1
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
2
|
Zhang C, Zhang H, Huang LS, Zhu S, Xu Y, Zhang XQ, Schooley RT, Yang X, Huang Z, An J. Virtual Screening, Biological Evaluation, and 3D-QSAR Studies of New HIV-1 Entry Inhibitors That Function via the CD4 Primary Receptor. Molecules 2018; 23:molecules23113036. [PMID: 30463393 PMCID: PMC6278378 DOI: 10.3390/molecules23113036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is responsible for the majority of HIV infections worldwide, and we still lack a cure for this infection. Blocking the interaction of HIV-1 and its primary receptor CD4 is one strategy for identifying new anti-HIV-1 entry inhibitors. Here we report the discovery of a novel ligand that can inhibit HIV-1 entry and infection via CD4. Biological and computational analyses of this inhibitor and its analogs, using bioactivity evaluation, Rule of Five (RO5), comparative molecular field analysis (CoMFA)/comparative molecular similarity index analysis (CoMSIA) models, and three-dimensional quantitative structure-activity relationship (3D-QSAR), singled out compound 3 as a promising lead molecule for the further development of therapeutics targeting HIV-1 entry. Our study demonstrates an effective approach for employing structure-based, rational drug design techniques to identify novel antiviral compounds with interesting biological activities.
Collapse
Affiliation(s)
- Chaozai Zhang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Huijun Zhang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Lina S Huang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
- College of Arts and Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Siyu Zhu
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yan Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
- Nobel Institute of Biomedicine, Zhuhai 519000, Guangdong, China.
| | - Xing-Quan Zhang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Robert T Schooley
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Xiaohong Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Ziwei Huang
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jing An
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
He Y, Rivard CJ, Rozeboom L, Yu H, Ellison K, Kowalewski A, Zhou C, Hirsch FR. Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci 2016; 107:1193-7. [PMID: 27297395 PMCID: PMC5021038 DOI: 10.1111/cas.12986] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has recently become widely used in lung cancer. Many oncologists are focused on cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death ligand-1 (PD-L1) and programmed cell death-1 (PD-1). Immunotherapy targeting the PD-1/PD-L1 checkpoints has shown promising efficacy in non-small cell lung cancer (NSCLC), but questions remain to be answered. Among them is whether the simultaneous inhibition of other checkpoints could improve outcomes. Lymphocyte-activation gene-3 (LAG-3) is another vital checkpoint that may have a synergistic interaction with PD-1/PD-L1. Here we review the LAG-3 function in cancer, clinical trials with agents targeting LAG-3 and the correlation of LAG-3 with other checkpoints.
Collapse
Affiliation(s)
- Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher J Rivard
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leslie Rozeboom
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hui Yu
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kim Ellison
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ashley Kowalewski
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Fred R Hirsch
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Becker C, Bopp T, Jonuleit H. Boosting regulatory T cell function by CD4 stimulation enters the clinic. Front Immunol 2012; 3:164. [PMID: 22719741 PMCID: PMC3376463 DOI: 10.3389/fimmu.2012.00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/31/2012] [Indexed: 01/14/2023] Open
Abstract
Understanding tolerance mechanisms at the cellular and molecular level holds the promise to establish novel immune intervention therapies in patients with allergy or autoimmunity and to prevent transplant rejection. Administration of mAb against the CD4 molecule has been found to be exceptionally well suited for intentional tolerance induction in rodent and non-human primate models as well as in humanized mouse models. Recent evidence demonstrated that regulatory T cells (Treg) are directly activated by non-depleting CD4 ligands and suggests Treg activation as a central mechanism in anti-CD4-mediated tolerance induction. This review summarizes the current knowledge on the role of Treg in peripheral tolerance, addresses the putative mechanisms of Treg-mediated suppression and discusses the clinical potential of harnessing Treg suppressive activity through CD4 stimulation.
Collapse
Affiliation(s)
- Christian Becker
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | | |
Collapse
|
5
|
Baker AM, Saulière A, Gaibelet G, Lagane B, Mazères S, Fourage M, Bachelerie F, Salomé L, Lopez A, Dumas F. CD4 interacts constitutively with multiple CCR5 at the plasma membrane of living cells. A fluorescence recovery after photobleaching at variable radii approach. J Biol Chem 2007; 282:35163-8. [PMID: 17855336 DOI: 10.1074/jbc.m705617200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The entry of human immunodeficiency virus into target cells requires successive interactions of the viral envelope glycoprotein gp120 with CD4 and the chemokine receptors CCR5 or CXCR4. We previously demonstrated, by Förster resonance energy transfer experiments, the constitutive association of CD4 and CCR5 at the surface of living cells. We therefore speculated that this interaction may correlate with compartmentalization of CD4 and CCR5 within the plasma membrane. Here, we characterize the lateral distribution, the dynamics, and the stoichiometry of these receptors in living cells stably expressing CD4 and/or CCR5 by means of fluorescence recovery after photobleaching at variable radii experiments. We found that (i) these receptors expressed alone are confined into 1-microm-sized domains, (ii) CD4-CCR5 associations occur outside and inside smaller domains, and (iii) these interactions involve multiple CCR5 molecules per CD4.
Collapse
Affiliation(s)
- Aurélie-Marie Baker
- Institut de Pharmacologie et Biologie Structurale, UMR CNRS-Université Paul Sabatier 5089, 205 Route de Narbonne, 31062 Toulouse cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bourgeois R, Mercier J, Paquette-Brooks I, Cohen ÉA. Association between disruption of CD4 receptor dimerization and increased human immunodeficiency virus type 1 entry. Retrovirology 2006; 3:31. [PMID: 16762062 PMCID: PMC1524797 DOI: 10.1186/1742-4690-3-31] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 06/08/2006] [Indexed: 11/12/2022] Open
Abstract
Background Human immunodeficiency virus (HIV) enters target cells by a membrane fusion process that involves a series of sequential interactions between its envelope glycoproteins, the CD4 receptor and CXCR4/CCR5 coreceptors. CD4 molecules are expressed at the cell surface of lymphocytes and monocytes mainly as monomers, but basal levels of CD4 dimers are also present at the cell surface of these cells. Previous evidence indicates that the membrane distal and proximal extracellular domains of CD4, respectively D1 and D4, are involved in receptor dimerization. Results Here, we have used A201 cell lines expressing two CD4 mutants, CD4-E91K, E92K (D1 mutant) and CD4-Q344E (D4 mutant), harboring dimerization defects to analyze the role of CD4 dimerization in HIV-1 entry. Using entry assays based on β-lactamase-Vpr or luciferase reporter activities, as well as virus encoding envelope glycoproteins derived from primary or laboratory-adapted strains, we obtained evidence suggesting an association between disruption of CD4 dimerization and increased viral entry efficiency. Conclusion Taken together, our results suggest that monomeric forms of CD4 are preferentially used by HIV-1 to gain entry into target cells, thus implying that the dimer/monomer ratio at the cell surface of HIV-1 target cells may modulate the efficiency of HIV-1 entry.
Collapse
Affiliation(s)
- Rachel Bourgeois
- Department of Microbiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Johanne Mercier
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Isabelle Paquette-Brooks
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Éric A Cohen
- Department of Microbiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Maekawa A, Schmidt B, Fazekas de St Groth B, Sanejouand YH, Hogg PJ. Evidence for a Domain-Swapped CD4 Dimer as the Coreceptor for Binding to Class II MHC. THE JOURNAL OF IMMUNOLOGY 2006; 176:6873-8. [PMID: 16709847 DOI: 10.4049/jimmunol.176.11.6873] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD4 is a coreceptor for binding of T cells to APC and the primary receptor for HIV. The disulfide bond in the second extracellular domain (D2) of CD4 is reduced on the cell surface, which leads to formation of disulfide-linked homodimers. A large conformational change must take place in D2 to allow for formation of the disulfide-linked dimer. Domain swapping of D2 is the most likely candidate for the conformational change leading to formation of two disulfide-bonds between Cys130 in one monomer and Cys159 in the other one. Mild reduction of the extracellular part of CD4 resulted in formation of disulfide-linked dimers, which supports the domain-swapped model. The functional significance of dimer formation for coreceptor function was tested using cells expressing wild-type or disulfide-bond mutant CD4. Eliminating the D2 disulfide bond markedly impaired CD4's coreceptor function. Modeling of the complex of the TCR and domain-swapped CD4 dimer bound to class II MHC and Ag supports the domain-swapped dimer as the immune coreceptor. The known involvement of D4 residues Lys318 and Gln344 in dimer formation is also accommodated by this model. These findings imply that disulfide-linked dimeric CD4 is the preferred coreceptor for binding to APC.
Collapse
Affiliation(s)
- Akiko Maekawa
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
8
|
Varadi G, Friedman TM, Korngold R. A CD4 domain 1 CC' loop peptide analogue enhances engraftment in a murine model of bone marrow transplantation with sublethal conditioning. Biol Blood Marrow Transplant 2005; 11:979-87. [PMID: 16338620 DOI: 10.1016/j.bbmt.2005.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 08/22/2005] [Indexed: 11/24/2022]
Abstract
Host CD4(+) T cells that survive sublethal or even lethal preconditioning regimens can participate in the process of hematopoietic stem cell graft rejection, particularly when the transplantations are performed across a major histocompatibility complex (MHC) class II barrier. To enhance donor marrow engraftment, we tested the efficacy of a small synthetic cyclic heptapeptide, 802-2 (CNSNQIC), which was designed to closely mimic the CD4 domain 1 CC' surface loop, theoretically involved in CD4/MHC class II complex oligomerization and subsequent CD4(+) T-cell activation. Previously, this peptide was found to have inhibitory activity in murine models for CD4(+) T cell-dependent graft-versus-host disease and skin allograft rejection. Herein, we used the MHC class II--disparate bm12 --> B6-CD45.1 sublethal irradiation transplantation model to test the possibility that the 802-2 peptide could enhance the engraftment of donor T cell-depleted bone marrow (ATBM). Sublethally irradiated B6-CD45.1 mice that received bm12 ATBM in combination with the 802-2 peptide demonstrated increased donor marrow cell engraftment as compared with mice that received ATBM alone; this suggests that the 802-2 peptide may be useful as an immunomodulating agent to overcome MHC class II mismatch barriers in hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Gabor Varadi
- Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
9
|
Li QJ, Dinner AR, Qi S, Irvine DJ, Huppa JB, Davis MM, Chakraborty AK. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol 2004; 5:791-9. [PMID: 15247914 DOI: 10.1038/ni1095] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 06/18/2004] [Indexed: 11/09/2022]
Abstract
How T cells respond with extraordinary sensitivity to minute amounts of agonist peptide and major histocompatibility complex (pMHC) molecules on the surface of antigen-presenting cells bearing large numbers of endogenous pMHC molecules is not understood. Here we present evidence that CD4 affects the responsiveness of T helper cells by controlling spatial localization of the tyrosine kinase Lck in the synapse. This finding, as well as further in silico and in vitro experiments, led us to develop a molecular model in which endogenous and agonist pMHC molecules act cooperatively to amplify T cell receptor signaling. At the same time, activation due to endogenous pMHC molecules alone is inhibited. A key feature is that the binding of agonist pMHC molecules to the T cell receptor results in CD4-mediated spatial localization of Lck, which in turn enables endogenous pMHC molecules to trigger many T cell receptors. We also discuss broader implications for T cell biology, including thymic selection, diversity of the repertoire of self pMHC molecules and serial triggering.
Collapse
Affiliation(s)
- Qi-Jing Li
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Gombos I, Detre C, Vámosi G, Matkó J. Rafting MHC-II domains in the APC (presynaptic) plasma membrane and the thresholds for T-cell activation and immunological synapse formation. Immunol Lett 2004; 92:117-24. [PMID: 15081535 DOI: 10.1016/j.imlet.2003.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 11/21/2003] [Indexed: 11/26/2022]
Abstract
Glycosphingolipid- and cholesterol-rich membrane microdomains (rafts) in T-cells are important in triggering and regulation of T(H)-cell activation in immunological synapses (IS), which in turn may control the T-cell repertoire in lymph nodes and at the periphery. It is less known, however, how the "presynaptic side" controls formation and function of IS. We investigated here activation signals and synapse formation frequency of murine IP12-7 T(H) hybridoma cell specific to influenza virus HA-peptide upon stimulation with two B-lymphoma cells, A20 and 2PK3, pulsed with peptide antigen. Confocal microscopic colocalization and FRET data consonantly revealed clustered distribution and constitutive raft-association of a major fraction of MHC-II molecules in both APCs. Costimulatory molecules (CD80 and CD86), not associated constitutively with rafts, were expressed at much lower level in A20 cells. T-cells responded to 2PK3 APC with much higher signal strength than to A20 cells, in good correlation with the frequency of IS formation, as assessed by microscopic conjugation assay. Disruption of rafts by cholesterol depletion in 2PK3 cells largely decreased the magnitude of T(H) cell activation signals, especially at low peptide antigen doses, similarly to masking CD4 with mAb on T-cells. The frequency of IS formation was reduced by blocking LFA-1 on T-cells and CD80 on APCs, by lowering the temperature below the phase transition of the membrane or by disrupting actin cytoskeleton. These data together suggest that the surface density and affinity/stability of peptide-MHC-II complexes and the costimulatory level are primary determinants for an efficient TCR recognition and the strength of the subsequent T-cell signals, as well as of the IS formation, which additionally requires a cytoskeleton-dependent remodeling of APC surface after the initial TCR signal. The threshold of T-cell activation can be further set by rafting MHC-II domains via concentrating high affinity ligands and promoting thereby T-cells for sensing low density antigen. Our data also demonstrate that B-cells, similarly to dendritic cells, could also provide T-cells with antigen-independent weak survival signals, likely associated with integrin engagement.
Collapse
Affiliation(s)
- Imre Gombos
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | | | | | | |
Collapse
|
11
|
Moldovan MC, Yachou A, Lévesque K, Wu H, Hendrickson WA, Cohen EA, Sékaly RP. CD4 dimers constitute the functional component required for T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6261-8. [PMID: 12444132 DOI: 10.4049/jimmunol.169.11.6261] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD4 molecule plays a key role in the development and activation of helper T cells. Dimerization and oligomerization is often a necessary step in the function of several cell surface receptors. Herein, we provide direct biochemical evidence confirming the presence of CD4 as dimers in transfected cells from hemopoetic and fibroblastic origin as well as in primary T cells. Such dimers are also observed with murine CD4 confirming selective pressure during evolution to maintain such a structure. Using a series of point mutations, we have precisely mapped the dimerization site at residues K318 and Q344 within the fourth extracellular domain of CD4. These residues are highly conserved and their mutation results in interference with dimer formation. More importantly, we demonstrate that dimer formation is essential for the coligand and coreceptor functions of CD4 in T cell activation. These data strongly suggest that CD4 dimerization is necessary for helper T cell function.
Collapse
|
12
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|
13
|
Vermeire K, Zhang Y, Princen K, Hatse S, Samala MF, Dey K, Choi HJ, Ahn Y, Sodoma A, Snoeck R, Andrei G, De Clercq E, Bell TW, Schols D. CADA inhibits human immunodeficiency virus and human herpesvirus 7 replication by down-modulation of the cellular CD4 receptor. Virology 2002; 302:342-53. [PMID: 12441078 DOI: 10.1006/viro.2002.1624] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The novel antiviral agent cyclotriazadisulfonamide (CADA) inhibited human immunodeficiency virus (HIV) (IC50, 0.3-3.2 microM) and human herpesvirus 7 (HHV-7) infection (IC50, 0.3-1.5 microM) in T-cell lines and PBMCs. When T-cells were pretreated with CADA for 24 h, they became markedly protected from viral infection. Flow cytometric analysis revealed a significant decrease in the expression of the CD4 glycoprotein, the primary receptor needed for entry of both viruses. Moreover, the antiviral activity of CADA correlated with its ability to down-modulate the CD4 receptor. CADA did not alter the expression of any other cellular receptor (or HIV coreceptor) examined. Time course experiments showed that CD4 down-modulation by CADA differs in mechanism from the effects of aurintricarboxylic acid, which binds directly to CD4, and phorbol myristate acetate, which activates protein kinase C. Further analysis of CD4 mRNA levels suggested that CADA was not involved in the regulation of CD4 expression at a transcriptional level, but very likely at (post) translational levels. This unique mechanism of action makes CADA an important lead in developing new drugs for treatment of AIDS, autoimmune diseases, and inflammatory disorders.
Collapse
Affiliation(s)
- Kurt Vermeire
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Laub R, Brecht R, Dorsch M, Valey U, Wenk K, Emmrich F. Anti-human CD4 induces peripheral tolerance in a human CD4+, murine CD4-, HLA-DR+ advanced transgenic mouse model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2947-55. [PMID: 12218108 DOI: 10.4049/jimmunol.169.6.2947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Selection in vivo of potent mAbs to human CD4 useful for immunotherapy, e.g., for the induction of immunological tolerance, is restricted for ethical reasons. We therefore used multiple transgenic mice that lack murine CD4, but express human CD4 specifically on Th cells, and HLA-DR3 as its natural counterligand (CD4/DR3 mice). The injection of CD4/DR3 mice with anti-human CD4 (mAb Max.16H5) before immunization with tetanus toxoid (TT, day 0) totally blocked the formation of specific Abs. This state of unresponsiveness persisted a subsequent boost again performed in the presence of anti-human CD4. When these mice were left untreated for at least 40 days, and were then re-exposed with TT, but in the absence of anti-human CD4, they consistently failed to induce specific Abs (long-term unresponsiveness). Exposure to second party Ags (hen egg lysozyme, human acetylcholine receptor) induced specific Abs comparable with control mice, demonstrating that the anti-CD4-induced unresponsiveness was Ag specific (immunological tolerance). Importantly, the concurrent injection of TT and anti-human CD4 at day 0, followed by another two anti-CD4 treatments, also led to tolerant animals, indicating that tolerance was inducible at the same day as the Ag exposure is provided. We finally demonstrate a limited ability of spleen cells to respond to TT in vitro, indicating that T cells are essentially involved in the maintenance of TT-specific tolerance. These data show for the first time that the human CD4 coreceptor mediates tolerance-inducing signals when triggered by an appropriate ligand in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Blocking/administration & dosage
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- CD4 Antigens/biosynthesis
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Cells, Cultured
- Epitopes/administration & dosage
- Epitopes/immunology
- HLA-DR3 Antigen/biosynthesis
- HLA-DR3 Antigen/genetics
- Humans
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Injections, Intraperitoneal
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Animal
- Models, Immunological
- Muramidase/administration & dosage
- Muramidase/immunology
- Receptors, Cholinergic/administration & dosage
- Receptors, Cholinergic/immunology
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/immunology
- Tetanus Toxoid/immunology
- Time Factors
- Transgenes/immunology
Collapse
Affiliation(s)
- Rüdiger Laub
- Institute for Clinical Immunology and Transfusion Medicine, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Varadi G, Svirsky O, Nagler A. Successful major surgical recovery of a patient following haploidentical stem cell transplantation for chronic myeloid leukemia in blast crisis and aspergillosis. Acta Haematol 2002; 108:29-32. [PMID: 12145464 DOI: 10.1159/000063056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A 44-year-old woman who underwent haploidentical stem cell transplantation (haplo SCT) for chronic myeloid leukemia in blast crisis and aspergillosis was admitted to the emergency room 7 months later because of severe right upper quadrant abdominal pain, fever, leukocytosis and peritoneal signs. Computer tomography disclosed cholecystitis and gallbladder perforation. Within hours, she underwent urgent open laparatomy and cholecystectomy. The postoperative period was uneventful and she was discharged 10 days later without any complications. Currently, she is 2(1/2) years posttransplantation in full hematological, cytogenetic and molecular remission with 100% Karnofsky performance status. Most notably, normal and fast recovery was observed following major surgery 7 months post-haplo SCT which is usually considered to result in long-lasting immunosuppression and malfunction of the immune system.
Collapse
MESH Headings
- Adult
- Alemtuzumab
- Amphotericin B/therapeutic use
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neoplasm
- Antifungal Agents/therapeutic use
- Aspergillosis/complications
- Aspergillosis/drug therapy
- Blast Crisis/complications
- Blast Crisis/therapy
- Cholecystectomy, Laparoscopic
- Cholecystitis/complications
- Cholecystitis/microbiology
- Cholecystitis/surgery
- Female
- Gallbladder Diseases/etiology
- Gallbladder Diseases/microbiology
- Gallbladder Diseases/surgery
- Graft vs Host Disease/prevention & control
- Graft vs Leukemia Effect
- Haplotypes
- Hematopoietic Stem Cell Transplantation
- Histocompatibility
- Humans
- Immunocompromised Host
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/complications
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Lung Diseases, Fungal/complications
- Lung Diseases, Fungal/drug therapy
- Lymphocyte Depletion
- Rupture, Spontaneous
- Staphylococcal Infections/complications
- Staphylococcal Infections/surgery
- T-Lymphocytes/immunology
- Transplantation Chimera
- Transplantation Conditioning/adverse effects
- Transplantation, Homologous
Collapse
Affiliation(s)
- Gabor Varadi
- Department of Bone Marrow Transplantation, Hadassah University Hospital, Jerusalem, Israel
| | | | | |
Collapse
|
16
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
Affiliation(s)
- Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1E24, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
17
|
Andreae S, Piras F, Burdin N, Triebel F. Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3874-80. [PMID: 11937541 DOI: 10.4049/jimmunol.168.8.3874] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lymphocyte activation gene-3 (LAG-3) is an MHC class II ligand expressed on activated T and NK cells. A LAG-3Ig fusion protein has been used in mice as an adjuvant protein to induce antitumor responses and specific CD8 and CD4 Th1 responses to nominal Ags. In this work we report on the effect of LAG-3Ig on the maturation and activation of human monocyte-derived dendritic cells (DC). LAG-3Ig binds MHC class II molecules expressed in plasma membrane lipid rafts on immature human DC and induces rapid morphological changes, including the formation of dendritic projections. LAG-3Ig markedly up-regulates the expression of costimulatory molecules and the production of IL-12 and TNF-alpha. Consistent with this effect on DC maturation, LAG-3Ig disables DC in their capacity to capture soluble Ags. These events are associated with the acquisition of professional APC function, because LAG-3Ig increases the capacity of DC to stimulate the proliferation and IFN-gamma response by allogeneic T cells. These effects were not observed when using ligation of MHC class II by specific mAb. Class II-mediated signals induced by a natural ligand, LAG-3, lead to complete maturation of DC, which acquire the capacity to trigger naive T cells and drive polarized Th1 responses.
Collapse
Affiliation(s)
- Susanne Andreae
- Laboratoire d'Immunologie des Tumeurs, Université Paris-Sud, Chatenay Malabry, France
| | | | | | | |
Collapse
|
18
|
Edling AE, Choksi S, Huang Z, Korngold R. An organic CD4 inhibitor reduces the clinical and pathological symptoms of acute experimental allergic encephalomyelitis. J Autoimmun 2002; 18:169-79. [PMID: 11908949 DOI: 10.1006/jaut.2001.0576] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD4(+) T cells have an important role in mediating the pathogenesis of many human and experimental autoimmune diseases including experimental allergic encephalomyelitis (EAE), a demyelinating animal model for multiple sclerosis (MS). We applied a computer screening approach to select a small organic molecule, TJU103, that would specifically inhibit autoreactive CD4(+) T cells by disrupting the function of the CD4 molecule during activation. Upon studying the therapeutic effect of TJU103 in acute EAE, it was found that administration shortly before or after the onset of clinical symptoms reduced the severity of disease in both SJL and SWXJ-14 mouse models. In addition, TJU103 treatment could affect both in vivo responses to EAE rechallenge and secondary in vitro proliferation and cytokine production of T cells responding to proteolipid protein epitope 139-151 (PLPe). These results demonstrate the potential of the TJU103 organic inhibitor for future clinical application in CD4(+) T cell-mediated diseases.
Collapse
Affiliation(s)
- Andrea E Edling
- Kimmel Cancer Institute, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
19
|
Bès C, Briant-Longuet L, Cerruti M, De Berardinis P, Devauchelle G, Devaux C, Granier C, Chardès T, DeBerardinis P. Efficient CD4 binding and immunosuppressive properties of the 13B8.2 monoclonal antibody are displayed by its CDR-H1-derived peptide CB1. FEBS Lett 2001; 508:67-74. [PMID: 11707270 DOI: 10.1016/s0014-5793(01)03036-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A systematic exploration of the V(H)2/V(kappa)12-13 variable domains of the anti-CD4 monoclonal antibody (mAb) 13B8.2 was performed by the Spot method to screen for paratope-derived peptides (PDPs) demonstrating CD4 binding ability. Nine peptides, named CB1 to CB9, were identified, synthesized in a cyclic and soluble form and tested for binding to recombinant soluble CD4. Among them, CB1, CB2 and CB8 showed high anti-CD4 activity. Competition studies for CD4 binding indicated that PDPs CB1, CB8, and the parental mAb 13B8.2 recognized the same complementarity determining region (CDR)3-like loop region. PDP CB1 was shown to mimic the biological properties of 13B8.2 mAb in two independent cellular assays, demonstrating inhibitory activities in the micromolar range on antigen presentation and human immunodeficiency virus promoter activation. Our results indicate that the bioactive CDR-H1 PDP CB1 has retained a significant part of the parental 13B8.2 mAb properties and might be a lead for the design of anti-CD4 peptidomimetics of clinical interest.
Collapse
Affiliation(s)
- C Bès
- CNRS-UMR 5094, Faculté de Pharmacie, Institut de Biotechnologie et Pharmacologie, 15 avenue Charles Flahault, 34060 Montpellier Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang Q, Malherbe L, Zhang D, Zingler K, Glaichenhaus N, Killeen N. CD4 promotes breadth in the TCR repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4311-20. [PMID: 11591754 DOI: 10.4049/jimmunol.167.8.4311] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A diverse population of MHC class II-restricted CD4 lineage T cells develops in mice that lack expression of the CD4 molecule. In this study, we show that the TCR repertoire selected in the absence of CD4 is distinct, but still overlapping in its properties with that selected in the presence of CD4. Immunization of mice lacking CD4 caused the clonal expansion of T cells that showed less breadth in the range of Ag-binding properties exhibited by their TCRs. Specifically, the CD4-deficient Ag-specific TCR repertoire was depleted of TCRs that demonstrated low-affinity binding to their ligands. The data thus suggest a key role for CD4 in broadening the TCR repertoire by potentiating productive TCR signaling and clonal expansion in response to the engagement of low-affinity antigenic ligands.
Collapse
Affiliation(s)
- Q Wang
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
21
|
Demeure CE, Wolfers J, Martin-Garcia N, Gaulard P, Triebel F. T Lymphocytes infiltrating various tumour types express the MHC class II ligand lymphocyte activation gene-3 (LAG-3): role of LAG-3/MHC class II interactions in cell-cell contacts. Eur J Cancer 2001; 37:1709-18. [PMID: 11527700 DOI: 10.1016/s0959-8049(01)00184-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The product of the Lymphocyte Activation Gene-3 (LAG-3, CD223) is a high affinity MHC class II ligand expressed by activated CD4(+) and CD8(+) T cells, which can associate with the T cell receptor (TCR) and downregulate TCR signalling in vitro. We have also reported that a soluble mLAG-3Ig fusion protein works as a vaccine adjuvant in vivo in mice, enhancing Th1 and CD8 T cell responses. Here, we report that LAG-3 expression was found, using fluorescent activated cell sorting (FACS) analysis, on 11-48% of human tumour-infiltrating lymphocytes (TILs) isolated from eight freshly dissociated renal cell carcinomas (RCCs), and was restricted mostly to CD8(+) cells. Immunohistochemical analysis confirmed LAG-3 expression by TILs in 9/11 RCCs, as well as in tumours of different origins, such as melanomas (3/5) and lymphomas (7/7). Since not only antigen presenting cells (APCs), but also TILs themselves strongly express major histocompatibility complex (MHC) class II, we firstly investigated whether LAG-3/MHC class II T-T cell contacts might influence tumour cell recognition. However, cytotoxicity inhibition was not observed in two RCC-specific CD8(+) T cell clones in the presence of the LAG-3-specific MAb, and there was also no observed difference in the recognition of LAG-3-transfected or wild-type RCC by these cytotoxic T lymphocytes (CTLs). In contrast, MHC class II engagement by LAG-3Ig was found to enhance the capacity of immature dendritic cells to stimulate naive T cell proliferation and IL-12-dependent IFN-gamma production by T cells in vitro. These results therefore provide support for a role for TIL-expressed LAG-3 in the engagement of class II molecules on APCs, thereby contributing to APC activation and Th1/Tc1 commitment, without downregulating cytotoxicity.
Collapse
Affiliation(s)
- C E Demeure
- Laboratoire d'Immunologie des Tumeurs, Université Paris-Sud, 5, rue Jean-Baptiste Clément, 92296 Chatenay, Malabry, France
| | | | | | | | | |
Collapse
|
22
|
Altin JG, White FA, Easton CJ. Synthesis of the chelator lipid nitrilotriacetic acid ditetradecylamine (NTA-DTDA) and its use with the IAsys biosensor to study receptor-ligand interactions on model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1513:131-48. [PMID: 11470085 DOI: 10.1016/s0005-2736(01)00344-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes the synthesis and use of the chelator lipid, nitrilotriacetic acid ditetradecylamine (NTA-DTDA). This lipid is readily dispersed in aqueous media, both alone and when mixed with carrier lipids like dimyristoylphosphatidylcholine (DMPC). Fluorescence microscopic examination of membranes deposited from NTA-DTDA-containing liposomes shows that NTA-DTDA mixes uniformly with the carrier lipid, and does not phase separate. NTA-DTDA-membranes deposited onto the sensing surface of IAsys biosensor cuvettes show good stability, permitting use of the biosensor to study protein interactions. Hexahistidine-tagged proteins including recombinant forms of the extracellular regions of murine B7.1 (B7.1-6H) and of the human erythropoietin receptor (EPOR-6H) bind to NTA-DTDA-membranes; the stability of binding is dependent on both protein concentration, and density of NTA-DTDA. Kinetic measurements show that high stability of anchored proteins (t(1/2) approximately 10-20 h, apparent K(d) approximately 1 nM) can be achieved using membranes containing 25 mol% NTA-DTDA, but low levels of bound protein (<200 arc seconds). The system is used to study the interaction of human EPO with the EPOR anchored onto NTA-DTDA-membranes. In addition to the biological applications reported recently, the results show that NTA-DTDA can be a useful reagent in the study of receptor-ligand interactions.
Collapse
Affiliation(s)
- J G Altin
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
23
|
Van Broekhoven CL, Altin JG. A novel system for convenient detection of low-affinity receptor-ligand interactions: chelator-lipid liposomes engrafted with recombinant CD4 bind to cells expressing MHC class II. Immunol Cell Biol 2001; 79:274-84. [PMID: 11380681 DOI: 10.1046/j.1440-1711.2001.01010.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The interactions of cell surface receptors with their ligands, crucial for initiating many immunological responses, are often stabilized by receptor dimerization/oligomerization, and by multimeric interactions between receptors on one cell with their ligands or cognate receptors on the apposing cell. Current techniques for studying receptor-ligand interactions, however, do not always allow receptors to move laterally to enable dimerization/ oligomerization, or to interact multimerically with ligands on cell surfaces. For these reasons detection of low- affinity receptor-ligand interactions has been difficult. Utilizing a novel chelator-lipid, nitrilotriacetic acid di-tetradecylamine (NTA-DTDA), we have developed a convenient liposome system for directly detecting low-affinity receptor-ligand interactions. Our studies using recombinant soluble forms of murine CD40 and B7.1, and murine and human CD4, each possessing a hexhistidine tag, showed that these proteins can be anchored or 'engrafted' directly onto fluorescently labelled liposomes via a metal-chelating linkage with NTA-DTDA, permitting them to undergo dimerization/oligomerization and multimeric binding with ligands on cells. Fluorescence- activated cell sorter (FACS) analyses demonstrated that while there is little if any binding of soluble forms of murine CD40 and B7.1, and murine and human CD4 to cells, engrafted liposomes bind specifically to cells expressing the appropriate cognate receptor, often giving a fluorescence 4-6-fold above control cells. Such liposomes could detect directly the low-affinity interaction of murine CD40 and B7.1 with CD154- and CD28-expressing cells, respectively, and the interaction of CD4 with MHC Class II, which has hitherto defied direct detection except through mutational analysis and mAb blocking studies.
Collapse
Affiliation(s)
- C L Van Broekhoven
- School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
24
|
Gáspár R, Bagossi P, Bene L, Matkó J, Szöllosi J, Tozsér J, Fésüs L, Waldmann TA, Damjanovich S. Clustering of class I HLA oligomers with CD8 and TCR: three-dimensional models based on fluorescence resonance energy transfer and crystallographic data. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5078-86. [PMID: 11290789 DOI: 10.4049/jimmunol.166.8.5078] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorescence resonance energy transfer (FRET) data, in accordance with lateral mobility measurements, suggested the existence of class I HLA dimers and oligomers at the surface of live human cells, including the B lymphoblast cell line (JY) used in the present study. Intra- and intermolecular class I HLA epitope distances were measured on JY B cells by FRET using fluorophore-conjugated Ag-binding fragments of mAbs W6/32 and L368 directed against structurally well-characterized heavy and light chain epitopes, respectively. Out-of-plane location of these epitopes relative to the membrane-bound BODIPY-PC (2-(4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine) was also determined by FRET. Computer-simulated docking of crystallographic structures of class I HLA and epitope-specific Ag-binding fragments, with experimentally determined interepitope and epitope to cell surface distances as constraints, revealed several sterically allowed and FRET-compatible class I HLA dimeric and tetrameric arrangements. Extension of the tetrameric class I HLA model with interacting TCR and CD8 resulted in a model of a supramolecular cluster that may exist physiologically and serve as a functionally significant unit for a network of CD8-HLA-I complexes providing enhanced signaling efficiency even at low MHC-peptide concentrations at the interface of effector and APCs.
Collapse
Affiliation(s)
- R Gáspár
- Department of Biophysics, Biophysics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Briant L, Devaux C. Bioactive CD4 ligands as pre- and/or postbinding inhibitors of HIV-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:373-407. [PMID: 10987097 DOI: 10.1016/s1054-3589(00)48012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- L Briant
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS EP 2104, Montpellier, France
| | | |
Collapse
|
26
|
Edling AE, Choksi S, Huang Z, Korngold R. Effect of a cyclic heptapeptide based on the human CD4 domain 1 CC' loop region on murine experimental allergic encephalomyelitis: inhibition of both primary and secondary responses. J Neuroimmunol 2001; 112:115-28. [PMID: 11108940 DOI: 10.1016/s0165-5728(00)00393-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 802-2 peptide, designed from the conserved D1-CC' loop region of human CD4, can disrupt CD4(+) T cell activation in both human and murine systems. Here, 802-2 was investigated for efficacy in acute murine experimental allergic encephalomyelitis (EAE) models, and was found to significantly reduce the severity of disease when administered either before or after the onset of symptoms. 802-2 treatment during PLP139-151 induction of EAE rendered the mice more resistant to subsequent rechallenge with antigen, and was also efficacious when initially administered during a secondary EAE response. T cells from 802-2-treated mice proliferated poorly to in vitro restimulation with PLP139-151 and exhibited decreased frequencies of IL-2, IL-4, and IFN-gamma producing cells, but were still able to respond to third-party antigens. These combined results suggest the potential therapeutic value of 802-2 for inhibition of CD4(+) T cell neuroimmunological responses.
Collapse
Affiliation(s)
- A E Edling
- Department of Microbiology and Immunology, Jefferson Medical College, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
27
|
Esser U, Speck RF, Deen KC, Atchison RE, Sweet R, Goldsmith MA. Molecular function of the CD4 D1 domain in coreceptor-mediated entry by HIV type 1. AIDS Res Hum Retroviruses 2000; 16:1845-54. [PMID: 11118070 DOI: 10.1089/08892220050195801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The surface molecule CD4 plays a key role in initiating cellular entry by the human immunodeficiency virus type 1 (HIV-1), and it is now recognized as acting synergistically with select chemokine receptors (coreceptors) in the infection process. The present study was undertaken to determine whether the extracellular region of CD4 is sufficient to induce fusion of HIV-1 virions with target cells in the absence of its anchoring function. Using pseudotype reporter viruses to quantitate infection, soluble CD4 (sCD4) was tested for its ability to induce fusion by viruses utilizing CCR5 as their coreceptor. We found that sCD4 was competent to replace membrane-bound CD4 to trigger infection mediated by several HIV-1 envelopes. Furthermore, in a comparison of the envelopes of HIV-1 NL4-3 and a chimera containing the gp120 V3 loop of Ba-L, the V3 region was found to be one factor affecting susceptibility to induction by sCD4. In addition, using truncated and mutant derivatives of sCD4, the amino-terminal D1 domain of CD4 was found to be necessary and sufficient for induction of fusion and to require an intact gp120-binding site for this activity. These results delineate determinants on CD4 and gp120 required for fusion induction in collaboration with a coreceptor, and suggest a mechanism whereby CD4 may contribute to viral infection in trans.
Collapse
Affiliation(s)
- U Esser
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ren Y, Feng J, Qu H, Li S, Shen B. Three-dimensional structure and function study on the active region in the extracellular ligand-binding domain of human IL-6 receptor. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2000; 43:425-32. [PMID: 18726347 DOI: 10.1007/bf02879308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/1999] [Indexed: 11/26/2022]
Abstract
In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hIL-6 R) was constructed by computer-guided homology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hIL-6R with the ligand (hIL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hIL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cys121, Cys132, Cys165, Cys176; near membrane Cys residue: Cys193) or each double-site mutation of the five residues in WSEWS motif of hIL-6R (V106-P322) makes the corresponding spatial conformation of the pocket region block the linkage between hIL-6 R and hIL-6. However, the influence of the site-directed mutation of Cys211 and Cys277 individually on the conformation of the pocket region benefits the interaction between hIL-6R and hIL-6. Our study suggests that the predicted hydrophobic pocket in the 3-D model of hIL-6R (V106-P322) is the critical molecular basis for the binding of hIL-6R with its ligand, and the active pocket may be used as a target for designing small hIL-6R-inhibiting molecules in our further study.
Collapse
Affiliation(s)
- Y Ren
- Institute of Basic Medical Sciences, Chinese Academy of Military Medical Sciences, Beijing, China.
| | | | | | | | | |
Collapse
|
29
|
Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 2000; 97:7124-9. [PMID: 10860979 PMCID: PMC16510 DOI: 10.1073/pnas.97.13.7124] [Citation(s) in RCA: 900] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bcl-2 and related proteins are key regulators of apoptosis or programmed cell death implicated in human disease including cancer. We recently showed that cell-permeable Bcl-2 binding peptides could induce apoptosis of human myeloid leukemia in vitro and suppress its growth in severe combined immunodeficient mice. Here we report the discovery of HA14-1, a small molecule (molecular weight = 409) and nonpeptidic ligand of a Bcl-2 surface pocket, by using a computer screening strategy based on the predicted structure of Bcl-2 protein. In vitro binding studies demonstrated the interaction of HA14-1 with this Bcl-2 surface pocket that is essential for Bcl-2 biological function. HA14-1 effectively induced apoptosis of human acute myeloid leukemia (HL-60) cells overexpressing Bcl-2 protein that was associated with the decrease in mitochondrial membrane potential and activation of caspase-9 followed by caspase-3. Cytokine response modifier A, a potent inhibitor of Fas-mediated apoptosis, did not block apoptosis induced by HA14-1. Whereas HA14-1 strongly induced the death of NIH 3T3 (Apaf-1(+/+)) cells, it had little apoptotic effect on Apaf-1-deficient (Apaf-1(-/-)) mouse embryonic fibroblast cells. These data are consistent with a mechanism by which HA14-1 induces the activation of Apaf-1 and caspases, possibly by binding to Bcl-2 protein and inhibiting its function. The discovery of this cell-permeable molecule provides a chemical probe to study Bcl-2-regulated apoptotic pathways in vivo and could lead to the development of new therapeutic agents.
Collapse
Affiliation(s)
- J L Wang
- Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wiegers GJ, Stec IE, Klinkert WE, Reul JM. Glucocorticoids regulate TCR-induced elevation of CD4: functional implications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6213-20. [PMID: 10843673 DOI: 10.4049/jimmunol.164.12.6213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4 serves as a coreceptor during Ag recognition by the TCR. This interaction results in a marked increase in the sensitivity of a T cell to Ag presented by MHC class II molecules. Here we report that activation of T cells either by plate-bound mAb (anti-TCR, anti-CD3) or soluble activators (staphylococcal enterotoxin A, Con A) is associated with an (up to 3-fold) increase in CD4 cell surface expression on CD25+ cells, which was maximal after 72-96 h. Incubation with the glucocorticoid hormone corticosterone (CORT) shifted the enhancement of CD4 expression to a point about 24 h earlier than that observed in control cultures. In parallel, the proliferative response of these CORT-treated cells was profoundly enhanced. An involvement of increased CD4 expression in this enhanced proliferative response was evidenced by the observation that T cell proliferation in CORT-treated cultures was much less sensitive to inhibition by an inhibitory, nondepleting anti-CD4 mAb than that in control cultures. TCR down-regulation was, however, not affected by CORT. Thus, based on this study and previous reports we propose that both TCR-mediated signals and glucocorticoids are important physiological regulators of CD4 expression. In addition, these findings may be of significance for the sensitivity of CD4+ cells to HIV infection upon T cell activation, as the efficacy of primary patient HIV entry depends on the level of surface CD4.
Collapse
MESH Headings
- Adjuvants, Immunologic/antagonists & inhibitors
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- CD4 Antigens/biosynthesis
- CD4 Antigens/immunology
- CD4 Antigens/physiology
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Corticosterone/antagonists & inhibitors
- Corticosterone/pharmacology
- Corticosterone/physiology
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Male
- Mifepristone/pharmacology
- Rats
- Rats, Wistar
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/physiology
- Receptors, Glucocorticoid/antagonists & inhibitors
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- G J Wiegers
- Section of Neuroimmunoendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
31
|
Huang Z. Structural chemistry and therapeutic intervention of protein-protein interactions in immune response, human immunodeficiency virus entry, and apoptosis. Pharmacol Ther 2000; 86:201-15. [PMID: 10882809 DOI: 10.1016/s0163-7258(00)00052-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein-protein interactions involved in diverse biological functions are largely unexplored therapeutic targets, and present a major challenge and opportunity for drug design research. Encouraging new approaches to this problem recently have emerged from studies of small molecule regulators of protein-protein complexes. This review outlines the basic concepts for two of these approaches, based on structural and chemical strategies, by illustrating their application in the design of small molecule inhibitors for three biological systems: (1) cell surface molecules CD4 and CD8 involved in immune response, (2) chemokine receptor-ligand interactions implicated in human immunodeficiency virus entry, and (3) B-cell leukemia/lymphoma-2 family proteins essential for regulation of programmed cell death or apoptosis. The design and discovery of these novel reagents provide valuable tools to probe fundamental questions about a particular protein-protein complex, and may lead to a new generation of potential therapeutic agents. Furthermore, these studies suggest a framework for chemical intervention of other protein-protein interactions involved in many pathological processes.
Collapse
Affiliation(s)
- Z Huang
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, 802 BLSB, 233 South 10th Street, Philadelphia, PA 19107 USA.
| |
Collapse
|
32
|
Center DM, Kornfeld H, Ryan TC, Cruikshank WW. Interleukin 16: implications for CD4 functions and HIV-1 progression. IMMUNOLOGY TODAY 2000; 21:273-80. [PMID: 10825739 DOI: 10.1016/s0167-5699(00)01629-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this article, David Center and colleagues clarify the controversies that have emerged over the unique structure of interleukin 16 and its anti-HIV-1 activity. Interleukin 16 is a ligand for CD4, and this implies CD4 acts as a sentinel receptor that can switch CD4+ T cells between immune and inflammatory functions.
Collapse
Affiliation(s)
- D M Center
- Evans Memorial Department of Medicine, Pulmonary Center at Boston University School of Medicine, MA 02118, USA.
| | | | | | | |
Collapse
|
33
|
Némorin JG, Duplay P. Evidence that Llck-mediated phosphorylation of p56dok and p62dok may play a role in CD2 signaling. J Biol Chem 2000; 275:14590-7. [PMID: 10799545 DOI: 10.1074/jbc.275.19.14590] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Lck tyrosine kinase is involved in signaling by T cell surface receptors such as TCR/CD3, CD2, and CD28. As other downstream protein-tyrosine kinases are activated upon stimulation of these receptors, it is difficult to assign which tyrosine-phosphorylated proteins represent bona fide Lck substrates and which are phosphorylated by other tyrosine kinases. We have developed a system in which Lck can be activated independently of TCR/CD3. We have shown that activation of an epidermal growth factor receptor/Lck chimera leads to the specific phosphorylation of Ras GTPase-activating protein (RasGAP) and two RasGAP-associated proteins, p56(dok) and p62(dok). Activation of the chimeric protein correlates with an increase in cellular Ca(2+) in the absence of ZAP-70 and phospholipase Cgamma1 phosphorylation. Furthermore, we have found that p62(dok) co-immunoprecipitates with the activated epidermal growth factor receptor/LckF505 and that phosphorylated Dok proteins bind to the Src homology 2 domain of Lck in vitro. In addition, we have shown that activation via the CD2 but not the TCR/CD3 receptor leads to the phosphorylation of p56(dok) and p62(dok). Using JCaM1.6 cells, we have demonstrated that Lck is required for CD2-mediated phosphorylation of Dok proteins. We propose that phosphorylation and Src homology 2-mediated association of p56(dok) and p62(dok) with Lck play a selective function in accessory receptor signal transduction mechanisms.
Collapse
Affiliation(s)
- J G Némorin
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, Université du Québec, Laval, Québec H7V 1B7, Canada
| | | |
Collapse
|
34
|
Mathy NL, Bannert N, Norley SG, Kurth R. Cutting edge: CD4 is not required for the functional activity of IL-16. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4429-32. [PMID: 10779741 DOI: 10.4049/jimmunol.164.9.4429] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-16 functions as a chemoattractant factor, inhibitor of HIV replication, and inducer of proinflammatory cytokine production. Previous studies have suggested that CD4 is the receptor for IL-16, because only CD4+ cells respond to IL-16 and both the anti-CD4 Ab OKT4 and soluble CD4 can block IL-16 function. However, these are only indirect evidence of a requirement for CD4, and to date a direct interaction between IL-16 and CD4 has not been shown. In this paper, we report that cells from CD4 knockout mice are as responsive to IL-16 as their CD4 wild-type equivalents in both assays testing for IL-16 function (chemotaxis and production of proinflammatory cytokines). In addition, the inhibitory effect of soluble CD4 on IL-16 function observed using CD4 wild type murine cells was not observed using CD4 knockout cells. These data demonstrate that CD4 is not required for IL-16 function and suggest that another molecule acts as the major receptor.
Collapse
Affiliation(s)
- N L Mathy
- Paul-Ehrlich Institute, Langen, Germany.
| | | | | | | |
Collapse
|
35
|
Abstract
The lymphocyte activation gene-3 (LAG-3) product is an MHC class II ligand related to CD4. We investigated whether LAG-3 could be used in vivo to stimulate MHC class II(+) antigen-presenting cells (APC), such as resident macrophages or dendritic cells known to play a crucial role in processing and presenting of antigens to the immune system. We first introduced human (h) LAG-3 or mouse LAG-3 into three types of tumor cells (MCA 205, TS / A and RENCA) to evaluate its capacity to stimulate a tumor-specific immune response in vivo. In contrast to the progressive growth of wild-type cells in syngeneic mice, LAG-3-transfected tumors completely regressed or their growth was markedly reduced. Mice were significantly to completely protected against a rechallenge with parental tumor cells. Protection induced by hLAG-3(+) tumor cells involved recruitment of a CD8(+) T cell response since nu / nu mice and CD8-depleted mice did not reject tumors, and a systemic tumor-specific CTL activity was induced. Co-administration of soluble LAG-3 with wild-type tumor cells also markedly reduced primary tumor growth. Interestingly, immunization with LAG-3(+) tumor cells or co-administration of soluble LAG-3 with irradiated wild-type tumor cells reduced the growth of pre-established tumors. We therefore suggest that LAG-3 could be used as a vaccine adjuvant for its ability to trigger APC via MHC class II molecules.
Collapse
Affiliation(s)
- P Prigent
- Laboratoire d'Immunologie Cellulaire Institut Gustave-Roussy, Villejuif, France
| | | | | | | |
Collapse
|
36
|
Roland J, Berezov A, Greene MI, Murali R, Piatier-Tonneau D, Devaux C, Briant L. The synthetic CD4 exocyclic CDR3.AME(82-89) inhibits NF-kappaB nuclear translocation, HIV-1 promoter activation, and viral gene expression. DNA Cell Biol 1999; 18:819-28. [PMID: 10595395 DOI: 10.1089/104454999314818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously shown that the synthetic aromatically modified exocyclic (AME) analog (CDR3.AME(82-89), derived from the CDR3 (residues 82-89) region of CD4 domain 1, inhibits replication of human immunodeficiency virus type 1 (HIV-1) in infected cells. In this work, we investigated the mechanism by which this inhibition is achieved. Although cells exposed to HIV-1 and treated with the CDR3.AME(82-89) peptide did not release viral particles for more than a week and kept surface expression of CD4, viral DNA was found in those cells 24 h after virus exposure, indicating that the CDR3.AME(82-89) analog does not prevent virus entry. However, virus transcription remained extremely low in infected cells, as demonstrated by the study of spliced HIV-1 mRNA in cultures treated with CDR3.AME(82-89) 72 h postinfection. Finally, the CDR3.AME(82-89) peptide was found to be a potent inhibitor of HIV-1 promoter activity and nuclear factor-kappaB translocation, indicating that the antiviral property of this peptide is, at least in part, linked with the ability of the molecule to prevent HIV-1 transcription.
Collapse
Affiliation(s)
- J Roland
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS EP J0004, Institut de Biologie, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Hannier S, Triebel F. The MHC class II ligand lymphocyte activation gene-3 is co-distributed with CD8 and CD3-TCR molecules after their engagement by mAb or peptide-MHC class I complexes. Int Immunol 1999; 11:1745-52. [PMID: 10545478 DOI: 10.1093/intimm/11.11.1745] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous studies indicated that signaling through lymphocyte activation gene-3 (LAG-3), a MHC class II ligand, induced by multivalent anti-receptor antibodies led to unresponsiveness to TCR stimulation. Here, lateral distribution of the LAG-3 molecules and its topological relationship (mutual proximity) to the TCR, CD8, CD4, and MHC class I and II molecules were studied in the plasma membrane of activated human T cells in co-capping experiments and conventional fluorescence microscopy. Following TCR engagement by either TCR-specific mAb or MHC-peptide complex recognition in T-B cell conjugates, LAG-3 was found to be specifically associated with the CD3-TCR complex. Similarly, following CD8 engagement LAG-3 and CD8 were co-distributed on the cell surface while only a low percentage of CD4-capped cells displayed LAG-3 co-caps. In addition, LAG-3 was found to be associated with MHC class II (i.e. DR, DP and DQ) and partially with MHC class I molecules. The supramolecular assemblies described here between LAG-3, CD3, CD8 and MHC class II molecules may result from an organization in raft microdomains, a phenomenon known to regulate early events of T cell activation.
Collapse
Affiliation(s)
- S Hannier
- Laboratoire d'Immunologie Cellulaire, Institut Gustave-Roussy, and Laboratoire d'Immunologie des tumeurs, Faculté de Pharmacie, Université Paris XI, 92296 Chatenay-Malabry, France
| | | |
Collapse
|
38
|
Liu Y, Cruikshank WW, O'Loughlin T, O'Reilly P, Center DM, Kornfeld H. Identification of a CD4 domain required for interleukin-16 binding and lymphocyte activation. J Biol Chem 1999; 274:23387-95. [PMID: 10438516 DOI: 10.1074/jbc.274.33.23387] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Interleukin-16 (IL-16) activates CD4(+) cells, possibly by direct interaction with CD4. IL-16 structure and function are highly conserved across species, suggesting similar conservation of a putative IL-16 binding site on CD4. Comparison of the human CD4 amino acid sequence with that of several different species revealed that immunoglobulin-like domain 4 is the most conserved extracellular region. Potential interaction of this domain with IL-16 was studied by testing murine D4 sequence-based oligopeptides for inhibition of IL-16 chemoattractant activity and inhibition of IL-16 binding to CD4 in vitro. Three contiguous 12-residue D4 region peptides (designated A, B, and C) blocked IL-16 chemoattractant activity, with peptide B the most potent. Peptides A and B were synergistic for inhibition, but peptide C was not. Peptides A and B also blocked IL-16 binding to CD4 in vitro, whereas peptide C did not. CD4, in addition to its known function as a receptor for major histocompatibility complex class II, contains a binding site for IL-16 in the D4 domain. The D4 residues required for IL-16 binding overlap those previously shown to participate in CD4-CD4 dimerization following class II major histocompatibility complex binding, providing a mechanistic explanation for the known function of IL-16 to inhibit the mixed lymphocyte reaction.
Collapse
Affiliation(s)
- Y Liu
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
CD4 is expressed by T lymphocytes and monocytes and is generally considered a monomer even though its structure was originally modelled on the REI Bence-Jones homodimer. However, native CD4 was demonstrated as both monomer and dimers of 55 and 110 kDa in lymphoid and monocytoid cells by immunoprecipitation and immunoblotting after solubilization with alkylating (iodoacetamide) or reducing (dithiothreitol, 2-mercaptoethanol) reagents. Full reduction yielded only the 55-kDa monomeric form. Purified CD4 oligomers from CEM-T4 cells were also resolved as homodimers by MALDI-Tof mass fingerprinting after tryptic digestion. Cell treatment with the membrane impermeable, free-thiol reactive, 5,5'-dithiobis-2-nitrobenzoic acid enhanced cell surface CD4 dimers and tetramers. The interaction sites producing dimerization were probably in the D4 domain as OKT4 inhibited self association of recombinant CD4 (rCD4). Oligomerization of rCD4 by glutathione and thioredoxin indicates that thiol exchange interactions were responsible. Enhanced CD4 dimer expression was also observed after PMA (20 ng/ml) activation of THP-1 cells. These findings demonstrate that different quaternary forms of CD4 such as monomers, homodimers and tetramers are expressed by T lymphocytes and monocytes/macrophages.
Collapse
Affiliation(s)
- G W Lynch
- Centre for Virus Research, Westmead Institutes of Health Research, Westmead Hospital and University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
40
|
Piguet V, Schwartz O, Le Gall S, Trono D. The downregulation of CD4 and MHC-I by primate lentiviruses: a paradigm for the modulation of cell surface receptors. Immunol Rev 1999; 168:51-63. [PMID: 10399064 DOI: 10.1111/j.1600-065x.1999.tb01282.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human and simian immunodeficiency viruses (HIV and SIV) downregulate the cell surface expression of CD4, their primary receptor, and of class I histocompatibility complex (MHC-I), a critical mediator of immune recognition. While the first of these effects seems important to preserve viral infectivity, the second likely promotes immune evasion. Three HIV-1 proteins, Nef, Env and Vpu, contribute to downregulate CD4, Env forms a complex with CD4 in the endoplasmic reticulum, thereby retaining the receptor in this compartment. Nef and Vpu, on the other hand, act as connectors between CD4 and specific intracellular trafficking pathways, targeting the receptor for degradation in the lysosome and the proteasome, respectively. Some of the downstream partners of the viral proteins in these events have been identified, and include the adaptor complex of clathrin-coated pits, the beta subunit of COP-I coatomer, and the ubiquitin pathway-related h-beta TrCP protein. HIV-induced MHC-I downregulation, mostly the effect of Nef, also reflects a redistribution of this receptor, with its accumulation in the Golgi. The modalities of this process, however, are as yet imperfectly understood. New evidence indicates that the mechanisms employed by primate lentiviruses to downmodulate CD4 and MHC-I are also exploited by a number of cellular regulatory processes.
Collapse
Affiliation(s)
- V Piguet
- Department of Genetics and Microbiology, University of Geneva, Switzerland
| | | | | | | |
Collapse
|