1
|
Weerasinghe KE, Kannangara AT, Attanayake RN, Rajapakse CSK, Halmillawewa AP. Carotenoid pigments of Kocuria flava PUTS1_3 isolated from sediments of Puttalam lagoon mangrove ecosystem, Sri Lanka exhibit bioactive properties. Sci Rep 2025; 15:15226. [PMID: 40307338 PMCID: PMC12043855 DOI: 10.1038/s41598-025-93643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
Microorganisms, inhabiting various ecological niches, exhibit a capacity to produce a diverse array of pigments with different shades. These colorful microbial pigments may also potentially possess beneficial bioactivities. This dual functionality together with the ease of mass production and downstream processing has shifted the global attention towards the use of microbially-derived pigments as bioactive colorants in different industries. Therefore, the present study was conducted with the aim of characterizing the pigments from Kocuria flava and identifying their potential biotechnological applications. The bacterium, PUTS1_3, was isolated using the surface sediment samples from the Puttalam mangrove ecosystem, Sri Lanka and it was identified as Kocuria flava using 16S rRNA gene sequencing. The yellow, intracellular pigment of PUTS1_3 was obtained by treating the cell pellet with methanol. Characterization of the pigment extract using UV-visible spectroscopy, TLC, and HPLC confirmed the presence of three carotenoid compounds, including β-carotene. The pigment extract also demonstrated antibacterial activity, against Gram positive bacteria tested. Antioxidant properties were observed with an IC50 value of 181.95 ± 4.57 µg/ml in the DPPH free radical scavenging assay. Although its sun protection factor was comparatively low (SPF 7.69 ± 0.01), the pigment showed promising results as a textile dye demonstrating good color performance and stability in washing and pH stability tests. Moreover, fabrics dyed with the pigment extract displayed antibacterial activity against Staphylococcus aureus (ATCC 25923). These findings suggest the potential use of the yellow pigments of K. flava PUTS1_3 for various biotechnological applications.
Collapse
Affiliation(s)
| | | | - Renuka N Attanayake
- Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| | | | - Anupama P Halmillawewa
- Department of Microbiology, University of Kelaniya, Kelaniya, Sri Lanka.
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka.
| |
Collapse
|
2
|
Duan M, Zhu Z, Pi H, Chen J, Cai J, Wu Y. Mechanistic Insights and Analytical Advances in Food Antioxidants: A Comprehensive Review of Molecular Pathways, Detection Technologies, and Nutritional Applications. Antioxidants (Basel) 2025; 14:438. [PMID: 40298784 PMCID: PMC12024333 DOI: 10.3390/antiox14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
With rising living standards, the demand for health and nutrition has increased, sparking interest in food antioxidants. Known for neutralizing free radicals, antioxidants protect cells from oxidative damage, potentially aiding in disease prevention and anti-aging. In the food industry, they also enhance preservation and quality. Thus, studying food antioxidant mechanisms, detection methods, and applications holds theoretical and practical value. This review mainly discusses the mechanisms, detection methods, and applications of food antioxidants in nutrition. Firstly, the main research status and development trends of food antioxidants are described. Then, the action mechanisms of food antioxidants are introduced. Food antioxidants can effectively remove free radicals and prevent free radicals from causing damage to human cells, thus delaying aging and preventing disease. Secondly, the methods of detecting food antioxidants are discussed, including liquid chromatography, liquid chromatography-tandem mass spectrometry, gas chromatography, and gas chromatography-mass spectrometry. These methods can be used to analyze antioxidant components in various samples of foods, drugs, plants, etc. Finally, the research progress of plant antioxidants is discussed, including the applications of a variety of highly effective antioxidant components extracted from different plants. This review provides the theoretical basis and application reference for the research of food antioxidants.
Collapse
Affiliation(s)
- Mingyu Duan
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhiting Zhu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hao Pi
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jibing Chen
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiping Wu
- School of Material Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Tanikawa M, Ishida T, Nakamura Y, Makino K, Shimada N. Unified Strategy for the Concise Total Syntheses of All Six 3″- O-Acyl Quercitrins Based on Regioselective Acylation Catalyzed by Boronic Acid. J Org Chem 2025. [PMID: 39898530 DOI: 10.1021/acs.joc.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The naturally occurring 3″-O-acylquercitrin family exhibits a range of biological activities with significant potential health and medical benefits. Herein, we present a unified strategy for concise total syntheses of all six known 3″-O-acylquercitrin natural products─namely, 3″-O-galloylquercitrin, 3″-O-(E)-cinnamoylquercitrin, 3″-O-(E)-coumaroylquercitrin, 3″-O-(E)-feruloylquercitrin, 3″-O-acetylquercitrin, and 3″-O-tigloylquercitrin─based on regioselective acylation of carbohydrates catalyzed by N-methylimidazole-containing boronic acid. The core advancement in this approach is a late-stage catalytic regioselective functionalization of a common synthetic intermediate, enabling efficient access to the natural products.
Collapse
Affiliation(s)
- Mari Tanikawa
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Toshihiro Ishida
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| |
Collapse
|
4
|
Jeelani SM, Yasmin S, Lone AH, Mir JI, Irfan M, Dinkar V, Raja WH, Nabi SU, Verma MK, Malik G, Sharma OC. Differential quantity of key bioactive compounds and their antioxidative potential in novel apple genotypes: A correlative study for potential therapeutics. Heliyon 2025; 11:e42148. [PMID: 39911444 PMCID: PMC11795040 DOI: 10.1016/j.heliyon.2025.e42148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Apples are among the most economically vital crops growing worldwide. The present study aimed to analyze the variation in the content of key bioactive principles and antioxidative potential of novel apple genotypes (developed through breeding techniques) along with their correlation for possible therapeutic insights. Using the HPLC method, the bioactive compounds of these apples were investigated, and their contribution to free radical scavenging activity by employing DPPH assay. HPLC analyses displayed concentration of bioactive compounds varies significantly among these genotypes with catechins, epicatechins, quercetin, and rutin were the key bioactive compounds. Principal Component Analysis results revealed a correlation between total phenolic content and antioxidative potential. It is also apparent that phenols are primary contributors to the antioxidant efficacy among the apple genotypes under investigation for potential therapeutic application. Besides, the study dispenses some valuable statistics for the production of novel apple genotypes having added phytochemicals for conventional and modern breeders.
Collapse
Affiliation(s)
| | | | | | - Javid Iqbal Mir
- ICAR-Central Institute of Temperate Horticulture, Srinagar, Jammu & Kashmir, 191132, India
| | - Mohammad Irfan
- ICAR-Central Institute of Temperate Horticulture, Srinagar, Jammu & Kashmir, 191132, India
| | - Vishal Dinkar
- ICAR-Central Institute of Temperate Horticulture, Srinagar, Jammu & Kashmir, 191132, India
| | - Wasim Hassan Raja
- ICAR-Central Institute of Temperate Horticulture, Srinagar, Jammu & Kashmir, 191132, India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, Jammu & Kashmir, 191132, India
| | - Mahendra Kumar Verma
- ICAR-Central Institute of Temperate Horticulture, Srinagar, Jammu & Kashmir, 191132, India
| | - Geetika Malik
- ICAR-Central Institute of Temperate Horticulture, Srinagar, Jammu & Kashmir, 191132, India
| | - Om Chand Sharma
- ICAR-Central Institute of Temperate Horticulture, Srinagar, Jammu & Kashmir, 191132, India
| |
Collapse
|
5
|
Makuria MC, Dubale AA, Atlabachew M, Yayinie M. Fatty acid composition, total phenolic and total flavonoid contents, and antioxidant activity of Niger seed (Guizotia abyssinica) accessions collected from major producer areas of Ethiopia. PLoS One 2025; 20:e0317397. [PMID: 39804900 PMCID: PMC11729926 DOI: 10.1371/journal.pone.0317397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Oils from various sources are vital nutritional components with a variety of roles in our body. Niger seed (Guzoita abyssinica) is endemic to Ethiopia and is among the major oil seed crops grown in the country. The fatty acid composition and the concentration of other bioactive phytochemicals in it vary with species type, geographical origin, cultivation season, and varietal types. The present work investigated the fatty acid profile and the total phenolic (TPC), total flavonoid content (TFC) and antioxidant activity (AA) of Niger seed samples obtained from five different zones in the Amhara and Oromia regions of Ethiopia. using internationally accepted standard methods. RESULTS In all the samples, its main unsaturated acids were linoleic acid, ranging between 67.30 and 74.67% with respect to the relative percentage comprising 179 to 234 mg/g in terms of concentration; oleic acid constitutes between 5.43 and 11.02% of the total fatty acid or 1.03 and 1.60 mg/g of dry matter. Among saturated acids, it was the most abundant palmitic acid, ranging between 10.32 and 10.66% of the entire fatty acids comprising 24.80 to 37.10 mg/g. Amongst the zones, the seed from Amhara region, specifically from North Gondar has been the richest regarding a total of 347.74 mg/g. In addition, the total phenolic content ranged between 10.89 and 11.78 mg GAE/g, whereas the content of total flavonoids ranged from 5.42 to 6.67 mg CE/g. Aqueous methanol (80%) extracted more phenolic content than absolute methanol. On a regional basis, the Amhara region, represented by the North Gondar and East Gojjam zones of the study area, had relatively higher TPC and TFC than other regions. The DPPH scavenging assay IC50 value (μg/mL) ranged between 133-188 μg/mL and poorly correlated with TPC. CONCLUSION Among the different fatty acids obtained, four of them, linoleic, oleic, palmitic, and stearic acids, are the major ones, followed by a significant amount of phenolic compounds irrespective of the variety of the studied samples and sampling of locations. The study also confirmed that TPC and TFC are not the only phytochemicals responsible for the antioxidant activity of the niger sees, as was reflected by the poor correlation between TPC and AA activity. Hence these findings indicate that the seeds of Niger could be an important source of essential fatty acids and medicinally important phytochemicals important for nutritional health improvement and agricultural development in Ethiopia.
Collapse
Affiliation(s)
- Megersa Chali Makuria
- Department of Chemistry, College of Natural and Computational Science, Dambi Dollo University, Dambi Dollo, Ethiopia
- Department of Chemistry, College of Natural and Computational Science, Dilla University, Dilla, Ethiopia
| | - Amare Aregahegn Dubale
- Department of Chemistry, College of Natural and Computational Science, Dilla University, Dilla, Ethiopia
- Department of Chemistry, College of Natural and Computational Science, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Marie Yayinie
- Department of Chemistry, College of Natural and Computational Science, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
6
|
Reinoso F, Rodríguez A, Sánchez C, Claria B, Romero N, Espinosa A, Pando ME, Valenzuela R, Apaza D, Dovale-Rosabal G, Aubourg SP. Enzymatic Interesterification of Cold-Pressed Maqui ( Aristotelia chilensis (Mol.) Stuntz) Seed Oil and Belly Oil from Rainbow Trout ( Oncorhynchus mykiss) Through Supercritical CO 2. Mar Drugs 2024; 22:547. [PMID: 39728122 DOI: 10.3390/md22120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
A new antioxidant lipid (AL) was synthesized from rainbow trout (Oncorhynchus mykiss) belly oil and cold-pressed maqui (CPM) (Aristotelia chilensis (Mol.) Stuntz) seed oil via enzymatic interesterification using Thermomyces lanuginosus in supercritical CO2 medium. A Box-Behnken design with 15 experiments was employed, with the independent variables being the following: belly oil/CPM oil ratio (10/90, 50/50, and 90/10, w/w), supercritical CO2 temperature (40.0, 50.0, and 60.0 °C), and supercritical CO2 pressure (100.0, 200.0, and 300.0 bar) for enzymatic interesterification. A multiple optimization was conducted based on the response variables yield and eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and tocopherol contents. The optimized conditions for the AL synthesis were: 81.4/18.6 (w/w), 40.0 °C and 299.99 bar, respectively. The corresponding responses variables were: 77.10% for yield, 5.12 and 4.95 g·100 g-1 total fatty acids for EPA and DHA, respectively, and 217.96, 4.28, 3.48, 64.48, and 6.39 mg·kg-1 oil for α-tocopherol, α-tocotrienol, β-tocopherol, γ-tocopherol, and δ-tocopherol, respectively. A novel AL was successfully synthesized starting from two abundant natural resources commonly considered as by-products during industrial processing. In agreement with the high EPA, DHA, and tocopherol presence, this AL can be recommended to be employed in nutritional and therapeutic supplements, according to its health benefits, particularly concerning antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Francisca Reinoso
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Dr. Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Alicia Rodríguez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Dr. Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Camila Sánchez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Dr. Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Benjamín Claria
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Dr. Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Dr. Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380000, Chile
| | - María Elsa Pando
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380000, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380000, Chile
| | - Dayana Apaza
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Dr. Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Gretel Dovale-Rosabal
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Dr. Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Santiago P Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
7
|
Palazzo M, Concilio M, Ambrosone L, Rinaldi M, Tranfa F, Costagliola C. Effects of Laurus Nobilis Eye Drop on Selenite-Induced Cataract Formation and Oxidative Stress-Related Parameters in Rabbits: An Experimental Study. Curr Eye Res 2024; 49:1247-1252. [PMID: 39034665 DOI: 10.1080/02713683.2024.2380440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE To evaluate the protective role of Laurus Nobilis eye drops on selenite-induced cataracts in suckling rabbits. METHODS Fifteen male albino suckling rabbits with no signs of ocular inflammation were randomly assigned to three groups: controls (Group A), sodium-selenite group (Group B) and sodium-selenite plus Laurus Nobilis group (Group C). By selenite treatment, cataract formation was experimentally induced and then graded. The grade of oxidative stress was defined in the lens, measuring the concentration of malondialdehyde, alpha-tocopherol, oxidized glutathione, ascorbic acid and hydrogen peroxide, and in blood samples as levels of alpha-tocopherol and malondialdehyde. RESULTS Mean lens concentrations of GSSG, H2O2, and MDA levels in group B were significantly higher than in both group C and control. Ascorbic acid and alpha-tocopherol concentrations were lower in group B than in both group C and A. As plasma oxidative status markers, the level of MDA was higher in group B respected group C and A. The mean alpha-tocopherol levels in group B were significantly lower than in both group A and group C. CONCLUSIONS In animals treated with Laurus Nobilis-based eye drops, inflammation was inhibited, and lipid peroxidation was significantly reduced. Laurus nobilis leaves extract represents a good source of antioxidant components that may contrast sodium selenite-induced cataractogenesis in suckling rabbits.
Collapse
Affiliation(s)
- Marisa Palazzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Marina Concilio
- Department of Medicine and Health Science V. Tiberio, University of Molise, Campobasso, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Science V. Tiberio, University of Molise, Campobasso, Italy
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
8
|
Yangoua H, Dibacto REK, Tchuente BRT, Nyobe EC, Wandji Nguedjo M, Alex Dimitri TK, Kamini MFG. Physicochemical properties and antioxidant potential of honey from Cameroon agroecological zones. Heliyon 2024; 10:e40232. [PMID: 39584090 PMCID: PMC11585694 DOI: 10.1016/j.heliyon.2024.e40232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Cellular respiration produces reactive oxygen species (ROS), which can lead to oxidative stress and significant health issues, including chronic diseases and cancer. Antioxidants play a critical role in neutralizing ROS. This study investigates the physicochemical properties and antioxidant activities of honey sourced from five distinct agroecological zones in Cameroon. Multifloral honey samples (n = 9) were collected from local beekeepers and analyzed for parameters including density, pH, total sugar content, total phenolic content (TPC), flavonoid content (FC), and antioxidant potential (DPPH, FRAP, TAC). The samples ranged in color from light amber to dark amber, with densities between 1.43 and 1.51 g/mL and sugar contents of 70.33 %-83.16 %. pH levels varied from 3.30 to 4.10. Antioxidant analysis revealed phenolic contents ranging from 26.75 to 85.06 mg GAE/100 g and flavonoid contents between 5.22 and 14.47 mg QE/100 g. Significant differences in antioxidant activity were noted, particularly in correlation with color intensity and pH. Honeys with more reddish and greenish hues exhibited better FRAP values, while those with a pH around 4 showed improved DPPH activity. This preliminary study underscores the importance of regional differences in honey quality and its potential health benefits, advocating for further research on the diverse honey types in Cameroon.
Collapse
Affiliation(s)
- Huguette Yangoua
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Cameroon
| | - Ruth Edwige Kemadjou Dibacto
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Cameroon
| | - Boris Ronald Tonou Tchuente
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Cameroon
| | - Emilienne Carine Nyobe
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Cameroon
| | - Maxwell Wandji Nguedjo
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Cameroon
| | - Tchuenchieu Kamgain Alex Dimitri
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Cameroon
- Food Evolution Research Laboratory, School of Tourism and Hospitality, University of Johannesburg, South Africa
| | - Melanie Flore Godam Kamini
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Cameroon
| |
Collapse
|
9
|
Pędziwiatr D, Lamadrid MC, Wojdyło A. Cookies Fortified with Polyphenols Extracts: Impact on Phenolic Content, Antioxidant Activity, Inhibition of α-Amylase and α-Glucosidase Enzyme, Colour and Sensory Attractiveness. Antioxidants (Basel) 2024; 13:1108. [PMID: 39334767 PMCID: PMC11428465 DOI: 10.3390/antiox13091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The goal of the research was to determine the impact of fortification with polyphenolic compounds on (i) sensory attractiveness (global satisfaction, appearance, colour, odour, flavour, sweetness, bitterness), (ii) content of polyphenols and colour (L*, a*, b*) after the baking process and (iii) their bioactive potential (antioxidants activity and inhibiting of α-amylase and α-glucosidase enzyme). Fortification was made with extracts of polyphenolic compounds of selected plant raw materials rich in polyphenols from quince (fruits), tilia (flowers), pomegranate (skin), passion fruit (endocarp), sour cherries (leaves), haskap and chokeberry (berries), silver skin (coffee beans), rosehip (seeds). Depending on the nature of the polyphenol extract, flavan-3-ols (monomeric and polymeric), phenolic acid, flavonols and anthocyanins were identified in the product in amounts ranging from 53.7 to 212.6 mg/100 g DM. Cookies' colour (L*, a*, b*) depended on the type of polyphenol extract used for fortification. Cookies with haskap, chokeberry and sour cherry presented the highest antioxidant potential. Cookies with chokeberry, haskap and rosehip presented high activity in inhibiting α-amylase (65.5, 60.6 and 62.2% of inhibition, respectively), but cookies with haskap, silver skin and quince in inhibiting α-glucosidase activity (23.0, 20.4 and 21.4% of inhibition, respectively). In the sensory evaluation, the most attractive were cookies with rosehip and pomegranate (6.3 and 5.8 score, respectively), but the lowest ratings were given to cookies with passion fruit and silver skin but especially quince cookies, which obtained the lowest desirability (3.7 score). The acceptability of fortified cookies was determined to the least extent by monomeric flavan-3-ols and phenolic acids (in minus in odour/flavour, bitterness, sweetness and global satisfaction), but anthocyanins, polymeric procyanidins and flavonols had the most significant positive impact on consumer acceptance of the assessed features, i.e., global satisfaction, odour/flavour, sweetness and bitterness (positive consumer drivers).
Collapse
Affiliation(s)
- Daria Pędziwiatr
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wroclaw, Poland
| | - Marina Cano Lamadrid
- Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Ctra. Beniel, Km 3.2, 03312 Orihuela, Spain;
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wroclaw, Poland
| |
Collapse
|
10
|
Mehmood F, Hassan F, Sarfraz R, Khadim Z, Alamer KH, Attia H, Saleh MA, Al-Robai SA, Zaman QU, Iftikhar Z. Phytochemical screening, antibacterial, antioxidant, and cytotoxic activities of Geranium pusillum leaves. Microsc Res Tech 2024; 87:2171-2185. [PMID: 38706433 DOI: 10.1002/jemt.24579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 05/07/2024]
Abstract
Traditional medicinal plants play an important role in primary health care worldwide. The phytochemical screening and activities of Geranium pusillum were investigated in this research. The dried plant leaves were extracted with ethanol, n-hexane, chloroform, dichloromethane, methanol, acetone, and aqueous solvents. These extracts were qualitatively analyzed, GC-MS, antimicrobial activities by using the disc diffusion method, antioxidant activity was determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging, and cytotoxic activity was analyzed by the hemolytic activity of human red blood cells. The results showed phytochemicals such as flavonoids, terpenoids, steroids, phenols, saponins, tannins, and cardiac glycosides were detected in plant leaves. The ethanol extract at a concentration of 10 mg/mL showed a maximum inhibition zone 17.5 ± 0.09, 15.6 ± 0.11, 14.2 ± 0.17, 18.4 ± 0.11, 16.6 ± 0.15, 12.5 ± 0.13, 15.9 ± 0.10, and 13.1 ± 0.11 mm, and at 15 mg/mL showed 24.5 ± 0.09, 27.2 ± 0.12, 26.3 ± 0.17, 28.4 ± 0.10, 27.9 ± 0.16, 22.5 ± 0.13, 27.1 ± 0.10, and 24.1 ± 0.16 mm against Escherichia coli, Pasturella multocida (gram-negative), Staphylococcus aureus, Bacillus subtilus (gram-positive), Rhizopus solani, Aspergillus flavus, Aspergillus niger, and Alternaria alternate (fungal strain), respectively, and dichloromethane showed a minimum inhibition zone as compared to other extracts against bacterial as well as fungal strains. Chloroform extract had maximum antioxidant activity (45.00 ± 0.08%) and minimum in dichloromethane (12.20 ± 0.04%). Cytotoxic activity was found maximum in acetone extract (19.83 ± 0.07%) and minimum in ethanol extract (4.72 ± 0.04%). It is concluded that phytochemicals like phenols, flavonoids, and others may be responsible for these activities, which is why this plant is used for traditional medicine. RESEARCH HIGHLIGHTS: Geranium pusillum has therapeutic properties that exhibit various biological activities beneficial for human health. G. pusillum has significant inhibitory effects against bacterial and fungal strains. Chloroform solvent extract indicates potential free radical scavenging abilities. Acetone extract exhibits notable effects on human red blood cells and demonstrates significant cytotoxic activity.
Collapse
Affiliation(s)
- Faisal Mehmood
- Department of Chemistry, the University of Lahore, Lahore, Pakistan
| | - Faiza Hassan
- Department of Chemistry, the University of Lahore, Lahore, Pakistan
| | - Rafaqat Sarfraz
- Department of Chemistry, the University of Lahore, Lahore, Pakistan
| | - Zeeshan Khadim
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Houneida Attia
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Muneera A Saleh
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Sami Asir Al-Robai
- Department of Biology, Faculty of Science, Al-Baha University, Saudi Arabia
| | - Qamar Uz Zaman
- Department of Environmental Sciences, the University of Lahore, Lahore, Pakistan
| | - Zohaib Iftikhar
- Department of Chemistry, the University of Lahore, Lahore, Pakistan
| |
Collapse
|
11
|
da Costa DS, Furtado KF, Kluczkovski AM, Takeuchi KP, Lopes AS. Cassava Starch/Carboxymethyl Cellulose Edible Coating Added of Tocopherol: A Strategy to Preserve the Oxidative Stability of Brazil Nuts. Foods 2024; 13:2732. [PMID: 39272498 PMCID: PMC11395563 DOI: 10.3390/foods13172732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The aim was to apply a cassava starch/carboxymethyl cellulose blend-based edible coating added to a tocopherol mix to Brazil nuts and evaluate oxidative levels during storage. The edible coatings were prepared from a cassava starch/carboxymethyl cellulose blend and identified as control B (no soy lecithin and no tocopherol mix), L (with soy lecithin and no tocopherol mix), and LT and LT2 (with soy lecithin and tocopherol mix). In the forming solutions of the coatings, stability, viscosity, pH, and color were analyzed. The Brazil nuts were immersed in the solutions for 30 s, dried at 45 °C, and placed in an incubator at 25 °C. At 1, 7, 15, 30, 45, 60, 90, and 120 days of storage, mass loss, the browning index, conjugated dienes and trienes, the oxidative state by official methods, and the accelerated oxidation index were evaluated. The blend-forming solutions B, L, LT, and LT2 showed non-Newtonian and pseudoplastic behavior, excellent resistance to flow, and stability. The diene, triene, iodine value, peroxide value, p-anisidine value, and total oxidation indices showed that the application of the cassava starch/carboxymethyl cellulose blend-based edible coating added tocopherol mix, LT, and LT2 preserved the Brazil nuts up to 90 days of storage at 25 °C. PCA shows that all coatings applied to Brazil nuts promoted oil preservation in some evaluation periods, especially those added with a tocopherol mix. It is concluded that cassava starch/CMC added tocopherol mix edible coatings have a potential application as active packaging for foods, especially nuts.
Collapse
Affiliation(s)
- Danusa Silva da Costa
- Biotechnological Process Laboratory (LABIOTEC), Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Kalebe Ferreira Furtado
- School of Biotechnology, Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Ariane Mendonça Kluczkovski
- Faculty of Pharmaceutical Sciences (UFF), Federal University of Amazonas, Avenida Rodrigo Otavio, n° 6200, Bairro Coroado, Manaus 69067-005, AM, Brazil
| | - Katiuchia Pereira Takeuchi
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil
| | - Alessandra Santos Lopes
- Biotechnological Process Laboratory (LABIOTEC), Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| |
Collapse
|
12
|
Camacho-Rodríguez J, Vizcaíno-Torres A, Macías-Sánchez MD, Navarro-López E, Soriano-Jerez Y, Alarcón-López FJ, Cerón-García MC. Economically viable bioprocess for inclusion of microalga Nannochloropsis gaditana in aquaculture feeds: Evaluation of antioxidant addition in preventing lipid oxidation during storage. BIORESOURCE TECHNOLOGY 2024; 406:131024. [PMID: 38914238 DOI: 10.1016/j.biortech.2024.131024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The rising prices of fishery derivatives limits their use in aquafeeds. Therefore, other alternatives are used to replace those ingredients. Among them, microalgae are of great interest both as an ingredient and as a potential stabilising agent against lipid oxidation. This study evaluates on the use of Nannochloropsis gaditana to prevent lipid oxidation in a set of 12 aquafeeds over 540 days of storage. Aquafeeds were formulated with/without 15 % N. gaditana combined with two antioxidants -butylhydroxytoluene (25-150 mg·kg-1) or vitamin E (500-3000 mg·kg-1). The effect of i) storage period, ii) presence of microalgae and iii) antioxidant addition on lipid oxidation was assessed. Results showed higher fatty acid degradation in diets lacking microalgae. The microalgae supplemented diets is enough for preserving feeds presenting the highest antioxidant effect at the end, without significant differences with the microalgae-supplemented feeds and those including antioxidants after 540 days of storage.
Collapse
Affiliation(s)
- J Camacho-Rodríguez
- Chemical Engineering Department and Research Centre CIAIMBITAL and CEIMAR, University of Almería, 04120 Almería, Spain
| | - A Vizcaíno-Torres
- Department of Biology and Geology, CEIMAR University of Almería, 04120 Almería, Spain
| | - M D Macías-Sánchez
- Chemical Engineering Department and Research Centre CIAIMBITAL and CEIMAR, University of Almería, 04120 Almería, Spain
| | - E Navarro-López
- Chemical Engineering Department and Research Centre CIAIMBITAL and CEIMAR, University of Almería, 04120 Almería, Spain
| | - Y Soriano-Jerez
- Chemical Engineering Department and Research Centre CIAIMBITAL and CEIMAR, University of Almería, 04120 Almería, Spain
| | - F J Alarcón-López
- Department of Biology and Geology, CEIMAR University of Almería, 04120 Almería, Spain; LifeBioencapsulation S.L., Parque Científico PITA, El Alquián, 04131 Almería, Spain
| | - M C Cerón-García
- Chemical Engineering Department and Research Centre CIAIMBITAL and CEIMAR, University of Almería, 04120 Almería, Spain.
| |
Collapse
|
13
|
Aziz K, Haydari I, Kaya S, Mandi L, Ouazzani N, Aziz F. Phenolic compounds removal in table olive processing wastewater by column adsorption: conditions' optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38835-38845. [PMID: 36882652 DOI: 10.1007/s11356-023-26180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The annual production of wastewater from the olive table industry poses a serious problem owing to its high organic matter load, which is highly concentrated in phenolic compounds (PCs) and inorganic materials. This research used adsorption to recover PCs from table olive wastewater (TOWW). Activated carbon was employed as a novel adsorbent. The activated carbon was obtained from olive pomace (OP) and activated using a chemical agent (ZnCl2). Fourier transform infrared spectroscopy analysis (FTIR), Brunauer-Emmett-Teller analysis (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the activated carbon sample. To optimize the biosorption conditions of PCs (adsorbent dose (A), temperature (B), and time (C)), a central composite design (CCD) model was used. An adsorption capacity was 1952.34 mg g-1 for optimal conditions with an activated carbon dose of 0.569 g L-1, a temperature of 39 °C, and a contact time of 239 min. The pseudo-second-order and Langmuir models as kinetic and isothermal mathematical models were proved to be more appropriate for the interpretation of the adsorption phenomenon of PCs. PC recovery was performed in fixed-bed reactors. The results of the adsorption of PCs from TOWW by activated carbon could be an effective process at a low cost.
Collapse
Affiliation(s)
- Khalid Aziz
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, B.P 8106, 80000, Agadir, Morocco
| | - Imane Haydari
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Laila Mandi
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Naaila Ouazzani
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco.
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco.
| |
Collapse
|
14
|
Mouro C, Gouveia IC. Electrospun wound dressings with antibacterial function: a critical review of plant extract and essential oil incorporation. Crit Rev Biotechnol 2024; 44:641-659. [PMID: 37156536 DOI: 10.1080/07388551.2023.2193859] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Among the many different types of wound dressings, nanofiber-based materials produced through electrospinning are claimed to be ideal because of their advantageous intrinsic properties and the feasibility of employing several strategies to load bioactive compounds into their structure. Bioactive compounds with antimicrobial properties have been incorporated into different wound dressings to promote healing as well as prevent and treat bacterial infections. Among these, natural products, such as medicinal plant extracts and essential oils (EOs), have proven particularly attractive thanks to their nontoxic nature, minor side effects, desirable bioactive properties, and favorable effects on the healing process. To this end, the present review provides an exhaustive and up-to-date revision of the most prominent medicinal plant extracts and EOs with antimicrobial properties that have been incorporated into nanofiber-based wound dressings. The most common methods used for incorporating bioactive compounds into electrospun nanofibers include: pre-electrospinning (blend, encapsulation, coaxial, and emulsion electrospinning), post-electrospinning (physical adsorption, chemical immobilization, and layer-by-layer assembly), and nanoparticle loading. Furthermore, a general overview of the benefits of EOs and medicinal plant extracts is presented, describing their intrinsic properties and biotechniques for their incorporation into wound dressings. Finally, the current challenges and safety issues that need to be adequately clarified and addressed are discussed.
Collapse
Affiliation(s)
- Cláudia Mouro
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, Covilhã, Portugal
| | - Isabel C Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
15
|
Baygar T, Metin Hacisa C, Baygar T, Alparslan Y. The preservation effect of biodegradable gelatin coating incorporated with grape seed oil on glazed shrimp. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3507-3516. [PMID: 38145928 DOI: 10.1002/jsfa.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND This study was conducted to investigate the quality and shelf life of shrimps (Parapenaeus longirostris, Lucas 1846) glazed with biodegradable gelatin solutions combined with grape (Vitis vinifera L.) seed oil (GSO). Therefore, shrimps were divided into five groups and were glazed with distilled water (control), G (gelatin), G + 5% GSO (gelatin with 5% GSO), G + 10% GSO (gelatin with 10% GSO) and G + 15% GSO (gelatin with 15% GSO). Glazed shrimps were vacuum packaged and stored at -18 °C for 12 months. Proximate composition of the shrimps was determined, and the microbial (total viable counts, psychrotrophic bacteria count and Enterobacteriaceae), sensorial, chemical (residual sulfite, pH, total volatile basic nitrogen, trimethylamine nitrogen, thiobarbituric acid reactive substances) analysis, colour measurement, and melanosis formation were evaluated throughout the storage period. RESULTS According to the analysis results, edible G + GSO coatings improved the meat quality and the brightness of the shrimps. The combined treatment reduced the quality loss of the shrimps which was caused by lipid content and prevented the total psychotropic bacteria growth throughout the storage. Moreover, glazing with G + GSO retarded the melanosis formation of the frozen shrimps. CONCLUSION The study results revealed that GSO may be a recommended alternatively to sodium metabisulfite, which is a hazardous chemical substance commonly used against melanosis of shrimps. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tuba Baygar
- Department of Seafood Processing Technology, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Cansu Metin Hacisa
- Department of Seafood Processing Technology, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Taçnur Baygar
- Department of Seafood Processing Technology, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Yunus Alparslan
- Department of Seafood Processing Technology, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| |
Collapse
|
16
|
Singh K, Yadava RN, Yadav R. Antioxidant isolation and characterization from the plant Tradescantia spathacea Sw. of the Commelinaceae family. Nat Prod Res 2024; 38:1016-1023. [PMID: 37194669 DOI: 10.1080/14786419.2023.2213806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
A novel bioactive flavan glycoside was isolated by solvent extraction method with the help of Soxhlet apparatus from the methanolic extract of Tradescantia spathacea Sw. Flavan glycoside having molecular formula C20H22O10, melting point 175-1780C, molecular weight by ESI-MS m/z (M + H]+ 423, optical rotation was[α]21D-45.1(c 0.20 methanol). Its structure was determined (-)-epicatechin 7-O-alpha-L-arabinopyranoside. Various color reactions, chemical degradation (like acid hydrolysis, permethylation, and enzymatic hydrolysis), UV-Visible spectrophotometry, Fourier transforms infrared spectroscopy, electrospray ionization mass spectrometry, and nuclear magnetic resonance spectroscopy were used to establish the structure of compound (-)-(-)-epicatechin 7-O-alpha-L-arabinopyranoside.. A flavan glycoside was also tested with a DPPH assay method for antioxidant activity by using Ascorbic acid as standard. DPPH radical scavenging test data demonstrate that a flavan glycoside possesses potent antioxidant activity so this flavan glycoside can be utilized as a potent antioxidant agent.
Collapse
Affiliation(s)
- Kesar Singh
- Department of Chemistry, Harisingh Gour University, Sagar, India
| | - R N Yadava
- Department of Chemistry, Harisingh Gour University, Sagar, India
| | - Ritu Yadav
- Department of Chemistry, Harisingh Gour University, Sagar, India
| |
Collapse
|
17
|
Jabbari N, Goli M, Shahi S. Optimization of Bioactive Compound Extraction from Saffron Petals Using Ultrasound-Assisted Acidified Ethanol Solvent: Adding Value to Food Waste. Foods 2024; 13:542. [PMID: 38397518 PMCID: PMC10888204 DOI: 10.3390/foods13040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The saffron industry produces large by-products, including petals with potential bioactive compounds, which are cheap and abundant, making them an attractive alternative to expensive stigmas for extracting bioactive components. This study aimed to optimize the extraction conditions of bioactive compounds from vacuum-dried saffron petals using an ultrasound-assisted acidified ethanol solvent. Three factors were considered: ethanol concentration (0-96%), citric acid concentration in the final solvent (0-1%), and ultrasound power (0-400 watt). This study examined the effects of these factors on parameters like maximum antioxidant activity, total anthocyanin content, total phenolic content, and the total flavonoid content of the extraction. This study found that saffron petal extract's antioxidant activity increases with higher ethanol concentration, citric acid dose, and ultrasound power, but that an increased water content leads to non-antioxidant compounds. Increasing the dosage of citric acid improved the extraction of cyanidin-3-glucoside at different ultrasound power levels. The highest extraction was achieved with 400 watts of ultrasound power and 1% citric acid. Ethanol concentration did not affect anthocyanin extraction. Higher ethanol concentration and greater citric acid concentration doses resulted in the maximum extraction of total phenolic content, with a noticeable drop in extraction at higher purity levels. This study found that increasing the proportion of citric acid in the final solvent did not affect flavonoid extraction at high ethanol concentration levels, and the highest efficiency was observed at 200 watts of ultrasound power. The optimum values of the independent parameters for extracting bioactive compounds from saffron petals included 96% ethanol concentration, 0.67% citric acid concentration, and 216 watts of ultrasound power, resulting in a desirability value of 0.82. This ultrasound-assisted acidified ethanolic extract can be used in the food industry as a natural antioxidant and pigment source.
Collapse
Affiliation(s)
- Nikoo Jabbari
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran;
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran;
| | - Sharifeh Shahi
- Department of Medical Engineering, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran;
| |
Collapse
|
18
|
Li X, Liu Y, Luo B, Xiang W, Chen Z. Effect of apple polyphenols on physicochemical properties of pea starch/pulp cellulose nanofiber composite biodegradable films. Int J Biol Macromol 2024; 257:128480. [PMID: 38052284 DOI: 10.1016/j.ijbiomac.2023.128480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
A pea starch (PS) and pulp cellulose nanofibers (CNF-P) hybrid matrix biodegradable film was prepared using apple polyphenol (AP) as the active substance. SEM and thermogravimetric analyses showed that apple polyphenols could be uniformly distributed and form hydrogen bonds with the matrix, and the increase in crystallinity improved the thermal stability of the films (the final residue of the films increased from 22.66 % to 31.82 %). The TS and EAB of the films reached their maximum values of 11.14 ± 1.73 MPa and 71.55 ± 8.8 %, respectively, at an AP content of 1.5 %. It should be noted that the antioxidant properties of the films were significantly positively correlated with the AP content, and the DPPH radical scavenging rate of the films reached 73.77 % at an AP content of 4.5 %, which was about 49 times higher than that of the control film. The same trend was observed in the UV-vis spectra. In addition, the total color difference and water solubility of the membranes increased from 4.29 ± 0.29 to 31.86 ± 1.90 and from 20.01 ± 0.97 % to 21.70 ± 1.99 %, respectively, and the biodegradability also showed an upward trend. These findings provide a theoretical basis and data support for the development of multifunctional biodegradable food packaging materials.
Collapse
Affiliation(s)
- Xu Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chengdu 610039, China; Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, Sichuan, China.
| | - Yao Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Bangping Luo
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chengdu 610039, China; Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, Sichuan, China
| | - Zhiwei Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built By Sichuan and Chongqing, Chengdu 610039, China; Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, Sichuan, China
| |
Collapse
|
19
|
Yeasmin MS, Uddin MJ, Dey SS, Barmon J, Ema NT, Rana GM, Rahman MM, Begum M, Ferdousi L, Ahmed S, Khan MS, Khatun MH, Muzahid AA. Optimization of green microwave-assisted extraction of essential oil from lemon (Citrus limon) leaves: Bioactive, antioxidant and antimicrobial potential. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2024; 8:100413. [DOI: 10.1016/j.crgsc.2024.100413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
20
|
Marrone G, Di Lauro M, Izzo F, Cornali K, Masci C, Vita C, Occhiuto F, Di Daniele N, De Lorenzo A, Noce A. Possible Beneficial Effects of Hydrolyzable Tannins Deriving from Castanea sativa L. in Internal Medicine. Nutrients 2023; 16:45. [PMID: 38201875 PMCID: PMC10780656 DOI: 10.3390/nu16010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Hydrolyzable tannins (HTs) deriving from chestnuts have demonstrated, through numerous studies, the ability to exert multiple beneficial effects, including antioxidant and antimicrobial effects, on the lipid metabolism and cancer cells. The latter effect is very fascinating, since different polyphenols deriving from chestnuts were able to synergistically induce the inhibition of cancerous cells through multiple pathways. Moreover, the main mechanisms by which tannins induce antioxidant functions include: the reduction in oxidative stress, the ability to scavenge free radicals, and the modulation of specific enzymes, such as superoxide dismutase. HTs have also been shown to exert significant antimicrobial activity by suppressing microbial growth. The actions on the lipid metabolism are several, among which is the inhibition of lipid accumulation. Thus, tannins seem to induce a cardioprotective effect. In fact, through various mechanisms, such as the relaxation of the vascular smooth muscle, HTs were proven to be efficient against arterial hypertension. Therefore, the great number of studies in this field prove the growing interest on the utilization of natural bioactive compounds, such as HTs deriving from natural sources or obtained by circular economy models, as potential nutraceuticals or adjuvants therapies.
Collapse
Affiliation(s)
- Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Francesco Izzo
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Claudia Masci
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Chiara Vita
- QuMAP (Quality of Goods and Product Reliability), University of Florence, PIN, 59100 Prato, Italy;
- Department of Economics, Management and Business Law, University of Bari “Aldo Moro”, Piazza Umberto I, 70121 Bari, Italy
| | - Francesco Occhiuto
- Ph.D. School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
- Fondazione Leonardo per le Scienze Mediche Onlus, Policlinico Abano, 35031 Abano Terme, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
21
|
Shekwa W, Maliehe TS, Masoko P. Antimicrobial, antioxidant and cytotoxic activities of the leaf and stem extracts of Carissa bispinosa used for dental health care. BMC Complement Med Ther 2023; 23:462. [PMID: 38102607 PMCID: PMC10722736 DOI: 10.1186/s12906-023-04308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Carissa bispinosa (L.) Desf. ex Brenan is one of the plants used traditionally to treat oral infections. However, there is limited data validating its therapeutic properties and photochemistry. The aim of this study was to investigate the protective efficacy of the leaf and stem extracts of C. bispinosa against oral infections. METHODS The phenolic and tannin contents were measured using Folin-Ciocalteau method after extracting with different solvents. The minimum inhibitory concentrations (MIC) of the extracts were assessed using the microdilution method against fungal (Candida albicans and Candida glabrata) and bacterial (Streptococcus pyogenes, Staphylococcus aureus and Enterococcus faecalis) strains. The 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing power (FRP) models were utilised to assess the antioxidant potential of the extracts. Cytotoxicity of the leaf acetone extract was evaluated using the methylthiazol tetrazolium assay. RESULTS The methanol leaf extract had the highest phenolic content (113.20 mg TAE/g), whereas hexane extract displayed the highest tannin composition of 22.98 mg GAE/g. The acetone stem extract had the highest phenolic content (338 mg TAE/g) and the stem extract yielded the highest total tannin content (49.87 mg GAE/g). The methanol leaf extract demonstrated the lowest MIC value (0.31 mg/mL), whereas the stem ethanol extract had the least MIC value of 0.31 mg/mL. The stem methanol extract had the best DPPH free radical scavenging activity (IC50, 72 µg/mL) whereas the stem ethanol extract displayed maximum FRP with absorbance of 1.916. The leaf acetone extract had minimum cytotoxicity with the lethal concentration (LC50) of 0.63 mg/mL. CONCLUSIONS The results obtained in this study validated the protective effect of C. bispinosa against oral infections.
Collapse
Affiliation(s)
- Wanda Shekwa
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private bag X1106, Sovenga, 0727, South Africa
| | - Tsolanku Sidney Maliehe
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private bag X1106, Sovenga, 0727, South Africa
| | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private bag X1106, Sovenga, 0727, South Africa.
| |
Collapse
|
22
|
Wang WL, Zhang KY, Yuan MQ, Yang M, Wang AD, Huang L, Li JL. α-Glucosidase inhibitors from the husks of rice Oryza sativa L. Fitoterapia 2023; 171:105688. [PMID: 37757924 DOI: 10.1016/j.fitote.2023.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Rice husk is one of the most plentiful agriculture by-products in rice producing areas, which harbors a substantial proportion of biological metabolites, however, it has not been well studied. As an attempt to utilize it as a productive manner, phytochemical investigation on rice husk has performed and led to the isolation of three undescribed (1, 2, and 7), along with twelve known components (3-6, and 8-15). Those chemical structures were elucidated based on massive spectroscopic methods. Among them, compounds 4, 6-8, and 10-13 have been shown to act as α-glucosidase inhibitors. Notably, the most active compounds, 10/11, demonstrated comparable α-glucosidase inhibitory effect (IC50 = 1.83 ± 0.11 μg/mL) to that of 1-deoxynojirimycin (IC50 = 1.02 ± 0.16 μg/mL). For the molecular docking simulation studies, compounds 10/11 showed relative binding interactions with α-glucosidase enzyme (PDB ID: 3A4A) that similar to those reference inhibitors. Additionally, the crude extract of O. sativa demonstrated better α-glucosidase inhibitory effect to that of isolated components, with the IC50 value at 1.25 ± 0.07 μg/mL.
Collapse
Affiliation(s)
- Wen Li Wang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Kua-Yue Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Ming-Qing Yuan
- College of Pharmacy, Nantong University, Nantong 226001, PR China; The First People's Hospital of Kunshan, Jiangsu 215300, PR China
| | - Min Yang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - An-Dong Wang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Lei Huang
- Department of Pharmacy, First People's Hospital of Yancheng, Yancheng 224006, PR China.
| | - Jian Lin Li
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
23
|
Ayres L, Benavidez T, Varillas A, Linton J, Whitehead DC, Garcia CD. Predicting Antioxidant Synergism via Artificial Intelligence and Benchtop Data. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15644-15655. [PMID: 37796649 DOI: 10.1021/acs.jafc.3c05462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Lipid oxidation is a major issue affecting products containing unsaturated fatty acids as ingredients or components, leading to the formation of low molecular weight species with diverse functional groups that impart off-odors and off-flavors. Aiming to control this process, antioxidants are commonly added to these products, often deployed as combinations of two or more compounds, a strategy that allows for lowering the amount used while boosting the total antioxidant capacity of the formulation. While this approach allows for minimizing the potential organoleptic and toxic effects of these compounds, predicting how these mixtures of antioxidants will behave has traditionally been one of the most challenging tasks, often leading to simple additive, antagonistic, or synergistic effects. Approaches to understanding these interactions have been predominantly empirically driven but thus far, inefficient and unable to account for the complexity and multifaceted nature of antioxidant responses. To address this current gap in knowledge, we describe the use of an artificial intelligence model based on deep learning architecture to predict the type of interaction (synergistic, additive, and antagonistic) of antioxidant combinations. Here, each mixture was associated with a combination index value (CI) and used as input for our model, which was challenged against a test (n = 140) data set. Despite the encouraging preliminary results, this algorithm failed to provide accurate predictions of oxidation experiments performed in-house using binary mixtures of phenolic antioxidants and a lard sample. To overcome this problem, the AI algorithm was then enhanced with various amounts of experimental data (antioxidant power data assessed by the TBARS assay), demonstrating the importance of having chemically relevant experimental data to enhance the model's performance and provide suitable predictions with statistical relevance. We believe the proposed method could be used as an auxiliary tool in benchmark analysis routines, offering a novel strategy to enable broader and more rational predictions related to the behavior of antioxidant mixtures.
Collapse
Affiliation(s)
- Lucas Ayres
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Tomás Benavidez
- INFIQC-CONICET, Department of Physical Chemistry, National University of Córdoba, Cordoba 5000, Argentina
| | - Armelle Varillas
- South Carolina Governor's School for Science and Mathematics, Hartsville, South Carolina 29550, United States
| | - Jeb Linton
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | |
Collapse
|
24
|
Cañadas R, Martín-Sampedro R, González-Miquel M, González EJ, Ballesteros I, Eugenio ME, Ibarra D. Green solvents extraction-based detoxification to enhance the enzymatic hydrolysis of steam-exploded lignocellulosic biomass and recover bioactive compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118448. [PMID: 37413728 DOI: 10.1016/j.jenvman.2023.118448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
A novel strategy for pre-treated biomass detoxification combining emerging green solvents and low environmental impact extraction technologies was evaluated. Steam-exploded biomass was subjected to microwave-assisted or orbital shaking extraction using bio-based or eutectic solvents. The extracted biomass was enzymatically hydrolysed. The potential of this detoxification methodology was studied in terms of phenolic inhibitors extraction and sugar production improvement. The effect of adding a post-extraction water washing step before hydrolysis was also evaluated. Excellent results were achieved when steam-exploded biomass was subjected to the microwave-assisted extraction combined with the washing step. The highest sugar production was achieved when ethyl lactate was used as extraction agent (49.80 ± 3.10 g total sugar/L) over the control (30.43 ± 0.34 g total sugar/L). Results suggested that a detoxification step based on green solvents would be a promising option to extract phenolic inhibitors, which can be revalorized as antioxidants, and improve the sugar production from the extracted pre-treated biomass.
Collapse
Affiliation(s)
- Raquel Cañadas
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra. de La Coruña Km 7.5, 28040, Madrid, Spain.
| | - Raquel Martín-Sampedro
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra. de La Coruña Km 7.5, 28040, Madrid, Spain
| | - María González-Miquel
- Dept. of Industrial Chemical and Environmental Engineering, (ETSII, UPM), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Emilio J González
- Dept. of Industrial Chemical and Environmental Engineering, (ETSII, UPM), C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ignacio Ballesteros
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, 28040 Madrid, Spain
| | - María E Eugenio
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra. de La Coruña Km 7.5, 28040, Madrid, Spain
| | - David Ibarra
- Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra. de La Coruña Km 7.5, 28040, Madrid, Spain
| |
Collapse
|
25
|
Macedo GA, Barbosa PDPM, Dias FFG, Crawford LM, Wang SC, Bell JMLNDM. Optimizing the Integration of Microwave Processing and Enzymatic Extraction to Produce Polyphenol-Rich Extracts from Olive Pomace. Foods 2023; 12:3754. [PMID: 37893645 PMCID: PMC10606511 DOI: 10.3390/foods12203754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The integration of green technologies such as microwave- and enzyme-assisted extraction (MEAE) has been shown to improve the extraction efficiency of bioactive compounds while reducing processing time and costs. MEAE using tannase alone (MEAE-Tan), or in combination with cellulase and pectinase (MEAE-Tan-Cel-Pec), was optimized to produce enriched phenolic and antioxidant extracts from olive pomace. The individual and integrated impact of enzyme concentration, temperature, and pomace/water ratio were determined using a central composite rotatable design. Optimal extraction conditions for MEAE-Tan (60 °C, 15 min, 2.34% of enzyme (w/w), and 1:15 pomace/water ratio) and MEAE-Tan-Cel-Pec (46 °C, 15 min, 2% of enzymes (w/w), in the proportion of 1:1:1, and 1:20 pomace/water ratio) resulted in extracts containing 7110.6 and 2938.25 mg GAE/kg, respectively. The antioxidant activity of the extracts was correlated with phenolic acid release, which was enzyme-dependent, as determined with HPLC-DAD analysis. Enzyme selection had a significant impact on the phenolic profile of extracts, with tannase releasing high concentrations of chlorogenic acid and the combined use of enzymes releasing high concentrations of hydroxytyrosol and chlorogenic and ferulic acids. The novelty of this study relies on the integration and optimization of two green technologies (microwave- and enzyme-assisted extraction) to improve the extraction efficiency of bioactive phenolics from olive pomace while reducing processing time and costs. While these techniques have been evaluated isolated, the benefits of using both processing strategies simultaneously remain largely unexplored. This study demonstrates the effectiveness of the integration and processing optimization of two environmentally friendly technologies as a promising alternative to treat agro-industrial byproducts.
Collapse
Affiliation(s)
- Gabriela A. Macedo
- Bioprocesses Laboratory, DEPAN/FEA (School of Food Engineering), Unicamp (University of Campinas), R. Monteiro Lobato, 80, Campinas 13083970, Brazil (P.d.P.M.B.)
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Paula de P. M. Barbosa
- Bioprocesses Laboratory, DEPAN/FEA (School of Food Engineering), Unicamp (University of Campinas), R. Monteiro Lobato, 80, Campinas 13083970, Brazil (P.d.P.M.B.)
| | - Fernanda F. G. Dias
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | - Selina C. Wang
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Juliana M. L. N. De Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
26
|
Bazaid AS, Alsolami A, Patel M, Khateb AM, Aldarhami A, Snoussi M, Almusheet SM, Qanash H. Antibiofilm, Antimicrobial, Anti-Quorum Sensing, and Antioxidant Activities of Saudi Sidr Honey: In Vitro and Molecular Docking Studies. Pharmaceutics 2023; 15:2177. [PMID: 37765148 PMCID: PMC10534861 DOI: 10.3390/pharmaceutics15092177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Sidr honey is a valuable source of bioactive compounds with promising biological properties. In the present study, antimicrobial, antioxidant, and anti-quorum sensing properties of Saudi Sidr honey were assessed, along with phytochemical analysis, via gas chromatography-mass spectrometry (GC-MS). In silico study was also carried out to study the drug-likeness properties of the identified compounds and to study their affinity with known target proteins assessed using molecular docking approach. The results showed that Saudi Sidr honey exhibited promising antibacterial activity, with MIC values ranging from 50 to 400 mg/mL and MBC values from 50 to >450 mg/mL. Interestingly, the Saudi Sidr honey was active against Candida auris and Candida neoformans, with an MIC value of about 500 mg/mL. Moreover, the Sidr honey showed important antioxidant activities (ABTS assay: IC50 5.41 ± 0.045 mg/mL; DPPH assay: IC50 7.70 ± 0.065 mg/mL) and β-carotene bleaching test results (IC50 ≥ 20 mg/mL). In addition, the Saudi Sidr honey was able to inhibit biofilm formation on glass slides at 1/2 MIC by 77.11% for Bacillus subtilis, 70.88% for Staphylococcus aureus, 61.79% for Escherichia coli, and 56.64% for Pseudomonas aeruginosa. Similarly, violacein production by Chromobacterium violaceum was reduced by about 56.63%, while the production of pyocyanin by P. aeruginosa was decreased to 46.27% at a low concentration of Saudi Sidr honey. ADMET properties showed that five identified compounds, namely, 1-cyclohexylimidazolidin-2-one, 3-Butyl-3-methylcyclohexanone, 4-butyl-3-methoxy-2-cyclo penten-1-one, 2,2,3,3-Tetramethyl cyclopropane carboxylic acid, and 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl showed promising drug-likeness properties. The compound 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl exhibited the highest binding energy against antimicrobial and antioxidant target proteins (1JIJ, 2VAM, 6B8A, 6F86, 2CDU, and 1OG5). Overall, the obtained results highlighted the promising potential of Saudi Sidr honey as a rich source of bioactive compounds that can be used as food preservatives and antimicrobial, antioxidant, and anti-quorum sensing molecules.
Collapse
Affiliation(s)
- Abdulrahman S. Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha’il, Hail 55476, Saudi Arabia;
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India;
| | - Aiah Mustafa Khateb
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah 21961, Saudi Arabia;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 55476, Saudi Arabia;
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | | | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha’il, Hail 55476, Saudi Arabia;
| |
Collapse
|
27
|
Liang H, Kasiya HC, Huang D, Ren M, Zhang L, Yin H, Mi H. The Role of Algae Extract ( Ulva lactuca and Solieria chordalis) in Fishmeal Substitution in Gibel Carp ( Carrassius auratus gibeilo). Vet Sci 2023; 10:501. [PMID: 37624288 PMCID: PMC10457755 DOI: 10.3390/vetsci10080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
The function of algae extract (AE) in fishmeal (FM) substitution with plant proteins in the diets of Gibel carp (Carrassius auratus gibeilo) was investigated during a 56-day trial. Diets 1 and 2 contained 10% FM, Diets 3 and 4 contained 5% FM, and Diet 5 and 6 contained 0% FM. In contrast, Diets 2, 4, and 6 were supplemented with 0.2% AE. The results showed that FM reduction inhibited growth performance, while AE supplementation alleviated growth inhibition. FM reduction significantly decreased the crude protein levels of the whole body, while the contents of whole-body lipids were significantly decreased with AE supplementation. There were no significant changes in ALB, ALP, ALT, AST, TP, GLU, GLU, and TC in plasma. FM reduction with AE supplementation mitigated the decrease in antioxidant capacity by heightening the activity of antioxidant enzymes and related gene expressions, which mitigated the decrease in immune capacity by affecting the expression of inflammatory factors. In summary, AE supplementation could alleviate the negative effects of FM reduction in Gibel carp.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (H.L.); (D.H.); (M.R.); (L.Z.)
| | - Hopeson Chisomo Kasiya
- Department of Aquatic Bio-Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 13-8654, Japan;
| | - Dongyu Huang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (H.L.); (D.H.); (M.R.); (L.Z.)
| | - Mingchun Ren
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (H.L.); (D.H.); (M.R.); (L.Z.)
| | - Lin Zhang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China; (H.L.); (D.H.); (M.R.); (L.Z.)
| | - Heng Yin
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China;
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China;
| |
Collapse
|
28
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Rosa AD, Secco MC, De Cezaro AM, Fischer B, Cansian RL, Junges A, Franceschi E, Backes GT, Valduga E. Encapsulation of olive leaf (Olea europaea) extract using solution-enhanced dispersion by supercritical fluids (SEDS) technique. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
30
|
Mazumder MAR, Tolaema A, Chaikhemarat P, Rawdkuen S. Antioxidant and Anti-Cytotoxicity Effect of Phenolic Extracts from Psidium guajava Linn. Leaves by Novel Assisted Extraction Techniques. Foods 2023; 12:2336. [PMID: 37372547 DOI: 10.3390/foods12122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals (PCs) are gaining popularity due to their antioxidant effects and potential protection against infection, cardiovascular disease, and cellular metabolic activity. These PCs must be retained as much as possible during extraction. This research focused on the extraction of PC from Psidium guajava Linn. leaves due to higher antioxidant potential. Solvent extraction (SE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE) using distilled water (DW) or 60% (v/v) ethanol/water (ET) were used for the extraction of PC. ET shows higher total phenolic (TPC) and total flavonoid content (TFC) as well as higher antioxidant activity than DW. Phytochemical screening demonstrated that all of the screening showed positive results in all extraction methods, except glycoside. There were no significant differences (p > 0.05) in TPC and TFC during MAE/ET, SE/ET, and UAE/ET. Antioxidant analysis shows that MAE and SE resulted in high (p < 0.05) DPPH and FRAP values for ET and DW, respectively. MAE/ET showed the highest inhibitory activity (IC50 = 16.67 µg/mL). HPLC and TLC analysis reveal the fingerprint of morin, which might function as an anticancer agent with other bioactives. Increasing the extract content increased the inhibitory activity of SW480 cells via MTT assay. In conclusion, MAE/ET is the most efficient among the extraction techniques in terms of anti-cytotoxicity effects.
Collapse
Affiliation(s)
- Md Anisur Rahman Mazumder
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arif Tolaema
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Pongpasin Chaikhemarat
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
31
|
Faiza N, Imran A, Arshad MU, Arshad MS, Shah MA. Valorization and characterization of corn by-product polyphenols through green extraction technologies. Front Nutr 2023; 10:1107067. [PMID: 37229473 PMCID: PMC10203244 DOI: 10.3389/fnut.2023.1107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/27/2023] [Indexed: 05/27/2023] Open
Abstract
The amount of food waste throughout the world has become quite alarming and is contributing to lower food resources. The study aimed to extract and characterize the polyphenols from corn silks at immature and mature stages through conventional and green extraction techniques. Purposely, corn silks, which are some of the by-products of corn, (Zea mays L.) were collected and subjected to proximate analysis including moisture, ash, protein, fiber, and minerals. Secondly, the antioxidants from both immature and mature corn silks were extracted by techniques involving supercritical and ultrasound extraction alongside conventional extraction. The results displayed a promising quantity of protein and fiber along with calcium, magnesium, sodium potassium, and copper. Among the extraction techniques, supercritical extraction at 3,000 Pa acquired the highest total phenolic contents (TPC), total flavonoids (TF), 2, 2-diphenylpicrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) activities as 128.08 ± 3.74 mg GAE/100 g, 86.73 ± 2.75 mg CE/100 g, 106.73 ± 5.10%, and 73.52 ± 2.33 μM Fe + 2/g, respectively, followed by the ultrasound and conventional extraction techniques. Between the immature and mature corn silks, the highest antioxidant activity was displayed by immature corn silks.
Collapse
Affiliation(s)
- Neelam Faiza
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | | | | - Mohd Asif Shah
- Department of Economics, Kebri Dehar University, Kebri Dehar, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
32
|
Baibuch S, Zema P, Bonifazi E, Cabrera G, Mondragón Portocarrero ADC, Campos C, Malec L. Effect of the Drying Method and Optimization of Extraction on Antioxidant Activity and Phenolic of Rose Petals. Antioxidants (Basel) 2023; 12:antiox12030681. [PMID: 36978929 PMCID: PMC10045785 DOI: 10.3390/antiox12030681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
The effect of freeze and hot air drying methods on the retention of total phenolics, antioxidant activity (AA), and color of different cultivars of rose petals was analyzed. Both methods similarly preserved the phenolic content and AA, while freeze drying showed better red color retention. Furthermore, the conditions of total phenolics and AA extraction from two rose cultivars, Lovely Red and Malu, were optimized by response surface methodology through a Box–Behnken design. The solvent exhibited a major effect on the total phenolic content (TPC) and AA. The selected parameters were ethanol 38%, 75 °C, and 30 min. Under these conditions, the predicted values for Lovely Red were 189.3 mg GA/g dw (TPC) and 535.6 mg Trolox/g dw (AA), and those for Malu were 108.5 mg GA/g dw (TPC) and 320.7 mg Trolox/g dw (AA). The experimental values were close to the predicted values, demonstrating the suitability of the model. Ultrasound-assisted extraction increased the AA of the extracts but not the TPC. Fifteen compounds were identified in the Lovely Red cultivar, with no differences between the two drying methods. The results obtained suggest that the analyzed cultivars, particularly the red ones, can be considered a natural source of powerful antioxidant compounds.
Collapse
Affiliation(s)
- Sabrina Baibuch
- Industries Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Institute of Food Technology and Chemical Processes, Faculty of Exact and Natural Sciences, University City, National Scientific and Technical Research Council, Buenos Aires C1428EGA, Argentina
| | - Paula Zema
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Evelyn Bonifazi
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Microanalysis and Physical Methods Applied to Organic Chemistry Unit, University City, National Scientific and Technical Research Council, Buenos Aires C1428EGA, Argentina
| | - Gabriela Cabrera
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Microanalysis and Physical Methods Applied to Organic Chemistry Unit, University City, National Scientific and Technical Research Council, Buenos Aires C1428EGA, Argentina
| | | | - Carmen Campos
- Industries Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Institute of Food Technology and Chemical Processes, Faculty of Exact and Natural Sciences, University City, National Scientific and Technical Research Council, Buenos Aires C1428EGA, Argentina
| | - Laura Malec
- Organic Chemistry Department, Faculty of Exact and Natural Sciences, University City, University of Buenos Aires, Buenos Aires C1428EGA, Argentina
- Correspondence: ; Tel.: +54-(11)-5285-8540
| |
Collapse
|
33
|
Plaza A, Rodríguez L, Concha-Meyer AA, Cabezas R, Zurob E, Merlet G, Palomo I, Fuentes E. Effects of Extraction Methods on Phenolic Content, Antioxidant and Antiplatelet Activities of Tomato Pomace Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:1188. [PMID: 36904048 PMCID: PMC10005732 DOI: 10.3390/plants12051188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Aqueous and ethanolic extracts of tomato pomace were examined with the aim of optimizing the extraction process of compounds with cardioprotective activity. Once the results of the ORAC response variables, total polyphenols, °Brix, and antiplatelet activity of the extracts were obtained, a multivariate statistical analysis was performed using the Statgraphics Centurion XIX software. This analysis showed that the most relevant positive effects in the inhibition of platelet aggregation were 83 ± 2% when using the agonist TRAP-6, when the working conditions were the type of tomato pomace conditioning (drum-drying process at 115 °C), phase ratio (1/8), type of solvent (ethanol 20%), and type of extraction (ultrasound-assisted solid-liquid extraction). The extracts with the best results were microencapsulated and characterized by HPLC. The presence of chlorogenic acid (0.729 mg/mg of dry sample) was found, a compound that has a potential cardioprotective effect documented in various studies, in addition to rutin (2.747 mg/mg of dry sample) and quercetin (0.255 mg/mg of dry sample). These results show that the extraction efficiency of compounds with cardioprotective activity depends largely on the polarity of the solvent, thus playing an important role in the antioxidant capacity of the extracts of tomato pomace.
Collapse
Affiliation(s)
- Andrea Plaza
- Centro de Estudios en Alimentos Procesados-CEAP, Conicyt, Programa Regional R19A10001, Gore Maule, Talca 3480094, Chile
| | - Lyanne Rodríguez
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Anibal A. Concha-Meyer
- Centro de Estudios en Alimentos Procesados-CEAP, Conicyt, Programa Regional R19A10001, Gore Maule, Talca 3480094, Chile
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia 5090000, Chile
| | - René Cabezas
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4070129, Chile
| | - Elsie Zurob
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, University of Santiago de Chile, Santiago 9170022, Chile
| | - Gastón Merlet
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán 4070386, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
34
|
Marković Z, Komolkin AV, Egorov AV, Milenković D, Jeremić S. Alizarin as a potential protector of proteins against damage caused by hydroperoxyl radical. Chem Biol Interact 2023; 373:110395. [PMID: 36758887 DOI: 10.1016/j.cbi.2023.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Alizarin is a natural anthraquinone molecule with moderate antioxidative capacity. Some earlier investigations indicated that it can inhibit osteosarcoma and breast carcinoma cell proliferation by inhibiting of phosphorylation process of ERK protein (extracellular signal-regulated kinases). Several mechanisms of deactivation of one of the most reactive oxygen species, hydroperoxyl radical, by alizarin are estimated: hydrogen atom abstraction (HAA), radical adduct formation (RAF), and single electron transfer (SET). The plausibility of those mechanisms is estimated using density functional theory. The obtained results indicated HAA as the only thermodynamically plausible mechanism. For that purpose, two possible mechanistic pathways for hydrogen atom abstraction are studied in detail: hydrogen atom transfer (HAT) and proton-coupled electron transfer (PCET). Water and benzene are used as models of solvents with opposite polarity. To examine the difference between HAT and PCET is used kinetical approach based on the Transition state theory (TST) and determined rate constants (k). Important data used for a distinction between HAT and PCET mechanisms are obtained by applying the Quantum Theory of Atoms in Molecules (QTAIM), and by the analysis of single occupied molecular orbitals (SOMOs) in transition states for two examined mechanisms. The molecular docking analysis and molecular dynamic are used to predict the most probable positions of binding of alizarin to the sequence of ApoB-100 protein, a protein component of plasma low-density lipoproteins (LDL). It is found that alizarin links the nitrated polypeptide forming the π-π interactions with the amino acids Phenylalanine and Nitrotyrosine. The ability of alizarin to scavenge hydroperoxyl radical when it is in a sandwich structure between the polypeptide and radical species, as the operative reaction mechanism, is not significantly changed concerning its antioxidant capacity in the absence of polypeptide. Therefore, alizarin can protect the polypeptide from harmful hydroperoxyl radical attack, positioning itself between the polypeptide chain and the reactive oxygen species.
Collapse
Affiliation(s)
- Zoran Marković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia; Department of Natural Science and Mathematics, State University of Novi Pazar, Serbia.
| | - Andrei V Komolkin
- Faculty of Physics, Department of Nuclear-Physics Research Methods, St. Petersburg State University, Saint Petersburg, Russia
| | - Andrei V Egorov
- Faculty of Physics, Department of Nuclear-Physics Research Methods, St. Petersburg State University, Saint Petersburg, Russia
| | - Dejan Milenković
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Svetlana Jeremić
- Department of Natural Science and Mathematics, State University of Novi Pazar, Serbia.
| |
Collapse
|
35
|
Rymbai H, Verma VK, Talang H, Assumi SR, Devi MB, Vanlalruati, Sangma RHCH, Biam KP, Chanu LJ, Makdoh B, Singh AR, Mawleiñ J, Hazarika S, Mishra VK. Biochemical and antioxidant activity of wild edible fruits of the eastern Himalaya, India. Front Nutr 2023; 10:1039965. [PMID: 36937364 PMCID: PMC10014916 DOI: 10.3389/fnut.2023.1039965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
The eastern Himalayas, one of the important hotspots of global biodiversity, have a rich diversity of wild edible fruit trees. The fruits of these tree species have been consumed by the tribal people since time immemorial. However, there is limited information available on the biochemical and antioxidant properties of the fruits. Therefore, the present investigation was undertaken to study the physico-chemical and antioxidant properties of the nine most important wild fruit trees. Among the species, Pyrus pashia had the maximum fruit weight (37.83 g), while the highest juice (43.72%) and pulp content (84.67%) were noted in Haematocarpus validus and Myrica esculenta, respectively. Maximum total soluble solids (18.27%), total sugar (11.27%), moisture content (88.39%), ascorbic acid content (63.82 mg/100 g), total carotenoids (18.47 mg/100 g), and total monomeric anthocyanin (354.04 mg/100 g) were recorded in H. validus. Docynia indica had the highest total phenolic content (19.37 mg GAE/g), while H. validus recorded the highest total flavonoids and flavanol content. The antioxidant activities of the different fruits ranged from 0.17 to 0.67 IC50 for DPPH activity and 3.59-13.82 mg AAE/g for FRAP. These fruits had attractive pigmentation of both pulp and juice and were a good potential source for the extraction of natural edible color in the food industry. The fruits also possess high market prices; Prunus nepalensis fetched $ 34.10-$ 141.5 per tree. Therefore, these fruits are rich sources of antioxidants, pigments and have a high market value for livelihood and nutritional security.
Collapse
|
36
|
Saivish MV, Pacca CC, da Costa VG, de Lima Menezes G, da Silva RA, Nebo L, da Silva GCD, de Aguiar Milhim BHG, da Silva Teixeira I, Henrique T, Mistrão NFB, Hernandes VM, Zini N, de Carvalho AC, Fontoura MA, Rahal P, Sacchetto L, Marques RE, Nogueira ML. Caffeic Acid Has Antiviral Activity against Ilhéus Virus In Vitro. Viruses 2023; 15:494. [PMID: 36851709 PMCID: PMC9961518 DOI: 10.3390/v15020494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ilhéus virus (ILHV) is a neglected mosquito-borne flavivirus. ILHV infection may lead to Ilhéus fever, an emerging febrile disease like dengue fever with the potential to evolve into a severe neurological disease characterized by meningoencephalitis; no specific treatments are available for this disease. This study assessed the antiviral properties of caffeic acid, an abundant component of plant-based food products that is also compatible with the socioeconomic limitations associated with this neglected infectious disease. The in vitro activity of caffeic acid on ILHV replication was investigated in Vero and A549 cell lines using plaque assays, quantitative RT-PCR, and immunofluorescence assays. We observed that 500 µM caffeic acid was virucidal against ILHV. Molecular docking indicated that caffeic acid might interact with an allosteric binding site on the envelope protein.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
- Faceres Medical School, São José do Rio Preto 15090-000, SP, Brazil
| | - Vivaldo Gomes da Costa
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Gabriela de Lima Menezes
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, RN, Brazil
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | | | - Liliane Nebo
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | - Gislaine Celestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Bruno Henrique Gonçalves de Aguiar Milhim
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Igor da Silva Teixeira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Tiago Henrique
- Laboratório de Marcadores Moleculares e Bioinformática, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Natalia Franco Bueno Mistrão
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Ana Carolina de Carvalho
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
37
|
Mikucka W, Witońska I, Zielińska M, Bułkowska K, Binczarski M. Concept for the valorization of cereal processing waste: Recovery of phenolic acids by using waste-derived tetrahydrofurfuryl alcohol and biochar. CHEMOSPHERE 2023; 313:137457. [PMID: 36470358 DOI: 10.1016/j.chemosphere.2022.137457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Valorization of agro-food waste by converting it into a renewable resource plays a crucial role in a bio-based circular economy. Therefore, this study was designed to evaluate the suitability of distillery stillage (DS), which comes from alcohol production from cereals, for producing value-added products that can be used synergistically. The main objective was to investigate the usefulness of two substances for the recovery of phenolic acids, which have antioxidant activity, from the liquid fraction of DS: namely, tetrahydrofurfuryl alcohol (THFA) as a solvent and biochar as an adsorbent, both produced from the solid fraction of cereal processing waste. The effect of THFA concentration (80 and 100%) on phenolic acid yield in ultrasound-assisted extraction was studied. The solubilization predictions of phenolic compounds by the Hansen solubility parameters were in accordance with the experimental results: the yield of phenolic acids in the extracts was highest (3.76 μg g-1 dry mass) with 80% THFA. Among the extracted phenolic acids, hydroxycinnamic acids predominated over hydroxybenzoic acids, which may affect the bioactive properties of the extracts and their future applications for industrial purposes. Phenolic acids from the extracts were adsorbed on 17-170 g biochar L-1 and desorbed into water at 40-60 °C. The phenolic acid recovery was highest (∼92%) when the biochar dose was 85 g L-1 and when desorption was performed at 50 °C. After adsorption/desorption, ∼95% of the antioxidant activity of the phenolic acids in the extracts was maintained. As biochar has a smaller specific surface area than commercial powdered activated carbon (PAC), the biochar dose should be about 5 times higher than an equivalent PAC dose for adsorption efficiency above 90%.
Collapse
Affiliation(s)
- Wioleta Mikucka
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland.
| | - Izabela Witońska
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bułkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Michał Binczarski
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| |
Collapse
|
38
|
do Nascimento TP, Ladeira KC, Bezerra FDS, Santos MCB, de Souza TSP, Cameron LC, Ferreira MSL, Koblitz MGB. Metabolomic analysis and ecofriendly enrichment of sunflower meal extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1161-1171. [PMID: 36151733 DOI: 10.1002/jsfa.12210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The presence of phenolic compounds in sunflower is well reported in the literature; however, knowledge is scarce when it comes to the composition of other secondary metabolites in this species and their by-products. This work evaluated, for the first time, the phytochemical composition of sunflower meal produced in Brazil. A combination of mixture design and central composite rotatable design 23 models was then applied to maximize the recovery of bioactive compounds using ecologically friendly solvents and concentrating by applying activated carbon, a sustainable adsorbent. The product of this extraction-concentration was also evaluated by an untargeted metabolomic approach using ultra-performance liquid chromatography coupled to mass spectrometry. RESULTS A diverse and abundant profile of phenolic compounds was obtained from Brazilian sunflower meal: in total, 51 natural products were tentatively identified, 35 of which for the first time in sunflower. The sorption capacity of the activated charcoal, in the optimized process conditions, was effective in the separation and concentration of minority secondary metabolites. The ecofriendly extract proved to be enriched in plumberoside, p-coumaric acid, and alkaloids. CONCLUSIONS Investigation of the phytochemical profile of sunflower meal produced in Brazil pointed to several secondary metabolites reported for the first time in sunflower samples, including phenolic compounds, alkaloids, and terpenes. The use of activated charcoal in an alkaline medium as an adsorbent for the concentration of these phytochemicals, from an aqueous extract, generated a potentially cost-effective, ecofriendly extract, enriched in minor metabolites, indicating a possible innovative way to selectively obtain these compounds from sunflower meal. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Talita Pimenta do Nascimento
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Karine Campos Ladeira
- Nutrition School, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Fernanda de Sousa Bezerra
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Millena Cristina Barros Santos
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| | - Thaiza Serrano Pinheiro de Souza
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - L C Cameron
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| | - Mariana Simões Larraz Ferreira
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Nutrition School, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| | - Maria Gabriela Bello Koblitz
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Nutrition School, Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Martínez-Inda B, Esparza I, Moler JA, Jiménez-Moreno N, Ancín-Azpilicueta C. Valorization of agri-food waste through the extraction of bioactive molecules. Prediction of their sunscreen action. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116460. [PMID: 36283169 DOI: 10.1016/j.jenvman.2022.116460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work was to identify the phenolic composition of 18 different vegetable residues and to determine the relationship between their phenolic compounds, antioxidant capacity and sun protection factor. For this purpose, samples of agri-food residues were analyzed to quantify their antioxidant capacity, total polyphenol and flavonoid content, sun protection factor and individual phenolic compounds through HPLC-DAD-FLD. Among the different phenolic compounds found in the extracts, the phenolic acids, especially caffeic acid, chlorogenic acid, p-coumaric acid and protocatechuic acid were the ones that have been most frequently identified, and, therefore, are present in a wide range of extracts. Black chai tea, lemon ginger tea and peanut extracts were the most antioxidant and photoprotective extracts. Phenolic compounds in the extracts have been found to contribute to their antioxidant activity and are closely correlated to their photoprotective capacity. A regression model that allows predicting the photoprotective capacity of any extract based on its total phenol content has been developed as a tool to determine the most suitable industrial application for each vegetable extract.
Collapse
Affiliation(s)
- Blanca Martínez-Inda
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (INAMAT(2)), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Irene Esparza
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (INAMAT(2)), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - José Antonio Moler
- Department of Statistics and Operational Research, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (INAMAT(2)), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (INAMAT(2)), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| |
Collapse
|
40
|
Ahmed S, Habiba MU, Hossain MD, Hoque SAM, Rahman MM. Retardation of oxidative rancidity in ghee adding orange peel powder at different storage temperature. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:243-251. [PMID: 36618040 PMCID: PMC9813280 DOI: 10.1007/s13197-022-05609-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
This study is aimed to determine and compare the antioxidant activity of Orange Peel Powder (OPP) in ghee at different temperatures (4 °C, 25 °C and 60 °C) for divergent storage periods (0, 7, 14 and 21 days). To compare the antioxidant potentiality, synthetic antioxidant BHA (Butylated Hydroxy Anisole) is used. Twelve ghee samples were prepared where one was control, another one was BHA treated and the rest ten were admixing OPP in ghee at different ratios. After sensory evaluation three highest scored ghee samples (0.5%. 1.0% and 1.5%) were selected. Samples were analyzed for peroxide (PV), thiobarbituric acid (TBA), free fatty acids (FFA) value and radical scavenging activity. Though storage temperature and storage period were increased OPP treated ghee samples peroxide, TBA and FFA values were lowered significantly compared to control samples. Moreover, 1.0% and 1.5% OPP treated ghee samples such values were lowered than BHA treated ghee samples and all these are on the favor of ghee quality. OPP treated ghee samples' DPPH quench potentiality is also stronger than BHA treated ghee samples. Therefore, OPP is a great source of antioxidants and this can be used in ghee as a natural source of antioxidants.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Dairy and Poultry Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Mst. Umme Habiba
- Department of Dairy and Poultry Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Delowar Hossain
- Department of Animal Science and Nutrition, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - S. A. Masudul Hoque
- Department of Animal Breeding and Genetics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Morshedur Rahman
- Department of Dairy and Poultry Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| |
Collapse
|
41
|
Hu KX, Zhao ZY, Lu P, He S, Deng C, Wang YZ. Caffeic Acid Decorated Ammonium Polyphosphate-Based Flame Retardant for Fire Safety and Anti-Aging of Wood Plastic Composites. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Effectiveness of Withania frutescens root extract on testicular damage induced by lead acetate in adult albino rats. Reprod Toxicol 2023; 115:102-110. [PMID: 36535557 DOI: 10.1016/j.reprotox.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Withania frutescens was used previously in traditherapy against poisoning, gastric ulceration, and dysentery treatments. Because no previous studies reporting on its therapeutic effects on male reproductive system and fertility disorders, this study aims to examine its effect on lead induced testicular damages as well as sperm count and hormonal status in rats. The present study is performed to determine their phytochemical compositions using GC-MS analysis, their antioxidant and anti-inflammatory activities in-vitro using spectrophotometry and then to estimate testosterone levels, sperm count, histopathological features, as well as spermatogenesis (TDI) and spermiogenesis (SPI) indices. The experiment is conducted for three months using four groups (Group A: control rats; Group B: exposed rats to lead-acetate; Group C: exposed rats to lead-acetate and 200 mg/kg of W. frutescens extract; Group D: treated rats with 200 mg/kg of W. frutescens extract). The obtained results show a total of 10 identified components from GC-MS analysis. Whereas a total phenolic content of 63.23 ± 3.82 GAE/g of extract, 25.16 ± 1.21 µg/mL of anti-free radical activity, and reducing power of 163.19 ± 6.01 µg/mL. A high anti-inflammatory activity is determined by hemolysis inhibition (IC50 =12.71 ± 1.06 µg/mL) and protein denaturation inhibition (IC50 =6.8 ± 1.23 µg/mL). Besides, lead exposure causes histological alterations in testis and decreases serum testosterone level, sperm count, and TDI and SPI indices. W. frutescens treated and co-treated animals showed no toxic effects throughout the experiment. However, it is found to improve testosterone level, increase sperm count, attenuate the testicular histopathological effect of lead, and increase TDI and SPI. These findings . these findings suggest that W. frutescens is a better source of bioactive compounds, which play an effective role against lead testicular damages. Furthermore, this natural extract can be utilized potentially in pharmaceutical and medicinal applications.
Collapse
|
43
|
Palacios-Peralta C, Ruiz A, Ercoli S, Reyes-Díaz M, Bustamante M, Muñoz A, Osorio P, Ribera-Fonseca A. Plastic Covers and Potassium Pre-Harvest Sprays and Their Influence on Antioxidant Properties, Phenolic Profile, and Organic Acids Composition of Sweet Cherry Fruits Cultivated in Southern Chile. PLANTS (BASEL, SWITZERLAND) 2022; 12:50. [PMID: 36616182 PMCID: PMC9824242 DOI: 10.3390/plants12010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In rainy areas, sweet cherries are cultivated under plastic covers, preventing the cracking of the fruit but decreasing the firmness and acidity of the cherries. We evaluated the impact of plastic cover and pre-harvest K foliar application on quality parameters, antioxidant properties, and phenolic and organic acid compositions in fruits of sweet cherry cv. Regina of Southern Chile. Our results showed that K+ increased firmness, total soluble content, size, fruit weight, and titratable acidity at harvest, independent of the cover factor. The positive impacts of foliar K fertilization on anthocyanins, flavonoids, and phenolic acids could explain the higher antioxidant capacity of fruits. Our study revealed that the additional K doses applied increased malic acid, the main organic acid in cherry fruits, but only in fruits from uncovered trees. In covered trees, the effect was reversed. Citric acid was higher in fruit from covered trees. Our results indicated that tartaric acid also increased with the application of higher K doses; however, this acid was detectable only in uncovered tree fruit. Interestingly, all organic acids were lower in fruits produced in the lower canopy than those detected in fruits harvested from the upper canopy. This showed the positive impact of canopy light exposure on maintaining suitable acidity levels in sweet cherry fruits.
Collapse
Affiliation(s)
- Cristóbal Palacios-Peralta
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Forestales, Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| | - Stefano Ercoli
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological, Bioresource Nucleus (BIOREN), Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| | - Marco Bustamante
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Forestales, Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| | - Ariel Muñoz
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Forestales, Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| | - Pamela Osorio
- Research, Development and Innovation Department, Exportadora Rancagua S.A.—Ranco Cherries, Route 5 South, Km 80, P.O. Box 576, Rancagua 04000, Chile
| | - Alejandra Ribera-Fonseca
- Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Forestales, Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological, Bioresource Nucleus (BIOREN), Campus Andrés Bello, Universidad de La Frontera, Avenida Francisco Salazar, P.O. Box 54-D, Temuco 01145, Chile
| |
Collapse
|
44
|
Takayama KS, Monteiro MC, Saito P, Pinto IC, Nakano CT, Martinez RM, Thomaz DV, Verri WA, Baracat MM, Arakawa NS, Russo HM, Zeraik ML, Casagrande R, Couto RODO, Georgetti SR. Rosmarinus officinalis extract-loaded emulgel prevents UVB irradiation damage to the skin. AN ACAD BRAS CIENC 2022; 94:e20201058. [PMID: 36477988 DOI: 10.1590/0001-3765202220201058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 12/07/2022] Open
Abstract
UVB-irradiation increases the risk of various skin disorders, therefore leading to inflammation and oxidative stress. In this sense, antioxidant-rich herbs such as Rosmarinus officinalis may be useful in minimizing the damage promoted by reactive oxygen species. In this work, we report the efficacy of a R. officinalis hydroethanolic extract (ROe)-loaded emulgel in preventing UVB-related skin damage. Total phenols were determined using Folin-Ciocalteu assay, and the main phytocomponents in the extract were identified by UHPLC-HRMS. Moreover, in vitro sun protection factor (SPF) value of ROe was also assessed, and we investigated the in vivo protective effect of an emulgel containing ROe against UVB-induced damage in an animal model. The ROe exhibited commercially viable SPF activity (7.56 ± 0.16) and remarkable polyphenolic content (24.15 ± 0.11 mg (Eq.GA)/g). HPLC-MS and UHPLC-HRMS results showcased that the main compounds in ROe were: rosmarinic acid, carnosic acid and carnosol. The evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ROe against several radicals and the capacity to reduce iron. Therefore, we demonstrated that topical application of the formulation containing ROe inhibited edema formation, myeloperoxidase activity, GSH depletion and maintained ferric reducing (FRAP) and ABTS scavenging abilities of the skin after UVB exposure.
Collapse
Affiliation(s)
- Kátia S Takayama
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Mariana C Monteiro
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Priscila Saito
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Ingrid C Pinto
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Claudia T Nakano
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Renata M Martinez
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Douglas V Thomaz
- Universidade Federal de Goiás, Faculdade de Farmácia, Rua 240, s/n, Setor Leste Universitário, 74605-170 Goiânia, GO, Brazil
| | - Waldiceu A Verri
- Universidade Estadual de Londrina - UEL, Departamento de Patologia, Rodovia Celso Garcia Cid, Km 380, PR 445, Caixa Postal 10011, 86051-980 Londrina, PR, Brazil
| | - Marcela M Baracat
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Nilton S Arakawa
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Helena M Russo
- Universidade Estadual Paulista - UNESP, Instituto de Química, Núcleos de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais -NuBBE, Departamento de Química Orgânica, Avenida Prof. Francisco Degni, 55, 14800-060 Araraquara, SP, Brazil
| | - Maria L Zeraik
- Universidade Estadual de Londrina - UEL, Laboratório de Fitoquímica e Biomoléculas - LabFitoBio, Departamento de Química, Rodovia Celso Garcia Cid, Km 380, 86051-990 Londrina, PR, Brazil
| | - Rubia Casagrande
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Renê O DO Couto
- Universidade Federal de São João del-Rei, Laboratório de Desenvolvimento Farmacotécnico - LADEF, Campus Centro-Oeste Dona Lindu, Rua Sebastião Gonçalves Coelho, 35501-296 Divinópolis, MG, Brazil
| | - Sandra R Georgetti
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| |
Collapse
|
45
|
Banaee M, Impellitteri F, Evaz-Zadeh Samani H, Piccione G, Faggio C. Dietary Arthrospira platensis in Rainbow Trout ( Oncorhynchus mykiss): A Means to Reduce Threats Caused by CdCl 2 Exposure? TOXICS 2022; 10:toxics10120731. [PMID: 36548564 PMCID: PMC9781257 DOI: 10.3390/toxics10120731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 05/24/2023]
Abstract
The rainbow trout (Oncorhynchus mykiss) is one of the most commercially sought-after freshwater fish species and one of the most farmed in the world. On the other hand, aquaculture breeding frequently results in outbreaks of infectious diseases and pests, and compromises the production and welfare of fish. Arthrospira platensis (known as "Spirulina") has been used as a supplement in diets to enhance fish welfare in recent years because of its beneficial properties. This study aimed to assess the possible protective effects of Arthrospira platensis on rainbow trout specimens exposed to three different doses of the toxicant CdCl2. The experiment was carried out using five experimental treatments of 40 individuals each: control group; group II (0.2 mg CdCl2 per kg of commercial fish feed); group III (0.2 mg Kg-1 of CdCl2 plus 2.5 g per kg of A. platensis); group IV (0.2 mg Kg-1 of CdCl2 plus 5 g per kg of A. platensis); group V (0.2 mg Kg-1 of CdCl2 plus 10 g per kg of A. platensis). During the experiment, dietary supplementation of A. platensis normalized all serum and blood parameters altered by the presence of CdCl2. A. platensis also had a protective effect on markers of oxidative stress.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan 47189, Iran
| | - Federica Impellitteri
- Department of Veterinary Sciences, Polo Universitario dell’Annunziata, University of Messina, 98168 Messina, Italy
| | - Hamid Evaz-Zadeh Samani
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan 47189, Iran
| | - Giuseppe Piccione
- Department of Veterinary Sciences, Polo Universitario dell’Annunziata, University of Messina, 98168 Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno, d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
46
|
Yao Z, Gong W, Li C, Deng Z, Jin Y, Meng X. Sustained antioxidant properties of epigallocatechin gallate loaded halloysite for
PLA
as potentially durable materials. J Appl Polym Sci 2022. [DOI: 10.1002/app.53411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhongyang Yao
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering, Department of Product Engineering East China University of Science and Technology Shanghai China
| | - Weiguang Gong
- Research and Development Center for Sports Materials East China University of Science and Technology Shanghai China
| | - Chenyang Li
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering, Department of Product Engineering East China University of Science and Technology Shanghai China
| | - Zhaopeng Deng
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering, Department of Product Engineering East China University of Science and Technology Shanghai China
| | - Yi Jin
- Key Laboratory for Polymerization Engineering and Technology of Ningbo, College of Materials and Chemical Engineering Ningbo University of Technology (NBUT) Ningbo China
| | - Xin Meng
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering, Department of Product Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
47
|
Antioxidant Properties of Hemp Proteins: From Functional Food to Phytotherapy and Beyond. Molecules 2022; 27:molecules27227924. [PMID: 36432024 PMCID: PMC9693028 DOI: 10.3390/molecules27227924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
As one of the oldest plants cultivated by humans, hemp used to be banned in the United States but returned as a legal crop in 2018. Since then, the United States has become the leading hemp producer in the world. Currently, hemp attracts increasing attention from consumers and scientists as hemp products provide a wide spectrum of potential functions. Particularly, bioactive peptides derived from hemp proteins have been proven to be strong antioxidants, which is an extremely hot research topic in recent years. However, some controversial disputes and unknown issues are still underway to be explored and verified in the aspects of technique, methodology, characteristic, mechanism, application, caution, etc. Therefore, this review focusing on the antioxidant properties of hemp proteins is necessary to discuss the multiple critical issues, including in vitro structure-modifying techniques and antioxidant assays, structure-activity relationships of antioxidant peptides, pre-clinical studies on hemp proteins and pathogenesis-related molecular mechanisms, usage and potential hazard, and novel advanced techniques involving bioinformatics methodology (QSAR, PPI, GO, KEGG), proteomic analysis, and genomics analysis, etc. Taken together, the antioxidant potential of hemp proteins may provide both functional food benefits and phytotherapy efficacy to human health.
Collapse
|
48
|
Mikucka W, Zielińska M, Bułkowska K, Witońska I. Valorization of distillery stillage by polyphenol recovery using microwave-assisted, ultrasound-assisted and conventional extractions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116150. [PMID: 36070645 DOI: 10.1016/j.jenvman.2022.116150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
An increasing understanding of the negative environmental effects of waste discharges has made valorization of distillery by-products to recover added-value compounds a sound option for distillery stillage management. In this study, the recovery of bioactive compounds, i.e. polyphenols, from distillery stillage was performed by microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and conventional solid-liquid extraction (CSLE) to investigate the effects of extraction time, the concentration of ethyl acetate (EA) in a solvent mixture with ethanol and water, and solid-to-solvent ratio on the recovery yield and antioxidant activity of the extracts. The highest yields of total polyphenol content (TPC) (3.73 mg gallic acid equivalent/g) and phenolic acid content (2.51 μg/g) were obtained with 8-min MAE with 70% EA. MAE provided 1.2- and 1.4-times higher yield of phenolic acids and 1.2- and 1.6-times higher antioxidant activity than UAE and CSLE, respectively. Due to the approximately 3-times higher rate of extraction, the ratio between energy consumption and extraction yield was better in MAE than in UAE. Principal component analysis (PCA) showed that the antioxidant activity of the extracts was positively correlated with TPC and phenolic acid content. Six phenolic acids that were identified were present mainly in their free forms (up to 95% of the total), with a predominance of ferulic (up to 0.80 μg/g) and p-coumaric (up to 0.72 μg/g) acids.
Collapse
Affiliation(s)
- Wioleta Mikucka
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland.
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bułkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Izabela Witońska
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| |
Collapse
|
49
|
Selim S, Albqmi M, Al-Sanea MM, Alnusaire TS, Almuhayawi MS, AbdElgawad H, Al Jaouni SK, Elkelish A, Hussein S, Warrad M, El-Saadony MT. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review. Front Nutr 2022; 9:1008349. [PMID: 36424930 PMCID: PMC9678927 DOI: 10.3389/fnut.2022.1008349] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Olive oil production is a significant source of economic profit for Mediterranean nations, accounting for around 98 percent of global output. Olive oil usage has increased dramatically in recent years, owing to its organoleptic characteristics and rising knowledge of its health advantages. The culture of olive trees and the manufacture of industrial and table olive oil produces enormous volumes of solid waste and dark liquid effluents, involving olive leaves, pomace, and olive oil mill wastewaters. These by-products cause an economic issue for manufacturers and pose major environmental concerns. As a result, partial reuse, like other agronomical production wastes, is a goal to be achieved. Because these by-products are high in bioactive chemicals, which, if isolated, might denote components with significant added value for the food, cosmetic, and nutraceutical sectors, indeed, they include significant amounts of beneficial organic acids, carbohydrates, proteins, fibers, and phenolic materials, which are distributed differently between the various wastes depending on the olive oil production method and table olive agronomical techniques. However, the extraction and recovery of bioactive materials from chosen by-products is a significant problem of their reasonable value, and rigorous detection and quantification are required. The primary aims of this review in this context are to outline the vital bioactive chemicals in olive by-products, evaluate the main developments in extraction, purification, and identification, and study their uses in food packaging systems and safety problems.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Olive Research Center, Jouf University, Sakaka, Saudi Arabia
- *Correspondence: Samy Selim,
| | - Mha Albqmi
- Olive Research Center, Jouf University, Sakaka, Saudi Arabia
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | | | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Soad K. Al Jaouni
- Department of Hematology and Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr Elkelish
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al Qurayyat, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Mohamed T. El-Saadony,
| |
Collapse
|
50
|
Singh AK, Kim JY, Lee YS. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022; 27:7513. [PMID: 36364340 PMCID: PMC9655785 DOI: 10.3390/molecules27217513] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/01/2023] Open
Abstract
In recent years, changing lifestyles and food consumption patterns have driven demands for high-quality, ready-to-eat food products that are fresh, clean, minimally processed, and have extended shelf lives. This demand sparked research into the creation of novel tools and ingredients for modern packaging systems. The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products. This paper reviews recent trends in the use of phenolic compounds as potential ingredients in food packaging, particularly for the development of phenolic compounds-based active packaging and edible films. Moreover, the applications and modes-of-action of phenolic compounds as well as their advantages, limitations, and challenges are discussed to highlight their novelty and efficacy in enhancing the quality and shelf life of food products.
Collapse
|