1
|
Li JY, Wang TT, Ma L, Zheng LL. CARM1 deficiency inhibits osteoblastic differentiation of bone marrow mesenchymal stem cells and delays osteogenesis in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119544. [PMID: 37468072 DOI: 10.1016/j.bbamcr.2023.119544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
Bone repair remains a clinical challenge due to low osteogenic capacity. Coactivator associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that mediates arginine methylation and endochondral ossification. However, the roles of CARM1 in osteoblastic differentiation and bone remodeling have not been explored. In our study, heterozygous CARM1-knockout (KO) mice were generated using the CRISPR-Cas9 system and a model of femoral defect was created. At day 7 postsurgery, CARM1-KO mice exhibited obvious bone loss compared with wild type (WT) mice, as evidenced by reduced bone mineral density (BMD), bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). Deletion of CARM1 in mice lowered synthesis and accumulation of collagen at the injury sites. The alkaline phosphatase (ALP) activity and osteogenic-related gene expression were declined in CARM1-KO mice. To further understand the role of CARM1 in osteoblastic differentiation, bone marrow mesenchymal stem cells (BMSCs) were isolated from the tibia and femur of WT or CARM1-KO mice. CARM1 deletion decreased histone arginine methylation and inhibited osteoblastic differentiation and mineralization. The mRNA sequencing of CARM1-KO BMSCs revealed the possible regulatory molecules by CARM1, which could deepen our understanding of CARM1 regulatory mechanisms. These data could be of interest to basic researchers and provide the direction for future research into bone-related disorders.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Medical Cosmetology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Ting-Ting Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Li Ma
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Li Zheng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Wu MC, Yu HW, Chen YQ, Ou MH, Serrano R, Huang GL, Wang YK, Lin KH, Fan YJ, Wu CC, Del Álamo JC, Chiou A, Chien S, Kuo JC. Early committed polarization of intracellular tension in response to cell shape determines the osteogenic differentiation of mesenchymal stromal cells. Acta Biomater 2023; 163:287-301. [PMID: 36328121 PMCID: PMC11389728 DOI: 10.1016/j.actbio.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commitment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direction, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally. In square cells, the contractile force, generated by the myosin IIA-enriched transverse fibers, were concentrated and transmitted outwards along the symmetrical bundles of radial fibers, to the extracellular matrix through FAs, and thereby driving FA organization and maturation. The symmetrical radial fiber bundles concentrated the transverse fibers contractility inward to the linkage between the actin cytoskeleton and the nuclear envelope. The tauter cytoskeletal network adjusted the nuclear-actomyosin force balance to cause nuclear deformability and to increase nuclear translocation of the transcription co-activator YAP, which in turn modulated the switch in MSC commitment. Thus, FAs dynamically respond to geometric cues and remodel actin cytoskeletal network to re-distribute intracelluar tension towards the cell nucleus, and thereby controlling YAP mechanotransduction signaling in regulating MSC fate decision. STATEMENT OF SIGNIFICANCE: We decipher how cellular mechanics is self-organized depending on extracellular geometric features to correlate with mesenchymal stromal cell lineage commitment. In response to geometry constrains on cell morphology, symmetrical radial fiber bundles are assembled and clustered depending on the maturation state of focal adhesions and bridge with the transverse fibers, and thereby establishing the dynamic cytoskeletal network. Contractile force, generated by the myosin-IIA-enriched transverse fibers, is transmitted and dynamically drives the retrograde movement of the actin cytoskeletal network, which appropriately adjusts the nuclear-actomyosin force balance and deforms the cell nucleus for YAP mechano-transduction signaling in regulating mesenchymal stromal cell fate decision.
Collapse
Affiliation(s)
- Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Meng-Hsin Ou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ricardo Serrano
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guan-Lin Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kung-Hui Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Chang Wu
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan
| | - Juan C Del Álamo
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA; Center for Cardiovascular Biology, University of Washington, School of Medicine, Seattle, WA, 98109, USA; Mechanical Engineering Department, University of Washington, Seattle, WA, 98195, USA
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
3
|
Yuan M, Zhao L, Li Y, Gao X, Zhang B, Zhang D, Li Y. Capsaicin on stem cell proliferation and fate determination - a novel perspective. Pharmacol Res 2021; 167:105566. [PMID: 33753245 DOI: 10.1016/j.phrs.2021.105566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Capsaicin (CAP), a member of the vanilloid family, is the main active component of chili peppers, which has been widely explored for its various pharmacological effects and influence on cell physiology, such as axonal growth and apoptosis of tumor cells. In particular, CAP plays a crucial role in determining the proliferation and fate specification of stem cells by modulating a variety of signaling pathways, such as PPARγ, C/EBPα and Notch signaling. Since CAP-mediated processes are complex and multifactorial, we hope to achieve a better understanding of these processes and their implications in clinical applications. This review aims to shed light on the influences and mechanisms of CAP on the actions of various stem cells in adults and discusses the role of CAP in the different process of stem cell behaviors, including proliferation and differentiation. Our purpose is to provide certain prospects for the application of CAP and stem cell therapy in treating diseases.
Collapse
Affiliation(s)
- Mengmeng Yuan
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Lucy Zhao
- Institute for Pharmacy and Molecular Biotechnology, Functional Genomics, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Yuhong Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Boli Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Deqin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617.
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617.
| |
Collapse
|
4
|
Sukegawa S, Kawai H, Nakano K, Kanno T, Takabatake K, Nagatsuka H, Furuki Y. Feasible Advantage of Bioactive/Bioresorbable Devices Made of Forged Composites of Hydroxyapatite Particles and Poly-L-lactide in Alveolar Bone Augmentation: A Preliminary Study. Int J Med Sci 2019; 16:311-317. [PMID: 30745812 PMCID: PMC6367538 DOI: 10.7150/ijms.27986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022] Open
Abstract
Purpose: We aimed to document the clinical usefulness of uncalcined and unsintered hydroxyapatite (u-HA) particles and poly-L-lactide (PLLA) composite materials and their advantageous properties. Methods: Between April 2016 and March 2018, five patients required anterior maxillary alveolar ridge augmentation using fixation with u-HA/PLLA screws for an onlay block bone graft harvested from the mandibular ramus at our institute. Bone biopsies were obtained from the dental implantation site following bone healing for histomorphometric and immunohistochemical (IHC) measurements. Results: Many stromal cells were positive for Osterix, RUNX2, and SOX9 but were negative for CD68. On cell counting, based on IHC staining for Osterix, RUNX2, SOX9 and CD68 from peripheral u-HA/PLLA screw or bone areas, both areas consistently showed no significant difference in terms of Osterix, RUNX2, and SOX9. Hematoxylin-eosin staining revealed direct bone connection to the biomaterials, and no inflammatory cells infiltrated the areas surrounding the bone or artificial material. Area between the bone and u-HA/PLLA screw was seamless with no boundary. Round small cells and immature fibroblasts were noted. The new bone showed the presence of bone lamellae, normal osteocytes, and osteoblasts. Conclusion: The u-HA/PLLA materials showed excellent biodegradability and bioactive osteoconductivity. In addition, this material induced no apparent inflammatory or foreign body reactions following implantation, and it directly bonded to the human bone. Therefore, this u-HA/PLLA material seems ideal and most suitable for use as a substitute for osteosynthesis.
Collapse
Affiliation(s)
- Shintaro Sukegawa
- Division of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takahiro Kanno
- Division of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Japan
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Shimane, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiko Furuki
- Division of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| |
Collapse
|
5
|
Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y. Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis. Med Sci Monit 2016; 22:226-33. [PMID: 26795027 PMCID: PMC4727494 DOI: 10.12659/msm.897044] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is a systemic metabolic bone disorder characterized by a decrease in bone mass and degradation of the bone microstructure, leaving bones that are fragile and prone to fracture. Most osteoporosis treatments improve symptoms, but to date there is no quick and effective therapy. Bone marrow mesenchymal stem cells (BMMSCs) have pluripotent potential. In adults, BMMSCs differentiate mainly into osteoblasts and adipocytes in the skeleton. However, if this differentiation is unbalanced, it may lead to a decrease in bone mass. If the number of adipocyte cells increases and that of osteoblast cells decreases, osteoporosis can result. A variety of hormones and cytokines play an important role in the regulation of BMMSCs bidirectional differentiation. Therefore, a greater understanding of the regulation mechanism of BMMSC differentiation may provide new methods to prevent and treat osteoporosis. In addition, autologous, allogeneic BMMSCs or genetically modified BMMSC transplantation can effectively increase bone mass and density, increase bone mechanical strength, correct the imbalance in bone metabolism, and increase bone formation, and is expected to provide a new strategy and method for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Xin Wang
- Department of Orthopedics, Urumqi General Hospital of Lanzhou Military Command, Urumqi, Xinjiang, China (mainland)
| | - Chenyang Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China (mainland)
| | - Jing Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
6
|
Diabetes-induced fibrotic matrix inhibits intramembranous bone healing. J Cell Commun Signal 2014; 9:19-26. [PMID: 25186349 DOI: 10.1007/s12079-014-0242-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/21/2014] [Indexed: 01/13/2023] Open
Abstract
Diabetes diminishes bone healing and ossification. Reduced bone formation in intramembranous ossification is known, yet the mechanism(s) behind impaired intramembranous bone healing are unclear. Here we report the formation of a fibrotic matrix during healing of intramembranous calvarial bone defects that appears to exclude new bone growth. Our histological analyses of 7-day and 14-day calvaria bone healing tissue in chemically-induced diabetic mice and non-diabetic mice showed the accumulation of a non-mineralized fibrotic matrix, likely as a consequence of unresolved hematomas under diabetic conditions. Elevated mRNA and enzyme activity levels of lysyl oxidase on day 7 in diabetic bone healing tissues also supports that the formation of a fibrotic matrix occurs in these tissues. Based on these findings, we propose that elevated fibroblast proliferation and formation of a non-mineralized fibrotic extracellular matrix in diabetes contributes to deficient intramembranous bone healing in diabetes. A greater understanding of this process has relevance to managing dental procedures in diabetics in which successful outcomes depend on intramembranous bone formation.
Collapse
|
7
|
Metzger J, Schrimpf R, Philipp U, Distl O. Expression levels of LCORL are associated with body size in horses. PLoS One 2013; 8:e56497. [PMID: 23418579 PMCID: PMC3572084 DOI: 10.1371/journal.pone.0056497] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/10/2013] [Indexed: 01/24/2023] Open
Abstract
Body size is an important characteristic for horses of various breeds and essential for the classification of ponies concerning the limit value of 148 cm (58.27 inches) height at the withers. Genome-wide association analyses revealed the highest associated quantitative trait locus for height at the withers on horse chromosome (ECA) 3 upstream of the candidate gene LCORL. Using 214 Hanoverian horses genotyped on the Illumina equine SNP50 BeadChip and 42 different horse breeds across all size ranges, we confirmed the highly associated single nucleotide polymorphism BIEC2-808543 (−log10P = 8.3) and the adjacent gene LCORL as the most promising candidate for body size. We investigated the relative expression levels of LCORL and its two neighbouring genes NCAPG and DCAF16 using quantitative real-time PCR (RT-qPCR). We could demonstrate a significant association of the relative LCORL expression levels with the size of the horses and the BIEC2-808543 genotypes within and across horse breeds. In heterozygous C/T-horses expression levels of LCORL were significantly decreased by 40% and in homozygous C/C-horses by 56% relative to the smaller T/T-horses. Bioinformatic analyses indicated that this SNP T>C mutation is disrupting a putative binding site of the transcription factor TFIID which is important for the transcription process of genes involved in skeletal bone development. Thus, our findings suggest that expression levels of LCORL play a key role for body size within and across horse breeds and regulation of the expression of LCORL is associated with genetic variants of BIEC2-808543. This is the first functional study for a body size regulating polymorphism in horses and a further step to unravel the mechanisms for understanding the genetic regulation of body size in horses.
Collapse
Affiliation(s)
- Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rahel Schrimpf
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ute Philipp
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
8
|
Miyamoto S, Shinmyouzu K, Miyamoto I, Takeshita K, Terada T, Takahashi T. Histomorphometric and immunohistochemical analysis of human maxillary sinus-floor augmentation using porous β-tricalcium phosphate for dental implant treatment. Clin Oral Implants Res 2012; 24 Suppl A100:134-8. [PMID: 22220565 DOI: 10.1111/j.1600-0501.2011.02396.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2011] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study utilized the constitution and expression of Runx2/Cbfa1 to conduct 6-month-post-operation histomorphometrical and histochemical analysis of osteocalcin in bone regeneration following sinus-floor augmentation procedures using β-tricalcium phosphate (β-TCP) and autogenous cortical bone. MATERIAL AND METHODS Thirteen sinuses of nine patients were treated with sinus-floor augmentation using 50% β-TCP and 50% autogenous cancellous bone harvested from the ramus of the mandible. Biopsies of augmented sinuses were taken at 6 months for histomorphometric and immunohistochemical measurements. RESULTS Runx2/Cbfa1- and osteocalcin-positive cells were found around TCP particles and on the bone surface. Approximately 60% of cells found around TCP particles stained positive for Runx2/Cbfa1. Fewer cells stained positive for osteocalcin. These positive cells decreased apically with increasing vertical distance from the maxillary bone surface. Histomorphometric analysis showed that the augmented site close to residual bone and periosteum contained approximately 42% bony tissue and 42% soft connective tissue, and the remaining 16% consisted of TCP particles. On the other hand, the augmented bone far from residual bone and periosteum contained 35% bony tissue and 50% soft connective tissue. CONCLUSIONS Our data suggest that TCP particles attract osteoprogenitor cells that migrate into the interconnecting micropores of the bone-substitute material by 6 months. The augmented site close to residual bone contained a higher proportion of bony tissue and a lower proportion of soft connective tissue than did the augmented site far from residual bone.
Collapse
Affiliation(s)
- Shinji Miyamoto
- Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Science of Physical Functions, Kyushu Dental College, Kitakyusyu City, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Demer L, Tintut Y. The roles of lipid oxidation products and receptor activator of nuclear factor-κB signaling in atherosclerotic calcification. Circ Res 2011; 108:1482-93. [PMID: 21659652 PMCID: PMC3128471 DOI: 10.1161/circresaha.110.234245] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/05/2011] [Indexed: 12/20/2022]
Abstract
This review focuses on the roles of oxylipids and receptor activator of nuclear factor-κB ligand signaling in calcific cardiovascular disease. Both intimal and valvular calcifications are closely associated with atherosclerosis, leading investigators to study the role of atherogenic oxidatively modified lipids (oxylipids). Results have identified the molecular signaling through which oxylipids induce osteogenic differentiation and calcification in vascular cells. A surprising concomitant finding was that, in bona fide osteoblasts from skeletal bone, oxylipids have the opposite effect, ie, inhibiting osteoblastic maturation. This is the basis for the lipid hypothesis of osteoporosis. Oxylipids also induce resorptive osteoclastic cells within the bone environment, raising the question of whether resorptive osteoclasts can be harnessed in the vascular context for cell-based therapy to remove artery wall mineral deposits. The challenge is that vascular cells produce antiosteoclastogenic factors, including the soluble decoy receptor for receptor activator of nuclear factor-κB ligand, possibly accounting for the paucity of resorptive cells and the dominance of mineral in atherosclerotic plaque. These factors may have therapeutic use in osteoclastogenic removal of mineral deposits from arteries.
Collapse
Affiliation(s)
- Linda Demer
- Department of Medicine, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|
10
|
Yang Y, Yang Y, Li X, Cui L, Fu M, Rabie AB, Zhang D. Functional analysis of core binding factor a1 and its relationship with related genes expressed by human periodontal ligament cells exposed to mechanical stress. Eur J Orthod 2010; 32:698-705. [DOI: 10.1093/ejo/cjq010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Endo T, Kobayashi T. Runx2 deficiency in mice causes decreased thyroglobulin expression and hypothyroidism. Mol Endocrinol 2010; 24:1267-73. [PMID: 20375239 DOI: 10.1210/me.2010-0056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently reported on the overexpression of Runx2 (Cbfa1/AML3), an osteoblast-specific transcription factor, in human papillary thyroid cancer tissues. We report here that normal thyrocytes also express Runx2 and that Runx2(+/-) mice are in a hypothyroid state. To clarify the mechanism, we studied the effects of small interfering RNA-mediated silencing of Runx2 on thyroid-specific gene expression in FRTL-5 cells. Lowering the levels of Runx2 had no effect on the amount of Na(+)/I(-) symporter mRNA but markedly decreased the amount of thyroglobulin (Tg) mRNA. A Runx2 binding consensus sequence is present on the Tg gene promoter, and gel-shift assay revealed that Runx2 binds to this region. Reporter assay showed that deletion of the region or introduction of a mutation into the binding site significantly impairs promoter function. These results indicate that Runx2 deficiency in mice causes decreased Tg expression and a novel type of hypothyroidism.
Collapse
Affiliation(s)
- Toyoshi Endo
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo City, Yamanashi 409-3898, Japan.
| | | |
Collapse
|
12
|
|
13
|
Ilmer M, Karow M, Geissler C, Jochum M, Neth P. Human osteoblast-derived factors induce early osteogenic markers in human mesenchymal stem cells. Tissue Eng Part A 2009; 15:2397-409. [PMID: 19292682 DOI: 10.1089/ten.tea.2008.0427] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capacity of human mesenchymal stem cells (hMSC) for self-renewal and differentiation is a tightly regulated process within their microenvironment--the stem cell niche. For future therapeutic applications of hMSC within the frame of tissue engineering, it is of major importance to understand the factors involved in triggering differentiation cascades of hMSC. Using either osteoblast-conditioned medium or an indirect coculture system, we investigated whether soluble factors from human osteoblasts (hOB) are sufficient to induce early osteogenic markers in hMSC. Thereby, we detected an induction of several osteogenic markers like alkaline phosphatase, bone sialoprotein 2, leptin receptor, decorin, and cathepsin K in hMSC as indicators of the onset of early osteogenesis. Further, because Wnt signaling has been reported to play an important role in osteogenesis, we performed RNAi against the main Wnt mediator beta-catenin and the low-density lipoprotein receptor-related protein 5 as a major Wnt co-receptor in hMSC. Whereas alkaline phosphatase was significantly downregulated with this approach, the other osteogenic markers showed a markedly upregulation. These observations suggest that hOB-secreted factors could induce early osteogenic markers in hMSC. Thus, with regard to a therapeutic setting, these findings may pave the way for a more in vivo-related differentiation procedure for the generation of osteoblast-like cells.
Collapse
Affiliation(s)
- Matthias Ilmer
- Division of Clinical Chemistry and Clinical Biochemistry, Department of Surgery, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
14
|
Nakanishi S, Sskamoto K, Yoshitake H, Kino K, Amagasa T, Yamaguchi A. Bone morphogenetic proteins are involved in the pathobiology of synovial chondromatosis. Biochem Biophys Res Commun 2009; 379:914-9. [DOI: 10.1016/j.bbrc.2008.12.170] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 12/28/2008] [Indexed: 10/21/2022]
|
15
|
Suzuki A, Takayama T, Suzuki N, Sato M, Fukuda T, Ito K. Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts. Acta Biochim Biophys Sin (Shanghai) 2009; 41:108-15. [PMID: 19204827 DOI: 10.1093/abbs/gmn012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There were few studies investigating the effects of the mechanical stimulation provided by daily low-intensity pulsed ultrasound (LIPUS) treatment. LIPUS is known to accelerate bone mineralization and regeneration; however, the precise cellular mechanism is unclear.Our purpose was to determine how daily LIPUS treatment affected cell viability, alkaline phosphatase activity, osteogenesis-related gene expression, and mineralized nodule formation in osteoblasts. The typical osteoblastic cell line ROS 17/2.8 cells were cultured in the absence or presence of LIPUS stimulation. Daily LIPUS treatments (1.5 MHz; 20 min) were administered at an intensity of 30 mW/cm(2) for 14 days. Expression of osteogenesis-related genes was examined at mRNA levels using real-time polymerase chain reaction and at protein levels using western blotting analysis. LIPUS stimulation did not affect the rate of cell viability. Alkaline phosphatase activity was increased after 10 days of culture with daily LIPUS stimulation. LIPUS significantly increased the expression of mRNAs encoding Runx2, Msx2, Dlx5, osterix, bone sialoprotein, and bone morphogenetic protein-2, whereas it significantly reduced the expression of mRNA encoding the transcription factor AJ18. Mineralized nodule formation was markedly increased on Day 14 of LIPUS stimulation. LIPUS stimulation directly affected osteogenic cells, leading to mineralized nodule formation. LIPUS is likely to have a fundamental influence on key functional activities of osteoblasts in alveolar bone.
Collapse
Affiliation(s)
- Akito Suzuki
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression. PLoS One 2009; 4:e4135. [PMID: 19125191 PMCID: PMC2607547 DOI: 10.1371/journal.pone.0004135] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 12/04/2008] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis is one of the most common diseases and can be treated by either anti-resorption drugs, anabolic drugs, or both. To search for anabolic drug targets for osteoporosis therapy, it is crucial to understand the biology of bone forming cells, osteoblasts, in terms of their proliferation, differentiation, and function. Here we found that protein palmitoylation participates in signaling pathways that control osterix expression and osteoblast differentiation. Mouse calvarial osteoblasts express most of the 24 palmitoyl transferases, with some being up-regulated during differentiation. Inhibition of protein palmitoylation, with a substrate-analog inhibitor, diminished osteoblast differentiation and mineralization, but not proliferation or survival. The decrease in differentiation capacity is associated with a reduction in osterix, but not Runx2 or Atf4. Inhibition of palmitoyl transferases had little effect in p53(-/-) osteoblasts that show accelerated differentiation due to overexpression of osterix, suggesting that osterix, at least partially, mediated the effect of inhibition of palmitoyl transferases on osteoblast differentiation. BMPs are the major driving force of osteoblast differentiation in the differentiation assays. We found that inhibition of palmitoyl transferases also compromised BMP2-induced osteoblast differentiation through down-regulating osterix induction. However, palmitoyl transferases inhibitor did not inhibit Smad1/5/8 activation. Instead, it compromised the activation of p38 MAPK, which are known positive regulators of osterix expression and differentiation. These results indicate that protein palmitoylation plays an important role in BMP-induced MAPK activation, osterix expression, and osteoblast differentiation.
Collapse
|
17
|
Li Y, Bäckesjö CM, Haldosén LA, Lindgren U. Species difference exists in the effects of 1alpha,25(OH)(2)D(3) and its analogue 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D(3) (2MD) on osteoblastic cells. J Steroid Biochem Mol Biol 2008; 112:110-6. [PMID: 18832035 DOI: 10.1016/j.jsbmb.2008.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 07/17/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
The direct effect of 1alpha,25(OH)(2)D(3) on osteoblasts remains unclear. In this study, we evaluated the in vitro effects of 1alpha,25(OH)(2)D(3) and its analogue, 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D(3) (2MD), on osteoblasts from three different species, i.e. bone marrow stromal cells from the Sprague-Dawley (SD) rat, from the C57BL/6 mouse, as well as human osteoblast NHOst cells and human osteosarcoma derived MG-63 cells. We found that in rat cells, both compounds increased cell proliferation, inhibited cell apoptosis and increased alkaline phosphatase (ALP) activity. In mouse cells, however, both compounds initiated cell apoptosis and inhibited ALP activity. In human cells, although cell proliferation was inhibited by both compounds, cell apoptosis was inhibited and ALP activity was enhanced. In each species, 2MD was much more potent than 1alpha,25(OH)(2)D(3). To summarize, species differences should be taken into account in studies of vitamin D effects. However, in all tested species - rat, mouse and human - 2MD is considerably more potent in its effects on osteoblastic cells in vitro than 1alpha,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Yan Li
- Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Orthopedics, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | |
Collapse
|
18
|
Li Y, Bäckesjö CM, Haldosén LA, Lindgren U. IL-6 receptor expression and IL-6 effects change during osteoblast differentiation. Cytokine 2008; 43:165-73. [PMID: 18555695 DOI: 10.1016/j.cyto.2008.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 04/11/2008] [Accepted: 05/07/2008] [Indexed: 10/21/2022]
Abstract
Studies of the effects of interleukin-6 on osteoblasts have yielded conflicting results. In several earlier in vitro studies it has been stated that IL-6 has no effects on osteoblasts unless soluble IL-6 receptor is added. These results are contradictory to the fact that IL-6 receptors are expressed in osteoblasts in vivo. In this study, MC3T3 preosteoblast cells and rat bone marrow stromal cells were cultured in bone inducing medium containing ascorbic acid, beta-glycerophosphate or dexamethasone. We found that IL-6 receptor expression increased in both types of cells during in vitro differentiation. Furthermore in MC3T3 cells IL-6 decreased proliferation and enhanced expression of two osteoblast-specific differentiation markers, Runx2 and osteocalcin, in proper sequential order. Interestingly, in both cell types IL-6-induced apoptosis only in later culture stages. We also found in MC3T3 cells that IL-6 induced STAT3 activation was significantly higher in later culture stages, i.e. when IL-6 receptor expression was high. The present study shows that IL-6 receptor expression increases during in vitro osteoblast differentiation and that IL-6 functions as a differentiation regulator of preosteoblast cells and an apoptosis initiator in more mature cells.
Collapse
Affiliation(s)
- Yan Li
- Department for Clinical Science, Intervention and Technology (CLINTEC), Division of Orthopedics, Karolinska Institute, K54, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|
19
|
Liu T, Gao Y, Sakamoto K, Minamizato T, Furukawa K, Tsukazaki T, Shibata Y, Bessho K, Komori T, Yamaguchi A. BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J Cell Physiol 2007; 211:728-35. [PMID: 17226753 DOI: 10.1002/jcp.20988] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To investigate the molecular mechanism underlying the differentiation of osteoblasts and chondroblasts, we established a clonal cell lines, RD-C6, from Runx2-deficient mouse embryos. RD-C6 cells expressed almost undetectable levels of phenotypes related to osteoblast and chondroblast differentiation at basal culture condition, whereas treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2) or transduction of BMP-2 by adenovirus effectively induced this cell line to express mRNA related to the differentiation of osteoblasts and chondroblasts including alkaline phosphatase, osteocalcin, and osterix. Transduction of Runx2 also induced the expression of these mRNA in RD-C6 cells. BMP-2 transduction increased expression levels of mRNA for Msx2 and Dlx5, but Runx2 transduction induced no significant increases in expression levels of these mRNA. Microarray analysis using RD-C6 cells with or without rhBMP-2 treatment demonstrated that BMP-2 upregulated 66 genes including 13 transcription-related molecules such as Id1, Id2, Id4, Hey1, Smad6, Smad7, and Msx2. To confirm bone and cartilage formation ability of RD-C6 cells, we transplanted RD-C6 cells into the peritoneal cavity of athymic mice using diffusion chambers with rhBMP-2. RD-C6 cells generated unmineralized cartilage but not bone. These results indicate that BMP-2 induces Runx2-deficient cells to express markers related to osteoblast and chondroblast differentiation using a Runx2-independent pathway, but it failed to induce these cells to differentiate into bone-forming osteoblasts and mature chondrocytes.
Collapse
Affiliation(s)
- Tingjiao Liu
- Section of Oral Pathology, Department of Oral Restitution, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhao Y, Ding S. A high-throughput siRNA library screen identifies osteogenic suppressors in human mesenchymal stem cells. Proc Natl Acad Sci U S A 2007; 104:9673-8. [PMID: 17535907 PMCID: PMC1887565 DOI: 10.1073/pnas.0703407104] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tissue-specific (or adult) stem/progenitor cells are regarded as the source for normal tissue homeostasis and tissue repair. They also provide tremendous promise for regenerative medicine because of their capacity to proliferate and differentiate into a variety of mature cell types. Human mesenchymal stem cells (hMSCs) can differentiate into osteocytes, adipocytes, chondrocytes, muscle cells, and neurons. However, the molecular mechanisms underlying these differentiation processes are poorly understood. We screened a synthetic siRNA library targeting 5,000 human genes to identify the endogenous repressors of osteogenic specification, which when silenced could initiate differentiation of hMSCs into osteoblasts. This screen yielded 53 candidate suppressors, and 12 of those were further confirmed for their dynamic roles in suppressing osteogenic specification in hMSCs. Furthermore, cAMP was identified to play opposing roles in osteogenesis vs. adipogenesis. This study provides a basis for further elucidation of the genetic network controlling osteogenesis and, potentially, the molecular rationale for treating bone diseases.
Collapse
Affiliation(s)
- Yuanxiang Zhao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Sheng Ding
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Tu Q, Zhang J, James L, Dickson J, Tang J, Yang P, Chen J. Cbfa1/Runx2-deficiency delays bone wound healing and locally delivered Cbfa1/Runx2 promotes bone repair in animal models. Wound Repair Regen 2007; 15:404-12. [PMID: 17537128 PMCID: PMC2837142 DOI: 10.1111/j.1524-475x.2007.00243.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Core binding factor 1 (Cbfa1)/runt-related transcription factor 2 (Runx2) has been identified as a "master gene" in osteoblastic differentiation. In this two-part study, part I of the study was undertaken to test the hypothesis that bone regeneration is compromised in Cbfa1+/- mice. Compared with wild-type mice, wound healing was dramatically delayed in Cbfa1+/- mice characterized by the presence of a small amount of bone near the base of the wounds. The bone defects were largely filled with fibrous connective tissues 3 weeks after surgery. Part II was performed to determine the effects of Cbfa1 in enhancing bone wound healing using a gene-activated matrix (GAM) method. Cbfa1 cDNA was mixed with a biodegradable bovine type I collagen sponge and was inserted into the periodontal window wounds of mice. Control sponges were collagen matrix without Cbfa1 cDNA. Histological analysis and immunohistochemical staining demonstrated that compared with controls, there was increased new bone formation that almost filled the wound defects 14 days after surgery in the Cbfa1-GAM group. The collagen sponge matrix did not seem to elicit significant foreign body reaction in either group. In conclusion, the reduced expression of Cbfa1 interferes with the process of bone wound healing, and local application of Cbfa1 cDNA incorporated into a collagen matrix promotes bone tissue regeneration.
Collapse
Affiliation(s)
- Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Jin Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Laji James
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, Texas
| | - Julia Dickson
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, Texas
| | - Jean Tang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Pishan Yang
- School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
22
|
Minamizato T, Sakamoto K, Liu T, Kokubo H, Katsube KI, Perbal B, Nakamura S, Yamaguchi A. CCN3/NOV inhibits BMP-2-induced osteoblast differentiation by interacting with BMP and Notch signaling pathways. Biochem Biophys Res Commun 2007; 354:567-73. [PMID: 17250806 DOI: 10.1016/j.bbrc.2007.01.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
We elucidate the role of CCN3/NOV, a member of the CCN family proteins, in osteoblast differentiation using MC3T3-E1 osteoblastic cells. Transduction with CCN3 adenovirus (AdCCN3) alone induced no apparent changes in the expression of osteoblast-related markers, whereas cotransduction with BMP-2 adenovirus (AdBMP-2) and AdCCN3 significantly inhibited the AdBMP-2-induced mRNA expression of Runx2, osterix, ALP, and osteocalcin. Immunoprecipitation-western analysis revealed that CCN3 associated with BMP-2. Compared to transduction with AdBMP-2 alone, cotransduction with AdBMP-2 and AdCCN3 attenuated the expression of phosphorylated Smad1/5/8 and the mRNA for Id1, Id2, and Id3. Transduction with AdCCN3 stimulated the expression of cleaved Notch1, the mRNA expression of Hes1 and Hey1/Hesr1, and the promoter activities of Hes1 and Hey1. The inhibitory effects of CCN3 on the expression of BMP-2-induced osteoblast-related markers were nullified in Hey1-deficient osteoblastic cells. These results indicate that CCN3 exerts inhibitory effects on BMP-2-induced osteoblast differentiation by its involvement of the BMP and Notch signaling pathways.
Collapse
Affiliation(s)
- Tokutaro Minamizato
- Section of Oral Pathology, Graduate School of Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8549, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abramovitch-Gottlib L, Geresh S, Vago R. Biofabricated marine hydrozoan: a bioactive crystalline material promoting ossification of mesenchymal stem cells. ACTA ACUST UNITED AC 2006; 12:729-39. [PMID: 16674287 DOI: 10.1089/ten.2006.12.729] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study introduces a novel three-dimensional biomatrix obtained from the marine hydrocoral Millepora dichotoma as a scaffold for hard tissue engineering. Millepora dichotoma was biofabricated under field and laboratory conditions. Three-dimensional biomatrices were made in order to convert mesenchymal stem cells (MSCs) to exemplify osteoblastic phenotype. We investigated the effect of the biomatrices on MSCs proliferation and differentiation at 2, 3, 4, 7, 10, 14, 21, 28, and 42 days. Different analyses were made: light microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), calcium incorporation to newly formed tissue (alizarin red), bone nodule formation (von Kossa), fat aggregate formation (oil red O), collagen type I immunofluorescence, DNA concentrations, alkaline phosphatase (ALP) activity, and osteocalcin concentrations. MSCs seeded on Millepora dichotoma biomatrices showed higher levels of calcium and phosphate incorporation and higher type I collagen levels than did control Porites lutea biomatrices. ALP activity revealed that MSCs seeded on M. dichotoma biomatrices are highly osteogenic compared to those on control biomatrices. The osteocalcin content of MSCs seeded on M. dichotoma remained constant up to 2 weeks before rising to surpass that of seeded P. lutea biomatrices after 28 days. Our study thus showed that M. dichotoma biomatrices enhance the differentiation of MSCs into osteoblast and hence have excellent potential as bioscaffold for hard tissue engineering.
Collapse
Affiliation(s)
- Liat Abramovitch-Gottlib
- The Faculty of Engineering, Department of Biotechnology Engineering and National Biotechnology Institute, Ben Gurion University of The Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
24
|
Birk RZ, Abramovitch-Gottlib L, Margalit I, Aviv M, Forti E, Geresh S, Vago R. Conversion of adipogenic to osteogenic phenotype using crystalline porous biomatrices of marine origin. ACTA ACUST UNITED AC 2006; 12:21-31. [PMID: 16499439 DOI: 10.1089/ten.2006.12.21] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adipogenic and osteogenic cells share part of the early differentiation cascade of mesenchymal stem cells (MSCs). The choice of a mesenchymal precursor cell to differentiate into a particular cell type is dictated by many spatial and temporal cues, including growth factors, neighboring mature cells, and the extracellular matrix (ECM), which plays an important role in bone formation. Whether adipocytes that have initiated differentiation along one lineage can convert into osteogenic lineage by merely interacting with materials having specific surface parameters is unknown. Using crystalline three-dimensional (3D) biomatrices of marine origin (CaCO(3)), we explored whether preadipocytes can convert into osteoblasts. Cells (3T3F442A) were seeded on 3D biomatrices of marine origin (Porites lutea). Analyses were made at different time intervals-1, 2, 5, 7, 14, 21, and 28 days post-seeding. Cell characterizations were done using morphological (light microscopy and scanning electron microscopy), histological (Alizarin red, von Kossa and Oil red O staining), enzymatic (alkaline phosphatase activity, and quantitative PCR testing transcript levels of osteocalcin, alkaline phosphatase, core binding factor- 1 (Cbfa1), and fatty acid binding protein (aP2). We demonstrated 3T3F442A preadipocyte modulation and differentiation into bone-forming cells when grown on biomatrix of marine origin without addition of other bone morphogenesis inducers. We found an active ossification process typical of osteogenic phenotype as early as 2 days after seeding. It is suggested that this crystalline biomatrix having a particular 3D topology or surface parameters supports fast cellular adhesion, proliferation, and differentiation of preadipocytes to osteogenic phenotype.
Collapse
Affiliation(s)
- Ruth Z Birk
- Faculty of Engineering Sciences, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | | | |
Collapse
|
25
|
Calhabeu F, Lafont J, Le Dreau G, Laurent M, Kazazian C, Schaeffer L, Martinerie C, Dubois C. NOV/CCN3 impairs muscle cell commitment and differentiation. Exp Cell Res 2006; 312:1876-89. [PMID: 16600215 DOI: 10.1016/j.yexcr.2006.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/30/2022]
Abstract
NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10(-6) M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts.
Collapse
Affiliation(s)
- Frederico Calhabeu
- Unité INSERM 515, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75371 Paris, France; Pierre and Marie Curie University, Paris
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Bone and cartilage and their disorders are addressed under the following headings: functions of bone; normal and abnormal bone remodeling; osteopetrosis and osteoporosis; epithelial-mesenchymal interaction, condensation and differentiation; osteoblasts, markers of bone formation, osteoclasts, components of bone, and pathology of bone; chondroblasts, markers of cartilage formation, secondary cartilage, components of cartilage, and pathology of cartilage; intramembranous and endochondral bone formation; RUNX genes and cleidocranial dysplasia (CCD); osterix; histone deacetylase 4 and Runx2; Ligand to receptor activator of NFkappaB (RANKL), RANK, osteoprotegerin, and osteoimmunology; WNT signaling, LRP5 mutations, and beta-catenin; the role of leptin in bone remodeling; collagens, collagenopathies, and osteogenesis imperfecta; FGFs/FGFRs, FGFR3 skeletal dysplasias, craniosynostosis, and other disorders; short limb chondrodysplasias; molecular control of the growth plate in endochondral bone formation and genetic disorders of IHH and PTHR1; ANKH, craniometaphyseal dysplasia, and chondrocalcinosis; transforming growth factor beta, Camurati-Engelmann disease (CED), and Marfan syndrome, types I and II; an ACVR1 mutation and fibrodysplasia ossificans progressiva; MSX1 and MSX2: biology, mutations, and associated disorders; G protein, activation of adenylyl cyclase, GNAS1 mutations, McCune-Albright syndrome, fibrous dysplasia, and Albright hereditary osteodystrophy; FLNA and associated disorders; and morphological development of teeth and their genetic mutations.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
27
|
Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R. Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 2005; 20:138-46. [PMID: 16292614 DOI: 10.1007/s10103-005-0355-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
Mesenchymal stem cells (MSCs) seeded on three-dimensional (3D) coralline (Porites lutea) biomatrices were irradiated with low-level laser irradiation (LLLI). The consequent phenotype modulation and development of MSCs towards ossified tissue was studied in this combined 3D biomatrix/LLLI system and in a control group, which was similarly grown, but was not treated by LLLI. The irradiated and non irradiated MSC were tested at 1-7, 10, 14, 21, 28 days of culturing via analysis of cellular distribution on matrices (trypan blue), calcium incorporation to newly formed tissue (alizarin red), bone nodule formation (von Kossa), fat aggregates formation (oil red O), alkaline phosphatase (ALP) activity, scanning electron microscopy (SEM) and electron dispersive spectrometry (EDS). The results obtained from the irradiated samples showed enhanced tissue formation, appearance of phosphorous peaks and calcium and phosphate incorporation to newly formed tissue. Moreover, in irradiated samples ALP activity was significantly enhanced in early stages and notably reduced in late stages of culturing. These findings of cell and tissue parameters up to 28 days of culture revealed higher ossification levels in irradiated samples compared with the control group. We suggest that both the surface properties of the 3D crystalline biomatrices and the LLLI have biostimulatory effects on the conversion of MSCs into bone-forming cells and on the induction of ex-vivo ossification.
Collapse
Affiliation(s)
- Liat Abramovitch-Gottlib
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | | | | | | | | | | | | |
Collapse
|
28
|
Shirley D, Marsh D, Jordan G, McQuaid S, Li G. Systemic recruitment of osteoblastic cells in fracture healing. J Orthop Res 2005; 23:1013-21. [PMID: 16140187 DOI: 10.1016/j.orthres.2005.01.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 01/07/2005] [Accepted: 01/28/2005] [Indexed: 02/04/2023]
Abstract
We hypothesise that following a bone fracture there is systemic recruitment of bone forming cells to a fracture site. A rabbit ulnar osteotomy model was adapted to trace the movement of osteogenic cells. Bone marrow mesenchymal stem cells from 41 NZW rabbits were isolated, culture-expanded and fluorescently labelled. The labelled cells were either re-implanted into the fracture gap (Group A); into a vein (Group B); or into a remote tibial bone marrow cavity 48 h after the osteotomy (Group C) or 4 weeks before the osteotomy was established (Group D), and a control group (Group E) had no labelled cells given. To quantify passive leakage of cells to an injury site, inert beads were also co-delivered in Group B. Samples of the fracture callus tissue and various organs were harvested at discrete sacrifice time-points to trace and quantify the labelled cells. At 3 weeks following osteotomy, the number of labelled cells identified in the callus of Group C, was significantly greater than following IV delivery, Group B, and there was no difference in the number of labelled cells in the callus tissues, between Groups C and A, indicating the labelled bone marrow cells were capable of migrating to the fracture sites from the remote bone marrow cavity. Significantly fewer inert beads than labelled cells were identified in Group B callus, suggesting some of the bone-forming cells were actively recruited and selectively chosen to the fracture site, rather than passively leaked into the circulation and to bone injury site. This investigation supports the hypothesis that some osteoblasts involved in fracture healing were systemically mobilised and recruited to the fracture from remote bone marrow sites.
Collapse
Affiliation(s)
- Denise Shirley
- Department of Trauma and Orthopaedic Surgery, Queen's University Belfast, Musgrave Park Hospital, Belfast BT9 7JB, UK
| | | | | | | | | |
Collapse
|
29
|
Zerbo IR, Bronckers ALJJ, de Lange G, Burger EH. Localisation of osteogenic and osteoclastic cells in porous β-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials 2005; 26:1445-51. [PMID: 15482833 DOI: 10.1016/j.biomaterials.2004.05.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2003] [Accepted: 05/07/2004] [Indexed: 11/20/2022]
Abstract
We and others have shown earlier that porous beta-tricalcium phosphate (TCP) (Cerasorb) can be used in patients to augment the maxillary sinus floor prior to placement of oral dental implants. To better understand the transformation of TCP particles into bone tissue, we analyse here the appearance of cells with osteogenic or osteoclastic potential in relation to these particles. In biopsies taken at 6 months after sinus floor augmentation we observed bone growth into the TCP particles but also replacement by soft connective tissue. To identify possible osteoprogenitor cells in this tissue, histological sections were immunostained with an antibody to Runx2/Cbfa1, an essential and early transcription factor for osteoblast differentiation. The osteogenic potential of cells was further confirmed by immunostaining for bone sialoprotein (BSP) and osteopontin (OPN). Other sections were stained for Tartrate Resistant Acid Phosphatase (TRAP) activity to identify cells with osteoclastic capacity. Runx2/Cbfa1 positive connective tissue cells were found in abundance throughout and around the TCP particles, even at a distance of several millimetres from the maxillary bone surface. About 95% of the cells found within TCP particles stained positive for Runx2/Cbfa1. Fewer cells stained positive for BSP and OPN, suggesting more mature osteoblastic properties. Mono- and binucleate TRAP-positive cells, but no multinucleate TRAP-positive osteoclasts, were found in the soft tissue infiltrating the TCP and at the surface of the TCP particles. Both the Runx2/Cbfa1 positive and the TRAP-positive cells decreased apically with increasing vertical distance from the maxillary bone surface. This data suggests that the TCP particles attract osteoprogenitor cells that migrate into the interconnecting micropores of the bone substitute material by 6 months. The lack of large multinucleate TRAP positive cells suggests that resorption of the TCP material by osteoclasts plays only a minor role in its replacement by bone. Chemical dissolution, possibly favoured by a high cell metabolism in the particles, seems the predominant cause of TCP degradation. The abundance of Runx2/Cbfa1 positive cells would indicate that with a greater time of healing there will be further bone deposition into these particles.
Collapse
Affiliation(s)
- Ilara R Zerbo
- Department of Oral Cell Biology, ACTA, Van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Bielby RC, Pryce RS, Hench LL, Polak JM. Enhanced Derivation of Osteogenic Cells from Murine Embryonic Stem Cells after Treatment with Ionic Dissolution Products of 58S Bioactive Sol–Gel Glass. ACTA ACUST UNITED AC 2005; 11:479-88. [PMID: 15869426 DOI: 10.1089/ten.2005.11.479] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Embryonic stem (ES) cells represent a potentially useful cell source for tissue regeneration. Previously, using factors known to enhance differentiation and mineralization of primary osteoblasts, we were able to generate cell populations enriched with osteoblasts from a murine ES cell source. Dexamethasone was a potent inducer of osteoblast differentiation and the timing of stimulation markedly increased the proportion of osteoblast lineage cells. This study examined whether inorganic stimuli derived from bioactive glasses could affect the differentiation of osteoblasts in an ES-cell based system. Previous work has demonstrated the ability of soluble ions released from bioactive glasses undergoing dissolution in vitro to stimulate gene expression characteristic of a mature phenotype in primary osteoblasts. We report here on the potential of soluble extracts prepared from 58S sol-gel bioactive glass to further enhance lineage-specific differentiation in murine ES cells. Differentiation of ES cells into osteogenic cells was characterized by the formation of multilayered, mineralized nodules. These nodules contained cells expressing the transcription factor runx2/cbfa-1, and deposition of osteocalcin in the extracellular matrix was detected by immunostaining. When differentiating cells were placed in an osteoblast maintenance medium supplemented with soluble extracts prepared from bioactive glass powders, we observed increased formation of mineralized nodules (98 +/- 6%, mean +/- SEM) and alkaline phosphatase activity (56 +/- 14%, mean +/- SEM) in a pattern characteristic of osteoblast differentiation. This effect of the glass extracts exhibited dose dependency, with alkaline phosphatase activity and nodule formation increasing with extract concentrations. Compared with medium supplemented with dexamethasone, which had previously been used to enhance osteoblast lineage derivation, the glass extracts were as effective at inducing formation of mineralized nodules by murine ES cells. When glass extracts were used in combination with dexamethasone, a further increase in the number of nodules was observed (110 +/- 16%; cf. 83 +/- 7% for dexamethasone alone). This study demonstrates the capacity of an entirely inorganic material to stimulate differentiation of ES cells toward a lineage with therapeutic potential in tissue-engineering applications.
Collapse
Affiliation(s)
- Robert C Bielby
- Tissue Engineering and Regenerative Medicine Centre, Imperial College London, Faculty of Medicine, UK.
| | | | | | | |
Collapse
|
31
|
Varanasi SS, Datta HK. Characterisation of cytosolic FK506 binding protein 12 and its role in modulating expression of Cbfa1 and osterix in ROS 17/2.8 cells. Bone 2005; 36:243-53. [PMID: 15780950 DOI: 10.1016/j.bone.2004.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 09/14/2004] [Accepted: 09/30/2004] [Indexed: 11/30/2022]
Abstract
FK506 is a commonly used immunosuppressant that mediates its action by exclusively interacting with the cytosolic immunophilin, FK506 binding protein 12 (FKBP12). Although FK506-induced acute osteoporosis is now well recognised, its precise mode of action in osteoblasts remains unclear. Therefore, in the present study we characterised FKBP12 in osteoblasts and investigated the role of FK506 in modulating osteoblast-specific transcription factors, core-binding factor alpha1 (Cbfa1) and osterix gene expression in ROS 17/2.8 cells. RT-PCR, immunolocalisation and Western blotting studies were employed to identify and characterise FKBP12 in rat primary osteoblasts and osteoblast-like osteosarcoma ROS 17/2.8 cells. Western blotting extracts of these cells revealed the 12 kDa and hitherto unreported 10 kDa FKBP isoform that were immunolocalised predominantly to the cytosol. The transient exposure of ROS 17/2.8 cells to H2O2 (100 microM) was found to elevate FKBP12 mRNA after 10 min and protein expression after 24 h. Both PTH (10(-9) M) and 1,25 (OH)2D3 (Vitamin D3) (10(-7) M) suppressed FKBP12 protein expression. FK506 in the therapeutic range (25 nmol/L) suppressed expression of Cbfa1 and osterix mRNA. The inhibition of Cbfa1 isoforms II/III expression was evident at 30 min and the extent of inhibition was sustained at 6 h. Osterix inhibition was also seen after 30 min, however, it became maximal after 6 h. The dose-dependant inhibition of osterix in these cells, carried out using 1.25, 12.5 and 125 nmol/L of FK506 was maximal at 1.25 nmol/L. Cbfa1 isoforms II/III were also maximally inhibited at 1.25 nmol/L; interestingly, the inhibition became less marked at higher concentrations of FK506. Similar dose of FK506 was found to inhibit ROS 17/2.8 cell proliferation; the inhibitory effect however was greater in insulin-stimulated cells. The results of this study suggest that immunosuppressant-induced osteoporosis, which is known to involve accelerated bone resorption by increase in osteoclastogenesis, may in fact also be accentuated by the inhibition of osteoblast differentiation and function.
Collapse
Affiliation(s)
- S S Varanasi
- School of Clinical and Laboratory Sciences, The Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | |
Collapse
|
32
|
Bielby RC, Boccaccini AR, Polak JM, Buttery LDK. In VitroDifferentiation andIn VivoMineralization of Osteogenic Cells Derived from Human Embryonic Stem Cells. ACTA ACUST UNITED AC 2004; 10:1518-25. [PMID: 15588411 DOI: 10.1089/ten.2004.10.1518] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The first report of the derivation of embryonic stem (ES) cell lines from human blastocysts had major implications for research into developmental biology and regenerative medicine. Finding efficient and reproducible methods to derive therapeutically useful cells from an ES cell source is a key feature of many regenerative medicine strategies. We have previously demonstrated that it is possible to induce osteogenic differentiation of murine ES cells by supplementing the culture medium with ascorbic acid, beta-glycerophosphate, and dexamethasone. This study investigated whether methods for driving osteogenic differentiation developed with murine ES cells could be applied successfully to human ES cells. The H1 line was propagated in vitro on murine feeder layers and shown to be pluripotent by expression of the markers Oct-4 and SSEA-4. Subsequently, differentiation was initiated via embryoid body (EB) formation and, after 5 days in suspension culture, cells harvested from EBs were replated in a medium containing osteogenic supplements. We found that the treatment regimen previously identified as optimal for murine ES cells, and in particular the addition of dexamethasone at specific time points, also induced the greatest osteogenic response from human ES cells. We identified mineralizing cells in vitro that immunostained positively for osteocalcin and found an increase in expression of an essential bone transcription factor, Runx2. When implanted into SCID mice on a poly-D, L-lactide (PDLLA) scaffold, the cells had the capacity to give rise to mineralized tissue in vivo. After 35 days of implantation, regions of mineralized tissue could be identified within the scaffold by von Kossa staining and immunoexpression of the human form of osteocalcin. We did not see any evidence of teratoma formation. These data therefore demonstrate the derivation of osteoblasts from pluripotent human ES cells with the capacity to form mineralized tissue both in vitro and in vivo. We have also shown that a culture methodology established for differentiation of murine ES cells was entirely transferable to human ES cells. Further development of this technology will result in the capacity to generate sufficient yields of osteogenic cells for use in skeletal tissue repair.
Collapse
Affiliation(s)
- Robert C Bielby
- Tissue Engineering and Regenerative Medicine Centre, Faculty of Medicine, Imperial College London, Chelsea and Westminster Campus, London, UK
| | | | | | | |
Collapse
|
33
|
Shindo K, Kawashima N, Sakamoto K, Yamaguchi A, Umezawa A, Takagi M, Katsube KI, Suda H. Osteogenic differentiation of the mesenchymal progenitor cells, Kusa is suppressed by Notch signaling. Exp Cell Res 2003; 290:370-80. [PMID: 14567994 DOI: 10.1016/s0014-4827(03)00349-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Notch receptor plays a crucial role in proliferation and differentiation of many cell types. To elucidate the function of Notch signaling in osteogenesis, we transfected the constitutively active Notch1 (Notch intracellular domain, NICD) into two different osteoblastic mesenchymal cell lines, KusaA and KusaO, and examined the changes of their osteogenic potentials. In NICD stable transformants (KusaA(NICD) and KusaO(NICD)), osteogenic properties including alkaline phosphatase activity, expression of osteocalcin and type I collagen, and in vitro calcification were suppressed. Transient transfection of NICD attenuated the promoter activities of Cbfa1 and Ose2 element. KusaA was capable of forming trabecular bone-like tissues when injected into mouse abdomen, but this in vivo bone forming activity was significantly suppressed in KusaA(NICD). Osteoclasts were induced in the KusaA-derived bone-like tissues, but lacked in the KusaA(NICD)-derived tissues. These results suggest that Notch signaling suppresses the osteoblastic differentiation of mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Kentaro Shindo
- Pulp Biology and Endodontics, Graduate School of Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 2003; 309:689-94. [PMID: 12963046 DOI: 10.1016/j.bbrc.2003.08.058] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BMP-2 stimulates the expression of three osteogenic master transcription factors: Runx2, Dlx5, and Osterix (Osx). However, the hierarchical regulatory relationships among them are not yet clearly understood. Osx was commonly stimulated in osteogenic and non-osteogenic cells in response to BMP-signaling, as Dlx5 was in our previous report. A cycloheximide experiment indicated that Osx expression by BMP-2 requires new protein synthesis. Even if Osx has been suggested as a downstream target of Runx2, the results of this study indicated that Osx expression was still induced by BMP-2 treatment in Runx2 null cells, but not induced by Runx2 overexpression in myogenic C2C12 cells. Instead, Osx expression by BMP-2 was completely abrogated by the antisense blocking of Dlx5. Depending upon the coincident expression pattern of Osx and Dlx5, and the blocking of Osx expression by the antisense Dlx5, BMP-2-induced Osx expression is mainly mediated not by Runx2, but by Dlx5.
Collapse
Affiliation(s)
- Mi-Hye Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 700-422, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Tchetina E, Mwale F, Poole AR. Distinct phases of coordinated early and late gene expression in growth plate chondrocytes in relationship to cell proliferation, matrix assembly, remodeling, and cell differentiation. J Bone Miner Res 2003; 18:844-51. [PMID: 12733723 DOI: 10.1359/jbmr.2003.18.5.844] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although much has been learned about growth plate development and chondrocyte gene expression during cellular maturation and matrix remodeling in the mouse, there has been a limited study of the interrelationships of gene expression between proteinases, growth factors, and other regulatory molecules in the mouse and in other species. Here we use RT-PCR of sequential transverse sections to examine the expression profiles of genes involved in chondrocyte growth, differentiation, matrix assembly, remodeling, and mineralization in the bovine proximal tibial growth plate. Specifically, we studied the expression of genes encoding COL2A1 and COL10A1, the latter a marker of cellular hypertrophy, the matrix metalloproteinases (MMP), MMP-13 and MMP-9, as well as the transcriptional factors, Sox9 and Cbfa1, the growth factors basic fibroblast growth factor (bFGF), parathyroid hormone-related peptide (PTHrP), transforming growth factor (TGF)beta1, and beta2, Indian hedgehog (Ihh), and the matrix protein osteocalcin. These were analyzed in relationship to cell division defined by cyclin B2 expression. Two peaks of gene expression activity were observed. One was transient, limited, and located immediately before and at the onset of cyclin B2 expression in the early proliferative zone. The other was generally much more pronounced and was located in the early hypertrophic zone. The upregulation of expression of COL2A1, its transcriptional activator Sox9, osteocalcin, MMP-13, and TGFbeta2 was observed immediately before and at the onset of cyclin B2 expression and also in the hypertrophic zones. The upregulation of COL10A1, Cbfa1, MMP-9, TGFbeta-1, and Ihh gene expression was associated exclusively with the terminal differentiation of chondrocytes at the time of mineral formation in the extracellular matrix. In contrast, bFGF and PTHrP expression was observed in association with the onset of cyclin B2 expression and hypertrophy. This initial cluster of gene expression associated predominantly with matrix assembly and onset of cell proliferation is therefore characterized by expression of regulatory molecules distinct from those involved at hypertrophy. Together these results identify separate phases of coordinated gene expression associated with the development of the physis in endochondral bone formation.
Collapse
Affiliation(s)
- E Tchetina
- Joint Diseases Laboratory, Shriners Hospitals for Children, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
36
|
Niyaz Y, Frenz I, Petersen G, Gehring U. Transcriptional stimulation by the DNA binding protein Hap46/BAG-1M involves hsp70/hsc70 molecular chaperones. Nucleic Acids Res 2003; 31:2209-16. [PMID: 12682371 PMCID: PMC153731 DOI: 10.1093/nar/gkg303] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hsp70/hsc70-associating protein Hap46 of human origin, also called BAG-1M (Bcl-2-associated athanogene 1), has been characterized previously as a DNA binding protein, which is able to stimulate transcription. By use of in vitro assays we now show that Hap46-mediated transcriptional activation can occur from linearized as well as from supercoiled circular DNA and does not require the presence of a transcription promoter. Accordingly, we observed no preferential binding of Hap46 to overlapping DNA fragments covering the sequence of the cytomegalovirus (CMV) early promoter, thus suggesting non-specific binding. The C-terminal deletion variant Hap46DeltaC47, which is unable to associate with hsp70/hsc70 molecular chaperones, produced greatly diminished effects on transcription, indicating a significant involvement of hsp70/hsc70 chaperones but not an absolute requirement. In contrast, deletion of the acidic hexarepeat region, as in variant Hap46Delta12-62, did not disturb transcriptional stimulation. While full-length Hap46 readily formed complexes with a series of structurally unrelated transcription factors, variant Hap46DeltaC47 proved incapable of doing so. Together these data suggest that transcriptional stimulation is a major biological activity of Hap46 and point to involvement of hsp70/hsc70 molecular chaperones in transcription in concert with Hap46, thus providing a link between hsp70/hsc70 molecular chaperones and components of the transcription machinery.
Collapse
Affiliation(s)
- Yilmaz Niyaz
- Molekulare Evolution und Genomik, Im Neuenheimer Feld 230, and Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
37
|
Abstract
This article retains the conventional approach to the classification of soft tissue sarcomas, dividing them into several major histogenetic categories based on their overall microscopic appearance, tissue differentiation pattern, and biologic potential. The author advocates a multimodal approach, in which four distinctive data sets--clinical, radiographic, microscopic, and, in some cases, molecular--are considered to establish the diagnosis and treatment plan. Such step-wise analysis is more likely to lead to consistency and accuracy as compared with an intuitive approach based on fragmentary data. The author describes individual lesions of soft tissue as clinicopathologic entities and believes that they can be more accurately diagnosed and appropriately treated with the help of data generated by a multidisciplinary team. In addition, this article emphasizes the need to use emerging molecular techniques that can provide important clues for both diagnosis and prognosis.
Collapse
Affiliation(s)
- Bogdan Czerniak
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Box 085, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Wehrli BM, Huang W, De Crombrugghe B, Ayala AG, Czerniak B. Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum Pathol 2003; 34:263-9. [PMID: 12673561 DOI: 10.1053/hupa.2003.41] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the last decade, a number of "master regulator" genes that control distinct pathways of mesenchymal differentiation have been discovered. These genes are expressed early during embryogenesis and initiate a cascade of gene expression responsible for specific cell lineage commitment. Thus, identification of their products may allow the classification of seemingly primitive, morphologically uncommitted tumors such as small blue round cell tumors. The transcription factor Sox9 has been demonstrated to be a master regulator of the differentiation of mesenchymal cells into chondrocytes. For this reason, we examined the utility of Sox9 in distinguishing mesenchymal chondrosarcoma (a small cell malignancy thought to be derived from primitive chondroprogenitor cells) from other primitive small cell malignancies. Representative sections from 90 cases of small blue round cell tumors (22 mesenchymal chodrosarcoma, 10 neuroblastomas, 11 rhabdomyosarcomas, 9 Ewing's sarcomas/primitive neuroectodermal tumors, 5 desmoplastic small round cell tumors, 7 small cell carcinomas, 6 Merkel cell carcinomas, 6 small cell osteosarcomas, 7 diffuse large B-cell lymphomas, 7 lymphoblastic leukemias/lymphomas, and 5 extraskeletal myxoid chondrosarcomas) were immunohistochemically stained with antibodies to Sox9 protein. All but 1 mesenchymal chondrosarcoma showed positive nuclear staining in both primitive mesenchymal and cartilaginous components of the tumor. All other types of small blue round cell tumors, as well as the lymphomas and leukemias, were negative for Sox9 protein. These findings confirm that mesenchymal chondrosarcoma has phenotypic features corresponding to the early condensational phase of cartilaginous differentiation. More important, Sox9 may serve as a useful tool in the differentiation of small cell malignancies.
Collapse
Affiliation(s)
- Bret Michael Wehrli
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 085, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
39
|
Asou N. The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit Rev Oncol Hematol 2003; 45:129-50. [PMID: 12604126 DOI: 10.1016/s1040-8428(02)00003-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A Runt domain transcription factor AML1/RUNX1 is essential for generation and differentiation of definitive hematopoietic stem cells. AML1 is the most frequent target of chromosomal translocations in acute leukemias. Several chimeric proteins such as AML1-MTG8 and TEL-AML1 have transdominant properties for wild-type AML1 and acts as transcriptional repressors. The transcriptional repression in AML1 fusion proteins is mediated by recruitment of nuclear corepressor complex that maintains local histone deacetylation. Inhibition of the expression of AML1-responsive genes leads to a block in hematopoietic cell differentiation and consequent leukemic transformation. On the other hand, mutations in the Runt domain of the AML1 are identified in both sporadic acute myeloblastic leukemia (AML) without AML1 translocation and familial platelet disorder with predisposition to AML. These observations indicate that a decrease in AML1 dosage resulting from chromosomal translocations or mutations contributes to leukemogenesis. Furthermore, dysregulated chromatin remodeling and transcriptional control appears to be a common pathway in AML1-associated leukemias that could be an important target for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Norio Asou
- Department of Internal Medicine II, Kumamoto University School of Medicine, 1-1-1 Honjo, 860-8556, Kumamoto, Japan.
| |
Collapse
|
40
|
Burns CE, DeBlasio T, Zhou Y, Zhang J, Zon L, Nimer SD. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp Hematol 2002; 30:1381-9. [PMID: 12482499 DOI: 10.1016/s0301-472x(02)00955-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The AML/RUNX family of transcription factors plays important roles in hematopoiesis, neurogenesis, bone development, and segmentation in vertebrate embryos. The aim of this study was to isolate runt-related genes in a genetically and embryologically exploitable system, the zebrafish, and characterize their function during hematopoietic development. MATERIALS AND METHODS Two runt-related genes were isolated by degenerate PCR and standard library screening, and a radiation hybrid panel, T51 RH, was used to resolve their chromosomal localization. In situ hybridization demonstrated their expression whereas their transcriptional activity was assessed using an AML1-responsive reporter gene in the MLA 144 T-cell line. RESULTS We isolated the zebrafish runxa and runxb cDNAs, which encode proteins highly homologous to the human and murine Runx1 (AML1) and Runx3 (AML2) proteins. In contrast to a recent report, we detected runxa expression in both hematopoietic and neural tissues of the developing zebrafish. runxa transcripts first appear during segmentation in bilateral mesodermal cells that coexpress one of the earliest blood and endothelial cell markers, scl/tal-1. By 24 hours postfertilization (hpf), runxa transcripts are seen in the ventral wall of the dorsal aorta. Hematopoietic runxa expression is lost in cloche mutants, which are defective in blood and endothelial cell formation. runxb transcripts are seen in nonhematopoietic domains. Both Runxa and Runxb transactivate an AML1-responsive human promoter in hematopoietic cells. Genomic localization studies demonstrate that runxa is located on linkage group 1 (LG1), and the runxb gene is located on LG13. CONCLUSIONS Our gene expression analysis strongly suggests that both the functional and spatial aorta-gonad-mesonephros (AGM) region has been conserved throughout evolution. Our runxa spatiotemporal expression data shed light on the role of vertebrate Runx1/AML1 in primitive vs definitive hematopoietic development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aorta/embryology
- Core Binding Factor Alpha 2 Subunit
- Core Binding Factor Alpha 3 Subunit
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- Embryo, Nonmammalian
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Gene Expression Regulation, Developmental
- Genetic Linkage
- Gonads/embryology
- Hematopoiesis/genetics
- Humans
- Mesonephros/embryology
- Molecular Sequence Data
- Phylogeny
- Promoter Regions, Genetic/drug effects
- Proto-Oncogene Proteins
- RNA, Messenger/analysis
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Transcription Factors/isolation & purification
- Transcription Factors/pharmacology
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/isolation & purification
Collapse
|
41
|
Gurlek A, Pittelkow MR, Kumar R. Modulation of growth factor/cytokine synthesis and signaling by 1alpha,25-dihydroxyvitamin D(3): implications in cell growth and differentiation. Endocr Rev 2002; 23:763-86. [PMID: 12466189 DOI: 10.1210/er.2001-0044] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Distinct from its classic functions in the regulation of calcium and phosphorus metabolism as a systemic hormone, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is involved in the local control and regulation of cellular growth and differentiation in various tissues, including epidermis (keratinocytes) and bone (osteoblasts and osteoclasts). In this review, the impact of 1alpha,25(OH)(2)D(3) on growth factor/cytokine synthesis and signaling is discussed, particularly as it pertains to bone cells and keratinocytes. 1alpha,25(OH)(2)D(3) not only regulates growth factor/cytokine synthesis but may also alter growth factor signaling. Recently discovered examples for such interactions are the interactions between the vitamin D receptor and the mothers against decapentaplegic-related proteins that function downstream of TGFbeta receptors. Inhibitory effects of 1alpha,25(OH)(2)D(3) on keratinocytes through TGFbeta activation and IL-1alpha, IL-6, and IL-8 suppression may provide a rationale for its beneficial effects in the treatment of hyperproliferative skin disorders, whereas stimulatory effects through the epidermal growth factor-related family members and platelet-derived growth factor may be operative in its beneficial effects in skin atrophy and wound healing. Modulation of cytokines and growth factors by 1alpha,25(OH)(2)D(3) during bone remodeling plays an important role in the coupling of osteoblastic bone formation with osteoclastic resorption to maintain bone mass.
Collapse
Affiliation(s)
- Alper Gurlek
- Department of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
42
|
Atmani H, Audrain C, Mercier L, Chappard D, Basle MF. Phenotypic effects of continuous or discontinuous treatment with dexamethasone and/or calcitriol on osteoblasts differentiated from rat bone marrow stromal cells. J Cell Biochem 2002; 85:640-50. [PMID: 11968004 DOI: 10.1002/jcb.10165] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteoblasts are target cells for glucocorticoids and calcitriol, and their phenotype is greatly modified by these hormones. We investigated the effect of continuous or discontinuous hormonal exposure to osteoblasts derived from rat bone marrow stromal cells in long-term subcultures. Stromal cells were grown in primoculture in presence of dexamethasone (dex), but in following subcultures, dex and/or calcitriol were added just after seeding or after a 7-day hormone-free period. Cell proliferation, alkaline phosphatase (ALP) histochemical staining, and enzymatic bioactivity measurement, osteocalcin (OC), ALP and bone sialoprotein (BSP) mRNA expression were used to study the differential effect on osteoblastic phenotype of various conditions of treatment by dex and calcitriol. In primoculture, the osteoblastic differentiation was confirmed by the formation of calcified nodules and by strong expression of ALP, OC, and BSP mRNAs. In subcultures, proliferation of stromal cells was stimulated by dex and inhibited by calcitriol and by both hormones. Cell proliferation was not modified by hormonal lack during 7 days. Continuous hormonal treatment by dex strongly enhanced OC and BSP mRNAs, but apparently did not modified ALP mRNAs expression. Continuous treatment by calcitriol decreased ALP and the dex-induced BSP expression and stimulated the OC mRNAs level, strongly when associated with dex. The population of ALP+ cells and ALP bioactivity were strongly increased by dex, whereas calcitriol or both hormones decreased them. When the subcultures were undergone without hormonal treatment during 7 days, all osteogenic mRNAs strongly decreased even after hormonal recovery. Dex, calcitriol, and both hormones inhibited ALP mRNAs. OC messengers were only weakly detectable with both hormones. ALP+ cell population and ALP bioactivity were decreased after 14 days of hormonal treatment recovery. These results support that continuous presence of glucocorticoids appears as a major key for the permanent expression of the osteoblastic phenotype that is inhibited by calcitriol, in the rat bone marrow.
Collapse
Affiliation(s)
- Hassan Atmani
- LHEA-Laboratoire d'Histologie Embryologie, Faculté de Médecine, 49045 Angers Cedex, France
| | | | | | | | | |
Collapse
|
43
|
Michiels F, van Es H, van Rompaey L, Merchiers P, Francken B, Pittois K, van der Schueren J, Brys R, Vandersmissen J, Beirinckx F, Herman S, Dokic K, Klaassen H, Narinx E, Hagers A, Laenen W, Piest I, Pavliska H, Rombout Y, Langemeijer E, Ma L, Schipper C, Raeymaeker MD, Schweicher S, Jans M, van Beeck K, Tsang IR, van de Stolpe O, Tomme P, Arts GJ, Donker J. Arrayed adenoviral expression libraries for functional screening. Nat Biotechnol 2002; 20:1154-7. [PMID: 12355097 DOI: 10.1038/nbt746] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2002] [Accepted: 08/15/2002] [Indexed: 01/01/2023]
Abstract
With the publication of the sequence of the human genome, we are challenged to identify the functions of an estimated 70,000 human genes and the much larger number of proteins encoded by these genes. Of particular interest is the identification of gene products that play a role in human disease pathways, as these proteins include potential new targets that may lead to improved therapeutic strategies. This requires the direct measurement of gene function on a genomic scale in cell-based, functional assays. We have constructed and validated an individually arrayed, replication-defective adenoviral library harboring human cDNAs, termed PhenoSelect library. The adenoviral vector guarantees efficient transduction of diverse cell types, including primary cells. The arrayed format allows screening of this library in a variety of cellular assays in search for gene(s) that, by overexpression, induce a particular disease-related phenotype. The great majority of phenotypic assays, including morphological assays, can be screened with arrayed libraries. In contrast, pooled-library approaches often rely on phenotype-based isolation or selection of single cells by employing a flow cytometer or screening for cell survival. An arrayed placental PhenoSelect library was screened in cellular assays aimed at identifying regulators of osteogenesis, metastasis, and angiogenesis. This resulted in the identification of known regulators, as well as novel sequences that encode proteins hitherto not known to play a role in these pathways. These results establish the value of the PhenoSelect platform, in combination with cellular screens, for gene function discovery.
Collapse
Affiliation(s)
- Frits Michiels
- Galapagos Genomics, Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jheon A, Chen J, Teo W, Ganss B, Sodek J, Cheifetz S. Temporal and spatial expression of a novel zinc finger transcription factor, AJ18, in developing murine skeletal tissues. J Histochem Cytochem 2002; 50:973-82. [PMID: 12070276 DOI: 10.1177/002215540205000711] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are characterized by their ability to induce osteoblastic differentiation. However, the mechanism of osteo-induction by BMPs has yet to be determined. Using differential display we previously identified AJ18, a zinc finger transcription factor, as an immediate-early response gene to BMP-7. AJ18 was shown to bind to the osteoblast-specific element2 (OSE2) and to modulate transactivation by Runx2, a master gene in osteoblastic differentiation. Here we describe the temporal and spatial expression of AJ18 in developing mouse tissues. AJ18 mRNA expression was observed in most tissues, except liver, and was generally highest early in embryonic development, decreasing markedly after parturition. Consistent with immunohistochemical analysis, AJ18 mRNA expression was highest in the brain, kidney, and bone of 17 dpc (days post coitum) embryos. In endochondral bones of embryonic and 4-week-old mice, immunostaining for AJ18 was strong in the nuclei of proliferating and pre-hypertrophic chondrocytes, and osteoblasts, whereas there was low or no staining in hypertrophic chondrocytes. In teeth of embryonic and 4-week-old mice, nuclear staining was observed in precursor and mature ameloblasts, odontoblasts, and cementoblasts, respectively. In addition, in 4-week-old mice staining of AJ18 was observed within alveolar bone cells and periodontal ligament cells. In general, the spatial expression of AJ18 in skeletal and non-skeletal tissues of mouse embryos showed striking similarity to the expression of BMP-7 mRNA. Therefore, the expression of AJ18 is consistent with its perceived role as a transcriptional factor that regulates developmental processes downstream of BMP-7.
Collapse
Affiliation(s)
- Andrew Jheon
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Scandura JM, Boccuni P, Cammenga J, Nimer SD. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 2002; 21:3422-44. [PMID: 12032780 DOI: 10.1038/sj.onc.1205315] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The leukemia-associated fusion proteins share several structural or functional similarities, suggesting that they may impart a leukemic phenotype through common modes of transcriptional dysregulation. The fusion proteins generated by these translocations usually contain a DNA-binding domain, domains responsible for homo- or hetero-dimerization, and domains that interact with proteins involved in chromatin remodeling (e.g., co-repressor molecules or co-activator molecules). It is these shared features that constitute the 'variations on the theme' that underling the aberrant growth and differentiation that is the hallmark of acute leukemia cells.
Collapse
Affiliation(s)
- Joseph M Scandura
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
46
|
Machuca-Tzili L, Monroy-Jaramillo N, González-del Angel A, Kofman-Alfaro S. New mutations in the CBFA1 gene in two Mexican patients with cleidocranial dysplasia. Clin Genet 2002; 61:349-53. [PMID: 12081718 DOI: 10.1034/j.1399-0004.2002.610505.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal disorder exhibiting a wide clinical spectrum ranging from minimal anomalies to classic CCD. Mutations scattered throughout the entire CBFA1 gene have been related to this disorder. However, it seems that most of them affect the highly conserved Runt domain, abolishing the DNA-binding ability of this transcription factor. Moreover, no systematic effect has been found to relate the type of mutation to the severity of the clinical features. In this paper, we studied two unrelated patients with classic CCD. DNA analysis revealed two novel mutations and three undescribed polymorphisms. One of the substitutions was a missense mutation in the Q/A domain leading to the replacement of a polar residue by a nonpolar one (158 A --> T [Q53L]). The second was an uncommon heterozygous stop codon mutation (1565 G --> C [X522S]) which theoretically results in a longer protein with 23 additional amino acids. This is the first report of this type of mutation in CBFA1. We discuss the possible consequences of these mutant sequences, although no phenotype-genotype correlation could be established. Our findings expand the existing number of allelic variants in this pathology.
Collapse
Affiliation(s)
- L Machuca-Tzili
- Servicio de Genética, Hospital General de México/Facultad de Medicina UNAM, Mexico
| | | | | | | |
Collapse
|
47
|
Ouban A, Nawab RA, Coppola D. Diagnostic and pathogenetic implications of colorectal carcinomas with multidirectional differentiation: a report of 4 cases. Clin Colorectal Cancer 2002; 1:243-8. [PMID: 12450423 DOI: 10.3816/ccc.2002.n.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multidirectional differentiation in colorectal carcinomas is a rare phenomenon. Four cases are reported herein, and their clinical and pathologic characteristics are discussed. Two men and 2 women between the ages of 56 and 76 years who presented with abdominal symptoms are included in this report. Two tumors were located in the right colon, one in the splenic flexure, and one in the descending colon. Distant metastases were evident at presentation in 3 of 4 cases. Histologically, two tumors exhibited neuroendocrine and glandular differentiation; the third tumor was an adenocarcinoma with a sarcomatous component and the fourth tumor showed 3 lines of differentiation (glandular, squamous, and sarcomatoid). In all tumors evaluated, areas of adenocarcinomas were positive for low-molecular weight cytokeratin (CAM 5.2) and mucicarmine, but negative for high-molecular weight cytokeratin (AE3). The squamous cell component was AE3 positive and CAM 5.2 negative. The neuroendocrine component was highlighted by neuroendocrine markers and the sarcomatoid component revealed smooth muscle differentiation. All tumors (except one mucinous tumor) were negative for cytokeratin-20 staining. One patient was on supportive care for terminal metastatic carcinoma, and 2 patients were being treated with adjuvant chemotherapy at the time of this report. Colon carcinoma with multidirectional differentiation is a rare event and may originate from stem cells within the gastrointestinal mucosa, and/or represent the convergence of multiple tumors arising at the same site. This type of tumor should be considered in the differential diagnosis of a bowel biopsy with multiple histopathologic variants.
Collapse
Affiliation(s)
- Abderrahman Ouban
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | | |
Collapse
|
48
|
López-Rovira T, Chalaux E, Massagué J, Rosa JL, Ventura F. Direct binding of Smad1 and Smad4 to two distinct motifs mediates bone morphogenetic protein-specific transcriptional activation of Id1 gene. J Biol Chem 2002; 277:3176-85. [PMID: 11700304 DOI: 10.1074/jbc.m106826200] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are potent inhibitors of myoblast differentiation and inducers of bone formation both in vivo and in vitro. Expression of Id1, a negative regulator of basic helix-loop-helix transcription factors, is up-regulated by BMPs and contributes to the antimyogenic effects of this family of cytokines. In this report, we have identified a specific BMP-2 immediate early response enhancer in the human Id1 gene. Transcriptional activation of the enhancer was increased by overexpression of BMP-responsive Smads, and Smad4 and was completely abrogated in Smad4-deficient cells. Deletion analysis demonstrates that the responsive region is composed of two separate DNA binding elements, a set of overlapping GC boxes, which bind BMP-regulated Smads upon BMP stimulation, and three repeats of CAGAC boxes. Gel shift and oligonucleotide pull-down assays demonstrated that these two types of motifs were capable of binding their corresponding Smads. However, deletion or mutation of either DNA binding element was nonadditive, since disruption of either GC or CAGAC boxes resulted in complete or severe loss of BMP-2 responsiveness. These data suggest the simultaneous requirement of two independent DNA binding elements to allow functional cooperativity of BMP-regulated Smads and Smad4 in BMP-activated gene promoters.
Collapse
Affiliation(s)
- Teresa López-Rovira
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- M M Cohen
- Department of Oral and Maxillofacial Sciences, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.
| |
Collapse
|
50
|
Abstract
Biomarkers have considerable potential in aiding the understanding of the relationship between diet and disease or health. However, to assess the role, relevance and importance of biomarkers on a case by case basis it is essential to understand and prioritise the principal diet and health issues. In the majority of cases, dietary compounds are only weakly biologically active in the short term, have multiple targets and can be both beneficial and deleterious. This poses particular problems in determining the net effect of types of foods on health. In principle, a biomarker should be able to contribute to this debate by allowing the measurement of exposure and by acting as an indicator either of a deleterious or of an enhanced health effect prior to the final outcome. In this review, the examples chosen - cancer (stomach, colon/rectal, breast); coronary heart disease and osteoporosis - reflect three major diet-related disease issues. In each case the onset of the disease has a genetic determinant which may be exacerbated or delayed by diet. Perhaps the most important factor is that in each case the disease, once manifest, is difficult to influence in a positive way by diet alone. This then suggests that the emphasis for biomarker studies should focus on predictive biomarkers which can be used to help in the development of dietary strategies which will minimise the risk and be of greater benefit.
Collapse
Affiliation(s)
- F Branca
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione,Via Ardeatina, 546 00178 Rome, Italy
| | | | | | | |
Collapse
|