1
|
Almutairi F, Lee JK, Rada B. Regulator of G protein signaling 10: Structure, expression and functions in cellular physiology and diseases. Cell Signal 2020; 75:109765. [PMID: 32882407 PMCID: PMC7579743 DOI: 10.1016/j.cellsig.2020.109765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023]
Abstract
Regulator of G protein signaling 10 (RGS10) belongs to the superfamily of RGS proteins, defined by the presence of a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. RGS proteins act as GTPase activating proteins (GAPs), which accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. RGS10 is the smallest protein of the D/R12 subfamily and selectively interacts with Gαi proteins. It is widely expressed in many cells and tissues, with the highest expression found in the brain and immune cells. RGS10 expression is transcriptionally regulated via epigenetic mechanisms. Although RGS10 lacks multiple of the defined regulatory domains found in other RGS proteins, RGS10 contains post-translational modification sites regulating its expression, localization, and function. Additionally, RGS10 is a critical protein in the regulation of physiological processes in multiple cells, where dysregulation of its expression has been implicated in various diseases including Parkinson's disease, multiple sclerosis, osteopetrosis, chemoresistant ovarian cancer and cardiac hypertrophy. This review summarizes RGS10 features and its regulatory mechanisms, and discusses the known functions of RGS10 in cellular physiology and pathogenesis of several diseases.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
de Araujo RMS, Oba Y, Kuroda S, Tanaka E, Moriyama K. RhoE regulates actin cytoskeleton organization in human periodontal ligament cells under mechanical stress. Arch Oral Biol 2013; 59:187-92. [PMID: 24370190 DOI: 10.1016/j.archoralbio.2013.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVES RhoE and regulator of G-proteins signalling (RGS) 2 were identified as the up-regulated genes in human periodontal ligament (PDL) cells under compression. RhoE belongs to the Rho GTPase family, and RGS2, a novel family of GTPase-activating proteins, turns off the G-protein signalling. Rho family proteins have recently been known to regulate actin cytoskeleton dynamics in various cell types. In this study, we investigated the involvement of RhoE and RGS2 in the regulation of actin filament organization in the PDL cells under mechanical stress. METHODS Human PDL cells were cultured and subjected to a static compressive force (3.0g/cm(2)) for 48h. To observe changes in the actin cytoskeleton and the expression of RhoE and RGS2 in response to mechanical stress, immunofluorescence analysis was performed. To examine the role of RhoE and RGS2 in actin filament organization, cells were transfected with antisense S-oligonucleotides (ODNs) to RhoE and RGS2. RESULTS Compressive force caused a loss and disassembly of actin stress fibres leading to cell spreading. Immunocytochemical study revealed that RhoE and RGS2 expressions were induced by mechanical stress and localized in the perinuclear and in the cell membrane, respectively. The impaired formation of stress fibres caused by compressive forces was recovered by treatment with antisense S-ODN to RhoE to the control levels. However, addition of antisense S-ODN to RGS2 did not affect the stress fibre formation. CONCLUSIONS These results indicate that the loss and disassembly of stress fibres due to mechanical stress are mediating RhoE signalling, without the exertion of RGS2.
Collapse
Affiliation(s)
- Rui Mauricio Santos de Araujo
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Yasuo Oba
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Shingo Kuroda
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan.
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
3
|
Ota A, Sawai M, Sakurai H. Stress-induced transcription of regulator of G protein signaling 2 (RGS2) by heat shock transcription factor HSF1. Biochimie 2013; 95:1432-6. [PMID: 23587726 DOI: 10.1016/j.biochi.2013.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
Abstract
Expression of the RGS2 gene modulates RGS2 activity toward G protein-coupled signaling in diverse cellular processes. In this study, RGS2 transcription was induced in HeLa and rat aorta smooth muscle cells by exposure to febrile temperatures or proteotoxic stress. The promoter region of RGS2 contained a binding sequence of HSF1, which is an activator of the heat shock protein gene, and was inducibly bound by stress-activated HSF1. A single nucleotide change identified in the RGS2 promoter of hypertensive patients abolished HSF1-regulated expression of RGS2, suggesting that activated HSF1 is involved in blood pressure regulation via modulation of RGS2 expression.
Collapse
Affiliation(s)
- Azumi Ota
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa 920-0942, Ishikawa, Japan
| | | | | |
Collapse
|
4
|
Matsuo M, Coon SL, Klein DC. RGS2 is a feedback inhibitor of melatonin production in the pineal gland. FEBS Lett 2013; 587:1392-8. [PMID: 23523917 DOI: 10.1016/j.febslet.2013.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
The 24-h rhythmic production of melatonin by the pineal gland is essential for coordinating circadian physiology. Melatonin production increases at night in response to the release of norepinephrine from sympathetic nerve processes which innervate the pineal gland. This signal is transduced through G-protein-coupled adrenergic receptors. Here, we found that the abundance of regulator of G-protein signaling 2 (RGS2) increases at night, that expression is increased by norepinephrine and that this protein has a negative feedback effect on melatonin production. These data are consistent with the conclusion that RGS2 functions on a daily basis to negatively modulate melatonin production.
Collapse
Affiliation(s)
- Masahiro Matsuo
- The Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
5
|
Sethakorn N, Yau DM, Dulin NO. Non-canonical functions of RGS proteins. Cell Signal 2010; 22:1274-81. [PMID: 20363320 PMCID: PMC2893250 DOI: 10.1016/j.cellsig.2010.03.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/25/2010] [Indexed: 11/23/2022]
Abstract
Regulators of G protein signalling (RGS) proteins are united into a family by the presence of the RGS domain which serves as a GTPase-activating protein (GAP) for various Galpha subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate signalling of numerous G protein-coupled receptors. In addition to the RGS domains, RGS proteins contain diverse regions of various lengths that regulate intracellular localization, GAP activity or receptor selectivity of RGS proteins, often through interaction with other partners. However, it is becoming increasingly appreciated that through these non-RGS regions, RGS proteins can serve non-canonical functions distinct from inactivation of Galpha subunits. This review summarizes the data implicating RGS proteins in the (i) regulation of G protein signalling by non-canonical mechanisms, (ii) regulation of non-G protein signalling, (iii) signal transduction from receptors not coupled to G proteins, (iv) activation of mitogen-activated protein kinases, and (v) non-canonical functions in the nucleus.
Collapse
Affiliation(s)
- Nan Sethakorn
- Department of Medicine, the University of Chicago, 5841 S. Maryland Ave, MC 6076, Chicago, IL 60637, USA
| | - Douglas M. Yau
- Department of Medicine, the University of Chicago, 5841 S. Maryland Ave, MC 6076, Chicago, IL 60637, USA
| | - Nickolai O. Dulin
- Department of Medicine, the University of Chicago, 5841 S. Maryland Ave, MC 6076, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Endale M, Kim SD, Lee WM, Kim S, Suk K, Cho JY, Park HJ, Wagley Y, Kim S, Oh JW, Rhee MH. Ischemia induces regulator of G protein signaling 2 (RGS2) protein upregulation and enhances apoptosis in astrocytes. Am J Physiol Cell Physiol 2009; 298:C611-23. [PMID: 20032508 DOI: 10.1152/ajpcell.00517.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulator of G protein signaling (RGS) family members, such as RGS2, interact with Galpha subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and attenuating the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. They are also reported to regulate G protein-effector interactions and form multiprotein signaling complexes. Ischemic stress-induced changes in RGS2 expression have been described in astrocytes, and these changes are associated with intracellular signaling cascades, suggesting that RGS2 upregulation may be an important mechanism by which astrocytes may regulate RGS2 function in response to physiological stress. However, information on the functional roles of stress-induced modulation of RGS2 protein expression in astrocyte function is limited. We report the role of ischemic stress in RGS2 protein expression in rat C6 astrocytoma cells and primary mouse astrocytes. A marked increase in RGS2 occurred after ischemic stress induced by chemicals (sodium azide and 2-deoxyglucose) or oxygen-glucose deprivation (OGD, real ischemia). RGS2 mRNA expression was markedly enhanced by 1 h of exposure to chemical ischemia or 6 h of OGD followed by 2 or 6 h of recovery, respectively. This enhanced expression in primary astrocytes and C6 cells was restored to baseline levels after 12 h of recovery from chemically induced ischemic stress or 4-6 h of recovery from OGD. RGS2 protein was also significantly expressed at 12-24 h of recovery from ischemic insult. Ischemia-induced RGS2 upregulation was associated with enhanced apoptosis. It significantly increased annexin V-positive cells, cleaved caspase-3, and enhanced DNA ladder formation and cell cycle arrest. However, a small interfering RNA (siRNA)-mediated RGS2 knockdown reversed the apoptotic cell death associated with ischemia-induced RGS2 upregulation. Upregulated RGS2 was significantly inhibited by SB-203580, a p38 MAPK inhibitor. Rottlerin, a potent inhibitor of PKCdelta, completely abrogated the increased RGS2 expression. We also examine whether ischemia-induced RGS2-mediated apoptosis is affected by siRNA-targeted endogenous PKCdelta downregulation or its phosphorylation. Although RGS2 upregulation was not affected, siRNA transfection significantly suppressed endogenous PKCdelta mRNA and protein expressions. Ischemia-induced PKCdelta phosphorylation and caspase-3 cleavage were dose dependently inhibited by PKCdelta knockdown, and this endogenous PKCdelta suppression reversed ischemia-induced annexin V-positive cells. This study suggests that ischemic stress increases RGS2 expression and that this condition contributes to enhanced apoptosis in C6 cells and primary astrocytes. The signaling it follows may involve PKCdelta and p38 MAPK pathways.
Collapse
Affiliation(s)
- Mehari Endale
- Laboratory of Physiology and Signaling, College of Veterinary Medicine, Kyungpook National Univ., Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Huang J, Fisher RA. Chapter 5 Nuclear Trafficking of Regulator of G Protein Signaling Proteins and Their Roles in the Nucleus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:115-56. [DOI: 10.1016/s1877-1173(09)86005-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Escamilla-Hernandez R, Little-Ihrig L, Zeleznik AJ. Inhibition of rat granulosa cell differentiation by overexpression of Galphaq. Endocrine 2008; 33:21-31. [PMID: 18401763 DOI: 10.1007/s12020-008-9064-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 03/17/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
Activation of FSH and LH receptors in undifferentiated granulosa cells (i.e., no prior exposure to FSH) results in comparable induction of progesterone production, but activation of the LH receptor is less effective than FSH in inducing aromatase and the native LH receptor. Because the LH receptor can also activate the Galphaq signaling pathway, we investigated whether activation of this pathway could be responsible for these differences. Overexpression of Galphaq inhibited FSH induction of both the estradiol and progesterone biosynthetic pathways as well as mRNA levels for cholesterol side-chain cleavage enzyme (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and P450aromatase (aromatase). This suppression was associated with a reduction (P < 0.05) in FSH-stimulated cAMP production. Lower cAMP levels were not due to reduced FSH receptor (FSHr) mRNA levels or reduced levels of Galphas. Phosphodiesterase (PDE) activity and regulator of G-protein signaling 2 (RGS2) mRNA levels were significantly (P < 0.05) increased by Galphaq, both of which could account for diminished cAMP levels. We conclude that Galphaq signaling pathway inhibits both estradiol and progesterone production comparably and thus activation of this pathway does not seem to account for differences between FSH and LH in the regulation of aromatase and the LH receptor.
Collapse
Affiliation(s)
- Rosalba Escamilla-Hernandez
- Department of Cell Biology and Physiology, Magee-Womens Research Institute B309, University of Pittsburgh, 204 Craft Ave, Pittsburgh, PA, 15213, USA
| | | | | |
Collapse
|
9
|
Santos de Araujo RM, Oba Y, Moriyama K. Role of regulator of G-protein signaling 2 (RGS2) in periodontal ligament cells under mechanical stress. Cell Biochem Funct 2008; 25:753-8. [PMID: 17294519 DOI: 10.1002/cbf.1400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mechanical stress is thought to regulate the expression of genes in the periodontal ligament (PDL) cells. Using a microarray approach, we recently identified a regulator of G-protein signaling 2 (RGS2) as an up-regulated gene in the PDL cells under compressive force. The RGS protein family is known to turn off G-protein signaling. G-protein signaling involves the production of cAMP, which is thought to be one of the biological mediators in response to mechanical stress. Here, we investigated the role of RGS2 in the PDL cells under mechanical stress. PDL cells derived from the ligament tissues of human premolar teeth were cultured in collagen gels and subjected to static compressive force. Compressive force application time-dependently enhanced RGS2 expression and intracellular cAMP levels. To examine the interrelationship between RGS2 and cAMP, the PDL cells were treated with 2',5'-dideoxyadenosine (DDA), an inhibitor of adenyl cyclase, or antisense S-oligonucleotide (S-ODN) to RGS2 under compressive force. DDA dose-dependently inhibited RGS2 stimulated by compressive force. Blockage of RGS2 by antisense S-ODN elevated the cAMP levels compared with controls. These results indicate that cAMP stimulates RGS2 expression, which in turn leads to a decrease in the cAMP production by inactivating the G-protein signaling in the mechanically stressed PDL cells.
Collapse
Affiliation(s)
- Rui M Santos de Araujo
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | | | | |
Collapse
|
10
|
Xie Z, Gong MC, Su W, Turk J, Guo Z. Group VIA phospholipase A2 (iPLA2beta) participates in angiotensin II-induced transcriptional up-regulation of regulator of g-protein signaling-2 in vascular smooth muscle cells. J Biol Chem 2007; 282:25278-89. [PMID: 17613534 PMCID: PMC2096773 DOI: 10.1074/jbc.m611206200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rgs2 (regulator of G-protein signaling-2)-deficient mice exhibit severe hypertension, and genetic variations of RGS2 occur in hypertensive patients. RGS2 mRNA up-regulation by angiotensin II (Ang II) in vascular smooth muscle cells (VSMC) is a potentially important negative feedback mechanism in blood pressure homeostasis, but how it occurs is unknown. Here we demonstrate that group VIA phospholipase A2 (iPLA2beta) plays a pivotal role in Ang II-induced RGS2 mRNA up-regulation in VSMC by three independent approaches, including pharmacologic inhibition with a bromoenol lactone suicide substrate, suppression of iPLA2beta expression with antisense oligonucleotides, and genetic deletion in iPLA2beta-null mice. Selective inhibition of iPLA2beta by each of these approaches abolishes Ang II-induced RGS2 mRNA up-regulation. Furthermore, using adenovirus-mediated gene transfer, we demonstrate that restoration of iPLA2beta-expression in iPLA2beta-null VSMC reconstitutes the ability of Ang II to up-regulate RGS2 mRNA expression. In contrast, Ang II-induced vasodilator-stimulated phosphoprotein phosphorylation and Ang II receptor expression are unaffected. Moreover, in wild-type but not iPLA2beta-null VSMC, Ang II stimulates iPLA2 enzymatic activity significantly. Both arachidonic acid and lysophosphatidylcholine, products of iPLA2beta action, induce RGS2 mRNA up-regulation. Inhibition of lipoxygenases, particularly 15-lipoxygenase, and cyclooxygenases, but not cytochrome P450-dependent epoxygenases inhibits Ang II- or AA-induced RGS2 mRNA expression. Moreover, RGS2 protein expression is also up-regulated by Ang II, and this is attenuated by bromoenol lactone. Disruption of the Ang II/iPLA2beta/RGS2 feedback pathway in iPLA2beta-null cells potentiates Ang II-induced vasodilator-stimulated phosphoprotein and Akt phosphorylation in a time-dependent manner. Collectively, our results demonstrate that iPLA2beta participates in Ang II-induced transcriptional up-regulation of RGS2 in VSMC.
Collapse
MESH Headings
- Adenoviridae
- Angiotensin II/pharmacology
- Animals
- Arachidonic Acid/pharmacology
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cell Adhesion Molecules/metabolism
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Gene Deletion
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Group VI Phospholipases A2
- Homeostasis/drug effects
- Homeostasis/physiology
- Lysophosphatidylcholines/pharmacology
- Mice
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/enzymology
- Naphthalenes/pharmacology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Oxidoreductases/antagonists & inhibitors
- Oxidoreductases/metabolism
- Phospholipases A/antagonists & inhibitors
- Phospholipases A/deficiency
- Phospholipases A/metabolism
- Phospholipases A2
- Phosphoproteins/metabolism
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrones/pharmacology
- RGS Proteins/antagonists & inhibitors
- RGS Proteins/deficiency
- RGS Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Time Factors
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transduction, Genetic
- Up-Regulation/drug effects
- Up-Regulation/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Zhongwen Xie
- Department of Physiology and the Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
11
|
Romero DG, Plonczynski MW, Gomez-Sanchez EP, Yanes LL, Gomez-Sanchez CE. RGS2 is regulated by angiotensin II and functions as a negative feedback of aldosterone production in H295R human adrenocortical cells. Endocrinology 2006; 147:3889-97. [PMID: 16627589 DOI: 10.1210/en.2005-1532] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulator of G protein signaling (RGS) proteins interact with Galpha-subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. Angiotensin (Ang) II interacts with its G protein-coupled receptor in zona glomerulosa adrenal cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. We studied Ang II-mediated regulation of RGS2, the role of RGS2 in steroidogenesis, and the intracellular signal events involved in H295R human adrenal cells. We report that both H295R cells and human adrenal gland express RGS2 mRNA. In H295R cells, Ang II caused a rapid and transient increase in RGS2 mRNA levels quantified by real-time RT-PCR. Ang II effects were mimicked by calcium ionophore A23187 and blocked by calcium channel blocker nifedipine. Ang II effects also were blocked by calmodulin antagonists (W-7 and calmidazolium) and calcium/calmodulin-dependent kinase antagonist KN-93. RGS2 overexpression by retroviral infection in H295R cells caused a decrease in Ang II-stimulated aldosterone secretion but did not modify cortisol secretion. In reporter assays, RGS2 decreased Ang II-mediated aldosterone synthase up-regulation. These results suggest that Ang II up-regulates RGS2 mRNA by the calcium/calmodulin-dependent kinase pathway in H295R cells. RGS2 overexpression specifically decreases aldosterone secretion through a decrease in Ang II-mediated aldosterone synthase-induced expression. In conclusion, RGS2 expression is induced by Ang II to terminate the intracellular signaling cascade generated by Ang II. RGS2 alterations in expression levels or functionality could be implicated in deregulations of Ang II signaling and abnormal aldosterone secretion by the adrenal gland.
Collapse
Affiliation(s)
- Damian G Romero
- Division of Endocrinology, Montgomery Veterans Administration Medical Center, USA.
| | | | | | | | | |
Collapse
|
12
|
Shelat PB, Coulibaly AP, Wang Q, Sun AY, Sun GY, Simonyi A. Ischemia-induced increase in RGS7 mRNA expression in gerbil hippocampus. Neurosci Lett 2006; 403:157-61. [PMID: 16698180 DOI: 10.1016/j.neulet.2006.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/11/2006] [Accepted: 04/22/2006] [Indexed: 11/29/2022]
Abstract
The present study investigated the changes in the expression of regulators of G-protein-coupled signaling proteins RGS2, 7 and 8 in gerbil hippocampus to better understand alterations of G-protein-coupled receptors signaling after cerebral ischemia. In situ hybridization revealed a transient, robust early increase in RGS7 mRNA levels in the dentate gyrus after ischemia. RGS8 mRNA expression started to increase at a later time point in the CA3 region but no changes were found for RGS2. Our results show a subtype-, time-, and subregion-specific regulation in mRNA expression of RGS proteins after cerebral ischemia in gerbil hippocampus.
Collapse
Affiliation(s)
- Phullara B Shelat
- Department of Biochemistry, M743 Medical Sciences Bldg, University of Missouri-Columbia, 65212, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Regulators of G-protein signalling (RGS) proteins are a large and diverse family initially identified as GTPase activating proteins (GAPs) of heterotrimeric G-protein Galpha-subunits. At least some can also influence Galpha activity through either effector antagonism or by acting as guanine nucleotide dissociation inhibitors (GDIs). As our understanding of RGS protein structure and function has developed, so has the realisation that they play roles beyond G-protein regulation. Such diversity of function is enabled by the variety of RGS protein structure and their ability to interact with other cellular molecules including phospholipids, receptors, effectors and scaffolds. The activity, sub-cellular distribution and expression levels of RGS proteins are dynamically regulated, providing a layer of complexity that has yet to be fully elucidated.
Collapse
Affiliation(s)
- Gary B Willars
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester LE1 9HN, UK.
| |
Collapse
|
14
|
Burchett SA. Psychostimulants, madness, memory... and RGS proteins? Neuromolecular Med 2005; 7:101-27. [PMID: 16052041 DOI: 10.1385/nmm:7:1-2:101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 01/29/2005] [Indexed: 01/25/2023]
Abstract
The ingestion of psychostimulant drugs by humans imparts a profound sense of alertness and well-being. However, repeated use of these drugs in some individuals will induce a physiological state of dependence, characterized by compulsive behavior directed toward the acquisition and ingestion of the drug, at the expense of customary social obligations. Drugs of abuse and many other types of experiences share the ability to alter the morphology and density of neuronal dendrites and spines. Dopaminergic modulation of corticostriatal synaptic plasticity is necessary for these morphological changes. Changes in the density of dendritic spines on striatal neurons may underlie the development of this pathological pattern of drug-seeking behavior. Identifying proteins that regulate dopaminergic signaling are of value. A family of proteins, the regulators of G protein signaling (RGS) proteins, which regulate signaling from G protein-coupled receptors, such as dopamine and glutamate, may be important in this regard. By regulating corticostriatal synaptic plasticity, RGS proteins can influence presynaptic activity, neurotransmitter release, and postsynaptic depolarization and thereby play a key role in the development of this plasticity. Pharmacological agents that modify RGS activity in humans could be efficacious in ameliorating the dependence on psychostimulant drugs.
Collapse
Affiliation(s)
- Scott A Burchett
- University of California at San Francisco, Department of Psychiatry, Langley-Porter Psychiatric Institute, Nina Ireland Laboratory of Developmental Neurobiology, CA, USA.
| |
Collapse
|
15
|
Abstract
Regulator of G-protein-signaling (RGS) proteins play a key role in the regulation of G-protein-coupled receptor (GPCR) signaling. The characteristic hallmark of RGS proteins is a conserved approximately 120-aa RGS region that confers on these proteins the ability to serve as GTPase-activating proteins (GAPs) for G(alpha) proteins. Most RGS proteins can serve as GAPs for multiple isoforms of G(alpha) and therefore have the potential to influence many cellular signaling pathways. However, RGS proteins can be highly regulated and can demonstrate extreme specificity for a particular signaling pathway. RGS proteins can be regulated by altering their GAP activity or subcellular localization; such regulation is achieved by phosphorylation, palmitoylation, and interaction with protein and lipid-binding partners. Many RGS proteins have GAP-independent functions that influence GPCR and non-GPCR-mediated signaling, such as effector regulation or action as an effector. Hence, RGS proteins should be considered multifunctional signaling regulators. GPCR-mediated signaling is critical for normal function in the cardiovascular system and is currently the primary target for the pharmacological treatment of disease. Alterations in RGS protein levels, in particular RGS2 and RGS4, produce cardiovascular phenotypes. Thus, because of the importance of GPCR-signaling pathways and the profound influence of RGS proteins on these pathways, RGS proteins are regulators of cardiovascular physiology and potentially novel drug targets as well.
Collapse
Affiliation(s)
- Evan L Riddle
- Department of Pharmacology, University of California San Diego, La Jolla, USA
| | | | | | | |
Collapse
|
16
|
Mao H, Zhao Q, Daigle M, Ghahremani MH, Chidiac P, Albert PR. RGS17/RGSZ2, a Novel Regulator of Gi/o, Gz, and Gq Signaling. J Biol Chem 2004; 279:26314-22. [PMID: 15096504 DOI: 10.1074/jbc.m401800200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.
Collapse
Affiliation(s)
- Helen Mao
- Department of Neuroscience, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Anger T, Zhang W, Mende U. Differential Contribution of GTPase Activation and Effector Antagonism to the Inhibitory Effect of RGS Proteins on Gq-mediated Signaling in Vivo. J Biol Chem 2004; 279:3906-15. [PMID: 14630933 DOI: 10.1074/jbc.m309496200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS proteins act as negative regulators of G protein signaling by serving as GTPase-activating proteins (GAP) for alpha subunits of heterotrimeric G proteins (Galpha), thereby accelerating G protein inactivation. RGS proteins can also block Galpha-mediated signal production by competing with downstream effectors for Galpha binding. Little is known about the relative contribution of GAP and effector antagonism to the inhibitory effect of RGS proteins on G protein-mediated signaling. By comparing the inhibitory effect of RGS2, RGS3, RGS5, and RGS16 on Galpha(q)-mediated phospholipase Cbeta (PLCbeta) activation under conditions where GTPase activation is possible versus nonexistent, we demonstrate that members of the R4 RGS subfamily differ significantly in their dependence on GTPase acceleration. COS-7 cells were transiently transfected with either muscarinic M3 receptors, which couple to endogenous Gq protein and mediate a stimulatory effect of carbachol on PLCbeta, or constitutively active Galphaq*, which is inert to GTP hydrolysis and activates PLCbeta independent of receptor activation. In M3-expressing cells, all of the RGS proteins significantly blunted the efficacy and potency of carbachol. In contrast, Galphaq* -induced PLCbeta activation was inhibited by RGS2 and RGS3 but not RGS5 and RGS16. The observed differential effects were not due to changes in M3, Galphaq/Galphaq*, PLCbeta, or RGS expression, as shown by receptor binding assays and Western blots. We conclude that closely related R4 RGS family members differ in their mechanism of action. RGS5 and RGS16 appear to depend on G protein inactivation, whereas GAP-independent mechanisms (such as effector antagonism) are sufficient to mediate the inhibitory effect of RGS2 and RGS3.
Collapse
Affiliation(s)
- Thomas Anger
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Geurts M, Maloteaux JM, Hermans E. Altered expression of regulators of G-protein signaling (RGS) mRNAs in the striatum of rats undergoing dopamine depletion. Biochem Pharmacol 2003; 66:1163-70. [PMID: 14505795 DOI: 10.1016/s0006-2952(03)00447-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quantitative in situ hybridization was used to investigate the effect of prolonged striatal dopamine or monoamine depletion on the mRNA density of regulators of G-protein signaling (RGS) 2-12 proteins. Two types of treatments were studied: a 6-hydroxydopamine-induced unilateral lesion of the nigrostriatal pathway and a 5-day reserpine treatment. The results clearly show a selective increase in the mRNA levels of RGS2, 5 and 8 and a decrease in RGS4 and 9 mRNA levels following nigrostriatal denervation. In this model, we observed no change in the mRNA levels of RGS10 and other RGS proteins that are weakly expressed in the striatum (RGS3, 6, 7, 11 and 12). On the other hand, the mRNA levels RGS2, 4, 5, 8, 9 and 10 were found to be significantly decreased after prolonged reserpine treatment. In contrast, the densities of these transcripts (in particular, RGS2, 4 and 10) tend to increase after an acute administration of reserpine, used as control. These results provide further evidence for the influence of dopamine and/or other monoamines in the regulation of RGS protein expression in the striatum. In connection with the previously documented acute regulation of RGS proteins after modulation of the dopaminergic transmission [Geurts et al., Neurosci Lett 2002;333:146-50], the present study demonstrates that alteration in their genetic expression can be long-lasting and this could reflect the adaptation processes that occur in certain pathological states, such as Parkinson's disease.
Collapse
Affiliation(s)
- Muriel Geurts
- Laboratoire de Pharmacologie Expérimentale (FARL), Université Catholique de Louvain, 54.10 Avenue Hippocrate 54, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
19
|
Salim S, Sinnarajah S, Kehrl JH, Dessauer CW. Identification of RGS2 and type V adenylyl cyclase interaction sites. J Biol Chem 2003; 278:15842-9. [PMID: 12604604 DOI: 10.1074/jbc.m210663200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The production of cAMP is controlled on many levels, notably at the level of cAMP synthesis by the enzyme adenylyl cyclase. We have recently identified a new regulator of adenylyl cyclase activity, RGS2, which decreases cAMP accumulation when overexpressed in HEK293 cells and inhibits the in vitro activity of types III, V, and VI adenylyl cyclase. In addition, RGS2 blocking antibodies lead to elevated cAMP levels in olfactory neurons. Here we examine the nature of the interaction between RGS2 and type V adenylyl cyclase. In HEK293 cells expressing type V adenylyl cyclase, RGS2 inhibited Galpha(s)-Q227L- or beta(2)-adrenergic receptor-stimulated cAMP accumulation. Deletion of the N-terminal 19 amino acids of RGS2 abolished its ability to inhibit cAMP accumulation and to bind adenylyl cyclase. Further mutational analysis indicated that neither the C terminus, RGS GAP activity, nor the RGS box domain is required for inhibition of adenylyl cyclase. Alanine scanning of the N-terminal amino acids of RGS2 identified three residues responsible for the inhibitory function of RGS2. Furthermore, we show that RGS2 interacts directly with the C(1) but not the C(2) domain of type V adenylyl cyclase and that the inhibition by RGS2 is independent of inhibition by Galpha(i). These results provide clear evidence for functional effects of RGS2 on adenylyl cyclase activity that adds a new dimension to an intricate signaling network.
Collapse
Affiliation(s)
- Samina Salim
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
20
|
Cho H, Harrison K, Schwartz O, Kehrl JH. The aorta and heart differentially express RGS (regulators of G-protein signalling) proteins that selectively regulate sphingosine 1-phosphate, angiotensin II and endothelin-1 signalling. Biochem J 2003; 371:973-80. [PMID: 12564955 PMCID: PMC1223344 DOI: 10.1042/bj20021769] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2002] [Revised: 01/31/2003] [Accepted: 02/03/2003] [Indexed: 11/17/2022]
Abstract
Normal cardiovascular development and physiology depend in part upon signalling through G-protein-coupled receptors (GPCRs), such as the angiotensin II type 1 (AT(1)) receptor, sphingosine 1-phosphate (S1P) receptors and endothelin-1 (ET-1) receptor. Since regulator of G-protein signalling (RGS) proteins function as GTPase-activating proteins for the G alpha subunit of heterotrimeric G-proteins, these proteins undoubtedly have functional roles in the cardiovascular system. In the present paper, we show that human aorta and heart differentially express RGS1, RGS2, RGS3S (short-form), RGS3L (long-form), PDZ-RGS3 (PDZ domain-containing) and RGS4. The aorta prominently expresses mRNAs for all these RGS proteins except PDZ-RGS3. Various stimuli that are critical for both cardiovascular development and function regulate dynamically the mRNA levels of several of these RGS proteins in primary human aortic smooth muscle cells. Both RGS1 and RGS3 inhibit signalling through the S1P(1) (formerly known as EDG-1), S1P(2) (formerly known as EDG-5) and S1P(3) (formerly known as EDG-3) receptors, whereas RGS2 and RGS4 selectively attenuate S1P(2)-and S1P(3)-receptor signalling respectively. All of the tested RGS proteins inhibit AT(1)-receptor signalling, whereas only RGS3 and, to a lesser extent, RGS4 inhibit ET(A)-receptor signalling. The conspicuous expression of RGS proteins in the cardiovascular system and their selective effects on relevant GPCR-signalling pathways provide additional evidence that they have functional roles in cardiovascular development and physiology.
Collapse
Affiliation(s)
- Hyeseon Cho
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, Room 11B-08, Building 10, National Institute of Allergy and Infectious Diseases, 10 Center Drive, MSC 1876, National Institutes of Health, Bethesda, MD 20892-1876, USA
| | | | | | | |
Collapse
|
21
|
Guo J, Schofield GG. Activation of a PTX-insensitive G protein is involved in histamine-induced recombinant M-channel modulation. J Physiol 2002; 545:767-81. [PMID: 12482885 PMCID: PMC2290715 DOI: 10.1113/jphysiol.2002.026583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The M-type potassium current (I(M)) plays a dominant role in regulating membrane excitability and is modulated by many neurotransmitters. However, except in the case of bradykinin, the signal transduction pathways involved in M-channel modulation have not been fully elucidated. The channels underlying I(M) are produced by the coassembly of KCNQ2 and KCNQ3 channel subunits and can be expressed in heterologous systems where they can be modulated by several neurotransmitter receptors including histamine H(1) receptors. In HEK293T cells, histamine acting via transiently expressed H(1)R produced a strong inhibition of recombinant M-channels but had no overt effects on the voltage dependence or voltage range of I(M) activation. In addition, the modulation of I(M) by histamine was not voltage sensitive, whereas channel gating, particularly deactivation, was accelerated by histamine. Non-hydrolysable guanine nucleotide analogues (GDP-beta-S and GTP-gamma-S) and pertussis toxin (PTX) treatment demonstrated the involvement of a PTX-insensitive G protein in the signal transduction pathway mediating histamine-induced I(M) modulation. Abrogation of the histamine-induced modulation of I(M) by expression of a C-terminal construct of phospholipase C (PLC-beta1-ct), which buffers activated Galpha(q/11) subunits, implicates this G protein alpha subunit in the modulatory pathway. On the other hand, abrogation of the histamine-induced modulation of I(M) by expression of two constructs which buffer free betagamma subunits, transducin (Galphat) and a C-terminal construct of a G protein receptor kinase (MAS-GRK2-ct), implicates betagamma dimers in the modulatory pathway. These findings demonstrate that histamine modulates recombinant M-channels in HEK293T cells via a PTX-insensitive G protein, probably Galpha(q/11), in a similar manner to a number of other G protein-coupled receptors. However, histamine-induced I(M) modulation in HEK293T cells is novel in that betagamma subunits in addition to Galpha(q/11) subunits appear to be involved in the modulation of KCNQ2/3 channel currents.
Collapse
Affiliation(s)
- Juan Guo
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | |
Collapse
|
22
|
Geurts M, Hermans E, Maloteaux JM. Opposite modulation of regulators of G protein signalling-2 RGS2 and RGS4 expression by dopamine receptors in the rat striatum. Neurosci Lett 2002; 333:146-50. [PMID: 12419501 DOI: 10.1016/s0304-3940(02)01004-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of dopaminergic transmission on striatal mRNA levels of regulators of G protein signalling proteins RGS 2-12 was evaluated by quantitative in situ hybridisation. A single injection of L-dopa (50 mg/kg i.p.) significantly increased the RGS2 mRNA level (by 25%), an effect that was specifically abolished by the D1 dopamine receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (R(+)-SCH23390), but not changed by S(-)-eticlopride. Interestingly, the administration of this D2 dopamine receptor antagonist alone markedly enhanced the expression of RGS2 (by 71%), which suggests a constitutive inhibition of RGS2 expression by D2 dopamine receptors. Opposite results were obtained concerning the regulation of RGS4 since L-dopa alone was without effect whereas co-administration of L-dopa and R(+)-SCH23390 significantly enhanced the RGS4 mRNA levels (by 38%). In conclusion, D1 and D2 dopamine receptors appear to mediate opposite regulatory effects on RGS2 and RGS4 expression in the striatum.
Collapse
Affiliation(s)
- Muriel Geurts
- Laboratoire de Pharmacologie Expérimentale (FARL), Université catholique de Louvain, 54 10, Avenue Hippocrate 54, B-1200, Brussels, Belgium
| | | | | |
Collapse
|