1
|
Pursell T, Spencer Clinton JL, Tan J, Peng R, Ling PD. Modified vaccinia Ankara expressing EEHV1A glycoprotein B elicits humoral and cell-mediated immune responses in mice. PLoS One 2022; 17:e0265424. [PMID: 35312707 PMCID: PMC8936464 DOI: 10.1371/journal.pone.0265424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease (EEHV-HD) in Asian elephants and is the largest cause of death in captive juvenile Asian elephants in North America and Europe. EEHV-HD also has been documented in captive and wild elephants in their natural range countries. A safe and effective vaccine to prevent lethal EEHV infection would significantly improve conservation efforts for this endangered species. Recent studies from our laboratory suggest that EEHV morbidity and mortality are often associated with primary infection. Therefore, we aim to generate a vaccine, particularly for EEHV1 naïve animals, with the goal of preventing lethal EEHV-HD. To address this goal, we generated a Modified Vaccinia Ankara (MVA) recombinant virus expressing a truncated form of glycoprotein B (gBΔfur731) from EEHV1A, the strain associated with the majority of lethal EEHV cases. Vaccination of CD-1 mice with this recombinant virus induced robust antibody and polyfunctional T cell responses significantly above mice inoculated with wild-type MVA. Although the vaccine-induced T cell response was mainly observed in CD8+ T cell populations, the CD4+ T cell response was also polyfunctional. No adverse responses to vaccination were observed. Overall, our data demonstrates that MVA-gBΔfur731 stimulates robust humoral and cell-mediated responses, supporting its potential translation for use in elephants.
Collapse
Affiliation(s)
- Taylor Pursell
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
2
|
Human cytomegalovirus vaccine based on the envelope gH/gL pentamer complex. PLoS Pathog 2014; 10:e1004524. [PMID: 25412505 PMCID: PMC4239111 DOI: 10.1371/journal.ppat.1004524] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 10/16/2014] [Indexed: 12/22/2022] Open
Abstract
Human Cytomegalovirus (HCMV) utilizes two different pathways for host cell entry. HCMV entry into fibroblasts requires glycoproteins gB and gH/gL, whereas HCMV entry into epithelial and endothelial cells (EC) requires an additional complex composed of gH, gL, UL128, UL130, and UL131A, referred to as the gH/gL-pentamer complex (gH/gL-PC). While there are no established correlates of protection against HCMV, antibodies are thought to be important in controlling infection. Neutralizing antibodies (NAb) that prevent gH/gL-PC mediated entry into EC are candidates to be assessed for in vivo protective function. However, these potent NAb are predominantly directed against conformational epitopes derived from the assembled gH/gL-PC. To address these concerns, we constructed Modified Vaccinia Ankara (MVA) viruses co-expressing all five gH/gL-PC subunits (MVA-gH/gL-PC), subsets of gH/gL-PC subunits (gH/gL or UL128/UL130/UL131A), or the gB subunit from HCMV strain TB40/E. We provide evidence for cell surface expression and assembly of complexes expressing full-length gH or gB, or their secretion when the corresponding transmembrane domains are deleted. Mice or rhesus macaques (RM) were vaccinated three times with MVA recombinants and serum NAb titers that prevented 50% infection of human EC or fibroblasts by HCMV TB40/E were determined. NAb responses induced by MVA-gH/gL-PC blocked HCMV infection of EC with potencies that were two orders of magnitude greater than those induced by MVA expressing gH/gL, UL128-UL131A, or gB. In addition, MVA-gH/gL-PC induced NAb responses that were durable and efficacious to prevent HCMV infection of Hofbauer macrophages, a fetal-derived cell localized within the placenta. NAb were also detectable in saliva of vaccinated RM and reached serum peak levels comparable to NAb titers found in HCMV hyperimmune globulins. This vaccine based on a translational poxvirus platform co-delivers all five HCMV gH/gL-PC subunits to achieve robust humoral responses that neutralize HCMV infection of EC, placental macrophages and fibroblasts, properties of potential value in a prophylactic vaccine. Human cytomegalovirus (HCMV) fetal infection during pregnancy and infection of immunocompromised patients are both clinical problems considered extremely important by the Institute of Medicine. Limited efficacy against primary HCMV infection was found using a subunit vaccine based on glycoprotein B, an important neutralizing antibody determinant blocking HCMV entry into fibroblasts. The HCMV field has been transformed by the discovery that a five-member (pentamer) protein complex is a required factor for epithelial and endothelial cell entry and indispensable for transmission as shown in non-human primates. Targeting HCMV with antibodies specific to the pentamer may interrupt horizontal and vertical transmission. We describe an innovative vaccine strategy to induce serum neutralizing antibodies of impressive magnitude against HCMV in two animal models. Using an attenuated poxvirus vector system, we demonstrate that co-expression of all five pentamer components is significantly more potent to induce serum neutralizing antibodies than subunit subsets of the complex or glycoprotein B, reaching peak levels comparable to HCMV hyperimmune globulin. A vaccine that elicits systemic and mucosal antibody responses that prevents infection of multiple cell types crucial to natural history of HCMV infection could play a role in preventing congenital HCMV infection and control of infection in immunocompromised patients.
Collapse
|
3
|
Smith LR, Wloch MK, Chaplin JA, Gerber M, Rolland AP. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial. Vaccines (Basel) 2013; 1:398-414. [PMID: 26344340 PMCID: PMC4494211 DOI: 10.3390/vaccines1040398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022] Open
Abstract
2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV) DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB) and phosphoprotein 65 (pp65) formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK) delivery system designed to enhance plasmid expression. The vaccine’s planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV+) recipients of an allogeneic hematopoietic stem cell transplant (HCT). A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV+ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.
Collapse
Affiliation(s)
- Larry R Smith
- Vical Incorporated, 10390 Pacific Center Court, San Diego, California, CA 92121, USA.
| | - Mary K Wloch
- Vical Incorporated, 10390 Pacific Center Court, San Diego, California, CA 92121, USA.
| | - Jennifer A Chaplin
- Vical Incorporated, 10390 Pacific Center Court, San Diego, California, CA 92121, USA.
| | - Michele Gerber
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL 60062, USA.
| | - Alain P Rolland
- Vical Incorporated, 10390 Pacific Center Court, San Diego, California, CA 92121, USA.
| |
Collapse
|
4
|
Gombos RB, Teefy J, Lee A, Hemmings DG. Impact of Local Endothelial Challenge with Cytomegalovirus or Glycoprotein B on Vasodilation in Intact Pressurized Arteries from Nonpregnant and Pregnant Mice1. Biol Reprod 2012; 87:83. [DOI: 10.1095/biolreprod.112.099168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
5
|
Faludi I, Szabó Á. Vaccination with DNA vector expressing chlamydial low calcium response protein E (LcrE) against Chlamydophila pneumoniae infection. Acta Microbiol Immunol Hung 2011; 58:123-34. [PMID: 21715282 DOI: 10.1556/amicr.58.2011.2.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydophila pneumoniae is an obligate intracellular human pathogen, which causes acute respiratory tract infections and can also cause chronic infections. C. pneumoniae possess type III secretion system (TTSS), which allows them to secrete effector molecules into the inclusion membrane and the host cell cytosol. Low calcium response protein E (LcrE) is a part of TTSS. The gene of LcrE in a 6His-tagged form was cloned from C. pneumoniae CWL029, expressed and purified from Escherichia coli using the HIS-select TALON CellThru Resin, this gene was also cloned into a eukaryotic expression vector (pΔRC). One group of BALB/c mice received an intramuscular pΔRC inoculation then the mice were immunized with purified LcrE protein; the second group of mice was immunized two times with the recombinant plasmid (pΔRCLcrE), and the third group was primed with pΔRCLcrE inoculation then boosted with LcrE protein. LcrE-specific antibody response was induced by DNA immunization with a shift towards Th1 isotype pattern compared to protein-immunization, this shifting pattern was observed in plasmid primed then protein-boosted animals. DNA immunization given as a priming and followed by a protein booster significantly reduced the number of viable bacteria in the lungs after challenge with C. pneumoniae. These results confirm that immunization with pΔRCLcrE can be an effective part of a vaccination schedule against C. pneumoniae.
Collapse
Affiliation(s)
- Ildikó Faludi
- 1 University of Szeged Department of Medical Microbiology and Immunobiology Szeged Hungary
| | - Ágnes Szabó
- 1 University of Szeged Department of Medical Microbiology and Immunobiology Szeged Hungary
| |
Collapse
|
6
|
|
7
|
Abstract
Although infection with human cytomegalovirus (HCMV) is ubiquitous and usually asymptomatic, there are individuals at high risk for serious HCMV disease. These include solid organ and hematopoietic stem cell (HSC) transplant patients, individuals with HIV infection, and the fetus. Since immunity to HCMV ameliorates the severity of disease, there have been efforts made for over 30 years to develop vaccines for use in these high-risk settings. However, in spite of these efforts, no HCMV vaccine appears to be approaching imminent licensure. The reasons for the failure to achieve the goal of a licensed HCMV vaccine are complex, but several key problems stand out. First, the host immune correlates of protective immunity are not yet clear. Secondly, the viral proteins that should be included in a HCMV vaccine are uncertain. Third, clinical trials have largely focused on immunocompromised patients, a population that may not be relevant to the problem of protection of the fetus against congenital infection. Fourth, the ultimate target population for HCMV vaccination remains unclear. Finally, and most importantly, there has been insufficient education about the problem of HCMV infection, particularly among women of child-bearing age and in the lay public. This review considers the strategies that have been explored to date in development of HCMV vaccines, and summarizes both active clinical trials as well as novel technologies that merit future consideration toward the goal of prevention of this significant public health problem.
Collapse
Affiliation(s)
- M R Schleiss
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Abstract
Human cytomegalovirus (HCMV) disease is a major cause of morbidity and mortality in neonates and immunocompromised populations, such as transplant recipients and HIV-infected patients. The development of a vaccine to prevent HCMV infection or disease has been assigned the highest priority by the US Institute of Medicine. Although, after 30 years of intensive study, a clinically licensed vaccine is still not available, significant progress has been made in the field of HCMV vaccine development, along with greater understanding of HCMV immunology, molecular biology and pathology. In recent years, new vaccine strategies have been developed that have shown promising results in preclinical studies and are able to induce HCMV-specific immune responses in clinical studies, although efficacy data are not yet available. Here we review the history of HCMV vaccine development and the current strategies in the development of new HCMV vaccines. We propose that research should focus on the development of a vaccine to prevent or control HCMV-related disease rather than to prevent infection, and that discerning strategies should be used for targeting HCMV disease in different clinical settings.
Collapse
Affiliation(s)
- Jie Zhong
- Australian Centre for Vaccine Development, Queensland Institute of Medical Research, Tumour Immunology Laboratory, Division of Infectious Diseases and Immunology, Brisbane, Australia
| | | |
Collapse
|
9
|
Schleiss MR, Heineman TC. Progress toward an elusive goal: current status of cytomegalovirus vaccines. Expert Rev Vaccines 2006; 4:381-406. [PMID: 16026251 DOI: 10.1586/14760584.4.3.381] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although infection with human cytomegalovirus (CMV) is ubiquitous and generally asymptomatic in most individuals, certain patient populations are at high risk for CMV-associated disease. These include HIV-infected individuals with AIDS, transplant patients, and newborn infants with congenital CMV infection. Immunity to CMV infection, both in the transplant setting and among women of childbearing age, plays a vital role in the control of CMV-induced injury and disease. Although immunity induced by CMV infection is not completely protective against reinfection, there is nevertheless a sound basis on which to believe that vaccination could help control CMV disease in high-risk patient populations. Evidence from several animal models of CMV infection indicates that a variety of vaccine strategies are capable of inducing immune responses sufficient to protect against CMV-associated illness following viral challenge. Vaccination has also proven effective in improving pregnancy outcomes following CMV challenge of pregnant guinea pigs, providing a 'proof-of-principle' relevant to human clinical trials of CMV vaccines. Although there are no licensed vaccines currently available for human CMV, progress toward this goal has been made, as evidenced by ongoing clinical trial testing of a number of immunization strategies. CMV vaccines currently in various stages of preclinical and clinical testing include: protein subunit vaccines; DNA vaccines; vectored vaccines using viral vectors, such as attenuated pox- and alphaviruses; peptide vaccines; and live attenuated vaccines. This review summarizes some of the obstacles that must be overcome in development of a CMV vaccine, and provides an overview of the current state of preclinical and clinical trial evaluation of vaccines for this important public health problem.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota School of Medicine, 420 Delaware Street SE, MMC 296, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
10
|
Fischer U, Utke K, Somamoto T, Köllner B, Ototake M, Nakanishi T. Cytotoxic activities of fish leucocytes. FISH & SHELLFISH IMMUNOLOGY 2006; 20:209-26. [PMID: 15939625 DOI: 10.1016/j.fsi.2005.03.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/03/2005] [Accepted: 03/03/2005] [Indexed: 05/02/2023]
Abstract
Like mammalian leucocytes, white blood cells of fish are able to kill altered (e.g. virus-infected) and foreign (allogeneic or xenogeneic) cells. The existence of natural killer (NK)-like and specific cytotoxic cells in fish was first shown using allogeneic and xenogeneic effector/target cell systems. In addition to in vivo and ex vivo studies, very important contributions were made by in vitro analysis using a number of different long-term cytotoxic cell lines established from channel catfish. In mammals, specific cell-mediated cytotoxicity (CMC) as part of the adaptive immune response requires a number of key molecules expressed on effector leucocytes and target cells. CD8+ T lymphocytes kill infected cells only, if their antigen receptor (TCR) matches the MHC class I with bound peptide of the target cell. Expression patterns of the fish gene homologues for TCR, CD8 and MHC class I, as well as related genes, are in agreement with similar function. Convenient systems for the analysis of specific CMC have only recently become available for fish with the combination of clonal fish with syngeneic or allogeneic but MHC class I matching cell lines. It was demonstrated that both, NK- and cytotoxic T (Tc) cells are involved in the killing of virus infected MHC class I matching and mismatching target cells. Analysis of these lymphocyte subsets is only starting for fish. There is also evidence that the different viral proteins trigger different subsets of killer cells. This review further discusses findings on fish CMC with regard to temperature/seasons and ontogeny.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Gallez-Hawkins G, Li X, Franck AE, Thao L, Lacey SF, Diamond DJ, Zaia JA. DNA and low titer, helper-free, recombinant AAV prime-boost vaccination for cytomegalovirus induces an immune response to CMV-pp65 and CMV-IE1 in transgenic HLA A*0201 mice. Vaccine 2005; 23:819-26. [PMID: 15542207 DOI: 10.1016/j.vaccine.2004.06.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/06/2004] [Accepted: 06/28/2004] [Indexed: 11/28/2022]
Abstract
A prime-boost immunization regimen allowed the use of low titer, helper-free rAAV-pp65mII and rAAV-IE1 virus to elicit specific humoral and cellular responses to two important cytomegalovirus (CMV) antigens: the immediate-early 1 (IE-1) and pp65 proteins. Simultaneous immunization of both CMV proteins, using DNA vaccine priming followed by rAAV boost, induced antibody (Ab) response, CD8 lymphocytes with cytotoxic function, and detectible binding of the cognate peptide epitopes for human HLA A*0201 restriction using tetramer technology.
Collapse
|
12
|
Morello CS, Ye M, Hung S, Kelley LA, Spector DH. Systemic priming-boosting immunization with a trivalent plasmid DNA and inactivated murine cytomegalovirus (MCMV) vaccine provides long-term protection against viral replication following systemic or mucosal MCMV challenge. J Virol 2005; 79:159-75. [PMID: 15596812 PMCID: PMC538742 DOI: 10.1128/jvi.79.1.159-175.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 08/23/2004] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that vaccination of BALB/c mice with a pool of 13 plasmid DNAs (pDNAs) expressing murine cytomegalovirus (MCMV) genes followed by formalin-inactivated MCMV (FI-MCMV) resulted in complete protection against viral replication in the spleen and salivary glands following sublethal intraperitoneal (i.p.) challenge. Here, we found that following intranasal (i.n.) challenge, titers of virus in the lungs of the immunized mice were reduced approximately 1,000-fold relative to those for mock-immunized controls. We next sought to extend these results and to determine whether similar protection levels could be achieved by priming with a pool of three pDNAs containing three key plasmids (IE1, M84, and gB). We found that the three-pDNA priming elicited IE1- and M84-p65-specific CD8+ T lymphocytes and, following FI-MCMV boost, high levels of virion-specific immunoglobulin G (IgG) and virus-neutralizing antibodies. When mice were i.n. challenged 4 months after the last boost, titers of virus in the lungs of immunized mice were reduced 1,000- to 2,000-fold from those for controls during the peak of viral replication. Additionally, titers of virus were either at or below the detection limits for the salivary glands, liver, and spleen of the majority of the immunized mice. Following sublethal i.p. challenge, virus was undetectable in all of the above target organs of the immunized mice. Virion-specific IgA in the lungs was consistently detected by day 6 post-i.n. challenge for the immunized mice and by day 14 for controls. These results demonstrate the immunity and high levels of protection of the priming-boosting vaccination against both systemic and mucosal challenge.
Collapse
Affiliation(s)
- Christopher S Morello
- Section of Molecular Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | | | | | | | |
Collapse
|
13
|
Gandhi MK, Khanna R. Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. THE LANCET. INFECTIOUS DISEASES 2004; 4:725-38. [PMID: 15567122 DOI: 10.1016/s1473-3099(04)01202-2] [Citation(s) in RCA: 394] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
After initial infection, human cytomegalovirus remains in a persistent state with the host. Immunity against the virus controls replication, although intermitent viral shedding can still take place in the seropositive immunocompetent person. Replication of cytomegalovirus in the absence of an effective immune response is central to the pathogenesis of disease. Therefore, complications are primarily seen in individuals whose immune system is immature, or is suppressed by drug treatment or coinfection with other pathogens. Although our increasing knowledge of the host-virus relationship has lead to the development of new pharmacological strategies for cytomegalovirus-associated infections, these strategies all have limitations-eg, drug toxicities, development of resistance, poor oral bioavailability, and low potency. Immune-based therapies to complement pharmacological strategies for the successful treatment of virus-associated complications should be prospectively investigated.
Collapse
Affiliation(s)
- Maher K Gandhi
- Tumour Immunology Laboratory at the Queensland Institute of Medical Research, Brisbane, Australia
| | | |
Collapse
|
14
|
Huang DB, Wu JJ, Tyring SK. A review of licensed viral vaccines, some of their safety concerns, and the advances in the development of investigational viral vaccines. J Infect 2004; 49:179-209. [PMID: 15337336 PMCID: PMC7126106 DOI: 10.1016/j.jinf.2004.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2004] [Indexed: 02/03/2023]
Abstract
Viral vaccines could be considered among the most important medical achievements of the 20th century. They have prevented much suffering and saved many lives. Although some curative antiviral drugs exist, we desperately depend on efforts by academic, governmental and industrial scientists in the advancement of viral vaccines in the prevention and control of infectious diseases. In the next decade, we hope to see advancement in the development of current and investigational viral vaccines against childhood and adult infections. In this article, we will review the licensed viral vaccines, some of their safety concerns, and the advances in the development of investigational viral vaccines.
Collapse
Affiliation(s)
- David B Huang
- Division of Infectious Diseases, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
15
|
McGregor A, Liu F, Schleiss MR. Molecular, biological, and in vivo characterization of the guinea pig cytomegalovirus (CMV) homologs of the human CMV matrix proteins pp71 (UL82) and pp65 (UL83). J Virol 2004; 78:9872-89. [PMID: 15331722 PMCID: PMC515002 DOI: 10.1128/jvi.78.18.9872-9889.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified the genes encoding the guinea pig cytomegalovirus (GPCMV) homologs of the upper and lower matrix proteins of human CMV, pp71 (UL82) and pp65 (UL83), which we designated GP82 and GP83, respectively. Transient-expression studies with a GP82 plasmid demonstrated that the encoded protein targets the nucleus and that the infectivity and plaquing efficiency of cotransfected GPCMV viral DNA was enhanced by GP82. The transactivation function of GP82 was not limited to GPCMV, but was also observed for a heterologous virus, herpes simplex virus type 1 (HSV-1). This was confirmed by its ability to complement the growth of an HSV-1 VP16 transactivation-defective mutant virus in an HSV viral DNA cotransfection assay. Study of a GP82 "knockout" virus (and its attendant rescuant), generated on a GPCMV bacterial artificial chromosome construct, confirmed the essential nature of the gene. Conventional homologous recombination was used to generate a GP83 mutant to examine the role of GP83 in the viral life cycle. Comparison of the one-step growth kinetics of the GP83 mutant (vAM409) and wild-type GPCMV indicated that GP83 protein is not required for viral replication in tissue culture. The role of GP83 in vivo was examined by comparing the pathogenesis of wild-type GPCMV, vAM409, and a control virus, vAM403, in guinea pigs. The vAM409 mutant was significantly attenuated for dissemination in immunocompromised strain 2 guinea pigs, suggesting that the GP83 protein is essential for full pathogenicity in vivo.
Collapse
Affiliation(s)
- Alistair McGregor
- Division of Infectious Diseases, Children's Hospital Medical Center Research Foundation, University of Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
16
|
Manley TJ, Luy L, Jones T, Boeckh M, Mutimer H, Riddell SR. Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood 2004; 104:1075-82. [PMID: 15039282 DOI: 10.1182/blood-2003-06-1937] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractAlthough cytomegalovirus (CMV) expresses proteins that interfere with antigen presentation by class I major histocompatibility complex (MHC) molecules, CD8+ cytotoxic T cells (CTLs) are indispensable for controlling infection and maintaining latency. Here, a cytokine flow cytometry assay that employs fibroblasts infected with a mutant strain of CMV (RV798), which is deleted of the 4 viral genes that are responsible for interfering with class I MHC presentation, was used to examine the frequency and specificity of the CD8+ CTLs to CMV in immunocompetent CMV-seropositive individuals. A large fraction of the CD8+ CTL response was found to be specific for viral antigens expressed during the immediate early and early phases of virus replication and presented by fibroblasts infected with RV798 but not wild-type CMV. These results demonstrate that the inhibition of class I antigen presentation observed in CMV-infected cells in vitro is not sufficient to prevent the induction of a broad repertoire of CD8+ CTLs after natural infection in vivo. Thus, reconstitution of T-cell immunity in immunodeficient patients by cell therapy or by vaccination may need to target multiple viral antigens to completely restore immunologic control of CMV.
Collapse
Affiliation(s)
- Thomas J Manley
- Fred Hutchinson Cancer Research Center, D3-100, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Wang Z, La Rosa C, Maas R, Ly H, Brewer J, Mekhoubad S, Daftarian P, Longmate J, Britt WJ, Diamond DJ. Recombinant modified vaccinia virus Ankara expressing a soluble form of glycoprotein B causes durable immunity and neutralizing antibodies against multiple strains of human cytomegalovirus. J Virol 2004; 78:3965-76. [PMID: 15047812 PMCID: PMC374285 DOI: 10.1128/jvi.78.8.3965-3976.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (CMV) is a viral pathogen that infects both genders, who remain asymptomatic unless they receive immunosuppressive drugs or acquire infections that cause reactivation of latent virus. CMV infection also causes serious birth defects following primary maternal infection during gestation. A safe and effective vaccine to limit disease in this population continues to be elusive. A well-studied antigen is glycoprotein B (gB), which is the principal target of neutralizing antibodies (NAb) towards CMV in humans and has been implicated as the viral partner in the receptor-mediated infection by CMV in a variety of cell types. Antibody-mediated virus neutralization has been proposed as a mechanism by which host immunity could modify primary infection. Towards this goal, an attenuated poxvirus, modified vaccinia virus Ankara (MVA), has been constructed to express soluble CMV gB (gB680-MVA) to induce CMV NAb. Very high levels of gB-specific CMV NAb were produced after two doses of the viral vaccine. NAb were durable within a twofold range for up to 6 months. Neutralization titers developed in immunized mice are equivalent to titers found clinically after natural infection. This viral vaccine, expressing gB derived from CMV strain AD169, induced antibodies that neutralized CMV strains of three different genotypes. Remarkably, preexisting MVA and vaccinia virus (poxvirus) immunity did not interfere with subsequent immunizations of gB680-MVA. The safety characteristics of MVA, combined with the robust immune response to CMV gB, suggest that this approach could be rapidly translated into the clinic.
Collapse
Affiliation(s)
- Zhongde Wang
- Laboratory of Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA>
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Human cytomegalovirus (HCMV), a betaherpesvirus, represents the major infectious cause of birth defects, as well as an important pathogen for immunocompromised individuals. The viral nucleocapsid containing a linear double-stranded DNA of 230 kb is surrounded by a proteinaceous tegument, which is itself enclosed by a loosely applied lipid bilayer. Expression of the HCMV genome is controlled by a cascade of transcriptional events that leads to the synthesis of three categories of viral proteins designated as immediate-early, early, and late. Clinical manifestations can be seen following primary infection, reinfection, or reactivation. About 10% of infants are infected by the age of 6 months following transmission from their mothers via the placenta, during delivery, or by breastfeeding. HCMV is a significant post-allograft pathogen and contributes to graft loss independently from graft rejection. Histopathologic examination of necropsy tissues demonstrates that the virus enters via the epithelium of the upper alimentary, respiratory, or genitourinary tracts. Hematogenous spreading is typically followed by infection of ductal epithelial cells. Infections are kept under control by the immune system. However, total HCMV clearance is rarely achieved, and the viral genome remains at selected sites in a latent state. Virological and molecular detection of HCMV, as well as serological demonstration of a specific immune response, are used for diagnosis. Treatment of HCMV infections is difficult because there are few options. The presently available drugs produced a significant clinical improvement, but suffer from poor oral bioavailability, low potency, development of resistance in clinical practice, and dose-limiting toxicities.
Collapse
Affiliation(s)
- Santo Landolfo
- Department of Public Health and Microbiology, University of Turin, Via Santena 9, 10126 Turin, Italy.
| | | | | | | |
Collapse
|
19
|
Temperton NJ, Quenelle DC, Lawson KM, Zuckerman JN, Kern ER, Griffiths PD, Emery VC. Enhancement of humoral immune responses to a human cytomegalovirus DNA vaccine: adjuvant effects of aluminum phosphate and CpG oligodeoxynucleotides. J Med Virol 2003; 70:86-90. [PMID: 12629648 DOI: 10.1002/jmv.10357] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A human cytomegalovirus (HCMV) glycoprotein B (gpUL55) DNA vaccine has been evaluated in BALB/c mice. Intramuscular immunization of these mice with pRc/CMV2-gB resulted in the generation of high levels of gpUL55-specific antibody (geometric mean titer [GMT] 1:8900) and neutralizing antibody (GMT 1:74) after 2 booster doses given 5 and 10 weeks after primary inoculation. Emulsifying the construct with the aluminum phosphate gel adjuvant Adju-Phos before immunization enhanced gpUL55-specific antibody responses (GMT 1:17800, P = 0.04). Co-immunization with CpG oligodeoxynucleotides was shown to enhance levels of neutralizing antibodies generated by immunization of mice with a pRc/CMV2-gB/Adju-Phos emulsion (P = 0.04). The results provide a rationale for evaluating combinations of other HCMV proteins for incorporation into a multi-target DNA vaccine, and for the optimization of adjuvant usage, to elicit enhanced levels of neutralizing antibodies. 2003.
Collapse
Affiliation(s)
- Nigel J Temperton
- Department of Virology, Royal Free and University College Medical School, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Stanley A Plotkin
- University of Pennsylvania, Wistar Institute, Aventis Pasteur, Doylestown, PA 18901, USA.
| |
Collapse
|
21
|
Pass RF, Burke RL. Development of cytomegalovirus vaccines: prospects for prevention of congenital CMV infection. SEMINARS IN PEDIATRIC INFECTIOUS DISEASES 2002; 13:196-204. [PMID: 12199616 DOI: 10.1053/spid.2002.125863] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Congenital cytomegalovirus (CMV) infection is an important cause of hearing, cognitive, and motor impairments that cannot be effectively prevented or treated by any current medical or public health interventions. A review of priorities for vaccine development by The Institute of Medicine of the National Academy of Sciences concluded that a vaccine to prevent congenital CMV infection should be a top priority for the United States. Evidence from clinical studies indicates that immunity to CMV can reduce the frequency and severity of disease. Laboratory investigations have identified structural and nonstructural CMV proteins that play a key role in eliciting protective immunity. The rationale for development of a CMV vaccine has been strengthened further by studies in experimental animals demonstrating the ability of immunization with subunit vaccines to prevent disease and transplacental transmission of virus. At least 4 CMV vaccines are in clinical trials, and advances in biotechnology are paving the way for additional novel vaccines.
Collapse
Affiliation(s)
- Robert F Pass
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, USA.
| | | |
Collapse
|
22
|
Gallez-Hawkins G, Lomeli NA, L Li X, Yao ZQ, La Rosa C, Diamond DJ, Zaia JA. Kinase-deficient CMVpp65 triggers a CMVpp65 specific T-cell immune response in HLA-A*0201.Kb transgenic mice after DNA immunization. Scand J Immunol 2002; 55:592-8. [PMID: 12028562 DOI: 10.1046/j.1365-3083.2002.01099.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CMVpp65, a candidate component of human cytomegalovirus (CMV) vaccines, has phosphokinase (PK) activity that could affect vaccine safety. A mutated form of CMVpp65 substituting asparagine for lysine at the adenosine triphosphate (ATP)-binding site (CMVpp65mII) is kinase-deficient. Using DNA immunizations in a transgenic human leucocyte antigen (HLA)A*0201.Kb mouse model, the mutated CMVpp65 induced cytotoxic T lymphocytes (CTL) immunity similarly to native CMVpp65. Murine CTL lines generated from these immunizations killed human cells either after sensitization with CMVpp65-specific peptides or after infection with either CMV-Towne strain or rvac-pp65. It is proposed that CMVpp65mII be evaluated in candidate vaccines for CMV.
Collapse
Affiliation(s)
- G Gallez-Hawkins
- Department of Virology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Addo MM, Rosenberg ES. Cellular immune responses in transplantation-associated chronic viral infections. Transpl Infect Dis 2002; 4:31-40. [PMID: 12123424 DOI: 10.1034/j.1399-3062.2002.00006.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Viral pathogens are important causes of morbidity following transplantation. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections represent two major viral complications in transplant recipients. Recent advances in methodology have led to a better understanding of host immune responses directed against chronic viral infections. We review the nature of antiviral immunity involved in control of CMV and EBV. Viral mechanisms of immune evasion and immunotherapeutic strategies in the transplantation setting will also be addressed.
Collapse
Affiliation(s)
- M M Addo
- Partners AIDS Research Center, Massachusetts General Hospital, Chalestown, Massachussetts 02114, USA
| | | |
Collapse
|
24
|
Abstract
The development of a vaccine for the prevention of primary cytomegalovirus (CMV) infection is a major public health priority. Live attenuated virus, recombinant viral vector, recombinant protein and peptide vaccines have been studied as potential vaccine candidates. In recent years, DNA vaccination strategies have been developed for many pathogens, including CMV. This review aims to bring together many aspects of this relatively new vaccine technology as applied to current research into the development of vaccines against CMV.
Collapse
Affiliation(s)
- N J Temperton
- Academic Centre for Travel Medicine and Vaccines, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
25
|
Abstract
Persistent viruses present some particular problems for vaccine design. As for acute non-persistent viruses, the prime goal of a vaccine should be to prevent primary infection. Vaccines might also be used to modify the course of established persistent virus infections - so-called postinfective immunisation. This chapter deals with selected persistent DNA viruses, in particular the human herpes viruses.
Collapse
Affiliation(s)
- M R Wills
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
26
|
Loomis-Huff JE, Eberle R, Lockridge KM, Rhodes G, Barry PA. Immunogenicity of a DNA vaccine against herpes B virus in mice and rhesus macaques. Vaccine 2001; 19:4865-73. [PMID: 11535340 DOI: 10.1016/s0264-410x(01)00232-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Herpes B virus (Cercopithecine herpesvirus 1) is endemic in captive macaque populations and poses a serious threat to humans who work with macaques or their tissues. A vaccine that could prevent or limit B virus infection in macaques would lessen occupational risk. To that end, a DNA vaccine plasmid expressing the B virus glycoprotein B (gB) was constructed and tested for immunogenicity in mice and macaques. Intramuscular (IM) or intradermal (ID) immunization in mice elicited antibodies to gB that were relatively stable over time and predominately of the IgG2a isotype. Five juvenile macaques were immunized by either IM+ID (n=2) or IM (n=3) routes, with two booster immunizations at 10 and 30 weeks. All five animals developed antibodies to B virus gB, with detectable neutralizing activity in the IM+ID immunized animals. These results demonstrated that DNA immunization can be used to generate an immune response against a B virus glycoprotein in uninfected macaques.
Collapse
Affiliation(s)
- J E Loomis-Huff
- Center for Comparative Medicine, School of Medicine, University of California-Davis, 95616, USA
| | | | | | | | | |
Collapse
|
27
|
Endrész V, Burián K, Berencsi K, Gyulai Z, Kari L, Horton H, Virok D, Méric C, Plotkin SA, Gönczöl E. Optimization of DNA immunization against human cytomegalovirus. Vaccine 2001; 19:3972-80. [PMID: 11427273 DOI: 10.1016/s0264-410x(01)00116-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The immune responses of mice injected with plasmids VR-gB and VR-gB Delta tm expressing the full-length membrane-anchored, or secreted forms of human cytomegalovirus (HCMV)-glycoprotein B (gB), respectively, and VR-pp65 expressing the HCMV-phosphoprotein 65 (pp65) were analyzed. Pretreatment of mice with the local anesthetic bupivacaine did not enhance antibody production, and IFN-alpha co-expressed with the immunizing plasmids induced a moderate increase in the antibody response. However, antibody response was higher in mice inoculated at three sites in the musculus quadriceps than in mice inoculated at one site with the same dose and in the same muscle. pVR-gB Delta tm induced significantly higher antibody titers than the construct expressing the membrane-anchored form of gB, and priming with pVR-gB Delta tm followed by boosting with the gB subunit resulted in high-titer antibody responses. Immunization with VR-pp65 induced dose-dependent CTL responses in about 50% of the mice at a dose of 50 microg. Co-expression of IFN-alpha did not affect the number of responding mice. These findings might be important for optimization of humoral and cellular immune responses to HCMV after DNA vaccination.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Bupivacaine/administration & dosage
- Cytomegalovirus/genetics
- Cytomegalovirus/immunology
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/prevention & control
- Female
- Humans
- Immunization, Secondary
- Immunoglobulin G/biosynthesis
- Injections, Intramuscular
- Interferon-alpha/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred CBA
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/pharmacology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- V Endrész
- Department of Medical Microbiology, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gonczol E, Plotkin S. Development of a cytomegalovirus vaccine: lessons from recent clinical trials. Expert Opin Biol Ther 2001; 1:401-12. [PMID: 11727514 DOI: 10.1517/14712598.1.3.401] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cytomegalovirus-caused diseases are preventable. We believe that both neutralising antibodies and cell-mediated immunity are necessary for prevention. Of the CMV proteins, gB and pp65 are the minimum requirements in a vaccine to induced neutralising antibodies and cytotoxic T-lymphocyte (CTL) responses. Immunisation with additional proteins, e.g., gH, gN for neutralising antibodies and IE1exon 4 and pp150 for CTL responses, would strengthen protective immune responses. Approaches to development of a safe and effective cytomegalovirus (CMV) vaccine for the prevention of CMV diseases include: a) a live attenuated vaccine (Towne strain); b) recombinant constructs of the attenuated Towne and the virulent Toledo CMV strains; c) subunit glycoprotein B (gB) adjuvanted with MF59 to induce neutralising antibodies; d) phosphoprotein 65 (pp65) peptide-based vaccines to induce (CTL) for use in therapeutic vaccination; e) canarypox-CMV recombinants, e.g., ALVAC-CMV(gB) and ALVAC-CMV (pp65) to induce neutralising antibodies and CTL responses, respectively; f) DNA plasmids containing the genes for gB and pp65; g) dense bodies containing the key antigens. The attenuated Towne strain, gB/MF59, ALVAC-CMV(gB) and ALVAC-CMV(pp65) approaches have already been tested in clinical trials. The Towne vaccine induced neutralising antibodies and cell-mediated immunity (including CTLs) mitigated CMV disease in seronegative renal transplant recipients and protected against a low-dose virulent CMV challenge in normal volunteers but did not prevent infection in mothers of children excreting CMV. Immunisation with gB/MF59 resulted in high levels of neutralising antibodies in seronegative subjects. ALVAC-CMV(gB) did not induce neutralising antibodies but primed the immune system to a Towne strain challenge, while ALVAC-CMV(pp65) induced long-lasting CTL responses in all originally seronegative volunteers, with CTL precursor frequency similar to naturally seropositive individuals. These results suggest that CMV diseases can be prevented or attenuated and that a vaccine combining ALVAC-CMV(pp65) with gB/MF59 may induce sufficient CTLs and neutralising antibodies to protect against CMV diseases. Meanwhile, other approaches such as DNA peptide and dense body vaccines, should enter Phase I trials. All candidate vaccines will have to demonstrate that immunogenicity provides protection. Combined vaccines containing canarypox (ALVAC) vectors to express CMV-pp65 to induce CTLs and of subunit gB, given together with an appropriate adjuvant to induce neutralising antibodies, should be tested in a target population for the prevention of CMV infection and disease.
Collapse
Affiliation(s)
- E Gonczol
- Wistar Institute/Albert Szent-Gyorgyi Medical University, Aventis Pasteur, Swiftwater, PA, USA
| | | |
Collapse
|
29
|
Affiliation(s)
- H L Robinson
- Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
30
|
Schleiss MR, Bourne N, Jensen NJ, Bravo F, Bernstein DI. Immunogenicity evaluation of DNA vaccines that target guinea pig cytomegalovirus proteins glycoprotein B and UL83. Viral Immunol 2001; 13:155-67. [PMID: 10892996 DOI: 10.1089/vim.2000.13.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Vaccines are needed for control of congenital human cytomegalovirus (HCMV) infection. Although the species-specificity of cytomegaloviruses precludes preclinical evaluation of HCMV vaccines in animal models, the guinea pig cytomegalovirus (GPCMV), which causes disease in utero, is a relevant model for the study of vaccines against congenital infection. We investigated whether DNA vaccines that target two GPCMV proteins, glycoprotein B (gB) and UL83 (pp65), are capable of eliciting immune responses in vivo. After cloning each gene into an expression vector, DNA was delivered by intramuscular inoculation and by pneumatic epidermal delivery. In Swiss-Webster mice, anti-gB titers were significantly higher after epidermal delivery. After epidermal inoculation in guinea pigs, all gB-immunized animals (n = 6) had antibody responses comparable to those induced by natural infection. Viral neutralization titers ranged from 1:64 to greater than 1:128. A GPCMV UL83 DNA vaccine also elicited an antibody response in all immunized guinea pigs (n = 6) after epidermal administration. Immunoprecipitation and Western blot assays confirmed that immune sera were immunoreactive with virion-associated UL83 and gB proteins. We conclude that DNA vaccines against GPCMV structural proteins are immunogenic, and warrant further investigation in the guinea pig model of congenital CMV infection.
Collapse
Affiliation(s)
- M R Schleiss
- Division of Infectious Diseases, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA.
| | | | | | | | | |
Collapse
|
31
|
Yao ZQ, Gallez-Hawkins G, Lomeli NA, Li X, Molinder KM, Diamond DJ, Zaia JA. Site-directed mutation in a conserved kinase domain of human cytomegalovirus-pp65 with preservation of cytotoxic T lymphocyte targeting. Vaccine 2001; 19:1628-35. [PMID: 11166885 DOI: 10.1016/s0264-410x(00)00423-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The major target of human cytomegalovirus (CMV)-specific cytotoxic T lymphocytes (CTL) is the tegument protein CMVpp65. However, this protein has protein kinase (PK) activity, and the unknown effects on cell replication of an exogenous PK in healthy cells could limit the use of CMVpp65 as a vaccine, especially in children. In this report we show that a point mutation converting lysine to asparagine at the invariant lysine (K436), an essential site for phosphotransfer, abolishes the threonine kinase activity. The mutant CMVpp65 maintains its immunologic target characteristics, including antibody and CTL reactivity. This kinase-deficient CMVpp65 is a candidate for evaluation in future CMV vaccine development.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Blotting, Western
- Caseins/metabolism
- Catalytic Domain
- Cell Line
- Chromium/metabolism
- Conserved Sequence/genetics
- Cytomegalovirus/enzymology
- Cytomegalovirus/genetics
- Cytomegalovirus/immunology
- Cytomegalovirus Vaccines/genetics
- Cytomegalovirus Vaccines/immunology
- Cytotoxicity, Immunologic/immunology
- Epitopes, T-Lymphocyte/immunology
- HLA-A2 Antigen/immunology
- Humans
- Molecular Sequence Data
- Mutagenesis, Site-Directed/genetics
- Mutation/genetics
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Phosphorylation
- Phosphothreonine/metabolism
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/immunology
- Protein Kinases/metabolism
- Protein Structure, Tertiary
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Z Q Yao
- Department of Virology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Griffiths PD, McLean A, Emery VC. Encouraging prospects for immunisation against primary cytomegalovirus infection. Vaccine 2001; 19:1356-62. [PMID: 11163656 DOI: 10.1016/s0264-410x(00)00377-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Congenital cytomegalovirus (CMV) infection is the leading infectious cause of mental retardation in children. Using seroprevalence data from two large antenatal populations (in excess of 14000 women) coupled with a mathematical modelling approach, we have shown that CMV has a low force of infection (ca. 0.03 per seronegative per annum) and its basic reproductive number R0 is relatively modest at 2.4. On the basis of these results, the critical vaccination proportion required for eradication of CMV is between 59-62%. In contrast to the predicted and observed effects of rubella vaccination on the incidence of congenital rubella, the increase in the average age of infection following instigation of a CMV vaccine programme will not increase the number of congenital infections. In conclusion, CMV is a prime candidate for eradication from the human population through vaccination.
Collapse
Affiliation(s)
- P D Griffiths
- Department of Virology, Royal Free and University College Medical School, (Royal Free Campus), Rowland Hill Street, NW32PF, London,
| | | | | |
Collapse
|
33
|
Abstract
Like varicella zoster virus (VZV), human cytomegalovirus (HCMV) causes disease after both primary and recurrent infections. The former is more serious, particularly in pregnant women, who may transmit the virus to their offspring, with a high risk of mental retardation and deafness. Various experimental vaccines are in development, ranging from live, attenuated HCMV, subunit envelope glycoprotein, poxvirus vectors with CMV genes inserted, and plasmid DANN.
Collapse
Affiliation(s)
- S A Plotkin
- University of Pennsylvania Wistar Institute, Doylestown, USA
| |
Collapse
|
34
|
Newkirk MM, van Venrooij WJ, Marshall GS. Autoimmune response to U1 small nuclear ribonucleoprotein (U1 snRNP) associated with cytomegalovirus infection. ARTHRITIS RESEARCH 2001; 3:253-8. [PMID: 11438044 PMCID: PMC34115 DOI: 10.1186/ar310] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Revised: 03/30/2001] [Accepted: 04/03/2001] [Indexed: 11/15/2022]
Abstract
The induction of autoantibodies to U1 small nuclear ribonucleoprotein (U1 snRNP) complexes is not well understood. We present evidence that healthy individuals with cytomegalovirus (CMV) infection have an increased frequency and quantity of antibodies to ribonucleoprotein, directed primarily against the U1-70k protein. A significant association between the presence of antibodies to CMV and antibodies to the total RNP targeted by the immune response to the spliceosome (to both the Sm and RNP; Sm/RNP) was found for patients with systemic lupus erythematosus (SLE) but not those with mixed connective-tissue disease. CMV thus may play a role in inducing autoimmune responses in a subset of patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- M M Newkirk
- Division of Rheumatology, The Montreal General Hospital, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
35
|
Pepperl S, Münster J, Mach M, Harris JR, Plachter B. Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. J Virol 2000; 74:6132-46. [PMID: 10846097 PMCID: PMC112112 DOI: 10.1128/jvi.74.13.6132-6146.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 04/10/2000] [Indexed: 11/20/2022] Open
Abstract
Infection of fibroblast cell cultures with human cytomegalovirus (HCMV) leads to the production of significant amounts of defective enveloped particles, termed dense bodies (DB). These noninfectious structures contain major antigenic determinants which are responsible for induction of both the humoral and the cellular immune response against HCMV. We tested the hypothesis that, by virtue of their unique antigenic and structural properties, DB could induce a significant immune response in the absence of infectious virus. Mice were immunized with gradient-purified DB, which were either left untreated or subjected to sequential rounds of sonication and freeze-thawing to prevent cellular entry. Titers of neutralizing antibodies induced by DB were in a range comparable to levels present in convalescent human sera. The virus-neutralizing antibody response was surprisingly durable, with neutralizing antibodies detected 12 months following primary immunization. The HCMV-specific major histocompatibility complex class I-restricted cytolytic T-cell (CTL) response was assayed using mice transgenic for the human HLA-A2 molecule. Immunization with DB led to high levels of HCMV-specific CTL in the absence of de novo viral protein synthesis. Maximal total cytolytic activity in mice immunized with DB was nearly as efficient as the cytolytic activity induced by a standard immunization with murine cytomegalovirus. Furthermore, DB induced a typical T-helper 1 (Th1)-dominated immune response in mice, as determined by cytokine and immunoglobulin G isotype analysis. Induction of humoral and cellular immune responses was achieved without the concomitant use of adjuvant. We thus propose that DB can serve as a basis for the future development of a recombinant nonreplicating vaccine against HCMV. Finally, such particles could be engineered for efficient delivery of antigens from other pathogens to the immune system.
Collapse
Affiliation(s)
- S Pepperl
- Institute for Virology, University of Mainz, Germany
| | | | | | | | | |
Collapse
|
36
|
McKinney DM, Skvoretz R, Qin M, Ishioka G, Sette A. Characterization of an in situ IFN-gamma ELISA assay which is able to detect specific peptide responses from freshly isolated splenocytes induced by DNA minigene immunization. J Immunol Methods 2000; 237:105-17. [PMID: 10725456 DOI: 10.1016/s0022-1759(00)00138-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An in situ IFN-gamma ELISA assay has been developed and optimized for both freshly isolated and peptide-restimulated splenocytes. This assay is based on the ELISPOT assay, but utilizes a soluble chromagen, making it readily adaptable to high-throughput analysis. We show that in both the primary and restimulation assays this technique is more sensitive than either a traditional supernatant ELISA or the 51Cr-release assay, in that responses are observed in the in situ ELISA that are not detectable in these other assays. On a per-cell basis, the sensitivity of the in situ ELISA is approximately one IFN-gamma secreting cell/10(4) plated cells. The in situ IFN-gamma ELISA was utilized to describe the kinetics of the IFN-gamma response to DNA vaccination with pMin.1. For freshly isolated splenocytes, the peak response for all the peptides tested was observed from 10 to 12 days after immunization, with responses seen to some peptides as early as 7 days. When a 6-day in vitro peptide restimulation step was added, responses were seen for all the peptides tested after 7 days of in vivo immunization. This data demonstrates that a single intramuscular administration of a DNA vaccine can induce T-cell responses that can be detected in freshly isolated splenocytes.
Collapse
Affiliation(s)
- D M McKinney
- Epimmune Inc., 5820 Nancy Ridge, Suite 100, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Cytomegalovirus (CMV) infection continues to be a problem in selected populations following hematopoietic stem cell transplantation (SCT). Although there have been no new antiviral agents for management of this infection in recent years, the methods for using the existing agents have improved with newer assays for detection of virus. In addition, our understanding of immunity to CMV has undergone considerable expansion. This paper will address these new aspects relating to CMV infection in the setting of SCT.In Section I Dr. Zaia reviews the pathogenesis of CMV and the current epidemiology of CMV disease following marrow or blood allo-SCT with emphasis on late-onset disease. The current lab tests available for preemptive management are summarized including the role for conventional shell vial cultures, and a comparison of the CMV antigenemia assay with the new nucleic acid-based assays, including the hybrid capture assay, the NASBA assay, and “real-time” PCR assays. Use of antiviral agents with these tests in the preemptive management of CMV infection is discussed.Ultimately, what is necessary is restoration of adequate CMV immunity, and that requires understanding the basics of the CMV-specific immune response. In Section II, Dr. Sissons traces the evolution of the CTL response from primary infection into memory and reviews recent advances in the understanding of cytotoxic T cell based immunity to CMV, based on the use of T cell clonotypic analysis and markers of T cell memory and activation, with conventional CTL functional assays.In Section III Dr. Riddell presents approaches to correction of the problem of CMV pathogenesis, namely direct restoration of the CMV-specific cellular immune deficiency. Attempts at passive therapies will be reviewed with the focus on current problems and approaches to these problems.In Section IV, Dr. Diamond presents work on the identification of multiple HLA-allele specific cytotoxic T cell epitopes specific for CMV-pp65 and - pp150. Specific epitopes are recognized by CMV-seropositive individuals including healthy donors, SCT recipients, and AIDS patients, indicating their potential usefulness as vaccines. One of these epitopes is recognized by most individuals who express the HLA A*0201 Class I allele. Pre-clinical evaluation in HLA2.1 transgenic mice of vaccine structures utilizing this epitope, and alternative delivery systems are described. Possible methods for vaccination of donor and/or recipient of a SCT as well as their limitations, utilizing synthetic or viral vaccines, are discusseed.
Collapse
|
38
|
Abstract
Abstract
Cytomegalovirus (CMV) infection continues to be a problem in selected populations following hematopoietic stem cell transplantation (SCT). Although there have been no new antiviral agents for management of this infection in recent years, the methods for using the existing agents have improved with newer assays for detection of virus. In addition, our understanding of immunity to CMV has undergone considerable expansion. This paper will address these new aspects relating to CMV infection in the setting of SCT.
In Section I Dr. Zaia reviews the pathogenesis of CMV and the current epidemiology of CMV disease following marrow or blood allo-SCT with emphasis on late-onset disease. The current lab tests available for preemptive management are summarized including the role for conventional shell vial cultures, and a comparison of the CMV antigenemia assay with the new nucleic acid-based assays, including the hybrid capture assay, the NASBA assay, and “real-time” PCR assays. Use of antiviral agents with these tests in the preemptive management of CMV infection is discussed.
Ultimately, what is necessary is restoration of adequate CMV immunity, and that requires understanding the basics of the CMV-specific immune response. In Section II, Dr. Sissons traces the evolution of the CTL response from primary infection into memory and reviews recent advances in the understanding of cytotoxic T cell based immunity to CMV, based on the use of T cell clonotypic analysis and markers of T cell memory and activation, with conventional CTL functional assays.
In Section III Dr. Riddell presents approaches to correction of the problem of CMV pathogenesis, namely direct restoration of the CMV-specific cellular immune deficiency. Attempts at passive therapies will be reviewed with the focus on current problems and approaches to these problems.
In Section IV, Dr. Diamond presents work on the identification of multiple HLA-allele specific cytotoxic T cell epitopes specific for CMV-pp65 and - pp150. Specific epitopes are recognized by CMV-seropositive individuals including healthy donors, SCT recipients, and AIDS patients, indicating their potential usefulness as vaccines. One of these epitopes is recognized by most individuals who express the HLA A*0201 Class I allele. Pre-clinical evaluation in HLA2.1 transgenic mice of vaccine structures utilizing this epitope, and alternative delivery systems are described. Possible methods for vaccination of donor and/or recipient of a SCT as well as their limitations, utilizing synthetic or viral vaccines, are discusseed.
Collapse
|
39
|
Affiliation(s)
- S A Plotkin
- Pasteur Mérieux Connaught, Doylestown, PA 18901, USA.
| |
Collapse
|