1
|
Jarczak J, Thetchinamoorthy K, Wierzbicka D, Bujko K, Ratajczak MZ, Kucia M. Expression of innate immunity genes in human hematopoietic stem/progenitor cells - single cell RNA-seq analysis. Front Immunol 2025; 16:1515856. [PMID: 40264766 PMCID: PMC12011761 DOI: 10.3389/fimmu.2025.1515856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Background The complement system expressed intracellularly and known as complosome has been indicated as a trigger in the regulation of lymphocyte functioning. The expression of its genes was confirmed also in several types of human bone marrow-derived stem cells: mononuclear cells (MNCs), very small embryonic-like stem cells (VSELs), hematopoietic stem/progenitor cells (HSPCs), endothelial progenitors (EPCs) and mesenchymal stem cells (MSCs). In our previous studies, we demonstrated the expression of complosome proteins including C3, C5, C3aR, and cathepsin L in purified HSPCs. However, there is still a lack of results showing the expression of complosome system elements and other immunity-related proteins in human HSPCs at the level of single cell resolution. Methods We employed scRNA-seq to investigate comprehensively the expression of genes connected with immunity, in two populations of human HSPCs: CD34+Lin-CD45+ and CD133+Lin-CD45+, with the division to subpopulations. We focused on genes coding complosome elements, selected cytokines, and genes related to antigen presentation as well as related to immune regulation. Results We observed the differences in the expression of several genes e.g. C3AR1 and C5AR1 between two populations of HSPCs: CD34+LinCD45+ and CD133+Lin-CD45+ resulting from their heterogeneous nature. However, in both kinds of HSPCs, we observed similar cell subpopulations expressing genes (e.g. NLRP3 and IL-1β) at the same level, which suggests the presence of cells performing similar functions connected with the activation of inflammatory processes contributing to the body's defense against infections. Discussion To our best knowledge, it is the first time that expression of complosome elements was studied in HSPCs at the single cell resolution with the use of single cell sequencing. Thus, our data sheds new light on complosome as a novel regulator of hematopoiesis that involves intracrine activation of the C5a-C5aR-Nlrp3 inflammasome axis.
Collapse
Affiliation(s)
- Justyna Jarczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Diana Wierzbicka
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z. Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Yang W, Peng M, Wang Y, Zhang X, Li W, Zhai X, Wu Z, Hu P, Chen L. Deletion of hepcidin disrupts iron homeostasis and hematopoiesis in zebrafish embryogenesis. Development 2025; 152:dev204307. [PMID: 40110772 DOI: 10.1242/dev.204307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Iron is essential for cell growth and hematopoiesis, which is regulated by hepcidin (hamp). However, the role of hamp in zebrafish hematopoiesis remains unclear. Here, we have created a stable hamp knockout zebrafish model using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 system (CRISPR/Cas9 system). Our study revealed that hamp deletion led to maternal iron overload in embryos, significantly downregulating hemoglobin genes and reducing hemoglobin content. Single-cell RNA sequencing identified abnormal expression patterns in blood progenitor cells, with a specific progenitor subtype showing increased ferroptosis and delayed development. By crossing hamp knockout zebrafish with a gata1+ line (blood cells labeled fish line), we confirmed ferroptosis in blood progenitor cells. These findings underscore the crucial role of hamp in iron regulation and hematopoiesis, offering novel insights into developmental biology and potential therapeutic targets for blood disorders.
Collapse
Affiliation(s)
- Wenyi Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjian Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youquan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowen Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xue Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhichao Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Khattab S, El Sorady M, El-Ghandour A, Visani G, Piccaluga PP. Hematopoietic and leukemic stem cells homeostasis: the role of bone marrow niche. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1027-1055. [PMID: 39351440 PMCID: PMC11438561 DOI: 10.37349/etat.2024.00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Abstract
The bone marrow microenvironment (BMM) has highly specialized anatomical characteristics that provide a sanctuary place for hematopoietic stem cells (HSCs) that allow appropriate proliferation, maintenance, and self-renewal capacity. Several cell types contribute to the constitution and function of the bone marrow niche. Interestingly, uncovering the secrets of BMM and its interaction with HSCs in health paved the road for research aiming at better understanding the concept of leukemic stem cells (LSCs) and their altered niche. In fact, they share many signals that are responsible for interactions between LSCs and the bone marrow niche, due to several biological similarities between LSCs and HSCs. On the other hand, LSCs differ from HSCs in their abnormal activation of important signaling pathways that regulate survival, proliferation, drug resistance, invasion, and spread. Targeting these altered niches can help in better treatment choices for hematological malignancies and bone marrow disorders in general and acute myeloid leukemia (AML) in particular. Moreover, targeting those niches may help in decreasing the emergence of drug resistance and lower the relapse rate. In this article, the authors reviewed the most recent literature on bone marrow niches and their relations with either normal HSCs and AML cells/LSC, by focusing on pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Hematology department, Alexandria University, Alexandria 21561, Egypt
| | - Manal El Sorady
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Ashraf El-Ghandour
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, Azienda Ospedaliera Marche Nord, 61121 Pesaro, Italy
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
4
|
Yan L, Tan S, Wang H, Yuan H, Liu X, Chen Y, de Thé H, Zhu J, Zhou J. Znf687 recruits Brd4-Smrt complex to regulate gfi1aa during neutrophil development. Leukemia 2024; 38:851-864. [PMID: 38326409 DOI: 10.1038/s41375-024-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Neutrophils are key component of the innate immune system in vertebrates. Diverse transcription factors and cofactors act in a well-coordinated manner to ensure proper neutrophil development. Dysregulation of the transcriptional program triggering neutrophil differentiation is associated with various human hematologic disorders such as neutropenia, neutrophilia, and leukemia. In the current study we show the zinc finger protein Znf687 is a lineage-preferential transcription factor, whose deficiency leads to an impaired neutrophil development in zebrafish. Mechanistically, Znf687 functions as a negative regulator of gfi1aa, a pivotal modulator in terminal granulopoiesis, to regulate neutrophil maturation. Moreover, we found BRD4, an important epigenetic regulator, directly interacts with ZNF687 in neutrophils. Deficiency of brd4 results in similar defective neutrophil development as observed in znf687 mutant zebrafish. Biochemical and genetic analyses further reveal that instead of serving as a canonical transcriptional coactivator, Brd4 directly interacts and bridges Znf687 and Smrt nuclear corepressor on gfi1aa gene's promoter to exert transcription repression. In addition, the ZNF687-BRD4-SMRT-GFI1 transcriptional regulatory network is evolutionary conserved in higher vertebrate. Overall, our work indicates Znf687 and Brd4 are two novel master regulators in promoting terminal granulopoiesis.
Collapse
Affiliation(s)
- Lin Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuiyi Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihong Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yuan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hugues de Thé
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
| | - Jun Zhu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France.
| | - Jun Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Liu W, Liu X, Li L, Tai Z, Li G, Liu JX. EPC1/2 regulate hematopoietic stem and progenitor cell proliferation by modulating H3 acetylation and DLST. iScience 2024; 27:109263. [PMID: 38439957 PMCID: PMC10910311 DOI: 10.1016/j.isci.2024.109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Enhancers of polycomb 1 (EPC1) and 2 (EPC2) are involved in multiple biological processes as components of histone acetyltransferases/deacetylase complexes and transcriptional cofactors, and their dysfunction was associated with developmental defects and diseases. However, it remains unknown how their dysfunction induces hematopoietic stem and progenitor cell (HSPC) defects. Here, we show that depletion of EPC1/2 significantly reduced the number of hematopoietic stem and progenitor cells (HSPCs) in the aorta-gonad mesonephros and caudal hematopoietic tissue regions by impairing HSPC proliferation, and consistently downregulated the expression of HSPC genes in K562 cells. This study demonstrates the functions of EPC1/2 in regulating histone H3 acetylation, and in regulating DLST (dihydrolipoamide S-succinyltransferase) via H3 acetylation and cooperating with transcription factors serum response factor and FOXR2 together, and in the subsequent HSPC emergence and proliferation. Our results demonstrate the essential roles of EPC1/2 in regulating H3 acetylation, and DLST as a linkage between EPC1 and EPC2 with mitochondria metabolism, in HSPC emergence and proliferation.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - ZhiPeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Sugimoto K, Nishikawa T, Sugiyama T. CD41 + extracellular vesicles produced by avian thrombocytes contain microRNAs. Genes Cells 2023; 28:915-928. [PMID: 37927115 DOI: 10.1111/gtc.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Avians have thrombocytes in their blood circulation rather than mammalian platelets. However, many details of thrombocyte characteristics have not been determined. Here, chicken thrombocytes were isolated, and extracellular vesicle (EV) production was investigated. The thrombocyte-specific markers cd41 and cd61 were expressed in the yolk sac at 24 h. According to the embryonic developmental stage, the cd41-expressing tissues changed from the yolk sac to the bone marrow and spleen. Accordingly, the bone marrow and spleen were the main tissues producing thrombocytes in adult chickens. Avian thrombocytes were separated from adult spleen cells through a combination of discontinuous density gradient centrifugation, phagocytic cell removal, and fluorescence-activated cell sorting. Isolated thrombocytes produced CD41+ EVs (CD41+ EVs), and the CD41+ EVs also expressed CD9. Microarray analysis revealed that CD41+ EVs contain many microRNAs. Macrophage lines (RAW264.7) phagocytosed CD41+ EVs, and their phagocytosis and migration activity were suppressed. Microarray analysis also revealed that EVs altered gene expression in macrophages. These data indicated that the CD41+ EV was a carrier of microRNAs produced from thrombocytes and affected the cell characteristics of the received cells. Therefore, the CD41+ EVs of avians worked as a communication tool.
Collapse
Affiliation(s)
- Kenkichi Sugimoto
- Faculty of Graduate School of Science and Technology, Department of Cell Science, Niigata University, Niigata, Japan
| | - Takamasa Nishikawa
- Faculty of Graduate School of Science and Technology, Department of Cell Science, Niigata University, Niigata, Japan
| | - Toshie Sugiyama
- Faculty of Agriculture, Department of Agrobiology, Niigata University, Niigata, Japan
| |
Collapse
|
7
|
Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L. Amphibian myelopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104701. [PMID: 37196852 DOI: 10.1016/j.dci.2023.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - David B Stern
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | | | - Keith A Crandall
- Milken Institute School of Public Health, Computational Biology Institute, George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
8
|
Carpenter KA, Thurlow KE, Craig SEL, Grainger S. Wnt regulation of hematopoietic stem cell development and disease. Curr Top Dev Biol 2023; 153:255-279. [PMID: 36967197 PMCID: PMC11104846 DOI: 10.1016/bs.ctdb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that give rise to all cells of the blood and most immune cells. Due to their capacity for unlimited self-renewal, long-term HSCs replenish the blood and immune cells of an organism throughout its life. HSC development, maintenance, and differentiation are all tightly regulated by cell signaling pathways, including the Wnt pathway. Wnt signaling is initiated extracellularly by secreted ligands which bind to cell surface receptors and give rise to several different downstream signaling cascades. These are classically categorized either β-catenin dependent (BCD) or β-catenin independent (BCI) signaling, depending on their reliance on the β-catenin transcriptional activator. HSC development, homeostasis, and differentiation is influenced by both BCD and BCI, with a high degree of sensitivity to the timing and dosage of Wnt signaling. Importantly, dysregulated Wnt signals can result in hematological malignancies such as leukemia, lymphoma, and myeloma. Here, we review how Wnt signaling impacts HSCs during development and in disease.
Collapse
Affiliation(s)
- Kelsey A Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Kate E Thurlow
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States; Van Andel Institute Graduate School, Grand Rapids, MI, United States
| | - Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
9
|
Chen X, Qiu T, Pan M, Xiao P, Li W. Fluxapyroxad disrupt erythropoiesis in zebrafish (Danio rerio) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114259. [PMID: 36334343 DOI: 10.1016/j.ecoenv.2022.114259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Fluxapyroxad, a succinate dehydrogenase inhibitor (SDHI) fungicide, is commercialized worldwide to control a variety of fungal diseases. Growing evidence shows that fluxapyroxad is teratogenic to aquatic organisms. In this study, the influence of fluxapyroxad toward hematopoietic development was evaluated using zebrafish embryos which were exposed to fluxapyroxad (0.03 µM, 0.3 µM and 3 µM) from 3 h post fertilization (hpf) to 3 days post fertilization (dpf). Compared to the control groups, the hemoglobin was ectopic and decreased in response to fluxapyroxad treatment. The transcription levels of genes (hbbe1, hbbe2, and gata1a) involved in erythropoiesis were reduced after exposure to fluxapyroxad. In contrast, the distributions and expression of marker genes for myeloid lineage cells were unaffected by fluxapyroxad exposure. Our data suggested that fluxapyroxad might specifically affect erythropoiesis and hold great promise for the assessment of the toxicity of fluxapyroxad to aquatic organisms.
Collapse
Affiliation(s)
- Xin Chen
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China
| | - Tiantong Qiu
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China
| | - Mengjun Pan
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China.
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|
10
|
Yaribeygi H, Maleki M, Nasimi F, Butler AE, Jamialahmadi T, Sahebkar A. Sodium-glucose co-transporter 2 inhibitors and hematopoiesis. J Cell Physiol 2022; 237:3778-3787. [PMID: 35951776 DOI: 10.1002/jcp.30851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Many patients with diabetes mellitus, especially those with chronic kidney disorders, have some degree of anemia due to a spectrum of causes and underlying pathophysiologic pathways. As such, enhancement in erythropoiesis is important in these patients. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively new class of antidiabetic drugs with confirmed protective effects in kidney and cardiovascular tissues. Recent evidence suggests that these drugs may provide additional benefits in enhancing hematopoietic processes in diabetic patients. Though the exact mediating pathways have not been fully elucidated, cellular mechanisms are likely involved. In the current study, we present the potential pathways by which SGLT2i may modulate hematopoiesis and stimulate erythropoiesis.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nasimi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Alexandra E Butler
- Department of Research, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Taznin T, Perera K, Gibert Y, Ward AC, Liongue C. Cytokine Receptor-Like Factor 3 (CRLF3) Contributes to Early Zebrafish Hematopoiesis. Front Immunol 2022; 13:910428. [PMID: 35795682 PMCID: PMC9251315 DOI: 10.3389/fimmu.2022.910428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cytokine receptor-like factor 3 (CRLF3) is an ancient protein conserved across metazoans that contains an archetypal cytokine receptor homology domain (CHD). This domain is found in cytokine receptors present in bilateria, including higher vertebrates, that play key roles in a variety of developmental and homeostatic processes, particularly relating to blood and immune cells. However, understanding of CRLF3 itself remains very limited. This study aimed to investigate this evolutionarily significant protein by studying its embryonic expression and function in early development, particularly of blood and immune cells, using zebrafish as a model. Expression of crlf3 was identified in mesoderm-derived tissues in early zebrafish embryos, including the somitic mesoderm and both anterior and posterior lateral plate mesoderm. Later expression was observed in the thymus, brain, retina and exocrine pancreas. Zebrafish crlf3 mutants generated by genome editing technology exhibited a significant reduction in primitive hematopoiesis and early definitive hematopoiesis, with decreased early progenitors impacting on multiple lineages. No other obvious phenotypes were observed in the crlf3 mutants.
Collapse
Affiliation(s)
- Tarannum Taznin
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | - Yann Gibert
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- *Correspondence: Clifford Liongue,
| |
Collapse
|
12
|
Stacy NI, Hollinger C, Arnold JE, Cray C, Pendl H, Nelson PJ, Harvey JW. Left shift and toxic change in heterophils and neutrophils of non-mammalian vertebrates: A comparative review, image atlas, and practical considerations. Vet Clin Pathol 2022; 51:18-44. [PMID: 35199862 DOI: 10.1111/vcp.13117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Heterophils and neutrophils are important first cellular responders to inflammatory conditions. In addition to quantitative shifts in the numbers of these cells in blood, inflammatory disease states often have accompanying increases in immature precursor stages (left shift) and/or evidence of toxic change on blood film evaluation. Recognition of left shift and toxic change morphologies is a salient diagnostic finding with clinical relevance across species. The objectives of this report are to (a) review heterophil and neutrophil function and structure across the vertebrate animal kingdom, (b) compare morphologic features of left shift and toxic change in heterophils and neutrophils of non-mammalian vertebrates (NMV) to mammals, (c) provide an image guide demonstrating the breadth of morphologic diversity of heterophil and neutrophil lineages in health and disease across taxa, and (d) discuss practical considerations for clinical pathologists and other professionals involved in the recognition and interpretation of observations in the inflammatory leukogram of NMV.
Collapse
Affiliation(s)
- Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.,Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charlotte Hollinger
- Charles River Laboratories, Mattawan, MI, USA.,Wildlife Conservation Society, Zoological Health Program, Bronx Zoo, Bronx, NY, USA
| | | | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helene Pendl
- Pendl Lab, Diagnostic Microscopy in Birds and Reptiles, Zug, Switzerland
| | | | - John W Harvey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Foley T, Lohnes D. Cdx regulates gene expression through PRC2-mediated epigenetic mechanisms. Dev Biol 2021; 483:22-33. [PMID: 34973175 DOI: 10.1016/j.ydbio.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
Abstract
The extra-embryonic yolk sac contains adjacent layers of mesoderm and visceral endoderm. The mesodermal layer serves as the first site of embryonic hematopoiesis, while the visceral endoderm provides a means of exchanging nutrients and waste until the development of the chorioallantoic placenta. While defects in chorioallantoic fusion and yolk sac hematopoiesis have been described in Cdx mutant mouse models, little is known about the gene targets and molecular mechanisms through which Cdx members regulate these processes. To this end, we used RNA-seq to examine Cdx-dependent gene expression changes in the yolk sac. We find that loss of Cdx function impacts the expression of genes involved in yolk sac hematopoiesis, as previously described, as well as novel Cdx2 target genes. In addition, we observed Cdx-dependent changes in PRC2 subunit expression accompanied by altered H3K27me3 deposition at a subset of Cdx target genes as early as E7.5 in the embryo proper. This study identifies additional Cdx target genes and provides further evidence for Cdx-dependent epigenetic regulation of gene expression in the early embryo, and that this regulation is required to maintain gene expression programs in the extra-embryonic yolk sac at later developmental stages.
Collapse
Affiliation(s)
- Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5.
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5.
| |
Collapse
|
14
|
Recent insights into hematopoiesis in crustaceans. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100040. [DOI: 10.1016/j.fsirep.2021.100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
|
15
|
The spliceosome factor sart3 regulates hematopoietic stem/progenitor cell development in zebrafish through the p53 pathway. Cell Death Dis 2021; 12:906. [PMID: 34611130 PMCID: PMC8492694 DOI: 10.1038/s41419-021-04215-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem cells (HSCs) possess the potential for self-renew and the capacity, throughout life, to differentiate into all blood cell lineages. Yet, the mechanistic basis for HSC development remains largely unknown. In this study, we characterized a zebrafish smu471 mutant with hematopoietic stem/progenitor cell (HSPC) defects and found that sart3 was the causative gene. RNA expression profiling of the sart3smu471 mutant revealed spliceosome and p53 signaling pathway to be the most significantly enriched pathways in the sart3smu471 mutant. Knock down of p53 rescued HSPC development in the sart3smu471 mutant. Interestingly, the p53 inhibitor, mdm4, had undergone an alternative splicing event in the mutant. Restoration of mdm4 partially rescued HSPC deficiency. Thus, our data suggest that HSPC proliferation and maintenance require sart3 to ensure the correct splicing and expression of mdm4, so that the p53 pathway is properly inhibited to prevent definitive hematopoiesis failure. This study expands our knowledge of the regulatory mechanisms that impact HSPC development and sheds light on the mechanistic basis and potential therapeutic use of sart3 in spliceosome-mdm4-p53 related disorders.
Collapse
|
16
|
Gao S, Wang Z, Wang L, Wang H, Yuan H, Liu X, Chen S, Chen Z, de Thé H, Zhang W, Zhang Y, Zhu J, Zhou J. Irf2bp2a regulates terminal granulopoiesis through proteasomal degradation of Gfi1aa in zebrafish. PLoS Genet 2021; 17:e1009693. [PMID: 34351909 PMCID: PMC8370619 DOI: 10.1371/journal.pgen.1009693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/17/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
The ubiquitin-proteasome system plays important roles in various biological processes as it degrades the majority of cellular proteins. Adequate proteasomal degradation of crucial transcription regulators ensures the proper development of neutrophils. The ubiquitin E3 ligase of Growth factor independent 1 (GFI1), a key transcription repressor governing terminal granulopoiesis, remains obscure. Here we report that the deficiency of the ring finger protein Interferon regulatory factor 2 binding protein 2a (Irf2bp2a) leads to an impairment of neutrophils differentiation in zebrafish. Mechanistically, Irf2bp2a functions as a ubiquitin E3 ligase targeting Gfi1aa for proteasomal degradation. Moreover, irf2bp2a gene is repressed by Gfi1aa, thus forming a negative feedback loop between Irf2bp2a and Gfi1aa during neutrophils maturation. Different levels of GFI1 may turn it into a tumor suppressor or an oncogene in malignant myelopoiesis. Therefore, discovery of certain drug targets GFI1 for proteasomal degradation by IRF2BP2 might be an effective anti-cancer strategy.
Collapse
Affiliation(s)
- Shuo Gao
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zixuan Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Luxiang Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of hematology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Haihong Wang
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hao Yuan
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaohui Liu
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Saijuan Chen
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zhu Chen
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hugues de Thé
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P.R. China
- * E-mail: (YZ); (JZ); (JZ)
| | - Jun Zhu
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Université de Paris 7/INSERM/CNRS UMR 944/7212, Equipe Labellisée No. 11 Ligue Nationale Contre le Cancer, Hôpital St. Louis, Paris, France
- * E-mail: (YZ); (JZ); (JZ)
| | - Jun Zhou
- Shanghai Institute of Hematology, CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- * E-mail: (YZ); (JZ); (JZ)
| |
Collapse
|
17
|
Kammers K, Taub MA, Mathias RA, Yanek LR, Kanchan K, Venkatraman V, Sundararaman N, Martin J, Liu S, Hoyle D, Raedschelders K, Holewinski R, Parker S, Dardov V, Faraday N, Becker DM, Cheng L, Wang ZZ, Leek JT, Van Eyk JE, Becker LC. Gene and protein expression in human megakaryocytes derived from induced pluripotent stem cells. J Thromb Haemost 2021; 19:1783-1799. [PMID: 33829634 DOI: 10.1111/jth.15334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND There is interest in deriving megakaryocytes (MKs) from pluripotent stem cells (iPSC) for biological studies. We previously found that genomic structural integrity and genotype concordance is maintained in iPSC-derived MKs. OBJECTIVE To establish a comprehensive dataset of genes and proteins expressed in iPSC-derived MKs. METHODS iPSCs were reprogrammed from peripheral blood mononuclear cells (MNCs) and MKs were derived from the iPSCs in 194 healthy European American and African American subjects. mRNA was isolated and gene expression measured by RNA sequencing. Protein expression was measured in 62 of the subjects using mass spectrometry. RESULTS AND CONCLUSIONS MKs expressed genes and proteins known to be important in MK and platelet function and demonstrated good agreement with previous studies in human MKs derived from CD34+ progenitor cells. The percent of cells expressing the MK markers CD41 and CD42a was consistent in biological replicates, but variable across subjects, suggesting that unidentified subject-specific factors determine differentiation of MKs from iPSCs. Gene and protein sets important in platelet function were associated with increasing expression of CD41/42a, while those related to more basic cellular functions were associated with lower CD41/42a expression. There was differential gene expression by the sex and race (but not age) of the subject. Numerous genes and proteins were highly expressed in MKs but not known to play a role in MK or platelet function; these represent excellent candidates for future study of hematopoiesis, platelet formation, and/or platelet function.
Collapse
Affiliation(s)
- Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rasika A Mathias
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa R Yanek
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kanika Kanchan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joshua Martin
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Senquan Liu
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dixie Hoyle
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Koen Raedschelders
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ronald Holewinski
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Victoria Dardov
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nauder Faraday
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Diane M Becker
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linzhao Cheng
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zack Z Wang
- Division of Hematology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey T Leek
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Woman's Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lewis C Becker
- The GeneSTAR Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Liu X, Zhang W, Jing C, Gao L, Fu C, Ren C, Hao Y, Cao M, Ma K, Pan W, Li D. Mutation of Gemin5 Causes Defective Hematopoietic Stem/Progenitor Cells Proliferation in Zebrafish Embryonic Hematopoiesis. Front Cell Dev Biol 2021; 9:670654. [PMID: 33996826 PMCID: PMC8120239 DOI: 10.3389/fcell.2021.670654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Fate determination and expansion of Hematopoietic Stem and Progenitor Cells (HSPCs) is tightly regulated on both transcriptional and post-transcriptional level. Although transcriptional regulation of HSPCs have achieved a lot of advances, its post-transcriptional regulation remains largely underexplored. The small size and high fecundity of zebrafish makes it extraordinarily suitable to explore novel genes playing key roles in definitive hematopoiesis by large-scale forward genetics screening. Here, we reported a novel zebrafish mutant line gemin5 cas008 with a point mutation in gemin5 gene obtained by ENU mutagenesis and genetic screening, causing an earlier stop codon next to the fifth WD repeat. Gemin5 is an RNA-binding protein with multifunction in post-transcriptional regulation, such as regulating the biogenesis of snRNPs, alternative splicing, stress response, and translation control. The mutants displayed specific deficiency in definitive hematopoiesis without obvious defects during primitive hematopoiesis. Further analysis showed the impaired definitive hematopoiesis was due to defective proliferation of HSPCs. Overall, our results indicate that Gemin5 performs an essential role in regulating HSPCs proliferation.
Collapse
Affiliation(s)
- Xiaofen Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Zhang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changbin Jing
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Gao
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Cong Fu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chunguang Ren
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yimei Hao
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Mengye Cao
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ke Ma
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Clinical Research and Translation Center, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Weijun Pan
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Dantong Li
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Stephenson E, Webb S, Haniffa M. Multiomics uncovers developing immunological lineages in human. Eur J Immunol 2021; 51:764-772. [PMID: 33569778 PMCID: PMC8600952 DOI: 10.1002/eji.202048769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Indexed: 11/06/2022]
Abstract
The development of the human immune system during embryonic and fetal life has historically been difficult to research due to limited access to human tissue. Experimental animal models have been widely used to study development but cellular and molecular programmes may not be conserved across species. The advent of multiomic single-cell technologies and an increase in human developmental tissue biobank resources have facilitated single-cell multiomic studies focused on human immune development. A critical question in the near future is "How do we best reconcile scientific findings across multiple omic modalities, developmental time, and organismic space?" In this review, we discuss the application of single-cell multiomic technologies to unravel the major cellular lineages in the prenatal human immune system. We also identify key areas where the combined power of multiomics technologies can be leveraged to address specific immunological gaps in our current knowledge and explore new research horizons in human development.
Collapse
Affiliation(s)
- Emily Stephenson
- Biosciences InstituteNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Simone Webb
- Biosciences InstituteNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Muzlifah Haniffa
- Biosciences InstituteNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle Upon TyneUK
| |
Collapse
|
20
|
Somasagara RR, Huang X, Xu C, Haider J, Serody JS, Armistead PM, Leung T. Targeted therapy of human leukemia xenografts in immunodeficient zebrafish. Sci Rep 2021; 11:5715. [PMID: 33707624 PMCID: PMC7952715 DOI: 10.1038/s41598-021-85141-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Personalized medicine holds tremendous promise for improving safety and efficacy of drug therapies by optimizing treatment regimens. Rapidly developed patient-derived xenografts (pdx) could be a helpful tool for analyzing the effect of drugs against an individual's tumor by growing the tumor in an immunodeficient animal. Severe combined immunodeficiency (SCID) mice enable efficient in vivo expansion of vital tumor cells and generation of personalized xenografts. However, they are not amenable to large-scale rapid screening, which is critical in identifying new compounds from large compound libraries. The development of a zebrafish model suitable for pdx could facilitate large-scale screening of drugs targeted against specific malignancies. Here, we describe a novel strategy for establishing a zebrafish model for drug testing in leukemia xenografts. We used chronic myelogenous leukemia and acute myeloid leukemia for xenotransplantation into SCID zebrafish to evaluate drug screening protocols. We showed the in vivo efficacy of the ABL inhibitor imatinib, MEK inhibitor U0126, cytarabine, azacitidine and arsenic trioxide. We performed corresponding in vitro studies, demonstrating that combination of MEK- and FLT3-inhibitors exhibit an enhanced effect in vitro. We further evaluated the feasibility of zebrafish for transplantation of primary human hematopoietic cells that can survive at 15 day-post-fertilization. Our results provide critical insights to guide development of high-throughput platforms for evaluating leukemia.
Collapse
Affiliation(s)
- Ranganatha R Somasagara
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Xiaoyan Huang
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Chunyu Xu
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jamil Haider
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Jonathan S Serody
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paul M Armistead
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - TinChung Leung
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA. .,Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
21
|
Li FF, Liang YL, Han XS, Guan YN, Chen J, Wu P, Zhao XX, Jing Q. ADP receptor P2y12 prevents excessive primitive hematopoiesis in zebrafish by inhibiting Gata1. Acta Pharmacol Sin 2021; 42:414-421. [PMID: 32555443 DOI: 10.1038/s41401-020-0431-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
In the past two decades, purinergic signaling has emerged as a key regulator of hematopoiesis in physiological and pathological conditions. ADP receptor P2y12 is a crucial component of this signaling, but whether it is involved in primitive hematopoiesis remains unknown. To elucidate the function of P2y12 and provide new insights for drug development, we established a zebrafish P2y12 mutant by CRISPR/Cas 9-based genetic modification system, and investigated whether P2y12 acted as an important regulator for primitive hematopoiesis. By using mass spectrometry (MS) combined with RNA sequencing, we showed that absence of P2y12 induced excessive erythropoiesis, evidenced by significantly increased expression of mature erythrocytes marker α-globin (Hbae1 and Hbae3), β-globin (Hbbe1 and Hbbe3). Expression pattern analysis showed that P2y12 was mainly expressed in red blood cells and endothelial cells of early zebrafish embryos. Further studies revealed that primitive erythroid progenitor marker Gata1 was markedly up-regulated. Remarkably, inhibition of Gata1 by injection of Gata1 morpholino could rescue the erythroid abnormality in P2y12 mutants. The present study demonstrates the essential role of purinergic signaling in differentiation of proerythrocytes during primitive hematopoiesis, and provides potential targets for treatment of blood-related disease and drug development.
Collapse
|
22
|
Gautam DK, Chimata AV, Gutti RK, Paddibhatla I. Comparative hematopoiesis and signal transduction in model organisms. J Cell Physiol 2021; 236:5592-5619. [PMID: 33492678 DOI: 10.1002/jcp.30287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Hematopoiesis is a continuous phenomenon involving the formation of hematopoietic stem cells (HSCs) giving rise to diverse functional blood cells. This developmental process of hematopoiesis is evolutionarily conserved, yet comparably different in various model organisms. Vertebrate HSCs give rise to all types of mature cells of both the myeloid and the lymphoid lineages sequentially colonizing in different anatomical tissues. Signal transduction in HSCs facilitates their potency and specifies branching of lineages. Understanding the hematopoietic signaling pathways is crucial to gain insights into their deregulation in several blood-related disorders. The focus of the review is on hematopoiesis corresponding to different model organisms and pivotal role of indispensable hematopoietic pathways. We summarize and discuss the fundamentals of blood formation in both invertebrate and vertebrates, examining the requirement of key signaling nexus in hematopoiesis. Knowledge obtained from such comparative studies associated with developmental dynamics of hematopoiesis is beneficial to explore the therapeutic options for hematopoietic diseases.
Collapse
Affiliation(s)
- Dushyant Kumar Gautam
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| | | | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| | - Indira Paddibhatla
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
23
|
Cho B, Yoon SH, Lee D, Koranteng F, Tattikota SG, Cha N, Shin M, Do H, Hu Y, Oh SY, Lee D, Vipin Menon A, Moon SJ, Perrimon N, Nam JW, Shim J. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat Commun 2020; 11:4483. [PMID: 32900993 PMCID: PMC7479620 DOI: 10.1038/s41467-020-18135-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
The Drosophila lymph gland, the larval hematopoietic organ comprised of prohemocytes and mature hemocytes, has been a valuable model for understanding mechanisms underlying hematopoiesis and immunity. Three types of mature hemocytes have been characterized in the lymph gland: plasmatocytes, lamellocytes, and crystal cells, which are analogous to vertebrate myeloid cells, yet molecular underpinnings of the lymph gland hemocytes have been less investigated. Here, we use single-cell RNA sequencing to comprehensively analyze heterogeneity of developing hemocytes in the lymph gland, and discover previously undescribed hemocyte types including adipohemocytes, stem-like prohemocytes, and intermediate prohemocytes. Additionally, we identify the developmental trajectory of hemocytes during normal development as well as the emergence of the lamellocyte lineage following active cellular immunity caused by wasp infestation. Finally, we establish similarities and differences between embryonically derived- and larval lymph gland hemocytes. Altogether, our study provides detailed insights into the hemocyte development and cellular immune responses at single-cell resolution. How the Drosophila lymph gland hemocytes develop and are regulated at a single-cell level is unclear. Here, the authors use single-cell RNA sequencing to show heterogeneity of developing hemocytes in the lymph gland and how they react to wasp infestation, and compare hemocytes from two independent origins.
Collapse
Affiliation(s)
- Bumsik Cho
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Sang-Ho Yoon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Daewon Lee
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Ferdinand Koranteng
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | | | - Nuri Cha
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Mingyu Shin
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Hobin Do
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sue Young Oh
- Department of Oral Biology, Yonsei University, College of Dentistry, Seoul, 03722, Republic of Korea
| | - Daehan Lee
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - A Vipin Menon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Seok Jun Moon
- Department of Oral Biology, Yonsei University, College of Dentistry, Seoul, 03722, Republic of Korea
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Jin-Wu Nam
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04736, Republic of Korea.
| | - Jiwon Shim
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04736, Republic of Korea.
| |
Collapse
|
24
|
Al Outa A, Abubaker D, Madi J, Nasr R, Shirinian M. The Leukemic Fly: Promises and Challenges. Cells 2020; 9:E1737. [PMID: 32708107 PMCID: PMC7409271 DOI: 10.3390/cells9071737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
Leukemia involves different types of blood cancers, which lead to significant mortality and morbidity. Murine models of leukemia have been instrumental in understanding the biology of the disease and identifying therapeutics. However, such models are time consuming and expensive in high throughput genetic and drug screening. Drosophilamelanogaster has emerged as an invaluable in vivo model for studying different diseases, including cancer. Fruit flies possess several hematopoietic processes and compartments that are in close resemblance to their mammalian counterparts. A number of studies succeeded in characterizing the fly's response upon the expression of human leukemogenic proteins in hematopoietic and non-hematopoietic tissues. Moreover, some of these studies showed that these models are amenable to genetic screening. However, none were reported to be tested for drug screening. In this review, we describe the Drosophila hematopoietic system, briefly focusing on leukemic diseases in which fruit flies have been used. We discuss myeloid and lymphoid leukemia fruit fly models and we further highlight their roles for future therapeutic screening. In conclusion, fruit fly leukemia models constitute an interesting area which could speed up the process of integrating new therapeutics when complemented with mammalian models.
Collapse
Affiliation(s)
- Amani Al Outa
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Dana Abubaker
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Joelle Madi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
25
|
Kwon HB, Mackie DI, Bonnavion R, Mercier AL, Helker CSM, Son T, Guenter S, Serafin DS, Kim KW, Offermanns S, Caron KM, Stainier DYR. The Orphan G-Protein Coupled Receptor 182 Is a Negative Regulator of Definitive Hematopoiesis through Leukotriene B4 Signaling. ACS Pharmacol Transl Sci 2020; 3:676-689. [PMID: 32832870 PMCID: PMC7432686 DOI: 10.1021/acsptsci.0c00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/12/2022]
Abstract
![]()
The
G protein-coupled receptor 182 (GPR182) is an orphan GPCR,
the expression of which is enriched in embryonic endothelial cells
(ECs). However, the physiological role and molecular mechanism of
action of GPR182 are unknown. Here, we show that GPR182 negatively
regulates definitive hematopoiesis in zebrafish and mice. In zebrafish, gpr182 expression is enriched in the hemogenic endothelium
(HE), and gpr182–/– display
an increased expression of HE and hematopoietic stem cell (HSC) marker
genes. Notably, we find an increased number of myeloid cells in gpr182–/– compared to wild-type.
Further, by time-lapse imaging of zebrafish embryos during the endothelial-to-hematopoietic
transition, we find that HE/HSC cell numbers are increased in gpr182–/– compared to wild-type. GPR182–/– mice also exhibit an
increased number of myeloid cells compared to wild-type, indicating
a conserved role for GPR182 in myelopoiesis. Using cell-based small
molecule screening and transcriptomic analyses, we further find that
GPR182 regulates the leukotriene B4 (LTB4) biosynthesis pathway. Taken
together, these data indicate that GPR182 is a negative regulator
of definitive hematopoiesis in zebrafish and mice, and provide further
evidence for LTB4 signaling in HSC biology.
Collapse
Affiliation(s)
- Hyouk-Bum Kwon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Duncan I Mackie
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Remy Bonnavion
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Alan Le Mercier
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Philipps-University Marburg, Faculty of Biology, Cell Signaling and Dynamics, Marburg, 35043, Germany
| | - Taekwon Son
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Stefan Guenter
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - D Stephen Serafin
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kyu-Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Kathleen M Caron
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| |
Collapse
|
26
|
Sampaio-Pinto V, Ruiz-Villalba A, Nascimento DS, Pérez-Pomares JM. Bone marrow contribution to the heart from development to adulthood. Semin Cell Dev Biol 2020; 112:16-26. [PMID: 32591270 DOI: 10.1016/j.semcdb.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Cardiac chamber walls contain large numbers of non-contractile interstitial cells, including fibroblasts, endothelial cells, pericytes and significant populations of blood lineage-derived cells. Blood cells first colonize heart tissues a few days before birth, although their recruitment from the bloodstream to the cardiac interstitium is continuous and extends throughout adult life. The bone marrow, as the major hematopoietic site of adult individuals, is in charge of renewing all circulating cell types, and it therefore plays a pivotal role in the incorporation of blood cells to the heart. Bone marrow-derived cells are instrumental to tissue homeostasis in the steady-state heart, and are major effectors in cardiac disease progression. This review will provide a comprehensive approach to bone marrow-derived blood cell functions in the heart, and discuss aspects related to hot topics in the cardiovascular field like cell-based heart regeneration strategies.
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - José M Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain.
| |
Collapse
|
27
|
Eggermont M, Cornillie P, Dierick M, Adriaens D, Nevejan N, Bossier P, Van den Broeck W, Sorgeloos P, Defoirdt T, Declercq AM. The blue mussel inside: 3D visualization and description of the vascular-related anatomy of Mytilus edulis to unravel hemolymph extraction. Sci Rep 2020; 10:6773. [PMID: 32317671 PMCID: PMC7174403 DOI: 10.1038/s41598-020-62933-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/19/2020] [Indexed: 12/28/2022] Open
Abstract
The blue mussel Mytilus edulis is an intensely studied bivalve in biomonitoring programs worldwide. The lack of detailed descriptions of hemolymph-withdrawal protocols, particularly with regard to the place from where hemolymph could be perfused from, raises questions regarding the exact composition of aspirated hemolymph and does not exclude the possibility of contamination with other body-fluids. This study demonstrates the use of high resolution X-ray computed tomography and histology combined with 3D-reconstruction using AMIRA-software to visualize some important vascular-related anatomic structures of Mytilus edulis. Based on these images, different hemolymph extraction sites used in bivalve research were visualized and described, leading to new insights into hemolymph collection. Results show that hemolymph withdrawn from the posterior adductor muscle could be extracted from small spaces and fissures between the muscle fibers that are connected to at least one hemolymph supplying artery, more specifically the left posterior gastro-intestinal artery. Furthermore, 3D-reconstructions indicate that puncturing hemolymph from the pericard, anterior aorta, atria and ventricle in a non-invasive way should be possible. Hemolymph withdrawal from the heart is less straightforward and more prone to contamination from the pallial cavity. This study resulted simultaneously in a detailed description and visualization of the vascular-related anatomy of Mytilus edulis.
Collapse
Affiliation(s)
- Mieke Eggermont
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Cornillie
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Manuel Dierick
- Centre for X-ray Tomography (UGCT), Department Physics and Astronomy, Proeftuinstraat 86/N12, 9000, Gent, Belgium
- XRE nv. Bollebergen 2B box 1, 9052, Ghent, Belgium
| | - Dominique Adriaens
- Research Group Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Nancy Nevejan
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Patrick Sorgeloos
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Tom Defoirdt
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Annelies Maria Declercq
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
28
|
Thom CS, Chou ST, French DL. Mechanistic and Translational Advances Using iPSC-Derived Blood Cells. JOURNAL OF EXPERIMENTAL PATHOLOGY 2020; 1:36-44. [PMID: 33768218 PMCID: PMC7990314 DOI: 10.33696/pathology.1.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-based model systems can be used to produce blood cells for the study of both hematologic and non-hematologic disorders. This commentary discusses recent advances that have utilized iPSC-derived red blood cells, megakaryocytes, myeloid cells, and lymphoid cells to model hematopoietic disorders. In addition, we review recent studies that have defined how microglial cells differentiated from iPSC-derived monocytes impact neurodegenerative disease. Related translational insights highlight the utility of iPSC models for studying pathologic anemia, bleeding, thrombosis, autoimmunity, immunodeficiency, blood cancers, and neurodegenerative disease such as Alzheimer's.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
29
|
Zhang J, Hamza I. Zebrafish as a model system to delineate the role of heme and iron metabolism during erythropoiesis. Mol Genet Metab 2019; 128:204-212. [PMID: 30626549 PMCID: PMC6591114 DOI: 10.1016/j.ymgme.2018.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022]
Abstract
Coordination of iron acquisition and heme synthesis is required for effective erythropoiesis. The small teleost zebrafish (Danio rerio) is an ideal vertebrate animal model to replicate various aspects of human physiology and provides an efficient and cost-effective way to model human pathophysiology. Importantly, zebrafish erythropoiesis largely resembles mammalian erythropoiesis. Gene discovery by large-scale forward mutagenesis screening has identified key components in heme and iron metabolism. Reverse genetic screens, using morpholino-knockdown and CRISPR/Cas9, coupled with the genetic tractability of the developing embryo have further accelerated functional studies. Ultimately, the ex utero development of zebrafish embryos combined with their transparency and developmental plasticity could provide a deeper understanding of the role of iron and heme metabolism during early vertebrate embryonic development.
Collapse
Affiliation(s)
- Jianbing Zhang
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
30
|
Noetzli LJ, French SL, Machlus KR. New Insights Into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler Thromb Vasc Biol 2019; 39:1288-1300. [PMID: 31043076 PMCID: PMC6594866 DOI: 10.1161/atvbaha.119.312129] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Megakaryocytes are hematopoietic cells, which are responsible for the production of blood platelets. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells, through a hierarchical series of progenitor cells, ultimately to a mature megakaryocyte. Once mature, the megakaryocyte then undergoes a terminal maturation process involving multiple rounds of endomitosis and cytoplasmic restructuring to allow platelet formation. However, recent studies have begun to redefine this hierarchy and shed new light on alternative routes by which hematopoietic stem cells are differentiated into megakaryocytes. In particular, the origin of megakaryocytes, including the existence and hierarchy of megakaryocyte progenitors, has been redefined, as new studies are suggesting that hematopoietic stem cells originate as megakaryocyte-primed and can bypass traditional lineage checkpoints. Overall, it is becoming evident that megakaryopoiesis does not only occur as a stepwise process, but is dynamic and adaptive to biological needs. In this review, we will reexamine the canonical dogmas of megakaryopoiesis and provide an updated framework for interpreting the roles of traditional pathways in the context of new megakaryocyte biology. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Leila J Noetzli
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shauna L French
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
31
|
Stanic K, Reig G, Figueroa RJ, Retamal PA, Wichmann IA, Opazo JC, Owen GI, Corvalán AH, Concha ML, Amigo JD. The Reprimo gene family member, reprimo-like (rprml), is required for blood development in embryonic zebrafish. Sci Rep 2019; 9:7131. [PMID: 31073223 PMCID: PMC6509255 DOI: 10.1038/s41598-019-43436-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/24/2019] [Indexed: 11/09/2022] Open
Abstract
The Reprimo gene family comprises a group of single-exon genes for which their physiological function remains poorly understood. Heretofore, mammalian Reprimo (RPRM) has been described as a putative p53-dependent tumor suppressor gene that functions at the G2/M cell cycle checkpoint. Another family member, Reprimo-like (RPRML), has not yet an established role in physiology or pathology. Importantly, RPRML expression pattern is conserved between zebrafish and human species. Here, using CRISPR-Cas9 and antisense morpholino oligonucleotides, we disrupt the expression of rprml in zebrafish and demonstrate that its loss leads to impaired definitive hematopoiesis. The formation of hemangioblasts and the primitive wave of hematopoiesis occur normally in absence of rprml. Later in development there is a significant reduction in erythroid-myeloid precursors (EMP) at the posterior blood island (PBI) and a significant decline of definitive hematopoietic stem/progenitor cells (HSPCs). Furthermore, loss of rprml also increases the activity of caspase-3 in endothelial cells within the caudal hematopoietic tissue (CHT), the first perivascular niche where HSPCs reside during zebrafish embryonic development. Herein, we report an essential role for rprml during hematovascular development in zebrafish embryos, specifically during the definitive waves of hematopoiesis, indicating for the first time a physiological role for the rprml gene.
Collapse
Affiliation(s)
- Karen Stanic
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German Reig
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Universidad Bernardo O´Higgins, Escuela de Tecnología Médica and Centro Integrativo de Biología y Química Aplicada (CIBQA), Santiago, Chile
| | - Ricardo J Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Retamal
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Laboratorio de Oncología, Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gareth I Owen
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Laboratorio de Oncología, Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel L Concha
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile, Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Julio D Amigo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
32
|
Kobayashi I, Kobayashi-Sun J, Hirakawa Y, Ouchi M, Yasuda K, Kamei H, Fukuhara S, Yamaguchi M. Dual role of Jam3b in early hematopoietic and vascular development. Development 2019; 147:dev.181040. [DOI: 10.1242/dev.181040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022]
Abstract
In order to efficiently derive hematopoietic stem cells (HSCs) from pluripotent precursors, it is crucial to understand how mesodermal cells acquire hematopoietic and endothelial identities, two divergent, but closely related cell fates. Although Npas4 has been recently identified as a conserved master regulator of hemato-vascular development, the molecular mechanisms underlying cell fate divergence between hematopoietic and vascular endothelial cells are still unclear. Here, we show in zebrafish that mesodermal cell differentiation into hematopoietic and vascular endothelial cells is regulated by Junctional adhesion molecule 3b (Jam3b) via two independent signaling pathways. Mutation of jam3b led to a reduction in npas4l expression in the posterior lateral plate mesoderm and defects in both hematopoietic and vascular development. Mechanistically, we uncover that Jam3b promotes endothelial specification by regulating npas4l expression through repression of the Rap1a-Erk signaling cascade. Jam3b subsequently promotes hematopoietic development, including HSCs, by regulating lrrc15 expression in endothelial precursors through the activation of an integrin-dependent signaling cascade. Our data provide insight into the divergent mechanisms for instructing hematopoietic or vascular fates from mesodermal cells.
Collapse
Affiliation(s)
- Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Jingjing Kobayashi-Sun
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Yuto Hirakawa
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Madoka Ouchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Koyuki Yasuda
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Kanagawa, Japan
| | - Masaaki Yamaguchi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
33
|
Manca R, Glomski CA, Pica A. Evolutionary intraembryonic origin of vertebrate hematopoietic stem cells in the elasmobranch spleen. Eur J Histochem 2018; 62. [PMID: 30572696 PMCID: PMC6317135 DOI: 10.4081/ejh.2018.2987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023] Open
Abstract
The electric ray (Torpedo marmorata Risso) provides an animal model for the detection of early intraembryonic hemopoietic stem cells (HSCs) in sea vertebrates. The spleen of this bone-marrowless vertebrate appears to be the major site of HSCs differentiation during development and in adulthood. Splenic development in this species was investigated and hemopoietic stem cells were detected in this organ by immunocytochemistry utilizing CD34 and CD38 antibodies. At stage I (2-cm-long embryos with external gills), the spleen contains only mesenchymal cells. At stage II (3-4 cm-long embryos with a discoidal shape and internal gills), an initial red pulp was observed in the spleen, without immunostained cells. At stage III (10-11- cm-long embryos), the spleen contained well-developed white pulp, red pulp and ellipsoids. Image analysis at stage III showed four cell populations, i.e. CD34+/CD38-, CD34+/CD38+, CD34- /CD38+, and CD34-/CD38- cells. The present findings, obtained from an elasmobranch, indicate that the CD34 and CD38 phenotypes are conserved through vertebrate evolution.
Collapse
Affiliation(s)
- Rosa Manca
- University of Naples Federico II, Department of Biology.
| | | | | |
Collapse
|
34
|
Peters MJ, Parker SK, Grim J, Allard CAH, Levin J, Detrich HW. Divergent Hemogen genes of teleosts and mammals share conserved roles in erythropoiesis: analysis using transgenic and mutant zebrafish. Biol Open 2018; 7:bio.035576. [PMID: 30097520 PMCID: PMC6124579 DOI: 10.1242/bio.035576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hemogen is a vertebrate transcription factor that performs important functions in erythropoiesis and testicular development and may contribute to neoplasia. Here we identify zebrafish Hemogen and show that it is considerably smaller (∼22 kDa) than its human ortholog (∼55 kDa), a striking difference that is explained by an underlying modular structure. We demonstrate that Hemogens are largely composed of 21-25 amino acid repeats, some of which may function as transactivation domains (TADs). Hemogen expression in embryonic and adult zebrafish is detected in hematopoietic, renal, neural and gonadal tissues. Using Tol2- and CRISPR/Cas9-generated transgenic zebrafish, we show that Hemogen expression is controlled by two Gata1-dependent regulatory sequences that act alone and together to control spatial and temporal expression during development. Partial depletion of Hemogen in embryos by morpholino knockdown reduces the number of erythrocytes in circulation. CRISPR/Cas9-generated zebrafish lines containing either a frameshift mutation or an in-frame deletion in a putative, C-terminal TAD display anemia and embryonic tail defects. This work expands our understanding of Hemogen and provides mutant zebrafish lines for future study of the mechanism of this important transcription factor. Summary: Transgenic and mutant zebrafish lines were created to characterize the expression and functions of Hemogen, a transcription factor involved in the formation of red blood cells and other processes.
Collapse
Affiliation(s)
- Michael J Peters
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Sandra K Parker
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Jeffrey Grim
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Corey A H Allard
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Jonah Levin
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
35
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
36
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Masud S, Torraca V, Meijer AH. Modeling Infectious Diseases in the Context of a Developing Immune System. Curr Top Dev Biol 2016; 124:277-329. [PMID: 28335862 DOI: 10.1016/bs.ctdb.2016.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish has been used for over a decade to study the mechanisms of a wide variety of inflammatory disorders and infections, with models ranging from bacterial, viral, to fungal pathogens. Zebrafish has been especially relevant to study the differentiation, specialization, and polarization of the two main innate immune cell types, the macrophages and the neutrophils. The optical accessibility and the early appearance of myeloid cells that can be tracked with fluorescent labels in zebrafish embryos and the ability to use genetics to selectively ablate or expand immune cell populations have permitted studying the interaction between infection, development, and metabolism. Additionally, zebrafish embryos are readily colonized by a commensal flora, which facilitated studies that emphasize the requirement for immune training by the natural microbiota to properly respond to pathogens. The remarkable conservation of core mechanisms required for the recognition of microbial and danger signals and for the activation of the immune defenses illustrates the high potential of the zebrafish model for biomedical research. This review will highlight recent insight that the developing zebrafish has contributed to our understanding of host responses to invading microbes and the involvement of the microbiome in several physiological processes. These studies are providing a mechanistic basis for developing novel therapeutic approaches to control infectious diseases.
Collapse
Affiliation(s)
- Samrah Masud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Vincenzo Torraca
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
38
|
McCollum CW, Conde-Vancells J, Hans C, Vazquez-Chantada M, Kleinstreuer N, Tal T, Knudsen T, Shah SS, Merchant FA, Finnell RH, Gustafsson JÅ, Cabrera R, Bondesson M. Identification of vascular disruptor compounds by analysis in zebrafish embryos and mouse embryonic endothelial cells. Reprod Toxicol 2016; 70:60-69. [PMID: 27838387 DOI: 10.1016/j.reprotox.2016.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022]
Abstract
To identify vascular disruptor compounds (VDCs), this study utilized an in vivo zebrafish embryo vascular model in conjunction with a mouse endothelial cell model to screen a subset of the U.S. Environmental Protection Agency (EPA) ToxCast Phase I chemical inventory. In zebrafish, 161 compounds were screened and 34 were identified by visual inspection as VDCs, of which 28 were confirmed as VDCs by quantitative image analysis. Testing of the zebrafish VDCs for their capacity to inhibit endothelial tube formation in the murine yolk-sac-derived endothelial cell line C166 identified 22 compounds that both disrupted zebrafish vascular development and murine endothelial in vitro tubulogenesis. Putative molecular targets for the VDCs were predicted using EPA's Toxicological Prioritization Index tool and a VDC signature based on a proposed adverse outcome pathway for developmental vascular toxicity. In conclusion, our screening approach identified 22 novel VDCs, some of which were active at nanomolar concentrations.
Collapse
Affiliation(s)
- Catherine W McCollum
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
| | - Javier Conde-Vancells
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Charu Hans
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Mercedes Vazquez-Chantada
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | | | | | | | - Shishir S Shah
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Fatima A Merchant
- Department of Computer Science, University of Houston, Houston, TX 77204, USA; Department of Engineering Technology, University of Houston, Houston, TX 77204, USA
| | - Richard H Finnell
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA; Department of Biosciences and Nutrition, Novum, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Robert Cabrera
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Maria Bondesson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA; Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
39
|
Williams LM, Lago BA, McArthur AG, Raphenya AR, Pray N, Saleem N, Salas S, Paulson K, Mangar RS, Liu Y, Vo AH, Shavit JA. The transcription factor, Nuclear factor, erythroid 2 (Nfe2), is a regulator of the oxidative stress response during Danio rerio development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:141-154. [PMID: 27716579 PMCID: PMC5274700 DOI: 10.1016/j.aquatox.2016.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 05/17/2023]
Abstract
Development is a complex and well-defined process characterized by rapid cell proliferation and apoptosis. At this stage in life, a developmentally young organism is more sensitive to toxicants as compared to an adult. In response to pro-oxidant exposure, members of the Cap'n'Collar (CNC) basic leucine zipper (b-ZIP) transcription factor family (including Nfe2 and Nfe2-related factors, Nrfs) activate the expression of genes whose protein products contribute to reduced toxicity. Here, we studied the role of the CNC protein, Nfe2, in the developmental response to pro-oxidant exposure in the zebrafish (Danio rerio). Following acute waterborne exposures to diquat or tert-buytlhydroperoxide (tBOOH) at one of three developmental stages, wildtype (WT) and nfe2 knockout (KO) embryos and larvae were morphologically scored and their transcriptomes sequenced. Early in development, KO animals suffered from hypochromia that was made more severe through exposure to pro-oxidants; this phenotype in the KO may be linked to decreased expression of alas2, a gene involved in heme synthesis. WT and KO eleutheroembryos and larvae were phenotypically equally affected by exposure to pro-oxidants, where tBOOH caused more pronounced phenotypes as compared to diquat. Comparing diquat and tBOOH exposed embryos relative to the WT untreated control, a greater number of genes were up-regulated in the tBOOH condition as compared to diquat (tBOOH: 304 vs diquat: 148), including those commonly found to be differentially regulated in the vertebrate oxidative stress response (OSR) (e.g. hsp70.2, txn1, and gsr). When comparing WT and KO across all treatments and times, there were 1170 genes that were differentially expressed, of which 33 are known targets of the Nrf proteins Nrf1 and Nrf2. More specifically, in animals exposed to pro-oxidants a total of 968 genes were differentially expressed between WT and KO across developmental time, representing pathways involved in coagulation, embryonic organ development, body fluid level regulation, erythrocyte differentiation, and oxidation-reduction, amongst others. The greatest number of genes that changed in expression between WT and KO occurred in animals exposed to diquat at 2h post fertilization (hpf). Across time and treatment, there were six genes (dhx40, cfap70, dnajb9b, slc35f4, spi-c, and gpr19) that were significantly up-regulated in KO compared to WT and four genes (fhad1, cyp4v7, nlrp12, and slc16a6a) that were significantly down-regulated. None of these genes have been previously identified as targets of Nfe2 or the Nrf family. These results demonstrate that the zebrafish Nfe2 may be a regulator of both primitive erythropoiesis and the OSR during development.
Collapse
Affiliation(s)
- Larissa M Williams
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Briony A Lago
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Amogelang R Raphenya
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Nicholas Pray
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA.
| | - Nabil Saleem
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Sophia Salas
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Katherine Paulson
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Roshni S Mangar
- The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA; College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609, USA.
| | - Yang Liu
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Andy H Vo
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Jordan A Shavit
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
40
|
Yue F, Wang L, Wang H, Song L. Expression of hematopoietic transcription factors Runt, CBFβ and GATA during ontogenesis of scallop Chlamys farreri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:88-96. [PMID: 27012994 DOI: 10.1016/j.dci.2016.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/19/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
Transcription factors Runx1, CBFβ and GATA1/2/3 play essential roles in regulating hematopoietic development during embryogenesis of vertebrate. In previous study, the orthologous genes of Runt, CBFβ and GATA1/2/3 have been identified from scallop Chlamys farreri and proved to have conserved function in regulating hemocyte production. Here, these three transcription factors were selected as hematopoietic markers to explore potential developmental events of hematopoiesis during ontogenesis of scallop. The transcripts of CfRunt, CfCBFβ and CfGATA were detected abundantly after 32-cell embryo, trochophore and morula stage, and reached to a peak level in 32-cell embryos and D-shaped veligers, pediveligers or gastrula respectively. Further whole-mount immunofluorescence assay showed that the immunoreactivity of CfRunt was firstly observed at 32-cell stage and then its distribution was specialized gradually to the mesoderm during gastrulation. By trochophore, the expression of CfRunt, CfCBFβ and CfGATA proteins occurred coincidently in two specific symmetry cell mass located bilaterally on prototroch, and then disappeared rapidly in D-shaped or umbonal vliger, respectively. However, remarkable expressions of the three transcription factors were observed consistently in a new sinus structure appeared at the dorsal anterior side of D-shaped and umbonal veliger. After bacterial challenge, the mRNA expression levels of the three transcription factors were up-regulated or down-regulated significantly in trochophore, D-shaped veliger and pediveliger, indicating the available hematopoietic regulation in scallop larvae. The results revealed that scallop might experience two waves of hematopoiesis during early development, which occurred in the bilateral symmetry cell mass of trochophore and the sinus structure of veliger.
Collapse
Affiliation(s)
- Feng Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
41
|
Goodfellow F, Simchick GA, Mortensen LJ, Stice SL, Zhao Q. Tracking and Quantification of Magnetically Labeled Stem Cells using Magnetic Resonance Imaging. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3899-3915. [PMID: 28751853 PMCID: PMC5526633 DOI: 10.1002/adfm.201504444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stem cell based therapies have critical impacts on treatments and cures of diseases such as neurodegenerative or cardiovascular disease. In vivo tracking of stem cells labeled with magnetic contrast agents is of particular interest and importance as it allows for monitoring of the cells' bio-distribution, viability, and physiological responses. Herein, recent advances are introduced in tracking and quantification of super-paramagnetic iron oxide (SPIO) nanoparticles-labeled cells with magnetic resonance imaging, a noninvasive approach that can longitudinally monitor transplanted cells. This is followed by recent translational research on human stem cells that are dual-labeled with green fluorescence protein (GFP) and SPIO nanoparticles, then transplanted and tracked in a chicken embryo model. Cell labeling efficiency, viability, and cell differentiation are also presented.
Collapse
Affiliation(s)
| | - Gregory A Simchick
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| | | | | | - Qun Zhao
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| |
Collapse
|
42
|
Rybtsov S, Ivanovs A, Zhao S, Medvinsky A. Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development 2016; 143:1284-9. [PMID: 27095492 PMCID: PMC4852516 DOI: 10.1242/dev.131193] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/29/2016] [Indexed: 01/07/2023]
Abstract
One day prior to mass emergence of haematopoietic stem cells (HSCs) in the foetal liver at E12.5, the embryo contains only a few definitive HSCs. It is thought that the burst of HSC activity in the foetal liver is underpinned by rapid maturation of immature embryonic precursors of definitive HSCs, termed pre-HSCs. However, because pre-HSCs are not detectable by direct transplantations into adult irradiated recipients, the size and growth of this population, which represents the embryonic rudiment of the adult haematopoietic system, remains uncertain. Using a novel quantitative assay, we demonstrate that from E9.5 the pre-HSC pool undergoes dramatic growth in the aorta-gonad-mesonephros region and by E11.5 reaches the size that matches the number of definitive HSCs in the E12.5 foetal liver. Thus, this study provides for the first time a quantitative basis for our understanding of how the large population of definitive HSCs emerges in the foetal liver.
Collapse
Affiliation(s)
- Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh E16 4UU, UK
| | - Andrejs Ivanovs
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh E16 4UU, UK
| | - Suling Zhao
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh E16 4UU, UK
| | - Alexander Medvinsky
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh E16 4UU, UK
| |
Collapse
|
43
|
Song X, Wang H, Chen H, Sun M, Liang Z, Wang L, Song L. Conserved hemopoietic transcription factor Cg-SCL delineates hematopoiesis of Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2016; 51:180-188. [PMID: 26915307 DOI: 10.1016/j.fsi.2016.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Hemocytes are the effective immunocytes in bivalves, which have been reported to be derived from stem-like cells in gill epithelium of oyster. In the present work, a conserved haematopoietic transcription factor Tal-1/Scl (Stem Cell Leukemia) was identified in Pacific oyster (Cg-SCL), and it was evolutionarily close to the orthologs in deuterostomes. Cg-SCL was highly distributed in the hemocytes as well as gill and mantle. The hemocyte specific genes Integrin, EcSOD and haematopoietic transcription factors GATA3, C-Myb, c-kit, were down-regulated when Cg-SCL was interfered by dsRNA. During the larval developmental stages, the mRNA transcripts of Cg-SCL gradually increased after fertilization and peaked at early trochophore larvae stage (10 hpf, hours post fertilization), then sharply decreased in late trochophore larvae stage (15 hpf) before resuming in umbo larvae (120 hpf). Whole-mount immunofluorescence assay further revealed that the immunoreactivity of Cg-SCL appeared in blastula larvae with two approximate symmetric spots, and this expression pattern lasted in gastrula larvae. By trochophore, the immunoreactivity formed a ring around the dorsal region and then separated into two remarkable spots at the dorsal side in D-veliger larvae. After bacterial challenge, the mRNA expression levels of Cg-SCL were significantly up-regulated in the D-veliger and umbo larvae, indicating the available hematopoietic regulation in oyster larvae. These results demonstrated that Cg-SCL could be used as haematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster, which occurred early in blastula stage and maintained until D-veliger larvae.
Collapse
Affiliation(s)
- Xiaorui Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhe Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhongxiu Liang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
44
|
Havixbeck JJ, Barreda DR. Neutrophil Development, Migration, and Function in Teleost Fish. BIOLOGY 2015; 4:715-34. [PMID: 26561837 PMCID: PMC4690015 DOI: 10.3390/biology4040715] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
It is now widely recognized that neutrophils are sophisticated cells that are critical to host defense and the maintenance of homeostasis. In addition, concepts such as neutrophil plasticity are helping to define the range of phenotypic profiles available to cells in this group and the physiological conditions that contribute to their differentiation. Herein, we discuss key features of the life of a teleost neutrophil including their development, migration to an inflammatory site, and contributions to pathogen killing and the control of acute inflammation. The potent anti-microbial mechanisms elicited by these cells in bony fish are a testament to their long-standing evolutionary contributions in host defense. In addition, recent insights into their active roles in the control of inflammation prior to induction of apoptosis highlight their importance to the maintenance of host integrity in these early vertebrates. Overall, our goal is to summarize recent progress in our understanding of this cell type in teleost fish, and to provide evolutionary context for the contributions of this hematopoietic lineage in host defense and an efficient return to homeostasis following injury or infection.
Collapse
Affiliation(s)
- Jeffrey J Havixbeck
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2P5, Canada.
| | - Daniel R Barreda
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada.
| |
Collapse
|
45
|
Mutation of kri1l causes definitive hematopoiesis failure via PERK-dependent excessive autophagy induction. Cell Res 2015; 25:946-62. [PMID: 26138676 PMCID: PMC4528055 DOI: 10.1038/cr.2015.81] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/03/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of ribosome biogenesis causes human diseases, such as Diamond-Blackfan anemia, del (5q-) syndrome and bone marrow failure. However, the mechanisms of blood disorders in these diseases remain elusive. Through genetic mapping, molecular cloning and mechanism characterization of the zebrafish mutant cas002, we reveal a novel connection between ribosomal dysfunction and excessive autophagy in the regulation of hematopoietic stem/progenitor cells (HSPCs). cas002 carries a recessive lethal mutation in kri1l gene that encodes an essential component of rRNA small subunit processome. We show that Kri1l is required for normal ribosome biogenesis, expansion of definitive HSPCs and subsequent lineage differentiation. Through live imaging and biochemical studies, we find that loss of Kri1l causes the accumulation of misfolded proteins and excessive PERK activation-dependent autophagy in HSPCs. Blocking autophagy but not inhibiting apoptosis by Bcl2 overexpression can fully rescue hematopoietic defects, but not the lethality of kri1lcas002 embryos. Treatment with autophagy inhibitors (3-MA and Baf A1) or PERK inhibitor (GSK2656157), or knockdown of beclin1 or perk can markedly restore HSPC proliferation and definitive hematopoietic cell differentiation. These results may provide leads for effective therapeutics that benefit patients with anemia or bone marrow failure caused by ribosome disorders.
Collapse
|
46
|
In situ hematopoiesis: a regulator of TH2 cytokine-mediated immunity and inflammation at mucosal surfaces. Mucosal Immunol 2015; 8:701-11. [PMID: 25783967 DOI: 10.1038/mi.2015.17] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/01/2015] [Indexed: 02/04/2023]
Abstract
Hematopoiesis refers to the development of blood cells in the body through the differentiation of pluripotent stem cells. Although hematopoiesis is a multifocal process during embryonic development, under homeostatic conditions it occurs exclusively within the bone marrow. There, a limited number of hematopoietic stem cells differentiate into a rapidly proliferating population of lineage-restricted progenitors that serve to replenish circulating blood cells. However, emerging reports now suggest that under inflammatory conditions, alterations in hematopoiesis that occur outside of the bone marrow appear to constitute a conserved mechanism of innate immunity. Moreover, recent reports have identified previously unappreciated pathways that regulate the egress of hematopoietic progenitor cells from the bone marrow, alter their activation status, and skew their developmental potential. These studies suggest that progenitor cells contribute to inflammatory response by undergoing in situ hematopoiesis (ISH). In this review, we highlight the differences between homeostatic hematopoiesis, which occurs in the bone marrow, and ISH, which occurs at mucosal surfaces. Further, we highlight factors produced at local sites of inflammation that regulate hematopoietic progenitor cell responses and the development of TH2 cytokine-mediated inflammation. Finally, we discuss the therapeutic potential of targeting ISH in preventing the development of inflammation at mucosal sites.
Collapse
|
47
|
Peng X, Dong M, Ma L, Jia XE, Mao J, Jin C, Chen Y, Gao L, Liu X, Ma K, Wang L, Du T, Jin Y, Huang Q, Li K, Zon LI, Liu T, Deng M, Zhou Y, Xi X, Zhou Y, Chen S. A point mutation of zebrafish c-cbl gene in the ring finger domain produces a phenotype mimicking human myeloproliferative disease. Leukemia 2015; 29:2355-65. [PMID: 26104663 DOI: 10.1038/leu.2015.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Controlled self-renewal and differentiation of hematopoietic stem/progenitor cells (HSPCs) are critical for vertebrate development and survival. These processes are tightly regulated by the transcription factors, signaling molecules and epigenetic factors. Impaired regulations of their function could result in hematological malignancies. Using a large-scale zebrafish N-ethyl-N-nitrosourea mutagenesis screening, we identified a line named LDD731, which presented significantly increased HSPCs in hematopoietic organs. Further analysis revealed that the cells of erythroid/myeloid lineages in definitive hematopoiesis were increased while the primitive hematopoiesis was not affected. The homozygous mutation was lethal with a median survival time around 14-15 days post fertilization. The causal mutation was located by positional cloning in the c-cbl gene, the human ortholog of which, c-CBL, is found frequently mutated in myeloproliferative neoplasms (MPN) or acute leukemia. Sequence analysis showed the mutation in LDD731 caused a histidine-to-tyrosine substitution of the amino acid codon 382 within the RING finger domain of c-Cbl. Moreover, the myeloproliferative phenotype in zebrafish seemed dependent on the Flt3 (fms-like tyrosine kinase 3) signaling, consistent with that observed in both mice and humans. Our study may shed new light on the pathogenesis of MPN and provide a useful in vivo vertebrate model of this syndrome for screening drugs.
Collapse
Affiliation(s)
- X Peng
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - M Dong
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate University, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Ma
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China.,Shanghai Center for Systems Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - X-E Jia
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate University, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Mao
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - C Jin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate University, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - L Gao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate University, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - K Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate University, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate University, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - T Du
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Y Jin
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Q Huang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - K Li
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - L I Zon
- Stem Cell Program at Boston Children's Hospital, Hematology/Oncology Program at Children's Hospital and Dana Faber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - T Liu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate University, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - M Deng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate University, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Zhou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate University, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Xi
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| | - Y Zhou
- Stem Cell Program at Boston Children's Hospital, Hematology/Oncology Program at Children's Hospital and Dana Faber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, and Collaborative Innovation Center of Systems Biomedicine, SJTU, Shanghai, China
| |
Collapse
|
48
|
Zebrafish as a Model for the Study of Human Myeloid Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641475. [PMID: 26064935 PMCID: PMC4433643 DOI: 10.1155/2015/641475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/26/2023]
Abstract
Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies.
Collapse
|
49
|
Ratajczak MZ. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 2015; 29:776-782. [PMID: 25486871 PMCID: PMC4396402 DOI: 10.1038/leu.2014.346] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 01/02/2023]
Abstract
This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program, Stella and Henry Hoenig Endowed Chair, Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
50
|
Zebrafish as a model for leukemia and other hematopoietic disorders. J Hematol Oncol 2015; 8:29. [PMID: 25884214 PMCID: PMC4389495 DOI: 10.1186/s13045-015-0126-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/11/2015] [Indexed: 01/24/2023] Open
Abstract
Zebrafish is an established model for the study of vertebrate development, and is especially amenable for investigating hematopoiesis, where there is strong conservation of key lineages, genes, and developmental processes with humans. Over recent years, zebrafish has been increasingly utilized as a model for a range of human hematopoietic diseases, including malignancies. This review provides an overview of zebrafish hematopoiesis and describes its application as a model of leukemia and other hematopoietic disorders.
Collapse
|