1
|
Maria SV, Malaiappan S. Biocompatibility And Periodontal Regenerative Potential Of Hydroxyapatite Nanoparticles From Portunus Sanguinolentus Shells: A Crystallographic, Morphological, And Molecular Gene Expression Analysis". J Dent 2025:105762. [PMID: 40246056 DOI: 10.1016/j.jdent.2025.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVES This study aims to extract and characterize hydroxyapatite (HAp) nanoparticles from the exoskeleton of Portunus sanguinolentus (blood-spotted swimming crab) shells for potential biomedical applications, particularly in bone tissue engineering and periodontal regenerative dentistry. MATERIALS AND METHODS Crab shells were cleaned, dried at 100°C, and ground into powder. The powder was sintered at 1000°C to obtain calcium carbonate (CaCO₃), which was then reacted with diammonium hydrogen phosphate [(NH₄)₂HPO₄]. in double-distilled water using a wet chemical method at pH >9. The precipitate was filtered, dried at 100°C, and sintered at 800°C to synthesize HAp nanoparticles. Characterization using FTIR, EDX, XRD, and SEM confirmed the nanoparticles' chemical composition, crystallinity, and nanoscale morphology. Biocompatibility was evaluated through MTT and live/dead cell assays on human gingival fibroblasts (HGF) and periodontal ligament fibroblasts (HPDLF). Osteogenic potential was assessed via real-time qPCR for ALP, BMP2, and RUNX2 gene expression and Alizarin Red S staining for calcium mineralization. Statistical analysis was conducted using ANOVA with Tukey's test. CONCLUSION Results demonstrated that crab shell-derived HAp nanoparticles exhibited excellent crystallinity, biocompatibility, and osteogenic potential. Enhanced cell viability and significant upregulation of osteogenic markers confirmed their role in periodontal bone regeneration. Increased calcium deposition further validated their extracellular matrix mineralization capability. These findings suggest that Portunus sanguinolentus-derived HAp nanoparticles are a promising, sustainable biomaterial for periodontal regenerative applications. CLINICAL SIGNIFICANCE The use of Portunus sanguinolentus-derived hydroxyapatite presents a sustainable and cost-effective alternative to synthetic biomaterials in dental applications. With excellent biocompatibility and the ability to promote osteogenic differentiation, these nanoparticles hold promise for bone grafting, implant coatings, and periodontal regeneration, supporting eco-friendly and efficient solutions for clinical bone repair and regenerative dentistry.
Collapse
Affiliation(s)
- Sharon V Maria
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences[SIMATS]. , Saveetha University, Chennai, India.
| | - Sankari Malaiappan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences[SIMATS]. , Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Tanideh N, Sarikhani M, Emami M, Alipanah M, Mohammadi Y, Mokhtarzadegan M, Jamshidzadeh A, Zare S, Daneshi S, Feiz A, Irajie C, Iraji A. Fabrication of porous collagen-stem cells-dexamethasone scaffold as a novel approach for regeneration of mandibular bone defect. Oral Maxillofac Surg 2025; 29:65. [PMID: 40072639 DOI: 10.1007/s10006-025-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/13/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Bone defects, particularly in the mandible, pose significant clinical challenges due to the limited regenerative capacity. Effective bone tissue engineering requires biomaterials that promote both osteogenesis and angiogenesis. This study developed an optimized collagen-nano hydroxyapatite scaffold loaded with dexamethasone and stem cells to enhance bone regeneration. METHODS The scaffold was fabricated using the freeze-dryer method. Characterization was performed using Fourier Transform Infrared Spectroscopy (FTIR), energy-dispersive X-ray (EDX) analysis, and scanning electron microscopy (SEM). Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) were incorporated into the scaffold, and in vitro and in vivo assessments were conducted. RESULTS FTIR and EDX analyses confirmed the successful incorporation of nano-hydroxyapatite and dexamethasone. SEM revealed an interconnected porous structure with an average pore size of 28.55 µm. The scaffold loaded with WJ-MSCs significantly enhanced osteocyte and osteoblast populations, leading to improved mandibular bone formation. Histopathological evaluations demonstrated superior osteogenesis and angiogenesis. CONCLUSION The developed porous nanohybrid scaffold shows potential as a promising biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobina Sarikhani
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Yasaman Mohammadi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Feiz
- Department of Material Science and Engineering, Shiraz University, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Guo Y, Peng X, Cao B, Liu Q, Li S, Chen F, Zhi D, Zhang S, Chen Z. A bilayer scaffold of collagen and nanohydroxyapatite promotes osteochondral defect in rabbit knee joints. Bone Joint Res 2025; 14:155-165. [PMID: 40012526 PMCID: PMC11865975 DOI: 10.1302/2046-3758.142.bjr-2024-0171.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Aims A large number of surgical operations are available to treat osteochondral defects of the knee. However, the knee joint arthroplasty materials cannot completely mimic the articular cartilage and subchondral bone, which may bring some obvious side effects. Thus, this study proposed a biocompatible osteochondral repair material prepared from a double-layer scaffold of collagen and nanohydroxyapatite (CHA), consisting of collagen hydrogel as the upper layer of the scaffold, and the composite of CHA as the lower layer of the scaffold. Methods The CHA scaffold was prepared, and properties including morphology, internal structure, and mechanical strength of the CHA scaffold were measured by scanning electron microscopy (SEM) and a MTS electronic universal testing machine. Then, biocompatibility and repair capability of the CHA scaffold were further evaluated using a rabbit knee cartilage defect model. Results The CHA scaffold was well suited for the repair of articular cartilage and subchondral bone; the in vitro results showed that the CHA scaffold had good cytocompatibility. In vivo experiments demonstrated that the material had high biocompatibility and effectively induced cartilage and subchondral bone regeneration. Conclusion The CHA scaffold has a high potential for commercialization and could be used as an effective knee repair material in clinical applications.
Collapse
Affiliation(s)
- Yayuan Guo
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Chang An District Hospital, Xi’an, China
- Engineering Research Center of Oral and Maxillary System Disease, School of Stomatology, Xi’an Medical University, Xi'an, China
| | - Xueliang Peng
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Bin Cao
- Jiangsu DiYun Medical Technology Co., Ltd, Suzhou, China
| | - Qian Liu
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Shen Li
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Chang An District Hospital, Xi’an, China
| | - Fulin Chen
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Dalong Zhi
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Chang An District Hospital, Xi’an, China
| | - Shequn Zhang
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Chang An District Hospital, Xi’an, China
| | - Zhuoyue Chen
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
4
|
Irfa'i MA, Muryanto S, Pusparizkita YM, Prihanto A, Sancho Vaquer A, Schmahl WW, Ismail R, Jamari J, Bayuseno AP. Calcination-based direct extraction of hydroxyapatite from bovine bone waste. ENVIRONMENTAL TECHNOLOGY 2024; 45:6249-6261. [PMID: 38488117 DOI: 10.1080/09593330.2024.2330478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 12/05/2024]
Abstract
The main chemical components of waste cow bones are apatite minerals, especially those containing calcium and phosphorus. This study investigated whether this bone could produce extracted hydroxyapatite through calcining at 900° C for different holding times (1-6 h). An average mass loss of 45% occurred in this experiment during the preparation of bone powders, which involved crushing and further calcining at this temperature. The quantitative XRD analysis showed that 99.97 wt.% hydroxyapatite and over 0.3 wt.% calcite were present in the raw and as-calcined bone powders, with trace amounts of CaFe3O5 (calcium ferrite) phases appearing in the calcined product. Depending on the holding calcining times, SEM images of the calcined bovine powders revealed aggregate sizes ranging from 0.5-3 µm and crystallite (grain) sizes ranging from 70 to 340 nm in all calcium-phosphate powder products. Following EDX analysis of all sample surfaces, possible calcium-deficient hydroxyapatite instead of hydroxyapatite formed, as evidenced by the calcined product's Ca/P ratio exceeding 1.67. Additionally, calcining cow bones for 5-6 h at 900° C yielded a high-purity nano-crystalline hydroxyapatite powder precursor in biomedical applications.
Collapse
Affiliation(s)
- M A Irfa'i
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
- Department of Mechanical Engineering, Universitas Negeri Surabaya, Surabaya, Indonesia
| | - S Muryanto
- Department of Chemical Engineering, UNTAG University in Semarang, Semarang, Indonesia
| | - Y M Pusparizkita
- Department of Environmental Engineering, Diponegoro University, Semarang, Indonesia
| | - A Prihanto
- Vacational Chemical Engineering Program, Catholic Polytechnic Mangunwijaya, Semarang, Indonesia
| | - A Sancho Vaquer
- Department of Earth and Environmental Sciences, Ludwig-Maximilians- University of Munich, Munich, Germany
| | - W W Schmahl
- Department of Earth and Environmental Sciences, Ludwig-Maximilians- University of Munich, Munich, Germany
| | - R Ismail
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
| | - J Jamari
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
| | - A P Bayuseno
- Department of Mechanical Engineering, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
5
|
Rasouli R, Yaghoobi H, Frampton J. A Comparative Study of the Effects of Different Crosslinking Methods on the Physicochemical Properties of Collagen Multifilament Bundles. Chemphyschem 2024; 25:e202400259. [PMID: 38662530 DOI: 10.1002/cphc.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Indexed: 06/11/2024]
Abstract
Crosslinking is usually required to improve the mechanical properties and stability of collagen-based scaffolds. Introducing exogenous crosslinks into collagen may however affect the collagen structure. Since the architecture of collagen is tied to its functionality, it is important to study the effect of crosslinking and to select a crosslinking method that preserves both the collagen structure and mechanical properties. The objective of this study is to compare the effect of various crosslinking methods on the structure and mechanical properties of bioartificial tendon-like materials (collagen multifilament bundles) fabricated by contact drawing. We examine both physical (ultraviolet light, UVC) and chemical (genipin, carbodiimide (EDC), and glutaraldehyde) crosslinking methods. The presence of collagen and the formation of well-ordered collagen structures are confirmed by attenuated total reflectance Fourier-transform infrared spectromicroscopy and wide-angle X-ray scattering for all crosslinking methods. The morphology of the collagen multifilament bundles is similar across crosslinking methods. Swelling of the multifilament bundles is dramatically reduced following crosslinking and varies by crosslinking method, with genipin- and carbodiimide-crosslinked specimens swelling the least. Ultimate tensile strength (UTS) and Young's modulus significantly improve for all crosslinked specimens compared to non-crosslinked specimens. Glutaraldehyde crosslinked collagen multifilament bundles display the highest UTS values ranging from 33.82±0.0 MPa to 45.59±0.76 MPa.
Collapse
Affiliation(s)
- Rahimeh Rasouli
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Hessameddin Yaghoobi
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - John Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
6
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
7
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
8
|
Soleymani S, Naghib SM. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon 2023; 9:e19363. [PMID: 37662765 PMCID: PMC10474476 DOI: 10.1016/j.heliyon.2023.e19363] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
The osseous tissue can be classified as a nanocomposite that encompasses a complex interweaving of organic and inorganic matrices. This intricate amalgamation consists of a collagen component and a mineral phase that are intricately arranged to form elaborate and perforated configurations. Hydroxyapatite, whether synthesized artificially or obtained from natural sources, has garnered considerable attention as a composite material in the field of bone tissue engineering due to its striking resemblance to bone in terms of structure and characteristics. Hydroxyapatite (HA) constitutes the predominant ceramic biomaterial for biomedical applications due to its ability to replicate the mineral composition of vertebrate bone. Nonetheless, it is noteworthy that the present biomimetic substance exhibits unfavorable mechanical characteristics, characterized by insufficient tensile and compressive strength, thus rendering it unsuitable for effective employment in the field of bone tissue engineering. Due to its beneficial attributes, hydroxyapatite (HA) is frequently employed in conjunction with various polymers and crosslinkers as composites to enhance mechanical properties and overall efficacy of implantable biomaterials engineered. The restoration of skeletal defects through the use of customized replacements is an effective way to replace damaged or lost bone structures. This method not only restores the bones' original functions but also reinstates their initial aesthetic appearance. The utilization of hydroxyapatite-polymer composites within 3D-printed grafts necessitates meticulous optimization of both mechanical and biological properties, in order to ensure their suitability for employment in medical devices. The utilization of 3D-printing technology represents an innovative approach in the manufacturing of HA-based scaffolds, which offers advantageous prospects for personalized bone regeneration. The expeditious prototyping method, with emphasis on the application of 3D printing, presents a viable approach in the development of bespoke prosthetic implants, grounded on healthcare data sets. 4D printing approach is an evolved form of 3D printing that utilizes programmable materials capable of altering the intended shape of printed structures, contingent upon single or dual stimulating factors. These factors include aspects such as pH level, temperature, humidity, crosslinking degree, and leaching factors.
Collapse
Affiliation(s)
- Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
9
|
Patrawalla NY, Kajave NS, Kishore V. A comparative study of bone bioactivity and osteogenic potential of different bioceramics in methacrylated collagen hydrogels. J Biomed Mater Res A 2023; 111:224-233. [PMID: 36214419 PMCID: PMC9742125 DOI: 10.1002/jbm.a.37452] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022]
Abstract
Biomimetic scaffolds composed of bioactive ceramic-based materials incorporated within a polymeric framework have shown immense promise for use in bone tissue engineering (BTE) applications. However, studies on direct comparison of the efficacy of different bioceramics on bone bioactivity and osteogenic differentiation are lacking. Herein, we performed an in vitro direct comparison of three different bioceramics-Bioglass 45S5 (BG), Laponite XLG (LAP), and β-Tricalcium Phosphate (TCP)-on the physical properties and bone bioactivity of methacrylated collagen (CMA) hydrogels (10% w/w bioceramic:CMA). In addition, human MSCs (hMSCs) were encapsulated in bioceramic-laden CMA hydrogels and the effect of different bioceramics on osteogenic differentiation of hMSCs was investigated in two different culture medium-osteoconductive (without dexamethasone [DEX]) and osteoinductive (with DEX). Results showed that the stability of CMA hydrogels was maintained upon bioceramic addition. Compression testing revealed that BG incorporation significantly decreased (p < 0.05) the modulus of photochemically crosslinked CMA hydrogels. Incubation of TCP-CMA and LAP-CMA hydrogels in simulated body fluid showed deposition of hydroxycarbonate apatite layer on the surface indicating that these hydrogels may be more bone bioactive than BG-CMA and CMA only hydrogels. Cell cytoskeleton staining results showed greater cell spreading in TCP-CMA hydrogels. Furthermore, TCP incorporation significantly increased alkaline phosphatase activity (ALP; p < 0.05) in hMSCs. Together, these results indicate that TCP has superior osteogenic potential compared with BG and LAP and hence should be considered as a bioceramic of preferred choice for use in the biomimetic design of cell-laden hydrogels for BTE applications.
Collapse
Affiliation(s)
- Nashaita Y Patrawalla
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Nilabh S Kajave
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
10
|
Mo X, Zhang D, Liu K, Zhao X, Li X, Wang W. Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24021291. [PMID: 36674810 PMCID: PMC9867487 DOI: 10.3390/ijms24021291] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nano-hydroxyapatite (n-HAp) is similar to human bone mineral in structure and biochemistry and is, therefore, widely used as bone biomaterial and a drug carrier. Further, n-HAp composite scaffolds have a great potential role in bone regeneration. Loading bioactive factors and drugs onto n-HAp composites has emerged as a promising strategy for bone defect repair in bone tissue engineering. With local delivery of bioactive agents and drugs, biological materials may be provided with the biological activity they lack to improve bone regeneration. This review summarizes classification of n-HAp composites, application of n-HAp composite scaffolds loaded with bioactive factors and drugs in bone tissue engineering and the drug loading methods of n-HAp composite scaffolds, and the research direction of n-HAp composite scaffolds in the future is prospected.
Collapse
Affiliation(s)
- Xiaojing Mo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dianjian Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Keda Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoxi Zhao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence: (X.L.); (W.W.)
| | - Wei Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Correspondence: (X.L.); (W.W.)
| |
Collapse
|
11
|
ÖZGENÇ Ö, ÖZEN A. Osteogenic Differentiation of Canine Adipose Derived Mesenchymal Stem Cells on B-TCP and B-TCP/Collagen Biomaterials. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.1130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mesenchymal stem cells are adult stem cells that have the ability to differentiate into osteogenic, chondrogenic, adipogenic and myogenic lineages. In the field of orthopedics and traumatology, mesenchymal stem cells in combination with biomaterials are used especially for the treatment of bone fractures and diseases in both humans and animals. The purpose of this study is to promote growth, proliferation and osteogenic differentiation of mesenchymal stem cells that were isolated from the adipose tissue of canines on B-TCP (Beta-tricalcium phosphate) and B-TCP/Collagen biomaterials. MTT analysis was performed to test the cell adhesion and proliferation on B-TCP and B-TCP/Collagen biomaterials that were used to mimic the extracellular matrix of three-dimensional bone tissue. Scanning electron microscope analysis was performed to show general surface characters of B-TCP and B-TCP /Collagen biomaterials. The osteoinductive capacities of the B-TCP and B-TCP/Collagen biomaterials were determined by alkaline phosphatase and Von Kossa stainings, and RT-PCR analysis. The ALP activity of the B-TCP/Col containing material was significantly higher than the B-TCP on the first days. In terms of gene expression, there were no significant differences except 14th-day SPARC gene expression. The results of Von Kossa staining indicate that B-TCP/Col has above the desired level degradation capacity. As a result of this research, although it is advantageous in terms of alkaline phosphatase activity and osteogenic gene expression compared to B-TCP material, it is thought that B-TCP/Collagen biomaterial should be developed for use in bone tissue engineering due to its high degradation property.
Collapse
|
12
|
Nagaraj A, Etxeberria AE, Naffa R, Zidan G, Seyfoddin A. 3D-Printed Hybrid Collagen/GelMA Hydrogels for Tissue Engineering Applications. BIOLOGY 2022; 11:1561. [PMID: 36358262 PMCID: PMC9687496 DOI: 10.3390/biology11111561] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 07/29/2023]
Abstract
Bioprinting is an emerging technology involved in the fabrication of three-dimensional tissue constructs for the repair and regeneration of various tissues and organs. Collagen, a natural protein found abundantly in the extracellular matrix of several tissues, can be extracted from collagen-rich tissues of animals such as sheep, cows, rats, pigs, horses, birds, and marine animals. However, due to the poor printability of collagen bioinks, biocompatible collagen scaffolds that mimic the extracellular matrix (ECM) are difficult to fabricate using bioprinting techniques. Gelatin methacrylate (GelMA), a semi-synthetic polymer with tunable physical and chemical properties, has been found to be a promising biomaterial in various bioprinting applications. The printability of collagen can be improved by combining it with semi-synthetic polymers such as GelMA to develop hybrid hydrogels. Such hybrid hydrogels printed have also been identified to have enhanced mechanical properties. Hybrid GelMA meshes have not previously been prepared with collagen from ovine sources. This study provides a novel comparison between the properties of hybrid meshes with ovine skin and bovine hide collagen. GelMA (8% w/v) was integrated with three different concentrations (0.5%, 1%, and 2%) of bovine and ovine collagen forming hybrid hydrogels inks that were printed into meshes with enhanced properties. The maximum percentage of collagen suitable for integration with GelMA, forming hybrid hydrogels with a stable degradation rate was 1%. The water-soluble nature of ovine collagen promoted faster degradation of the hybrid meshes, although the structural crosslinking was identified to be higher than bovine hybrid meshes. The 1% bovine collagen hybrid meshes stood out in terms of their stable degradation rates.
Collapse
Affiliation(s)
- Anushree Nagaraj
- Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Alaitz Etxabide Etxeberria
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Rafea Naffa
- New Zealand Leather & Shoe Research Association, Palmerston North 4472, New Zealand
| | - Ghada Zidan
- Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
13
|
Xing Y, Zhong X, Chen Z, Liu Q. Optimized osteogenesis of biological hydroxyapatite-based bone grafting materials by ion doping and osteoimmunomodulation. Biomed Mater Eng 2022; 34:195-213. [DOI: 10.3233/bme-221437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Biological hydroxyapatite (BHA)-based bone grafting materials have been widely used for bone regeneration in implant surgery. Much effort has been made in the improvement of their osteogenic property as it remains unsatisfactory for clinical use. Osteoimmunomodulation plays a significant role in bone regeneration, which is highly related to active inorganic ions. Therefore, attempts have been made to obtain osteoimmunomodulatory BHA-based bone grafting materials with optimized osteogenic property by ion doping. OBJECTIVE: To summarize and discuss the active inorganic ions doped into BHA and their effects on BHA-based bone grafting materials. METHOD: A literature search was performed in databases including Google Scholar, Web of Science and PubMed, with the elementary keywords of “ion doped” and “biological hydroxyapatite”, as well as several supplementary keywords. All document types were included in this search. The searching period and language were not limited and kept updated to 2022. RESULTS: A total of 32 articles were finally included, of which 32 discussed the physiochemical properties of BHA-based biomaterials, while 12 investigated their biological features in vitro, and only three examined their biological performance in vivo. Various ions were doped into BHA, including fluoride, zinc, magnesium and lithium. Such ions improved the biological performance of BHA-based biomaterials, which was attributed to their osteoimmunomodulatory effect. CONCLUSION: The doping of active inorganic ions is a reliable strategy to endow BHA-based biomaterials with osteoimmunomodulatory property and promote bone regeneration. Further studies are still in need to explore more ions and their effects in the crosstalk between the skeletal and immune systems.
Collapse
Affiliation(s)
| | | | | | - Quan Liu
- , Sun Yat-sen University, , China
| |
Collapse
|
14
|
Ge YW, Chu M, Zhu ZY, Ke QF, Guo YP, Zhang CQ, Jia WT. Nacre-inspired magnetically oriented micro-cellulose fibres/nano-hydroxyapatite/chitosan layered scaffold enhances pro-osteogenesis and angiogenesis. Mater Today Bio 2022; 16:100439. [PMID: 36245833 PMCID: PMC9557728 DOI: 10.1016/j.mtbio.2022.100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yu-Wei Ge
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Min Chu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Zi-Yang Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Corresponding author.
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Corresponding author.
| | - Wei-Tao Jia
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Corresponding author.
| |
Collapse
|
15
|
Conrad B, Yang F. Hydroxyapatite-coated gelatin microribbon scaffolds induce rapid endogenous cranial bone regeneration in vivo. BIOMATERIALS ADVANCES 2022; 140:213050. [PMID: 35917686 DOI: 10.1016/j.bioadv.2022.213050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/25/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HA) has a composition similar to mineral bone and has been used for coating macroporous scaffolds to enhance bone formation. However, previous macroporous scaffolds did not support minimally invasive delivery. Our lab has reported on gelatin-based microribbon (μRB) shaped hydrogels, which combine injectability with macroporosity and support cranial bone formation in an immunocompromised mouse model. However, gelatin alone was not sufficient to support cranial bone formation in immunocompetent animals. To overcome this challenge, here we evaluated two methods to incorporate HA into gelatin μRB scaffolds using either modified simulated body fluid (mSBF) or commercially available HA nanoparticles (HAnp). HA incorporation and distribution were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. While both methods enhanced MSC osteogenesis and mineralization, the mSBF method led to undesirable reduction in mechanical properties. HAnp-coated μRB scaffolds were further evaluated in an immunocompetent mouse cranial defect model. Acellular HAnp-coated gelatin μRB scaffolds induced rapid and robust endogenous cranial bone regeneration as shown by MicroCT imaging and histology. Co-delivery with exogenous MSCs led to later bone resorption accompanied by increased osteoclast activity. In summary, our results demonstrate the promise of gelatin μRBs with HAnps as a promising therapy for cranial bone regeneration without the need for exogenous cells or growth factors.
Collapse
Affiliation(s)
- Bogdan Conrad
- Program of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 240 Pasteur Dr., Biomedical Innovation Building 1200, Palo Alto, CA 94304, United States of America.
| | - Fan Yang
- Departments of Orthopaedic Surgery and Bioengineering Stanford University, 240 Pasteur Dr., Biomedical Innovation Building 1200, Palo Alto, CA 94304, United States of America.
| |
Collapse
|
16
|
Abdelraof M, Farag MM, Al-Rashidy ZM, Ahmed HYA, El-Saied H, Hasanin MS. Green Synthesis of Bioactive Hydroxyapatite/Cellulose Composites from Food Industrial Wastes. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThis work aimed at conversion of worthless indurtial wastes to valuable product. Herein, bioactive composites based on bacterial cellulose (BC) and eggshell or eggshell-derived hydroxyapatite (HAp) were prepared by a green method using Gluconacetobacter xylinum bacteria. The effect of addition of eggshell (BC/Eg) and eggshell-derived HAp (BC/HAp-Eg) on the bacterial cellulose yield, biodegradation and biocompatibility was studied. For comparison, HAp derived from chemical precursors was synthesized (BC/HAp-ch). The resultant composites were characterized by XRD, FTIR, and SEM/EDX. Furthermore, the biodegradation and bioactivity were assessed in SBF, and the cell viability was studied against oral normal cells. The results showed that the productivity of BC applied HAp-derived eggshell (1.83 g/L) was higher than that of using (1.37 g/L). Interestingly, the eggshell was converted to Ca3(PO4)2 during incubation in the bacterial culture medium, while Ca3(PO4)2 was formed as a secondary phase when using either eggshell-derived HAp or chemically-derived. The in vitro bioactivity test in SBF showed that all composites were induced the formation of a bone-like apatite layer on their surface with Ca/P ratio, 1.49, 1.35, and 1.41 for BC/Eg, BC/HAp-ch, and BC/HAp-Eg, respectively, near to the ratio in the natural HAp. Finally, the in vitro cell viability test was confirmed good biocompatibility against the composites. However, at high sample concentration (250 µg/mL), BC/HA-Eg showed the higher cell viability (95.2%) than that of BC/Eg (80.5%) and BC/HA-ch (86.2%). In conclusion, eggshell waste could be used directly with bacterial cellulose to produce bioactive composites without the need to convert it to HAp which reduced the cost of production and thus has a higher economic return. Obiviously, eggshell waste can act as calcium, organic matter source, pH preservation, nuterilizing agent along with potential instead of costly buffering agent in the BC culture medium and further for increased the BC production.
Collapse
|
17
|
Ong JL, Shiels SC, Pearson J, Karajgar S, Miar S, Chiou G, Appleford M, Wenke JC, Guda T. Spatial rhBMP2 delivery from hydroxyapatite scaffolds sustains bone regeneration in rabbit radius. Tissue Eng Part C Methods 2022; 28:363-374. [PMID: 35615881 DOI: 10.1089/ten.tec.2022.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regenerating large bone defects requires a multi-faceted approach combining optimal scaffold designs with appropriate growth factor delivery. Supraphysiological doses of recombinant human bone morphogenetic protein 2(rhBMP2); typically used for the regeneration of large bone defects clinically in conjunction with an acellular collagen sponge (ACS), have resulted in many complications. In the current study, we develop a hydroxyapatite/collagen I (HA/Col) scaffold to improve the mechanical properties of the HA scaffolds while maintaining open connected porosity. Varying rhBMP2 dosages were then delivered from a collagenous periosteal membrane and paired with HA or HA/Col scaffolds to treat critical sized (15mm) diaphyseal radial defect in New Zealand white rabbits. The groups examined were ACS+76µg rhBMP2 (clinically used INFUSE dosage), HA+76µg rhBMP2, HA+15µg rhBMP2, HA/Col+15µg rhBMP2 and HA/Col+15µg rhBMP2+bone marrow derived stromal cells (bMSCs). After 8 weeks of implantation, all regenerated bones were evaluated using micro computed tomography, histology, histomorphometry and torsional testing. It was observed that the bone volume regenerated in the HA/Col + 15 µg rhBMP2 group was significantly higher than that in the groups with 76µg rhBMP2. The same scaffold and growth factor combination resulted in the highest bone mineral density of the regenerated bone, and the most bone apposition on the scaffold surface. Both the HA and HA/Col scaffolds paired with 15 µg rhBMP2 had sustained ingrowth of the mineralization front after 2 weeks compared to the groups with 76µg rhBMP2 which had far greater mineralization in the first 2 weeks after implantation. Complete bridging of the defect site and no significant differences in torsional strength, stiffness or angle at failure was observed across all groups. No benefit of additional bMSC seeding was observed on any of the quantified metrics, while bone-implant apposition was reduced in the cell seeded group. This study demonstrated that the controlled spatial delivery of rhBMP2 at the periosteum at significantly lower doses can be used as a strategy to improve bone regeneration around space maintaining scaffolds.
Collapse
Affiliation(s)
- Joo L Ong
- The University of Texas at San Antonio, 12346, Biomedical Engineering and Chemical Engineering, San Antonio, Texas, United States;
| | - Stefanie C Shiels
- The University of Texas at San Antonio, 12346, Biomedical Engineering and Chemical Engineering, San Antonio, Texas, United States.,US Army Institute of Surgical Research, 110230, Fort Sam Houston, Texas, United States;
| | - Joseph Pearson
- The University of Texas at San Antonio, 12346, Biomedical Engineering and Chemical Engineering, San Antonio, Texas, United States.,Georgia Institute of Technology, 1372, Wallace H Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States;
| | - Suyash Karajgar
- The University of Texas at San Antonio, 12346, Biomedical Engineering and Chemical Engineering, San Antonio, Texas, United States;
| | - Solaleh Miar
- The University of Texas at San Antonio, 12346, Biomedical Engineering and Chemical Engineering, San Antonio, Texas, United States;
| | - Gennifer Chiou
- The University of Texas at San Antonio, 12346, Biomedical Engineering and Chemical Engineering, San Antonio, Texas, United States;
| | - Mark Appleford
- The University of Texas at San Antonio, 12346, Biomedical Engineering and Chemical Engineering, San Antonio, Texas, United States;
| | - Joseph C Wenke
- US Army Institute of Surgical Research, 110230, Fort Sam Houston, Texas, United States.,The University of Texas Medical Branch at Galveston, 12338, Department of Orthopedic Surgery and Rehabilitation, Galveston, Texas, United States;
| | - Teja Guda
- University of Texas at San Antonio, 12346, Biomedical Engineering and Chemical Engineering, San Antonio, Texas, United States;
| |
Collapse
|
18
|
Yao S, Shang Y, Ren B, Deng S, Wang Z, Peng Y, Huang Z, Ma S, Peng C, Hou S. A novel natural-derived tilapia skin collagen mineralized with hydroxyapatite as a potential bone-grafting scaffold. J Biomater Appl 2022; 37:219-237. [PMID: 35345923 DOI: 10.1177/08853282221086246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Collagen is widely used in medical field because of its excellent biocompatibility and bioactivity. To date, collagen for biomedical use is always derived from bovine or swine. The purpose of this study was to evaluate collagen-based biomaterials from non-mammalian donors for bone repair. Thus, tilapia skin collagen-hydroxyapatite (T-col/HAp) scaffolds were fabricated in three different proportions and then cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide (EDC-NHS). The scaffolds were evaluated for their microstructure, chemical and physical properties, mechanical strength and degradability. Then the in vitro responses of bone mesenchymal stem cells (BMSCs) to the scaffolds were investigated in terms of cellular proliferation, differentiation, and mineralization. At last, the scaffolds were implanted into rat skull critical defections to investigate the potential of osteogenic activities. As a result, the pore sizes and the porosities of the scaffolds were approximately 106.67–196.67 μm and 81.5%–66.7%. Pure collagen group showed a mechanical strength of 0.065 MPa, and the mechanical strength was significantly enhanced almost 17 times and 32 times in collagen/HAp ratio 1:4 and 1:9 groups. In vitro studies revealed the most prominent and healthy growth of BMSCs in collagen/HAp ratio 1:4 group. All the scaffolds showed certain osteogenic activities and those loaded with small amount of hydroxyapatite showed the strongest bioactivities. The micro-CT showed that the critical bone defect was almost filled with generated bone 6 months after implantation in collagen/HAp ratio 1:4 group. The biomechanics tests further confirmed the highest generated bone strength was in the collagen/HAp ratio 1:4 group. This study indicated aquatic collagen might be a potential alternative for type I collagen from mammals in bone tissue engineering. The combination of collagen and inorganic materials was also important and appropriate inorganic component loading can achieve both osteogenic quality and osteogenic efficiency to a certain extent.
Collapse
Affiliation(s)
- Shiyu Yao
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Yuli Shang
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Bo Ren
- Knee and Ankle Ward of Sports Medicine Center, Xi’an, China
| | - Shu Deng
- The Forsyth Institute, Cambridge, MA, USA
| | - Zhe Wang
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Yang Peng
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Zhaohui Huang
- Yantai Desheng Marine Biotechnology Co, Ltd, Yantai, China
| | - Shiqing Ma
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Cheng Peng
- Tianjin Medical University Second Hospital, Tianjin, China
| | - Shuai Hou
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
19
|
Cintra CCV, Ferreira-Ermita DAC, Loures FH, Araújo PMAG, Ribeiro IM, Araújo FR, Valente FL, Reis ECC, Costa ACFM, Bicalho SMCM, Borges APB. In vitro characterization of hydroxyapatite and cobalt ferrite nanoparticles compounds and their biocompatibility in vivo. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:21. [PMID: 35129688 PMCID: PMC8821076 DOI: 10.1007/s10856-022-06640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Bioactive materials in combination with antibiotics have been widely developed for the treatment of bone infection. Thus, this work aims to characterize six biomaterials formulated with different concentrations of hydroxyapatite and cobalt ferrite nanoparticles, in addition to the antibiotic ciprofloxacin, using X-ray diffraction (XRD), scanning electron microscopy (SEM), and the antibiotic diffusion test on agar. Furthermore, in vivo biocompatibility and the reabsorption process of these materials were analyzed. XRD showed that both hydroxyapatite and cobalt ferrite present high crystallinity. The photomicrographs obtained by SEM revealed that composites have a complex surface, evidenced by the irregular arrangement of the hydroxyapatite and cobalt ferrite granules, besides demonstrating the interaction between their components. The antibiotic-diffusion test showed that all biomaterials produced an inhibition halo in Staphylococcus aureus cultures. For the biocompatibility study, composites were surgically implanted in the dorsal region of rabbits. At 15, 30, 70, and 100 days, biopsies of the implanted regions were performed. The biomaterials were easily identified during histological analysis and no significant inflammatory process, nor histological signs of toxicity or rejection by the adjacent tissue were observed. We can conclude that the biomaterials analyzed are biocompatible, degradable, and effective in inhibiting the in vitro growth of Staphylococcus aureus. Graphical abstract.
Collapse
Affiliation(s)
| | | | - Fabrícia H Loures
- Veterinary Department, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Pascally M A G Araújo
- Laboratory of Synthesis of Ceramic Materials, Universidade Federal de Campina Grande, Campina Grande, Brasil
| | - Iara M Ribeiro
- Veterinary Department, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Fabiana R Araújo
- Veterinary Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | | | | | - Andréa P B Borges
- Veterinary Department, Universidade Federal de Viçosa, Viçosa, Brasil
| |
Collapse
|
20
|
Collagen matrices are preserved following decellularization of a bovine bone scaffold. Cell Tissue Bank 2022; 23:531-540. [DOI: 10.1007/s10561-021-09987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
|
21
|
Monia T. β-TCP/DCPD-PHBV (40%/60%): Biomaterial made from bioceramic and biopolymer for bone regeneration; investigation of intrinsic properties. J Appl Biomater Funct Mater 2022; 20:22808000221088950. [PMID: 35410508 DOI: 10.1177/22808000221088950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a detailed physical, chemical, and mechanical investigation of bone substitute (β-TCP/DCPD-PHBV) was carried out. In fact, it is composed of biocompatible materials such as ceramic phosphocalcic, consisting of tricalcium phosphate (β-TCP) and dihydrated dicalcium phosphate (DCPD) and 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) polymer having a weight fraction 40%/60%. For these analyses, diverse techniques were used, including SEM-EDS, mercury porosimeter, Fourier Transform Infrared Spectroscopy, and, finally, uniaxial compression test machine. A morphological investigation of biomaterials using MEB revealed uneven particle shape and size, as well as a rough surface with a porous and microcracked structure. In fact, this architecture promotes the development of bone within biomaterials. Compositional studies applying FTIR technology, also, revealed the existence of chemical components, comparable to those found in the mineral phase of bone (Ca2+, PO43-, and HPO42-). The following compounds prove the bioactivity of β-TCP/DCPD-PHBV. Furthermore, mechanical investigations revealed that this biomaterial has a satisfying mechanical strength (195.21 MPa), closer to bone. Nevertheless, another significant benefit of combining the two biocompatible materials used in this work is that the ductility of PHBV restricts the brittleness of β-TCP/DCPD-PHBV, compared to pure β-TCP/DCPD. The obtained results demonstrate the beneficial properties of β-TCP/DCPD-PHBV and approve the possibility of using this biomaterial as a viable material for future implantology applications.
Collapse
Affiliation(s)
- Trimeche Monia
- Laboratory of Materials, Optimization and Energy for Sustainability (LAMOED), Department of Industrial Engineering, Tunis El Manar University, National School of Engineers of Tunis, Tunis, Tunisia
| |
Collapse
|
22
|
Gehrke SA, Aramburú Júnior J, Treichel TLE, Rodriguez F, N de Aza P, Dedavid BA. Comparative evaluation of two collagen-based biomaterials with different compositions used for bone graft: An experimental animal study. J Appl Biomater Funct Mater 2022; 20:22808000221119650. [PMID: 35975914 DOI: 10.1177/22808000221119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A large number of materials with different compositions and shapes have been proposed and studied for the purpose of bone tissue regeneration. Collagen-based materials have shown promising results for this application, with improved physicochemical properties. The aim of the present in vivo animal study was to evaluate and compare two commercially available collagen-based biomaterials for bone regeneration, with these being implanted in circumferential bone defects created in the calvarium of rabbits. Twenty rabbits received bilateral parietal osteotomies, performed with the aid of a 6.5 mm diameter trephine. Two groups were created: the BC group, where the defect was filled with a scaffold composed of 90% bovine bone particles and 10% porcine collagen, and the EG group, where the defect was filled with a scaffold composed of 75% hydroxyapatite particles of bovine origin and 25% bovine collagen. Ten animals were sacrificed at 30 days and another 10 at 45 days after implantation, and the samples were processed and histologically analyzed. In the evaluations of the samples at 30 days, no important differences were found in the results. However, in the samples at 45 days after surgery, the EG group showed better results than the BC group samples, mainly in terms of the amount of bone matrix formation (P < 0.0001) and the volume in area measured in each sample, where the EG group had a value 65% higher than that in the BC group samples. Based on the results obtained, we conclude that the amount of collagen and the particle characteristics present in the composition of the scaffolds can directly influence the amount of neoformation and/or bone regeneration.
Collapse
Affiliation(s)
- Sergio Alexandre Gehrke
- Department of Research, Bioface/PgO/UCAM, Montevideo, Uruguay.,Department of Biotechnology. Universidad Católica de Murcia (UCAM), Murcia, Spain.,Instituto de Bioingenieria, Universidad Miguel Hernández, Elche (Alicante), Spain.,Department of Materials Engineering, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | - Piedad N de Aza
- Instituto de Bioingenieria, Universidad Miguel Hernández, Elche (Alicante), Spain
| | - Berenice Anina Dedavid
- Department of Materials Engineering, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
23
|
Moradi A, Pakizeh M, Ghassemi T. A review on bovine hydroxyapatite; extraction and characterization. Biomed Phys Eng Express 2021; 8. [PMID: 34879359 DOI: 10.1088/2057-1976/ac414e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022]
Abstract
High rate of bone grafting surgeries emphasizes the need for optimal bone substitutes. Biomaterials mimicking the interconnected porous structure of the original bone with osteoconductive and osteoinductive capabilities have long been considered. Hydroxyapatite (HA), as the main inorganic part of natural bone, has exhibited excellent regenerative properties in bone tissue engineering. This manuscript reviews the HA extraction methods from bovine bone, as one of the principal biosources. Essential points in the extraction process have also been highlighted. Characterization of the produced HA through gold standard methods such as XRD, FTIR, electron microscopies (SEM and TEM), mechanical/thermodynamic tests, and bioactivity analysis has been explained in detail. Finally, future perspectives for development of HA constructs are mentioned.
Collapse
Affiliation(s)
- Ali Moradi
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences (MUM), Mashhad, Iran.,Orthopedic Research Center, Mashhad University of Medical Sciences (MUM), Mashhad, Iran
| | - Majid Pakizeh
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Toktam Ghassemi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
24
|
Veiga A, Castro F, Rocha F, Oliveira AL. An update on hydroxyapatite/collagen composites: What is there left to say about these bioinspired materials? J Biomed Mater Res B Appl Biomater 2021; 110:1192-1205. [PMID: 34860461 DOI: 10.1002/jbm.b.34976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023]
Abstract
Hydroxyapatite (HAp)/collagen-based composite materials have been a constant in the development of bioinspired materials for bone tissue engineering. The most fundamental research works focus on combining HAp, due to its chemical similarity with the mineral component of bones, and collagen, which is the most abundant protein in the body. Modern studies have explored different two-dimensional (2D) and 3D structures, in order to obtain biomaterials with specific physicochemical, mechanical, and biological characteristics that can be applied in distinct biomedical applications. However, as there is already so much work developed with these materials, it is crucial to question: what can still be done? What is the importance of current know-how for the future of bioinspired materials? In this paper we intend to review and update the available methodologies to synthesize HAp/collagen composites, along with their characteristics. In addition, the future of these materials in terms of applications and their potential as a cutting-edge technology is discussed.
Collapse
Affiliation(s)
- Anabela Veiga
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Filipa Castro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernando Rocha
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
25
|
Tarafdar A, Gaur VK, Rawat N, Wankhade PR, Gaur GK, Awasthi MK, Sagar NA, Sirohi R. Advances in biomaterial production from animal derived waste. Bioengineered 2021; 12:8247-8258. [PMID: 34814795 PMCID: PMC8806998 DOI: 10.1080/21655979.2021.1982321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Animal derived waste, if not disposed properly, could pose a threat to the environment and its inhabitants. Recent advancements in biotechnological and biomedical interventions have enabled us to bioengineer these valuable waste substrates into biomaterials with diversified applications. Rearing and processing of poultry, cattle, sheep, goat, pig, and slaughterhouse waste can aid in effective waste valorization for the fabrication of biopolymers, composites, heart valves, collagen, scaffolds, pigments and lipids, among other industrially important biomaterials. Feathers and eggshell waste from the poultry industry can be used for producing keratinous proteins and biocomposites, respectively. Cattle dung, hoofs and cattle hide can be used for producing hydroxyapatite for developing scaffolds and drug delivery systems. Porcine derived collagen can be used for developing skin grafts, while porcine urinary bladder has antiangiogenic, neurotrophic, tumor-suppressive and wound healing properties. Sheep teeth can be used for the production of low-cost hydroxyapatite while goat tissue is still underutilized and requires more in-depth investigation. However, hydrolyzed tannery fleshings show promising potential for antioxidant rich animal feed production. In this review, the recent developments in the production and application of biomaterials from animal waste have been critically analyzed. Standardized protocols for biomaterial synthesis on a pilot scale, and government policy framework for establishing an animal waste supply chain for end users seem to be lacking and require urgent attention. Moreover, circular bioeconomy concepts for animal derived biomaterial production need to be developed for creating a sustainable system.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environment Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Neha Rawat
- Department of Food Science and Technology, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Pratik Ramesh Wankhade
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&f University, Yangling, Shaanxi Province, China
| | - Narashans Alok Sagar
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
26
|
Troy E, Tilbury MA, Power AM, Wall JG. Nature-Based Biomaterials and Their Application in Biomedicine. Polymers (Basel) 2021; 13:3321. [PMID: 34641137 PMCID: PMC8513057 DOI: 10.3390/polym13193321] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Natural polymers, based on proteins or polysaccharides, have attracted increasing interest in recent years due to their broad potential uses in biomedicine. The chemical stability, structural versatility, biocompatibility and high availability of these materials lend them to diverse applications in areas such as tissue engineering, drug delivery and wound healing. Biomaterials purified from animal or plant sources have also been engineered to improve their structural properties or promote interactions with surrounding cells and tissues for improved in vivo performance, leading to novel applications as implantable devices, in controlled drug release and as surface coatings. This review describes biomaterials derived from and inspired by natural proteins and polysaccharides and highlights their promise across diverse biomedical fields. We outline current therapeutic applications of these nature-based materials and consider expected future developments in identifying and utilising innovative biomaterials in new biomedical applications.
Collapse
Affiliation(s)
- Eoin Troy
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
| | - Maura A. Tilbury
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| | - Anne Marie Power
- Zoology, School of Natural Sciences, NUI Galway, H91 TK33 Galway, Ireland;
| | - J. Gerard Wall
- Microbiology, College of Science and Engineering, National University of Ireland, NUI Galway, H91 TK33 Galway, Ireland; (E.T.); (M.A.T.)
- SFI Centre for Medical Devices (CÚRAM), NUI Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
27
|
Jolly JJ, Mohd Fozi NF, Chin KY, Wong SK, Chua KH, Alias E, Adnan NS, Ima-Nirwana S. Skeletal microenvironment system utilising bovine bone scaffold co-cultured with human osteoblasts and osteoclast-like cells. Exp Ther Med 2021; 22:680. [PMID: 33986845 PMCID: PMC8112126 DOI: 10.3892/etm.2021.10112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
A three-dimensional ex vivo bone cell culture system mimicking the skeletal system is useful for bone tissue engineering and as drug discovery platforms. The present study aimed to establish a three-dimensional skeletal culture system using native bovine bone scaffolds and human bone cells. Bovine bone scaffolds were cultured with human foetal osteoblasts 1.19 and human peripheral blood mononuclear cells for 21 days under standard culture conditions. The following groups were established: Decalcified unseeded bone scaffold (DUBS) as baseline control, decalcified seeded bone scaffold (DSBS) to mimic osteoporosis condition and undecalcified seeded bone scaffold to mimic normal condition. The scaffold's porosity and cell attachment on the scaffolds were determined using scanning electron microscopy. Histological evaluation was used to examine changes in trabecular bone structure. Dual-energy X-ray absorptiometry analysis was performed to determine the bone mineral density (BMD) and bone mineral content (BMC) of the scaffolds. A compression test was performed to examine the total biomechanical strength of the scaffolds. The trabecular thickness and number increased, while the trabecular separationwas reduced slightly in DSBS than in DUBS (P>0.05). The BMD and BMC increased significantly (P<0.05), while the compressive strength only increased slightly in DSBS than in DUBS (P>0.05). In conclusion, the ex vivo skeletal microenvironment comprising native bovine bone scaffolds seeded with bone cells is structurally, functionally and mechanically comparable with natural bone. This system may be used as a platform to understand bone physiology and screen for potential drug candidates.
Collapse
Affiliation(s)
- James Jam Jolly
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
| | - Nur Farhana Mohd Fozi
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, P.R. China
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
| | - Kien Hui Chua
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
| | - Ekram Alias
- Department of Physiology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
| | - Nur Sabariah Adnan
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
| |
Collapse
|
28
|
Rubert M, Vetsch JR, Lehtoviita I, Sommer M, Zhao F, Studart AR, Müller R, Hofmann S. Scaffold Pore Geometry Guides Gene Regulation and Bone-like Tissue Formation in Dynamic Cultures. Tissue Eng Part A 2021; 27:1192-1204. [PMID: 33297842 DOI: 10.1089/ten.tea.2020.0121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells sense and respond to scaffold pore geometry and mechanical stimuli. Many fabrication methods used in bone tissue engineering render structures with poorly controlled pore geometries. Given that cell-scaffold interactions are complex, drawing a conclusion on how cells sense and respond to uncontrolled scaffold features under mechanical loading is difficult. In this study, monodisperse templated scaffolds (MTSC) were fabricated and used as well-defined porous scaffolds to study the effect of dynamic culture conditions on bone-like tissue formation. Human bone marrow-derived stromal cells were cultured on MTSC or conventional salt-leached scaffolds (SLSC) for up to 7 weeks, either under static or dynamic conditions (wall shear stress [WSS] using spinner flask bioreactors). The influence of controlled spherical pore geometry of MTSC subjected to static or dynamic conditions on osteoblast cell differentiation, bone-like tissue formation, structure, and distribution was investigated. WSS generated within the two idealized geometrical scaffold features was assessed. Distinct response to fluid flow in osteoblast cell differentiation were shown to be dependent on scaffold pore geometry. As revealed by collagen staining and microcomputed tomography images, dynamic conditions promoted a more regular extracellular matrix (ECM) formation and mineral distribution in both scaffold types compared with static conditions. The results showed that regulation of bone-related genes and the amount and the structure of mineralized ECM were dependent on scaffold pore geometry and the mechanical cues provided by the two different culture conditions. Under dynamic conditions, SLSC favored osteoblast cell differentiation and ECM formation, whereas MTSC enhanced ECM mineralization. The spherical pore shape in MTSC supported a more trabecular bone-like structure under dynamic conditions compared with MTSC statically cultured or to SLSC under either static or dynamic conditions. These results suggest that cell activity and bone-like tissue formation is driven not only by the pore geometry but also by the mechanical environment. This should be taken into account in the future design of complex scaffolds, which should favor cell differentiation while guiding the formation, structure, and distribution of the engineered bone tissue. This could help to mimic the anatomical complexity of the bone tissue structure and to adapt to each bone defect needs. Impact statement Aging of the human population leads to an increasing need for medical implants with high success rate. We provide evidence that cell activity and the amount and structure of bone-like tissue formation is dependent on the scaffold pore geometry and on the mechanical environment. Fabrication of complex scaffolds comprising concave and planar pore geometries might represent a promising direction toward the tunability and mimicry the structural complexity of the bone tissue. Moreover, the use of fabrication methods that allow a systematic fabrication of reproducible and geometrically controlled structures would simplify scaffold design optimization.
Collapse
Affiliation(s)
- Marina Rubert
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jolanda Rita Vetsch
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Iina Lehtoviita
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Marianne Sommer
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Feihu Zhao
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, United Kingdom
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Sandra Hofmann
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven, The Netherlands
| |
Collapse
|
29
|
Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A, Del Fattore A. Strategies for Bone Regeneration: From Graft to Tissue Engineering. Int J Mol Sci 2021; 22:ijms22031128. [PMID: 33498786 PMCID: PMC7865467 DOI: 10.3390/ijms22031128] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is a regenerative organ characterized by self-renewal ability. Indeed, it is a very dynamic tissue subjected to continuous remodeling in order to preserve its structure and function. However, in clinical practice, impaired bone healing can be observed in patients and medical intervention is needed to regenerate the tissue via the use of natural bone grafts or synthetic bone grafts. The main elements required for tissue engineering include cells, growth factors and a scaffold material to support them. Three different materials (metals, ceramics, and polymers) can be used to create a scaffold suitable for bone regeneration. Several cell types have been investigated in combination with biomaterials. In this review, we describe the options available for bone regeneration, focusing on tissue engineering strategies based on the use of different biomaterials combined with cells and growth factors.
Collapse
Affiliation(s)
- Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
| | - Viviana De Martino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Francesco Marampon
- Department of Radiotherapy, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Luca Borro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.B.); (A.S.)
| | - Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.B.); (A.S.)
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
- Correspondence: ; Tel.: +39-066-859-3740
| |
Collapse
|
30
|
Luo L, Li S, Ji M, Ding Z, Yan Y, Yin J, Xiong Y. Preparation of a novel bovine cancellous bone/poly-amino acid composite with low immunogenicity, proper strength, and cytocompatibility in vitro. J Biomed Mater Res A 2020; 109:1490-1501. [PMID: 33258539 DOI: 10.1002/jbm.a.37139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/25/2020] [Accepted: 11/28/2020] [Indexed: 02/02/2023]
Abstract
In this work, the delipidized and deproteinized bovine cancellous bone powder/poly-amino acid (DDBP/PAA) composite was fabricated by extrusion-injection molding method for the first time. After about 70% clearance rate by the delipidization and deproteinization procedures, the residual antigens of galactosyl α-(1, 3)-galactosyl β-1,4-N-aeetylglueosaminyl (α-Gal) and major histocompatibility complex (MHC) II were basically eliminated by the extrusion-injection molding process, which may cause high titer of antibody and lead to hyperacute rejection or chronic immune toxicity. Meanwhile, the natural BMP II and apatite in bovine bone were kept in DDBP/PAA composite. After 26 weeks of immersion in simulated body fluid, the DDBP/PAA composite remained the intact appearance, 96.4% of weight, and 69.2% of compressive strength, and these showed sufficient degradation stability. The composite also exhibited excellent attachment and proliferation abilities of mouse bone marrow mesenchymal stem cells (mMSCs). The results herein suggested that the DDBP/PAA composite was expected to be a load-bearing transplant with some natural ingredients for hard tissue repair.
Collapse
Affiliation(s)
- Lin Luo
- College of Physics, Sichuan University, Chengdu, Sichuan, China
| | - Shuyang Li
- College of Physics, Sichuan University, Chengdu, Sichuan, China
| | - Mizhi Ji
- College of Physics, Sichuan University, Chengdu, Sichuan, China
| | - Zhengwen Ding
- College of Physics, Sichuan University, Chengdu, Sichuan, China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu, Sichuan, China
| | - Jie Yin
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - Yi Xiong
- College of Physics, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Chung JJ, Im H, Kim SH, Park JW, Jung Y. Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:586406. [PMID: 33251199 PMCID: PMC7671964 DOI: 10.3389/fbioe.2020.586406] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) printing technology allows fabricating complex and precise structures by stacking materials layer by layer. The fabrication method has a strong potential in the regenerative medicine field to produce customizable and defect-fillable scaffolds for tissue regeneration. Plus, biocompatible materials, bioactive molecules, and cells can be printed together or separately to enhance scaffolds, which can save patients who suffer from shortage of transplantable organs. There are various 3D printing techniques that depend on the types of materials, or inks, used. Here, different types of organs (bone, cartilage, heart valve, liver, and skin) that are aided by 3D printed scaffolds and printing methods that are applied in the biomedical fields are reviewed.
Collapse
Affiliation(s)
- Justin J. Chung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, South Korea
| | - Heejung Im
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, South Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, South Korea
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, South Korea
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea
| |
Collapse
|
32
|
Pires LA, de Meira CR, Tokuhara CK, de Oliveira FA, Dainezi VB, Zardin Graeff MS, Fortulan CA, de Oliveira RC, Puppin-Rontani RM, Borges AFS. Wettability and pre-osteoblastic behavior evaluations of a dense bovine hydroxyapatite ceramics. J Oral Sci 2020; 62:259-264. [PMID: 32581175 DOI: 10.2334/josnusd.19-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In this study, the wettability, cell viability, and roughness of an experimental dense bovine hydroxyapatite [Ca10(PO4)6(OH)2] ceramic block were evaluated so that, in the future, it could be used as a base material for dental implants. The results to commercial zirconia and a commercially pure titanium (Ti) alloy were compared. The surface roughness and contact angles were measured. An in vitro evaluation was conducted by means of tests in which pre-osteoblastic MC3T3-E1 cells were placed in indirect and direct contact with these materials. For cell viability, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and crystal violet test were conducted. A qualitative analysis was conducted using variable pressure scanning electron microscopy (SEM). No statistically significant differences were observed in wettability and roughness tests among the groups. In both the MTT assay and crystal violet test, all groups demonstrated satisfactory results without cytotoxicity. SEM showed cell adhesion and cell proliferation results on the material surfaces after 24 h and 48 h. In conclusion, this dense Ca10 (PO4)6(OH)2 ceramic can be considered as a potential biocompatible material.
Collapse
Affiliation(s)
- Luara A Pires
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo
| | - Camila R de Meira
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo
| | - Cintia K Tokuhara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo
| | - Flávia A de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo
| | - Vanessa B Dainezi
- Department of Pediatric Dentistry, Faculty of Dentistry of Piracicaba, State University of Campinas
| | | | - Carlos A Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo
| | - Rodrigo C de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo
| | - Regina M Puppin-Rontani
- Department of Pediatric Dentistry, Faculty of Dentistry of Piracicaba, State University of Campinas
| | - Ana Flávia S Borges
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo
| |
Collapse
|
33
|
Behere I, Pardawala Z, Vaidya A, Kale V, Ingavle G. Osteogenic differentiation of an osteoblast precursor cell line using composite PCL-gelatin-nHAp electrospun nanofiber mesh. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1767619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Isha Behere
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Zain Pardawala
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
34
|
Meng D, Li W, Ura K, Takagi Y. Effects of phosphate ion concentration on in-vitro fibrillogenesis of sturgeon type I collagen. Int J Biol Macromol 2020; 148:182-191. [PMID: 31953179 DOI: 10.1016/j.ijbiomac.2020.01.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023]
Abstract
Nonmammalian collagens have attracted significant attention owing to their potential for use as a source of cell scaffolds for tissue engineering. Since the morphology of collagen fibrils controls cell proliferation and differentiation, its regulation is essential for fabricating scaffolds with desirable characteristics. In this study, we evaluated the effects of the phosphate ion (Pi) concentration on the characteristics of fibrils formed from swim bladder type I collagen (SBC) and skin type I collagen (SC) from the Bester sturgeon. An increase in the Pi concentration decreased the fibril formation rate, promoted the formation of thick fibrils, and increased the thermal stability of the fibrils for both SBC and SC. However, the SBC and SC fibrils exhibited different fibril formation rates, degrees of fibrillogenesis, morphologies, and denaturation temperatures for the same reaction conditions. Finally, by regulating the Pi concentration, various types of SBC and SC fibrils could be coated on cell culture wells, and fibroblasts could be cultured on them. The results showed that thin fibrils enhance fibroblast extension and proliferation, whereas thick fibrils restrain fibroblast extension but orient them in the same direction. The results of this study suggest that SBC fibrils, which exhibit diverse morphologies, are suitable for use as a novel scaffold material, whose characteristics can be tailored readily by varying the Pi concentration.
Collapse
Affiliation(s)
- Dawei Meng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China; Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Wen Li
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
35
|
Kim D, Cho HH, Thangavelu M, Song C, Kim HS, Choi MJ, Song JE, Khang G. Osteochondral and bone tissue engineering scaffold prepared from Gallus var domesticus derived demineralized bone powder combined with gellan gum for medical application. Int J Biol Macromol 2020; 149:381-394. [PMID: 31978480 DOI: 10.1016/j.ijbiomac.2020.01.191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/11/2019] [Accepted: 01/20/2020] [Indexed: 01/22/2023]
Abstract
Osteochondral (OC) lesions can occur in the knee and ankle. Such lesions induce a fracture in the cartilage protecting the bone joints. Cartilage tissue shows limited self-regeneration ability, hence the tissue is avascular and lack of vascular innervation, while the bone is a unique organ with the capacity to self-repair of small defects. In this present study, we have prepared a scaffold using demineralized bone powder (DBP) extracted from Gallus gallus var domesticus (GD), and Gellan gum (GG) for OC tissue regeneration. They were characterized for their chemical, physical, mechanical and biological properties using different available techniques, in vitro bioactivity was performed in simulated body fluid for 14 days confirming the formation of bone-like apatite. The in vitro biocompatibility was analyzed using chondrocyte cells and osteogenic and chondrogenic marker gene expression using RT-PCR, in vivo experiments performed by implanting scaffold in rabbit and characterized by histology and immunofluorescent stainings. The obtained results indicated that the prepared pores scaffold was biocompatible, and promote OC regeneration and integration of newly formed tissues with the host tissues in a rabbit. The prepared 1% DBP/GG scaffold can be used as a potential and promising alternate material for OC regeneration.
Collapse
Affiliation(s)
- David Kim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Hun Hwi Cho
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Muthukumar Thangavelu
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Cheolui Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Han Sol Kim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Min Joung Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea.
| |
Collapse
|
36
|
Mesenchymal stem cell-based bone tissue engineering for veterinary practice. Heliyon 2019; 5:e02808. [PMID: 31844733 PMCID: PMC6895744 DOI: 10.1016/j.heliyon.2019.e02808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Bone tissue engineering has been widely studied and proposed as a promising platform for correcting the bone defects. The applications of mesenchymal stem cell (MSC)-based bone tissue engineering have been investigated in various in vitro and in vivo models. In this regard, the promising animal bone defect models have been employed for illustrating the bone regenerative capacity of MSC-based bone tissue engineering. However, most studies aimed for clinical applications in human. These evidences suggest a knowledge gap to fulfill the accomplishment for veterinary implementation. In this review, the fundamental concept, knowledge, and technology of MSC-based bone tissue engineering focusing on veterinary applications are summarized. In addition, the potential canine MSCs resources for veterinary bone tissue engineering are reviewed, including canine bone marrow-derived MSCs, canine adipose-derived MSCs, and canine dental tissue-derived MSCs. This review will provide a basic and current information for studies aiming for the utilization of MSC-based bone tissue engineering in veterinary practice.
Collapse
|
37
|
Norahan MH, Amroon M, Ghahremanzadeh R, Rabiee N, Baheiraei N. Reduced graphene oxide: osteogenic potential for bone tissue engineering. IET Nanobiotechnol 2019; 13:720-725. [PMID: 31573541 PMCID: PMC8676151 DOI: 10.1049/iet-nbt.2019.0125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 09/28/2023] Open
Abstract
Collagen (Col) type I, as the major component of the bone extracellular matrix has been broadly studied for bone tissue engineering. However,inferior mechanical properties limit its usage for load bearing applications. In this research, freeze dried Col scaffolds are coated with graphene oxide (GO) through a covalent bond of the amine Col with the graphene carboxyl groups. The prepared scaffolds were then reduced using a chemical agent. Scanning electron microscopy exhibited a porous structure for the synthesized scaffolds with an approximate pore size of 100-220 ± 12 µm, which is in the suitable range for bone tissue engineering application. Reducing the GO coating improved the compressive modulus of the Col from 250 to 970 kPa. Apatite formation was also indicated by immersing the scaffolds in simulated body fluid after five days. The cytocompatibility of the scaffolds, using human bone marrow-derived mesenchymal stem cells, was confirmed with MTT analysis. Alkaline phosphatase assay revealed that reducing the Col-GO scaffolds can effectively activate the differentiation of hBM-MSCs into osteoblasts after 14 days, even without the addition of an osteogenic differentiation medium. The results of this study highlight that GO and its reduced form have considerable potential as bone substitutes for orthopaedic and dental applications.
Collapse
Affiliation(s)
| | - Masoud Amroon
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna research institute, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
38
|
Ahn J, Lim J, Jusoh N, Lee J, Park TE, Kim Y, Kim J, Jeon NL. 3D Microfluidic Bone Tumor Microenvironment Comprised of Hydroxyapatite/Fibrin Composite. Front Bioeng Biotechnol 2019; 7:168. [PMID: 31380359 PMCID: PMC6653063 DOI: 10.3389/fbioe.2019.00168] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.
Collapse
Affiliation(s)
- Jungho Ahn
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jungeun Lim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Norhana Jusoh
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Jungseub Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Tae-Eun Park
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea.,Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul, South Korea.,Seoul National University Institute of Advanced Machines and Design, Seoul, South Korea.,Institute of Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
39
|
Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol 2019; 7:166. [PMID: 31355194 PMCID: PMC6639767 DOI: 10.3389/fbioe.2019.00166] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) account for the 31% of total death per year, making them the first cause of death in the world. Atherosclerosis is at the root of the most life-threatening CVDs. Vascular bypass/replacement surgery is the primary therapy for patients with atherosclerosis. The use of polymeric grafts for this application is still burdened by high-rate failure, mostly caused by thrombosis and neointima hyperplasia at the implantation site. As a solution for these problems, the fast re-establishment of a functional endothelial cell (EC) layer has been proposed, representing a strategy of crucial importance to reduce these adverse outcomes. Implant modifications using molecules and growth factors with the aim of speeding up the re-endothelialization process has been proposed over the last years. Collagen, by virtue of several favorable properties, has been widely studied for its application in vascular graft enrichment, mainly as a coating for vascular graft luminal surface and as a drug delivery system for the release of pro-endothelialization factors. Collagen coatings provide receptor-ligand binding sites for ECs on the graft surface and, at the same time, act as biological sealants, effectively reducing graft porosity. The development of collagen-based drug delivery systems, in which small-molecule and protein-based drugs are immobilized within a collagen scaffold in order to control their release for biomedical applications, has been widely explored. These systems help in protecting the biological activity of the loaded molecules while slowing their diffusion from collagen scaffolds, providing optimal effects on the targeted vascular cells. Moreover, collagen-based vascular tissue engineering substitutes, despite not showing yet optimal mechanical properties for their use in the therapy, have shown a high potential as physiologically relevant models for the study of cardiovascular therapeutic drugs and diseases. In this review, the current state of the art about the use of collagen-based strategies, mainly as a coating material for the functionalization of vascular graft luminal surface, as a drug delivery system for the release of pro-endothelialization factors, and as physiologically relevant in vitro vascular models, and the future trend in this field of research will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Francesca Boccafoschi
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| |
Collapse
|
40
|
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res 2019; 18:185-201. [PMID: 31032119 PMCID: PMC6479020 DOI: 10.1016/j.jare.2019.03.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 01/29/2023] Open
Abstract
Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Srinivasan B, Kolanthai E, Eluppai Asthagiri Kumaraswamy N, Jayapalan RR, Vavilapalli DS, Catalani LH, Ningombam GS, Khundrakpam NS, Singh NR, Kalkura SN. Thermally Modified Iron-Inserted Calcium Phosphate for Magnetic Hyperthermia in an Acceptable Alternating Magnetic Field. J Phys Chem B 2019; 123:5506-5513. [PMID: 31244102 DOI: 10.1021/acs.jpcb.9b03015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic hyperthermia treatment using calcium phosphate nanoparticles is an evolutionary choice because of its excellent biocompatibility. In the present work, Fe3+ is incorporated into HAp nanoparticles by thermal treatment at various temperatures. Induction heating was examined within the threshold H f value of 4.58 × 106 kA m-1 s-1 (H is the strength of alternating magnetic field and f is the operating frequency) and sample concentration of 10 mg/mL. The temperature-dependent structural modifications are well correlated with the morphological, surface charge, and magnetic properties. Surface charge changes from +10 mV to -11 mV upon sintering because of the diffusion of iron in the HAp lattice. The saturation magnetization has been achieved by sintering the nanoparticles at 400 and 600 °C, which has led to the specific absorption rate of 12.2 and 37.2 W/g, respectively. Achievement of the hyperthermia temperature (42 °C) within 4 min is significant when compared with the existing magnetic calcium phosphate nanoparticles. The systematic investigation reveals that the HAp nanoparticles partially stabilized with FeOOH and biocompatible α-Fe2O3 exhibit excellent induction heating. In vitro tests confirmed the samples are highly hemocompatible. The importance of the present work lies in HAp nanoparticles exhibiting induction heating without compromising the factors such as H f value, low sample concentration, and reduced duration of applied field.
Collapse
Affiliation(s)
- Baskar Srinivasan
- Crystal Growth Centre , Anna University , Chennai , Tamil Nadu 600 025 , India
| | - Elayaraja Kolanthai
- Departamento de Química Fundamental, Instituto de Química , University of São Paulo , Av. Prof. Lineu Prestes, 784 , São Paulo 05508-000 , Brazil
| | | | - Ramana Ramya Jayapalan
- National Centre for Nanosciences and Nanotechnology , University of Madras , Chennai , Tamil Nadu 600 025 , India
| | | | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química , University of São Paulo , Av. Prof. Lineu Prestes, 784 , São Paulo 05508-000 , Brazil
| | | | | | | | | |
Collapse
|
42
|
Lu Y, Li M, Long Z, Di Yang, Guo S, Li J, Liu D, Gao P, Chen G, Lu X, Lu J, Wang Z. Collagen/
β
-TCP composite as a bone-graft substitute for posterior spinal fusion in rabbit model: a comparison study. Biomed Mater 2019; 14:045009. [DOI: 10.1088/1748-605x/ab1caf] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Acceleration of Bone Regeneration in Critical-Size Defect Using BMP-9-Loaded nHA/ColI/MWCNTs Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7343957. [PMID: 31111065 PMCID: PMC6487171 DOI: 10.1155/2019/7343957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.
Collapse
|
44
|
Nano-radiogold-decorated composite bioparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:768-775. [DOI: 10.1016/j.msec.2018.12.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/02/2018] [Accepted: 12/25/2018] [Indexed: 01/12/2023]
|
45
|
Borges DC, Rogério de Faria P, Júnior HM, Pereira LB. Conservative Treatment of a Periapical Cementoblastoma: A Case Report. J Oral Maxillofac Surg 2019; 77:272.e1-272.e7. [DOI: 10.1016/j.joms.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
46
|
Ahn J, Lim J, Jusoh N, Lee J, Park TE, Kim Y, Kim J, Jeon NL. 3D Microfluidic Bone Tumor Microenvironment Comprised of Hydroxyapatite/Fibrin Composite. Front Bioeng Biotechnol 2019. [PMID: 31380359 DOI: 10.3389/fbioe.2019.00168/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.
Collapse
Affiliation(s)
- Jungho Ahn
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jungeun Lim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Norhana Jusoh
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Jungseub Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Tae-Eun Park
- Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, South Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
- Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul, South Korea
- Seoul National University Institute of Advanced Machines and Design, Seoul, South Korea
- Institute of Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
47
|
Mishra S, Sharma S, Javed MN, Pottoo FH, Barkat MA, Harshita, Alam MS, Amir M, Sarafroz M. Bioinspired Nanocomposites: Applications in Disease Diagnosis and Treatment. Pharm Nanotechnol 2019; 7:206-219. [PMID: 31030662 DOI: 10.2174/2211738507666190425121509] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2018] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Recent advancement in the field of synthesis and application of nanomaterials provided holistic approach for both diagnosis as well as treatment of diseases. Briefly, three-dimensional scaffold and geometry of bioinspired nanocarriers modulate bulk properties of loaded drug at molecular/ atomic structures in a way to conjointly modulate pathological as well as altered metabolic states of diseases, in very predictable and desired manners at a specific site of the target. While, from the pharmacotechnical point of views, the bioinspired nanotechnology processes carriers either favor to enhance the solubility of poorly aqueous soluble drugs or enable well-controlled sustained release profiles, to reduce the frequency of drug regimen. Consequently, from biopharmaceutical point of view, these composite materials, not only minimize first pass metabolism but also significantly enhance in-vivo biodistribution, permeability, bio-adhesion and diffusivity. In lieu of the above arguments, the nano-processed materials exhibit an important role for diagnosis and treatments. In the diagnostic center, recent emergences and advancement in the tools and techniques to diagnose the unrevealed diseases with the help of instruments such as, computed tomography, magnetic resonance imaging etc; heavily depend upon nanotechnology-based materials. In this paper, a brief introduction and recent application of different types of nanomaterials in the field of tissue engineering, cancer treatment, ocular therapy, orthopedics, and wound healing as well as drug delivery system are thoroughly discussed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacy, Raj Kumar Goel Institute of Technology, Abdul Kalam Technical University, Lucknow, India
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research SPER (Formerly, Faculty of Pharmacy), Jamia Hamdard, New- Delhi, India
- School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Harshita
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Amir
- Department of Natural Product & Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Md Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
48
|
Griffanti G, Jiang W, Nazhat SN. Bioinspired mineralization of a functionalized injectable dense collagen hydrogel through silk sericin incorporation. Biomater Sci 2019; 7:1064-1077. [DOI: 10.1039/c8bm01060a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The incorporation of silk sericin into injectable dense collagen hydrogels represents a powerful approach to mimic the biomineralization process, together with the osteogenic stimulation of seeded mesenchymal stem cells, in vitro.
Collapse
Affiliation(s)
- Gabriele Griffanti
- Department of Mining and Materials Engineering
- McGill University
- Montréal
- Canada
| | - Wenge Jiang
- Department of Mining and Materials Engineering
- McGill University
- Montréal
- Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering
- McGill University
- Montréal
- Canada
| |
Collapse
|
49
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 585] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
50
|
Semyari H, Salehi M, Taleghani F, Ehterami A, Bastami F, Jalayer T, Semyari H, Hamed Nabavi M, Semyari H. Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering. J Biomater Appl 2018; 33:501-513. [DOI: 10.1177/0885328218805229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, hydroxyapatite nanoparticles containing 10% doxycycline, a structural isomer of tetracycline, was prepared by the co-precipitation method. It was added to collagen solution for the preparation of the scaffold with freeze-casting method in order to develop a composite scaffold with both antibacterial and osteoinductive properties for repairing bone defects. The scaffolds were evaluated regarding their morphology, porosity, degradation and cellular response. The scaffolds for further investigation were added in a rat calvaria defect model. The study showed that after eight weeks, the bone formation was relatively higher in the collagen/nano-hydroxyapatite/doxycycline group with completely filled defect when compared with other groups. Histopathological evaluation showed that the defect in the collagen/nano-hydroxyapatite/doxycycline group was fully replaced by the new bone and connective tissue. Our results provide evidence supporting the possible applicability of doxycycline-containing scaffolds for successful bone regeneration.
Collapse
Affiliation(s)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ferial Taleghani
- Department of Periodontology, Dental School, Shahed University, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Bastami
- Dental research center, research institute of dental Science, school of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Oral and maxillofacial surgery department, school of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hadis Semyari
- Dental student, faculty of dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|