for Zn(2+) binding in association with conformational changes as determined by internal tyrosine fluorescence. Solid phase Zn(2+) binding assays also revealed that the C-terminal residues Cys(3(87)) and Cys(4(94)) mediated a second type of Zn(2+) binding, not associated with detectable conformational changes in the molecule. Cys(2(22)), by contrast, which is located within the first EF hand motif affected neither Ca(2+) nor Zn(2+) binding, and a Cys "null" mutant was entirely incapable of ligating Zn(2+). These results provide new information about the mechanism and the site(s) of zinc binding in S100A2.
Collapse
Affiliation(s)
- T B Stradal
- Institute of Molecular Biology, Department of Cell Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
32
|
Niki I, Okazaki K, Iino S, Kobayashi S, Hidaka H. Calcyclin, a calcium-binding protein, which regulates insulin secretion from the permeabilized pancreatic beta-cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 426:85-9. [PMID: 9544259 DOI: 10.1007/978-1-4899-1819-2_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- I Niki
- Department of Pharmacology, Nagoya University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
33
|
Mai J, Waisman DM, Sloane BF. Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:215-30. [PMID: 10708859 DOI: 10.1016/s0167-4838(99)00274-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cysteine protease cathepsin B is upregulated in a variety of tumors, particularly at the invasive edges. Cathepsin B can degrade extracellular matrix proteins, such as collagen IV and laminin, and can activate the precursor form of urokinase plasminogen activator (uPA), perhaps thereby initiating an extracellular proteolytic cascade. Recently, we demonstrated that procathepsin B interacts with the annexin II heterotetramer (AIIt) on the surface of tumor cells. AIIt had previously been shown to interact with the serine proteases: plasminogen/plasmin and tissue-type plasminogen activator (tPA). The AIIt binding site for cathepsin B differs from that for either plasminogen/plasmin or tPA. AIIt also interacts with extracellular matrix proteins, e.g., collagen I and tenascin-C, forming a structural link between the tumor cell surface and the extracellular matrix. Interestingly, cathepsin B, plasminogen/plasmin, t-PA and tenascin-C have all been linked to tumor development. We speculate that colocalization through AIIt of proteases and their substrates on the tumor cell surface may facilitate: (1) activation of precursor forms of proteases and initiation of proteolytic cascades; and (2) selective degradation of extracellular matrix proteins. The recruitment of proteases to specific regions on the cell surface, regions where potential substrates are also bound, could well function as a 'proteolytic center' to enhance tumor cell detachment, invasion and motility.
Collapse
Affiliation(s)
- J Mai
- Department of Pharmacology, Wayne State University, School of Medicine, 540 East Canfield, Detroit, MI 48201, USA
| | | | | |
Collapse
|
34
|
Réty S, Osterloh D, Arié JP, Tabaries S, Seeman J, Russo-Marie F, Gerke V, Lewit-Bentley A. Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure 2000; 8:175-84. [PMID: 10673436 DOI: 10.1016/s0969-2126(00)00093-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND S100C (S100A11) is a member of the S100 calcium-binding protein family, the function of which is not yet entirely clear, but may include cytoskeleton assembly and dynamics. S100 proteins consist of two EF-hand calcium-binding motifs, connected by a flexible loop. Like several other members of the family, S100C forms a homodimer. A number of S100 proteins form complexes with annexins, another family of calcium-binding proteins that also bind to phospholipids. Structural studies have been undertaken to understand the basis of these interactions. RESULTS We have solved the crystal structure of a complex of calcium-loaded S100C with a synthetic peptide that corresponds to the first 14 residues of the annexin I N terminus at 2.3 A resolution. We find a stoichiometry of one peptide per S100C monomer, the entire complex structure consisting of two peptides per S100C dimer. Each peptide, however, interacts with both monomers of the S100C dimer. The two S100C molecules of the dimer are linked by a disulphide bridge. The structure is surprisingly close to that of the p11-annexin II N-terminal peptide complex solved previously. We have performed competition experiments to try to understand the specificity of the S100-annexin interaction. CONCLUSIONS By solving the structure of a second annexin N terminus-S100 protein complex, we confirmed a novel mode of interaction of S100 proteins with their target peptides; there is a one-to-one stoichiometry, where the dimeric structure of the S100 protein is, nevertheless, essential for complex formation. Our structure can provide a model for a Ca(2+)-regulated annexin I-S100C heterotetramer, possibly involved in crosslinking membrane surfaces or organising membranes during certain fusion events.
Collapse
Affiliation(s)
- S Réty
- Centre Universitaire Paris-Sud, LURE (CNRS, CEA, MENRT), Orsay, 91898, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Bactericidal, proteolytic and signal proteins released by activated neutrophils play a major role in infection fighting and inflammatory processes. These proteins are mainly stored in organelles called granules until induction of their controlled exocytosis. The present work deals with the characterization of the proteins which are secreted upon activation of human neutrophils by ionomycin and calcium. Proteins were separated by two-dimensional gel electrophoresis and identified by peptide mass fingerprinting. Almost all the previously described soluble components of neutrophil granules could be identified. Moreover, several additional proteins were shown to be secreted by activated neutrophils, namely calgranulins, human cartilage glycoprotein of 39 kDa (HC gp-39), chitotriosidase, and annexin XI. Their subcellular localization and possible functions are discussed.
Collapse
Affiliation(s)
- M Boussac
- CEA--Laboratoire de Chimie des Protéines, Grenoble, France.
| | | |
Collapse
|
36
|
Furge LL, Chen K, Cohen S. Annexin VII and annexin XI are tyrosine phosphorylated in peroxovanadate-treated dogs and in platelet-derived growth factor-treated rat vascular smooth muscle cells. J Biol Chem 1999; 274:33504-9. [PMID: 10559235 DOI: 10.1074/jbc.274.47.33504] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intraperitoneal administration of peroxovanadate results in the rapid accumulation of many tyrosine-phosphorylated proteins in the liver and kidney of treated animals. The availability of large pools of tyrosine-phosphorylated proteins derived from normal tissues facilitates the purification and identification of previously unknown targets for cellular tyrosine kinases. Using this procedure, we have thus far identified four proteins in the liver and kidney of peroxovanadate-treated dogs. Two of these, annexin VII and annexin XI, were novel and had not been previously reported to be substrates of tyrosine kinases while the remaining two, ezrin and clathrin, have been reported to be tyrosine phosphorylated in some cell culture systems. In the present study, isolated proteins were identified both by sequence analysis and immunological methods. Annexin VII and annexin XI are present in cultured rat vascular smooth muscle cells and both were tyrosine phosphorylated in response to a physiological ligand, platelet-derived growth factor-BB (PDGF-BB). Furthermore, the extent of tyrosine phosphorylation in response to PDGF-BB was augmented by the co-addition of peroxovanadate to cell cultures. In vitro phosphorylation assays showed that PDGF receptor, calcium-dependent tyrosine kinase (CADTK/Pyk-2), Src kinase, and epidermal growth factor receptor all were able to phosphorylate purified annexin VII and XI on tyrosine residues. These findings confirm the usefulness of phosphatase inhibition by peroxovanadate as a tool for identifying previously unknown physiological targets for cellular protein tyrosine kinases.
Collapse
Affiliation(s)
- L L Furge
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
37
|
Sudo T, Hidaka H. Characterization of the calcyclin (S100A6) binding site of annexin XI-A by site-directed mutagenesis. FEBS Lett 1999; 444:11-4. [PMID: 10037139 DOI: 10.1016/s0014-5793(99)00014-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Residues in annexin XI-A essential for binding of calcyclin (S100A6) were examined by site-directed mutagenesis. GST fusion proteins with the calcyclin binding site of annexin XI-A, GST-AXI 34-62 and GST-AXI 49-77 bound to calcyclin-Sepharose Ca2+-dependently. The mutants GST-AXI L52E, M55E, A56E and M59E lost the binding ability, whereas GST-AXI A57E retained the ability. These results demonstrate that the hydrophobic residues L52, M55, A56 and M59 on one side surface of the alpha-helix are critical for the binding. Assays with GST fusion proteins and synthesized peptides corresponding to the calcyclin binding site indicated that other regions around the calcyclin binding site are important to stabilize the conformation.
Collapse
Affiliation(s)
- T Sudo
- Department of Pharmacology, Nagoya University School of Medicine, Japan.
| | | |
Collapse
|
38
|
Garbuglia M, Verzini M, Donato R. Annexin VI binds S100A1 and S100B and blocks the ability of S100A1 and S100B to inhibit desmin and GFAP assemblies into intermediate filaments. Cell Calcium 1998; 24:177-91. [PMID: 9883272 DOI: 10.1016/s0143-4160(98)90127-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Annexin VI, a member of a family of Ca(2+)-dependent phospholipid- and membrane-binding proteins, interacts with the Ca(2+)-regulated EF-hand proteins, S100A1 and S100B, and blocks the ability of these two proteins to inhibit the assembly of desmin and glial fibrillary acidic protein (GFAP) into intermediate filaments in a Ca(2+)- and dose-dependent manner. S100A1 and S100B each possess one annexin VI binding site, characterized by an affinity for annexin VI in the submicromolar range. Binding of annexin VI to either S100 protein occurs at a site that appears to differ in some parts from that recognizing desmin and GFAP. As S100A1 and S100B exist in solution as homodimers in which the two monomers are related by a 2-fold symmetry axis, each of the above S100 homodimers likely crosslinks two annexin VI molecules, a situation that appears typical of all the annexin-S100 protein complexes described thus far. However, whereas in the cases of other annexin-S100 complexes the C-terminal extension of the S100 molecule appears indispensable for annexin binding, the annexin VI binding site cannot be restricted to the S100A1 and S100B C-terminal extension. We speculate that the annexin VI site on S100A1/B may only partially overlap to the desmin/GFAP site. In contrast, no effects of annexin V on the ability of S100A1 or S100B to affect the desmin and GFAP assemblies could be documented, although binding of annexin V to S100A1 and S100B could be detected at relatively high Ca2+ concentrations. The present data suggest that annexin VI might regulate S100A1 and S100B activities and vice versa.
Collapse
Affiliation(s)
- M Garbuglia
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | |
Collapse
|
39
|
Mandinova A, Atar D, Schäfer BW, Spiess M, Aebi U, Heizmann CW. Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J Cell Sci 1998; 111 ( Pt 14):2043-54. [PMID: 9645951 DOI: 10.1242/jcs.111.14.2043] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in cytosolic Ca2+ concentration control a wide range of cellular responses, and intracellular Ca2+-binding proteins are the key molecules to transduce Ca2+ signaling via interactions with different types of target proteins. Among these, S100 Ca2+-binding proteins, characterized by a common structural motif, the EF-hand, have recently attracted major interest due to their cell- and tissue-specific expression pattern and involvement in various pathological processes. The aim of our study was to identify the subcellular localization of S100 proteins in vascular smooth muscle cell lines derived from human aorta and intestinal smooth muscles, and in primary cell cultures derived from arterial smooth muscle tissue under normal conditions and after stimulation of the intracellular Ca2+ concentration. Confocal laser scanning microscopy was used with a specially designed colocalization software. Distinct intracellular localization of S100 proteins was observed: S100A6 was present in the sarcoplasmic reticulum as well as in the cell nucleus. S100A1 and S100A4 were found predominantly in the cytosol where they were strongly associated with the sarcoplasmic reticulum and with actin stress fibers. In contrast, S100A2 was located primarily in the cell nucleus. Using a sedimentation assay and subsequent electron microscopy after negative staining, we demonstrated that S100A1 directly interacts with filamentous actin in a Ca2+-dependent manner. After thapsigargin (1 microM) induced increase of the intracellular Ca2+ concentration, specific vesicular structures in the sarcoplasmic reticulum region of the cell were formed with high S100 protein content. In conclusion, we demonstrated a distinct subcellular localization pattern of S100 proteins and their interaction with actin filaments and the sarcoplasmic reticulum in human smooth muscle cells. The specific translocation of S100 proteins after intracellular Ca2+ increase supports the hypothesis that S100 proteins exert several important functions in the regulation of Ca2+ homeostasis in smooth muscle cells.
Collapse
Affiliation(s)
- A Mandinova
- Maurice E. Müller-Institute, Biocentrum, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Sudo T, Hidaka H. Regulation of calcyclin (S100A6) binding by alternative splicing in the N-terminal regulatory domain of annexin XI isoforms. J Biol Chem 1998; 273:6351-7. [PMID: 9497364 DOI: 10.1074/jbc.273.11.6351] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin XI is a Ca2+/phospholipid-binding protein that interacts with a member of S100 protein family, calcyclin (S100A6), in a Ca2+-dependent manner. There are two isoforms of annexin XI, annexin XI-A and -B, generated by alternative splicing in the N-terminal regulatory domain. To determine the role of the alternative splicing region in the calcyclin-binding, we identified and characterized its calcyclin binding site. Experiments with glutathione S-transferase fusion proteins with N-terminal sites of annexin XI-A showed the calcyclin binding site to be in residues Gln49-Thr62 of rabbit annexin XI-A, which contains part of the splicing region. A synthesized peptide corresponding to Tyr43-Thr62 of annexin XI-A inhibited the interaction of annexin XI with calcyclin in liposome co-pelleting assay. The calcyclin binding site possesses a hydrophobic residue cluster conserved among S100 binding sites of annexin I and II. Recombinant annexin XI isoforms were expressed in Sf9 cells using a baculovirus expression system. In contrast to annexin XI-A, it was found that annexin XI-B protein could not bind to calcyclin by the liposome co-pelleting assay. In Sf9 cells coexpressing calcyclin with annexin XI isoforms, the calcyclin binding was observed only for annexin XI-A isoform. These results indicate that the calcyclin binding ability of annexin XI is an annexin XI-A isoform-specific character, suggesting that annexin XI isoforms might play distinct roles in cells through each alternative splicing regions.
Collapse
Affiliation(s)
- T Sudo
- Department of Pharmacology, Nagoya University School of Medicine, Showa-ku, Nagoya, 466, Japan
| | | |
Collapse
|
41
|
Sastry M, Ketchem RR, Crescenzi O, Weber C, Lubienski MJ, Hidaka H, Chazin WJ. The three-dimensional structure of Ca(2+)-bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins. Structure 1998; 6:223-31. [PMID: 9519412 DOI: 10.1016/s0969-2126(98)00023-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Calcyclin is a member of the S100 subfamily of EF-hand Ca(2+)-binding proteins. This protein has implied roles in the regulation of cell growth and division, exhibits deregulated expression in association with cell transformation, and is found in high abundance in certain breast cancer cell lines. The novel homodimeric structural motif first identified for apo calcyclin raised the possibility that S100 proteins recognize their targets in a manner that is distinctly different from that of the prototypical EF-hand Ca2+ sensor, calmodulin. The NMR solution structure of Ca(2+)-bound calcyclin has been determined in order to identify Ca(2+)-induced structural changes and to obtain insights into the mechanism of Ca(2+)-triggered target protein recognition. RESULTS The three-dimensional structure of Ca(2+)-bound calcyclin was calculated with 1372 experimental constraints, and is represented by an ensemble of 20 structures that have a backbone root mean square deviation of 1.9 A for the eight helices. Ca(2+)-bound calcyclin has the same symmetric homodimeric fold as observed for the apo protein. The helical packing within the globular domains and the subunit interface also change little upon Ca2+ binding. A distinct homology was found between the Ca(2+)-bound states of the calcyclin subunit and the monomeric S100 protein calbindin D9k. CONCLUSIONS Only very modest Ca(2+)-induced changes are observed in the structure of calcyclin, in sharp contrast to the domain-opening that occurs in calmodulin and related Ca(2+)-sensor proteins. Thus, calcyclin, and by inference other members of the S100 family, must have a different mode for transducing Ca2+ signals and recognizing target proteins. This proposal raises significant questions concerning the purported roles of S100 proteins as Ca2+ sensors.
Collapse
Affiliation(s)
- M Sastry
- Department of Molecular Biology (MB-9), Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- V Gerke
- Institute for Medical Biochemistry, ZMBE, University of Münster, Germany
| | | |
Collapse
|
43
|
Liu L, Tao JQ, Zimmerman UJ. Annexin II binds to the membrane of A549 cells in a calcium-dependent and calcium-independent manner. Cell Signal 1997; 9:299-304. [PMID: 9218131 DOI: 10.1016/s0898-6568(97)89891-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the nature of annexin II binding to the biological membranes using a lung epithelium-derived cell line A549. The cytosolic and membrane fractions of A549 cells were separated in the presence of 5 mM EGTA. Both fractions contain annexin II monomer and tetramer as evaluated by western blots using specific monoclonal antibodies against p36 and p11 subunits of annexin II. A substantial amount of annexin II was associated with the membrane fraction even after extensive washing with EGTA buffer, indicating the presence of two pools of annexin II. The EGTA-resistant membrane-bound annexin II could be partially extracted by 1% Triton X-100 or 60 mM n-octyl-beta-D-glucopyranoside, and completely by 30 mM CHAPS or 0.1% deoxycholate. This fraction of annexin II was also extracted by 0.1 M Na2CO3, pH 11 and partitioned into the aqueous phase after being treated with Triton X-114, demonstrating that the EGTA-resistant annexin II is a peripheral membrane protein. When the cells were lysed in varying concentrations of Ca2+, annexin II translocated from cytosolic fraction to membrane fraction at 4-25 microM Ca2+. To identify proteins closely associated with annexin II the membrane fraction was treated with the bifunctional chemical cross-linker disulfosuccinimidyl tartarate, followed by western blot analysis using anti-p36 or anti-p11 antibodies. We find that both p36 and p11 were cross-linked to a 51 kDa protein. In addition, p11 also binds to several proteins with molecular mass of 91, 65, 40 and 36 kDa. Our results suggest that annexin II may bind to the A549 cell membranes via specific membrane-associated proteins.
Collapse
Affiliation(s)
- L Liu
- Institute for Environmental Medicine, University of Pennsylvania, Medical Center, Philadelphia 19104, USA
| | | | | |
Collapse
|
44
|
Potts BC, Carlström G, Okazaki K, Hidaka H, Chazin WJ. 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta. Protein Sci 1996; 5:2162-74. [PMID: 8931135 PMCID: PMC2143283 DOI: 10.1002/pro.5560051103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The homodimeric S100 protein calcyclin has been studied in the apo state by two-dimensional 1H NMR spectroscopy. Using a combination of scalar correlation and NOE experiments, sequence-specific 1H NMR assignments were obtained for all but one backbone and > 90% of the side-chain resonances. To our knowledge, the 2 x 90 residue (20 kDa) calcyclin dimer is the largest protein system for which such complete assignments have been made by purely homonuclear methods. Sequential and medium-range NOEs and slowly exchanging backbone amide protons identified directly the four helices and the short antiparallel beta-type interaction between the two binding loops that comprise each subunit of the dimer. Further analysis of NOEs enabled the unambiguous assignment of 556 intrasubunit distance constraints, 24 intrasubunit hydrogen bonding constraints, and 2 x 26 intersubunit distance constraints. The conformation of the monomer subunit was refined by distance geometry and restrained molecular dynamics calculations using the intrasubunit constraints only. Calculation of the dimer structure starting from this conformational ensemble has been reported elsewhere. The extent of structural homology among the apo calcyclin subunit, the monomer subunit of apo S100 beta, and monomeric apo calbindin D9k has been examined in detail by comparing 1H NMR chemical shifts and secondary structures. This analysis was extended to a comprehensive comparison of the three-dimensional structures of the calcyclin monomer subunit and calbindin D9k, which revealed greater similarity in the packing of their hydrophobic cores than was anticipated previously. Together, these results support the hypothesis that all members of the S100 family have similar core structures and similar modes of dimerization. Analysis of the amphiphilicity of Helix IV is used to explain why calbindin D9k is monomeric, but full-length S100 proteins form homodimers.
Collapse
Affiliation(s)
- B C Potts
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
45
|
Filipek A, Wojda U, Leśniak W. Interaction of calcyclin and its cyanogen bromide fragments with annexin II and glyceraldehyde 3-phosphate dehydrogenase. Int J Biochem Cell Biol 1995; 27:1123-31. [PMID: 7584597 DOI: 10.1016/1357-2725(95)00096-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The structural properties of calcyclin protein are quite well characterized but its function remains obscure. To help elucidate the biological role of calcyclin we have performed the in vitro studies of the Ca(2+)-dependent interaction of Ehrlich ascites tumor cells calcyclin and its cyanogen bromide fragments with two potential calcyclin targets: annexin II and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The binding of annexin II, evidenced by the reaction with 125I-calcyclin, was found to be very weak and occurred only for intact calcyclin. On the other hand the interaction between calcyclin and GAPDH was of high affinity and could be assigned to the N-terminal region of calcyclin. Intact calcyclin and its N-terminal fragment bound to GAPDH in the gel overlay and affinity chromatography assay. When examined in the presence of a crosslinking agent the interaction resulted in the formation of 46K covalent adduct between calcyclin monomer and GAPDH subunit. Fluorescence of 5-iodoacetamido-fluorescein-labelled calcyclin was efficiently quenched by GAPDH in the presence of Ca2+. Titration experiments revealed the stoichiometry of one calcyclin monomer binding to each of GAPDH subunits with a binding constant of 10(8) M-1. The results of this work suggest that the binding between calcyclin and GAPDH may have bearing on calcyclin function.
Collapse
Affiliation(s)
- A Filipek
- Department of Muscle Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
46
|
Abstract
The structure of the apo form of calcyclin, a member of the S100 family of calcium-binding proteins, reveals a novel dimer fold that may reflect the presence of a new interface for target protein recognition.
Collapse
|
47
|
Potts BC, Smith J, Akke M, Macke TJ, Okazaki K, Hidaka H, Case DA, Chazin WJ. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca(2+)-binding proteins. NATURE STRUCTURAL BIOLOGY 1995; 2:790-6. [PMID: 7552751 DOI: 10.1038/nsb0995-790] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The S100 calcium-binding proteins are implicated as effectors in calcium-mediated signal transduction pathways. The three-dimensional structure of the S100 protein calcyclin has been determined in solution in the apo state by NMR spectroscopy and a computational strategy that incorporates a systematic docking protocol. This structure reveals a symmetric homodimeric fold that is unique among calcium-binding proteins. Dimerization is mediated by hydrophobic contacts from several highly conserved residues, which suggests that the dimer fold identified for calcyclin will serve as a structural paradigm for the S100 subfamily of calcium-binding proteins.
Collapse
Affiliation(s)
- B C Potts
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Evans TC, Nelsestuen GL. Calcium and membrane-binding properties of monomeric and multimeric annexin II. Biochemistry 1994; 33:13231-8. [PMID: 7947730 DOI: 10.1021/bi00249a009] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The calcium-dependent interaction of several annexins with membranes was studied. A novel technique was developed that allowed estimation of calcium binding to aggregating systems. This consisted of immobilized phospholipids on phenyl-Sepharose. Proteins associated with this affinity gel in the presence of radioactive calcium and were eluted with the same buffer containing excess EGTA. This produced an elution profile with a peak of excess calcium. Protein extinction coefficients were estimated in order to quantitate the protein more accurately. Association of annexin II with the membrane was of very high affinity and involved a calcium stoichiometry of 11 +/- 1 at 12.5 microM free Ca2+ and 10 +/- 2 at 50 microM free Ca2+. (AII)2(p11)2, a heterotetramer of two annexin II and two p11 subunits, bound 12 +/- 1 Ca2+ at 12.5 microM Ca2+ and 15 +/- 1 Ca2+ at 50 microM Ca2+. These stoichiometries showed a pattern of "all or none" calcium binding where the number of calcium ions bound to a protein-membrane complex was virtually independent of the free calcium concentration or the density of protein on the membrane. (AII)2(p11)2 contains two annexin II subunits so that calcium stoichiometry was not directly related to the number of potential sites. (AII)2(p11)2 required less calcium to support membrane binding than did annexin II. Thus, dimerization of the membrane binding unit may be needed for annexins to function at intracellular calcium levels. Annexin VI contains twice as many putative calcium binding units as annexin V and the same pattern of behavior occurred for this pair of proteins. At 25 microM free calcium, (AII)2(p11)2 alone bound no detectable calcium (< 0.1 mol of calcium/mol of protein) and annexin II bound only 0.3-0.6 calcium ions.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T C Evans
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
49
|
Ivanenkov VV, Weber K, Gerke V. The expression of different annexins in the fish embryo is developmentally regulated. FEBS Lett 1994; 352:227-30. [PMID: 7925978 DOI: 10.1016/0014-5793(94)00956-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression of annexins, a family of Ca2+/phospholipid-binding proteins, was analyzed by biochemical and immunological criteria in the fish Misgurnus fossilis (loach), which is a good model system to study embryonic events. Five different annexins (loach annexins A to E) are present as a maternal pool in the unfertilized eggs. Only annexin E is newly synthesized in the early embryo. Its synthesis, already apparent at mid-blastula, decreases in later stages when two additional annexins (F and G) appear. They are present among the newly synthesized polypeptides of mid-gastrula and later embryonic stages and are also found in loach larvae. The developmentally controlled expression of several annexins indicates a specific role of these proteins at certain embryonic stages.
Collapse
Affiliation(s)
- V V Ivanenkov
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany
| | | | | |
Collapse
|
50
|
Damer CK, Creutz CE. Secretory and synaptic vesicle membrane proteins and their possible roles in regulated exocytosis. Prog Neurobiol 1994; 43:511-36. [PMID: 7816934 DOI: 10.1016/0301-0082(94)90051-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C K Damer
- Program in Neuroscience, University of Virginia, Charlottesville 22908
| | | |
Collapse
|