1
|
The role of NURR1 in metabolic abnormalities of Parkinson's disease. Mol Neurodegener 2022; 17:46. [PMID: 35761385 PMCID: PMC9235236 DOI: 10.1186/s13024-022-00544-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
A constant metabolism and energy supply are crucial to all organs, particularly the brain. Age-dependent neurodegenerative diseases, such as Parkinson’s disease (PD), are associated with alterations in cellular metabolism. These changes have been recognized as a novel hot topic that may provide new insights to help identify risk in the pre-symptomatic phase of the disease, understand disease pathogenesis, track disease progression, and determine critical endpoints. Nuclear receptor-related factor 1 (NURR1), an orphan member of the nuclear receptor superfamily of transcription factors, is a major risk factor in the pathogenesis of PD, and changes in NURR1 expression can have a detrimental effect on cellular metabolism. In this review, we discuss recent evidence that suggests a vital role of NURR1 in dopaminergic (DAergic) neuron development and the pathogenesis of PD. The association between NURR1 and cellular metabolic abnormalities and its implications for PD therapy have been further highlighted.
Collapse
|
2
|
Zhang W, Deng X, Liu H, Ke J, Xiang M, Ma Y, Zhang L, Yang M, Liu Y, Huang F. Identification and Verification of Potential Hub Genes in Amphetamine-Type Stimulant (ATS) and Opioid Dependence by Bioinformatic Analysis. Front Genet 2022; 13:837123. [PMID: 35432486 PMCID: PMC9006114 DOI: 10.3389/fgene.2022.837123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Amphetamine-type stimulant (ATS) and opioid dependencies are chronic inflammatory diseases with similar symptoms and common genomics. However, their coexpressive genes have not been thoroughly investigated. We aimed to identify and verify the coexpressive hub genes and pathway involved in the pathogenesis of ATS and opioid dependencies. Methods: The microarray of ATS- and opioid-treatment mouse models was obtained from the Gene Expression Omnibus database. GEO2R and Venn diagram were performed to identify differentially expressed genes (DEGs) and coexpressive DEGs (CDEGs). Functional annotation and protein–protein interaction network detected the potential functions. The hub genes were screened using the CytoHubba and MCODE plugin with different algorithms, and further validated by receiver operating characteristic analysis in the GSE15774 database. We also validated the hub genes mRNA levels in BV2 cells using qPCR. Result: Forty-four CDEGs were identified between ATS and opioid databases, which were prominently enriched in the PI3K/Akt signaling pathway. The top 10 hub genes were mainly enriched in apoptotic process (CD44, Dusp1, Sgk1, and Hspa1b), neuron differentiation, migration, and proliferation (Nr4a2 and Ddit4), response to external stimulation (Fos and Cdkn1a), and transcriptional regulation (Nr4a2 and Npas4). Receiver operating characteristic (ROC) analysis found that six hub genes (Fos, Dusp1, Sgk1, Ddit4, Cdkn1a, and Nr4a2) have an area under the curve (AUC) of more than 0.70 in GSE15774. The mRNA levels of Fos, Dusp1, Sgk1, Ddit4, Cdkn1a, PI3K, and Akt in BV2 cells and GSE15774 with METH and heroin treatments were higher than those of controls. However, the Nr4a2 mRNA levels increased in BV2 cells and decreased in the bioinformatic analysis. Conclusions: The identification of hub genes was associated with ATS and opioid dependencies, which were involved in apoptosis, neuron differentiation, migration, and proliferation. The PI3K/Akt signaling pathway might play a critical role in the pathogenesis of substance dependence.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaodong Deng
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Huan Liu
- Department of Preventive Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ke
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Mingliang Xiang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Ying Ma
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Zhang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Ming Yang
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Department of Criminal Investigation, Nanchong Municipal Public Security Bureau, Nanchong, China
| | - Yun Liu
- Department of Forensic Pathology, School of Basic Medical Science & Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
- *Correspondence: Yun Liu, ; Feijun Huang,
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Yun Liu, ; Feijun Huang,
| |
Collapse
|
3
|
Shiraki H, Tanaka S, Guo Y, Harada K, Hide I, Yasuda T, Sakai N. Potential role of inducible GPR3 expression under stimulated T cell conditions. J Pharmacol Sci 2022; 148:307-314. [PMID: 35177210 DOI: 10.1016/j.jphs.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor 3 (GPR3) constitutively activates Gαs proteins without any ligands and is predominantly expressed in neurons. Since the expression and physiological role of GPR3 in immune cells is still unknown, we examined the possible role of GPR3 in T lymphocytes. The expression of GPR3 was upregulated 2 h after phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation and was sustained in Jurkat cells, a human T lymphocyte cell line. In addition, the expression of nuclear receptor 4 group A member 2 (NR4A2) was highly modulated by GPR3 expression. Additionally, GPR3 expression was linked with the transcriptional promoter activity of NR4A in Jurkat cells. In mouse CD4+ T cells, transient GPR3 expression was induced immediately after the antigen receptor stimulation. However, the expression of NR4A2 was not modulated in CD4+ T cells from GPR3-knockout mice after stimulation, and the population of Treg cells in thymocytes and splenocytes was not affected by GPR3 knockout. By contrast, spontaneous effector activation in both CD4+ T cells and CD8+ T cells was observed in GPR3-knockout mice. In summary, GPR3 is immediately induced by T cell stimulation and play an important role in the suppression of effector T cell activation.
Collapse
Affiliation(s)
- Hiroko Shiraki
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
4
|
Chen L, Fan F, Wu L, Zhao Y. The nuclear receptor 4A family members: mediators in human disease and autophagy. Cell Mol Biol Lett 2020; 25:48. [PMID: 33292165 PMCID: PMC7640683 DOI: 10.1186/s11658-020-00241-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
The Nuclear receptor 4A (NR4A) subfamily, which belongs to the nuclear receptor (NR) superfamily, has three members: NR4A1 (Nur77), NR4A2 (Nurr1) and NR4A3 (Nor1). They are gene regulators with broad involvement in various signaling pathways and human disease responses, including autophagy. Here, we provide a concise overview of the current understanding of the role of the NR4A subfamily members in human diseases and review the research into their regulation of cell autophagy. A deeper understanding of these mechanisms has potential to improve drug development processes and disease therapy.
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
- Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108, China.
| | - Fengtian Fan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108, China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108, China
| | - Yiyi Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Institute of Apply Genomics, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
5
|
Ruiz-Sánchez E, Yescas P, Rodríguez-Violante M, Martínez-Rodríguez N, Díaz-López JN, Ochoa A, Valdes-Rojas SS, Magos-Rodríguez D, Rojas-Castañeda JC, Cervantes-Arriaga A, Canizales-Quinteros S, Rojas P. Association of polymorphisms and reduced expression levels of the NR4A2 gene with Parkinson's disease in a Mexican population. J Neurol Sci 2017; 379:58-63. [PMID: 28716280 DOI: 10.1016/j.jns.2017.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The NR4A2 transcription factor is important in the development, survival and phenotype of dopaminergic neurons and it is postulated as a possible biomarker for Parkinson's disease (PD). Therefore, our aim was to analyze in a sample of a Mexican population with idiopathic PD, mutations (in two hotspot mutation regions) and two polymorphisms (rs34884856 in promotor and rs35479735 intronic regions) of the NR4A2 gene. We also evaluate the levels of NR4A2 gene expression in peripheral blood for a Mexican population, and identify whether they are associated with NR4A2 gene polymorphisms. METHODS We conducted a case-control study, which included 227 idiopathic PD cases and 454 unrelated controls. Genetic variants of the NR4A2 gene were genotyped by high-resolution melting (HRM) and validated by an automated sequencing method. The gene expression was performed in peripheral blood using a real-time polymerase chain reaction. RESULTS The rs35479735 polymorphism was associated with a higher risk of developing PD. In addition, NR4A2 gene expression was significantly decreased in patients with PD. Linkage disequilibrium analysis showed a haplotype H4 (3C-3G) that showed lower levels of expression, and contained the risk alleles for both polymorphisms. CONCLUSIONS In summary, this is the first study in a Mexican population that considers the analysis of NR4A2 in patients with PD. An association was identified between genotype and mRNA expression levels of NR4A2 in patients with PD. These results suggest that polymorphisms and expression of the NR4A2 gene could play an important role in the risk of developing PD in Mexican populations.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Sánchez
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Petra Yescas
- Department of Genetics, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Mayela Rodríguez-Violante
- Clinical Neurodegenerative Research Unit, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | | | - Jesica N Díaz-López
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Adriana Ochoa
- Department of Genetics, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Sergio S Valdes-Rojas
- Direction of Geriatric Attention, Instituto Nacional de las Personas Adultas Mayores (INAPAM), Mexico City, Mexico
| | - Daniel Magos-Rodríguez
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | | | - Amin Cervantes-Arriaga
- Clinical Neurodegenerative Research Unit, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | | | - Patricia Rojas
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico.
| |
Collapse
|
6
|
Liu H, Liu H, Li T, Cui J, Fu Y, Ren J, Sun X, Jiang P, Yu S, Li C. NR4A2 genetic variation and Parkinson's disease: Evidence from a systematic review and meta-analysis. Neurosci Lett 2017; 650:25-32. [PMID: 28385514 DOI: 10.1016/j.neulet.2017.01.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The homo sapiens nuclear receptor subfamily 4, group A (NR4A2) genetic variation has been implicated as a risk factor for Parkinson's disease (PD). Nevertheless, the results are inconclusive. We conducted a comprehensive systematic review and meta-analysis to quantify the impact of NR4A2 variation on the risk of PD. METHODS All eligible case-control studies published up to June 2016 by searching Pubmed, OVID, EBSCO, PsycINFO, ISI Web of Knowledge, Chinese Biomedical Literature Database and China Academic Journals Database were identified. Pooled odds ratio (OR) with 95% confidence interval (CI) were used to access the strength of the association in fixed- or random-effects model. RESULTS Eighteen studies reported 24 genetic variants with a total of 6150 cases and 5919 controls were included. Twelve studies for NR4A2 rs35479735 polymorphism and 4 studies for rs12803 were available for meta-analysis. A significant association was observed for rs35479735 under the homozygous model (OR=1.31, 95% CI: 1.10-1.56, P=0.003), whereas no significant association for rs12803 was detected. In subgroup analysis stratified by ethnicity, age onset and familial history, we found no significant association except one in sporadic PD subgroup under the recessive (OR=3.30, 95% CI: 1.23-8.84, P=0.02) and homozygous model (OR=3.43, 95% CI: 1.26-9.33, P=0.02) for rs35479735. CONCLUSION The study comprehensively evaluated the association of NR4A2 variation with PD, and the results failed to demonstrate that the NR4A2 polymorphisms significantly associated with PD except for rs35479735, suggesting that more studies are needed to elucidate if NR4A2 is a risk of PD.
Collapse
Affiliation(s)
- Hongmei Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hongbo Liu
- Department of Clinical Laboratory, Loudi Center Hospital, Loudi City 417000, China
| | - Ting Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Department of Geriatric Psychiatry, Changning Mental Health Center, Shanghai 200042, China
| | - Jiayi Cui
- College of Health and Rehabilitation Sciences (Sargent College), Boston University, Boston, MA 02215, USA
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Juanjuan Ren
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiujia Sun
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ping Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
7
|
Identification of NURR1 (Exon 4) and FOXA1 (Exon 3) Haplotypes Associated with mRNA Expression Levels in Peripheral Blood Lymphocytes of Parkinson's Patients in Small Indian Population. PARKINSONS DISEASE 2017; 2017:6025358. [PMID: 28255498 PMCID: PMC5307137 DOI: 10.1155/2017/6025358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/29/2016] [Accepted: 01/10/2017] [Indexed: 11/29/2022]
Abstract
Here, we study the expression of NURR1 and FOXA1 mRNA in peripheral blood lymphocytes and its haplotypes in coding region in a small Chennai population of India. Thirty cases of Parkinson's patients (PD) with anti-PD medications (20 males aged 65.85 ± 1.19 and 10 females aged 65.7 ± 1.202) and 30 age matched healthy people (20 males aged 68.45 ± 1.282 and 10 females aged 65.8 ± 1.133) were included. The expression of NURR1 and FOXA1 in PBL was detected by Q-PCR and haplotypes were identified by PCR-SSCP. In the 30 PD cases examined, NURR1 and FOXA1 expression was significantly reduced in both male and female PD patients. However, NURR1 (57.631% reduced in males; 28.93% in females) and FOXA1 (64.42% in males; 55.76% in females) mRNA expression did differ greatly between male and female PD patients. Polymorphisms were identified at exon 4 of the NURR1 and at exon 3 of the FOXA1, respectively, in both male and female patients. A near significant difference in SSCP patterns between genders of control and PD population was analyzed suggesting that further investigations of more patients, more molecular markers, and coding regions should be performed. Such studies could potentially reveal peripheral molecular marker of early PD and different significance to the respective genders.
Collapse
|
8
|
Larsen K, Momeni J, Farajzadeh L, Callesen H, Bendixen C. Molecular characterization and analysis of the porcine NURR1 gene. BIOCHIMIE OPEN 2016; 3:26-39. [PMID: 29450128 PMCID: PMC5801910 DOI: 10.1016/j.biopen.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
Abstract
Orphan receptor NURR1 (also termed NR4A2) belongs to the nuclear receptor superfamily and functions as a regulatory factor of differentiation, migration, maturation and maintenance of mesencephalic dopaminergic neurons. NURR1 plays an important role in nigrostriatal dopamine neuron development and is therefore implicated in the pathogenesis of neurodegenerative diseases linked to the dopamine system of the midbrain. Here we report the isolation and characterization of porcine NURR1 cDNA. The NURR1 cDNA was RT-PCR cloned using NURR1-specific oligonucleotide primers derived from in silico sequences. The porcine NURR1 cDNA encodes a polypeptide of 598 amino acids, displaying a very high similarity with bovine, human and mouse (99%) NURR1 protein. Expression analysis revealed a differential NURR1 mRNA expression in various organs and tissues. NURR1 transcripts could be detected as early as at 60 days of embryo development in different brain tissues. A significant increase in NURR1 transcript in the cerebellum and a decrease in NURR1 transcript in the basal ganglia was observed during embryo development. The porcine NURR1 gene was mapped to chromosome 15. Two missense mutations were found in exon 3, the first coding exon of NURR1. Methylation analysis of the porcine NURR1 gene body revealed a high methylation degree in brain tissue, whereas methylation of the promoter was very low. A decrease in DNA methylation in a discrete region of the NURR1 promoter was observed in pig frontal cortex during pig embryo development. This observation correlated with an increase in NURR1 transcripts. Therefore, methylation might be a determinant of NURR1 expression at certain time points in embryo development. The porcine NURR1 gene was cloned and characterized. NURR1 transcript was detected early in pig embryo brain development. Methylation status of NURR1 may be a determinant for its expression.
Collapse
Key Words
- CNS, central nervous system
- DAN, dopaminergic neuron
- DAT, dopamin transporter
- DBD, DNA binding domain
- DNA methylation
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- NTD, N-terminal domain
- NURR1
- PCR, polymerase chain reaction
- Parkinson's disease
- Pig
- RT-PCR, reverse transcriptase polymerase chain reaction
- SNP
- SNP, Single nucleotide polymorphism
- TSS, transcription start site
- Transcription factor
- UTR, untranslated region
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
9
|
Association between NR4A2 genetic variation and schizophrenia: A comprehensive systematic review and meta-analysis. Neurosci Lett 2015; 598:85-90. [PMID: 25982322 DOI: 10.1016/j.neulet.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/13/2015] [Accepted: 05/09/2015] [Indexed: 01/22/2023]
Abstract
The homo sapiens nuclear receptor subfamily 4, group A (NR4A2) genetic variation has been implicated as a risk factor for schizophrenia (SZ). Nevertheless, the results are inconclusive. We conducted a comprehensive systematic review and meta-analysis to quantify the impact of NR4A2 variation on the risk of SZ. All eligible case-control studies published up to September 2014 were identified by searching PubMed OVID, EBSCO, PsycINFO and ISI web of knowledge. Pooled odds ratio with 95% confidence interval were used to access the strength of association in fixed- or random-effects model. Seven studies that reported 17 variants with a total of 3027 participants were included. Of these variants, five ones (rs143618355, rs199674295, c.366-369 del TAC, c.-469delG and P4) were present only in cases, and three ones (rs35479735, rs3832066 and rs397706674) were available for meta-analysis. Overall, there was no significant association between the three variants and SZ risk under allele model, dominant model and recessive model. The results failed to reveal significant link between NR4A2 polymorphism and SZ risk. However, large-sized and well-designed studies are warranted to validate our findings.
Collapse
|
10
|
Misund K, Selvik LKM, Rao S, Nørsett K, Bakke I, Sandvik AK, Lægreid A, Bruland T, Prestvik WS, Thommesen L. NR4A2 is regulated by gastrin and influences cellular responses of gastric adenocarcinoma cells. PLoS One 2013; 8:e76234. [PMID: 24086717 PMCID: PMC3785466 DOI: 10.1371/journal.pone.0076234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/21/2013] [Indexed: 01/18/2023] Open
Abstract
The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2) expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER) and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1), suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Adenocarcinoma/metabolism
- Blotting, Western
- Butyrate Response Factor 1/metabolism
- Cell Line, Tumor
- Feedback, Physiological/physiology
- Flow Cytometry
- Fluorescence Recovery After Photobleaching
- Gastrins/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/physiology
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Stomach Neoplasms/metabolism
Collapse
Affiliation(s)
- Kristine Misund
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Linn-Karina Myrland Selvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Shalini Rao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Kristin Nørsett
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingunn Bakke
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arne K. Sandvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Medical Clinic, St. Olav’s University Hospital, Trondheim, Norway
| | - Astrid Lægreid
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Wenche S. Prestvik
- Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Liv Thommesen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway
- * E-mail:
| |
Collapse
|
11
|
Li Y, Cong B, Ma C, Qi Q, Fu L, Zhang G, Min Z. Expression of Nurr1 during rat brain and spinal cord development. Neurosci Lett 2011; 488:49-54. [DOI: 10.1016/j.neulet.2010.10.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 10/18/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022]
|
12
|
Kim HJ. Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1-11. [PMID: 20713152 DOI: 10.1016/j.bbadis.2010.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/13/2010] [Accepted: 08/11/2010] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) involves the loss of dopamine (DA) neurons, making it the most expected neurodegenerative disease to be treated by cell replacement therapy. Stem cells are a promising source for cell replacement therapy due to their ability to self-renew and their pluripotency/multipotency that allows them to generate various types of cells. However, it is challenging to derive midbrain DA neurons from stem cells. Thus, in this review, I will discuss the molecular factors that are known to play critical roles in the generation and survival of DA neurons. The developmental process of DA neurons and functions of extrinsic soluble factors and homeodomain proteins, forkhead box proteins, proneural genes, Nurr1 and genes involved in epigenetic control are discussed. In addition, different types of stem cells that have potential for future cell replacement therapy are reviewed.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, South Korea.
| |
Collapse
|
13
|
Yang KL, Chen MF, Liao CH, Pang CY, Lin PY. A simple and efficient method for generating Nurr1-positive neuronal stem cells from human wisdom teeth (tNSC) and the potential of tNSC for stroke therapy. Cytotherapy 2009; 11:606-17. [PMID: 19579137 DOI: 10.1080/14653240902806994] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS We have isolated human neuronal stem cells from exfoliated third molars (wisdom teeth) using a simple and efficient method. The cultured neuronal stem cells (designated tNSC) expressed embryonic and adult stem cell markers, markers for chemotatic factor and its corresponding ligand, as well as neuron proteins. The tNSC expressed genes of Nurr1, NF-M and nestin. They were used to treat middle cerebral artery occlusion (MCAO) surgery-inflicted Sprague-Dawley (SD) rats to assess their therapeutic potential for stroke therapy. METHODS For each tNSC cell line, a normal human impacted wisdom tooth was collected from a donor with consent. The tooth was cleaned thoroughly with normal saline. The molar was vigorously shaken or vortexed for 30 min in a 50-mL conical tube with 15-20mL normal saline. The mixture of dental pulp was collected by centrifugation and cultured in a 25-cm(2) tissue culture flask with 4-5mL Medium 199 supplemented with 5-10% fetal calf serum. The tNSC harvested from tissue culture, at a concentration of 1-2x10(5), were suspended in 3 microL saline solution and injected into the right dorsolateral striatum of experimental animals inflicted with MCAO. RESULTS Behavioral measurements of the tNSC-treated SD rats showed a significant recovery from neurologic dysfunction after MCAO treatment. In contrast, a sham group of SD rats failed to recover from the surgery. Immunohistochemistry analysis of brain sections of the tNSC-treated SD rats showed survival of the transplanted cells. CONCLUSIONS These results suggest that adult neuronal stem cells may be procured from third molars, and tNSC thus cultivated have potential for treatment of stroke-inflicted rats.
Collapse
Affiliation(s)
- Kuo-Liang Yang
- Tzu Chi Stem Cells Centre, Tzu Chi General Hospital, Hualien, Taiwan.
| | | | | | | | | |
Collapse
|
14
|
Federoff HJ, Brown M, Dakshanamurthy S, Maguire-Zeiss K. Potential of Nurr1 interactions to disclose new Parkinson’s therapeutics. FUTURE NEUROLOGY 2009. [DOI: 10.2217/14796708.4.2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nurr1 is an orphan nuclear receptor required for the postspecification differentiation and maintenance of the ventral midbrain dopaminergic neurons that are lost in Parkinson’s disease. In an effort to understand how the action of Nurr1 is regulated, we screened for and identified a new Nurr1-interacting protein, NuIP, that potentiates the transcriptional activity of Nurr1 and contains several protein motifs, suggesting a role in mediating signaling transduction. Herein, we review NuIP’s discovery and functions and propose a strategy to identify small molecules to augment Nurr1 activity through its interaction with NuIP. We speculate that drugs developed to modulate this pathway may have relevance for the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Howard J Federoff
- Office of the Executive Vice President for Health Sciences, 120 Building D, 4000 Reservoir Road, Washington, DC, NW 20057, USA and, Department of Neurology, Georgetown University Medical Center, Georgetown, Washington, DC, USA
| | - Milton Brown
- Department of Oncology, Georgetown University Medical Center, Georgetown, Washington, DC, USA
| | | | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, Georgetown, Washington, DC, USA
| |
Collapse
|
15
|
Jankovic J, Chen S, Le WD. The role of Nurr1 in the development of dopaminergic neurons and Parkinson's disease. Prog Neurobiol 2005; 77:128-38. [PMID: 16243425 DOI: 10.1016/j.pneurobio.2005.09.001] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2005] [Revised: 07/22/2005] [Accepted: 09/13/2005] [Indexed: 11/25/2022]
Abstract
Nurr1, a transcription factor belonging to the orphan nuclear receptor superfamily, is critical in the development and maintenance of the dopaminergic system and as such it may have role in the pathogenesis of Parkinson' disease (PD). Human Nurr1 gene has been mapped to chromosome 2q22-23 and Nurr1 protein is predominantly expressed in central dopaminergic neurons. Nurr1 interacts with other factors critical for the survival of mensencephalic dopaminergic neurons and it appears to regulate the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT2), and l-aromatic amino acid decarboxylase (AADC), all of which are important in the synthesis and storage of dopamine. Experimental studies in Nurr1 knock-out mice indicate that Nurr1 deficiency results in impaired dopaminergic function and increased vulnerability of those midbrain dopaminergic neurons that degenerate in PD. Decreased Nurr1 expression is found in the autopsied PD midbrains, particularly in neurons containing Lewy bodies, as well as in peripheral lymphocytes of patients with parkinsonian disorders. Several variants in Nurr1 gene have been reported in association with PD. All these studies suggest that Nurr1 is not only essential in the development of mensencephalic dopaminergic neurons and maintenance of their functions, but it may also play a role in the pathogenesis of PD.
Collapse
Affiliation(s)
- J Jankovic
- Department of Neurology, Parkinson Disease Research Lab, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
16
|
Michelhaugh SK, Vaitkevicius H, Wang J, Bouhamdan M, Krieg AR, Walker JL, Mendiratta V, Bannon MJ. Dopamine neurons express multiple isoforms of the nuclear receptor nurr1 with diminished transcriptional activity. J Neurochem 2005; 95:1342-50. [PMID: 16313515 DOI: 10.1111/j.1471-4159.2005.03458.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nurr1 (NR4A2) is an orphan nuclear receptor required for the development and maintenance of the dopaminergic phenotype in neurons of the ventral midbrain. This study demonstrates that multiple splice variants of nurr1 are produced in rat and human dopamine neurons. Formed by alternative RNA splicing in exon 7, nurr1a has a truncated carboxy-terminus, nurr1b has an internal deletion in the ligand-binding domain and nurr1c, newly identified in this study, has a novel carboxy-terminus produced by a frame shift downstream of the splice junction. Alternative RNA splicing in exon 3 produces the isoform known as the transcriptionally-inducible nuclear receptor (TINUR), lacking the amino-terminus. Nurr2 and the newly identified nurr2c are produced by utilization of both exon 3 and exon 7 alternative splice sites. In rat midbrain, variants other than full-length nurr1 constitute 20-35% of NR4A2 transcripts. Transfection studies in dopaminergic SK-N-AS cells demonstrate that nurr1a, nurr1b, nurr1c and TINUR have significantly reduced transcriptional activities compared with full-length nurr1, while nurr2 and nurr2c are inactive. Furthermore, in these experiments, nurr2 and nurr2c both act as dominant negatives. Production of these nurr1 variants in vivo as demonstrated here could represent a novel regulatory mechanism of nurr1 transcriptional activity and therefore, dopaminergic phenotype.
Collapse
Affiliation(s)
- Sharon K Michelhaugh
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tan EK, Chung H, Chandran VR, Tan C, Shen H, Yew K, Pavanni R, Puvan KA, Wong MC, Teoh ML, Yih Y, Zhao Y. Nurr1 mutational screen in Parkinson's disease. Mov Disord 2005; 19:1503-5. [PMID: 15390059 DOI: 10.1002/mds.20246] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We performed sequence analysis of all the exons and exon-intron boundaries in familial and young-onset Parkinson's disease (PD) in an Asian cohort. None of the patients carried any pathogenic mutations in the Nurr1 gene. We demonstrated a 5 to 10% prevalence of the intron 7 +33 C-->T variant among Malay and Indian PD and healthy controls, suggesting that this variant, which was previously described only in 1 Chinese patient, was not a silent mutation but a common polymorphic variant in some ethnic races.
Collapse
|
18
|
Smith KM, Bauer L, Fischer M, Barkley R, Navia BA. Identification and characterization of human NR4A2 polymorphisms in attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2005; 133B:57-63. [PMID: 15635701 DOI: 10.1002/ajmg.b.30127] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a highly heritable and common disorder thought to arise, in part, from alterations in dopamine function. NR4A2, or Nurr1, is an orphan nuclear receptor implicated in the development of dopaminergic cells of the ventral tegmental area (VTA) and the substantia nigra (SN). Dopaminergic cells of the VTA provide innervation to the prefrontal cortex, believed to be of major importance in the etiology of ADHD, suggesting that NR4A2 is a potential candidate gene for ADHD susceptibility. This study aimed to identify polymorphisms in NR4A2 and test their association to ADHD. Database analysis revealed a CA repeat polymorphism in the 3' UTR of NR4A2 that was confirmed by PCR. SSCP screening revealed a common DeltaC polymorphism, 254 bp 5' to the transcriptional start site. These polymorphisms were tested for an association with ADHD in both a case control study of individuals from the Milwaukee Longitudinal Study of ADHD (103 cases and 66 controls), and in 35 families composed of trios or affected sib pairs (ASP) with ADHD. Functional effects of the promoter polymorphism were tested in vitro. The non-deleted allele was significantly more active in undifferentiated SK-N-MC cells compared to differentiated SK-N-MC and HeLa cells while a trend for increased activity for the DeltaC allele was observed in undifferentiated SK-N-MC cells. Identification of these polymorphisms may aid future candidate gene studies in disorders with altered dopamine signaling, such as schizophrenia Parkinson's disease and ADHD.
Collapse
MESH Headings
- Attention Deficit Disorder with Hyperactivity/genetics
- Base Sequence
- Cell Line, Tumor
- Child
- Child, Preschool
- DNA/chemistry
- DNA/genetics
- DNA Mutational Analysis
- DNA-Binding Proteins/genetics
- Gene Expression
- Genotype
- Haplotypes
- HeLa Cells
- Humans
- Linkage Disequilibrium
- Luciferases/genetics
- Luciferases/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Polymorphism, Genetic
- Polymorphism, Single-Stranded Conformational
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
- Transfection
Collapse
Affiliation(s)
- Karen Müller Smith
- Genetics Program, Sackler School of GBS, Tufts University, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
19
|
Cossette M, Parent A, Lévesque D. Tyrosine hydroxylase-positive neurons intrinsic to the human striatum express the transcription factor Nurr1. Eur J Neurosci 2004; 20:2089-95. [PMID: 15450088 DOI: 10.1111/j.1460-9568.2004.03661.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The putative dopaminergic (DA) neurons intrinsic to human striatum were studied to determine their similarity with DA neurons of the substantia nigra pars compacta (SNpc). The comparison was based on morphological features and on the presence or absence of Nurr1, an orphan receptor of the nuclear receptor family that is essential for the expression of DA phenotype by developing SNpc neurons. Immunohistochemistry for the neuronal nuclear protein (NeuN; a neuronal marker) and in situ hybridization for tyrosine hydroxylase (TH) and/or Nurr1 were applied to post-mortem tissue obtained from seven normal individuals. On one hand, the TH-positive multipolar neurons in the human striatum, which were subdivided into three groups according to their size and pattern of dendritic arborization, were found to be morphologically similar to TH-positive neurons of the SNpc. The distribution frequency of striatal TH-positive neurons, according to their diameter, closely matches the frequency observed for multipolar TH-positive cells in the SNpc. On the other hand, the proportion of neurons expressing Nurr1 and TH mRNA transcripts on single striatal section was similar to the proportion of TH-immunoreactive neurons observed on adjacent sections. More importantly, in each striatum analysed, virtually all cells that stained for TH also expressed NeuN and Nurr1. This study provides novel data that confirm the existence of DA neurons intrinsic to the human striatum. It also provides the first evidence for the existence of striking morphological and chemical similarities between the DA neurons present at striatal level and those that populate the SNpc.
Collapse
Affiliation(s)
- Martine Cossette
- Centre de recherche Université Laval Robert-Giffard, 2601 de la Canardière, Beauport (Québec), Canada G1J 2G3
| | | | | |
Collapse
|
20
|
Ruano D, Macedo A, Dourado A, Soares MJ, Valente J, Coelho I, Santos V, Azevedo MH, Goodman A, Hutz MH, Gama C, Lobato MI, Belmonte-de-Abreu P, Palha JA. NR4A2 and schizophrenia: lack of association in a Portuguese/Brazilian study. Am J Med Genet B Neuropsychiatr Genet 2004; 128B:41-5. [PMID: 15211629 DOI: 10.1002/ajmg.b.30031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study investigates the association of mutations in the nuclear receptor NR4A2 in schizophrenic patients. The human Nur-related receptor 1, NR4A2, is an orphan nuclear receptor that can be constitutively active as a transcription factor and for which no natural ligand has yet been identified. Alone or with retinoid X receptor, RXR, NR4A2 influences the expression of several genes important for human brain development and regulation. In the absence of Nurr1 (the mouse homologue to human NR4A2), ventral mesencephalic dopaminergic mouse neurons evidence severe developmental failure, a condition that is lethal soon after birth. Nurr1 involvement in the dopaminergic system makes it a good candidate for study in neuropsychiatric disorders such as schizophrenia and Parkinson disease. Evidence by others support this hypothesis (1) mapping of the NR4A2 gene to chromosome 2q22-23, a region with suggestive linkage to schizophrenia and (2) identification of mutations in patients with schizophrenia (c.366-369delTAC, c.308A > G, c.-469delG), manic depression (c.289A > G), and familial Parkinson's disease (c.-291delT, c.-245T > G). To further extend these observations, we searched for all these mutations in 176 Caucasian Portuguese and 82 Caucasian Brazilian subjects with lifetime diagnosis of schizophrenia. The study failed to identify any of the described mutations in patients or controls. Nevertheless, these negative results do not exclude altered expression of nuclear receptors in schizophrenia or the presence of other mutations.
Collapse
Affiliation(s)
- Dina Ruano
- Health Sciences School, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ojeda V, Fuentealba JA, Galleguillos D, Andrés ME. Rapid increase of Nurr1 expression in the substantia nigra after 6-hydroxydopamine lesion in the striatum of the rat. J Neurosci Res 2003; 73:686-97. [PMID: 12929136 DOI: 10.1002/jnr.10705] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nurr1 is a transcription factor essential for the genesis of ventral dopaminergic neurons. In this study, we investigated the expression of Nurr1 protein and mRNA in the adult rat brain by using immunohistochemistry and in situ hybridization, respectively. Another aim of our study was to investigate Nurr1 expression in substantia nigra after dopamine depletion induced by the injection of 6-hydroxydopamine in the striatum. We observed that Nurr1 mRNA and protein are expressed in several brain regions, including cortex, hippocampus, substantia nigra, and ventral tegmental area, in agreement with previous reports using in situ hybridization. Additionally, we found that Nurr1 is expressed in brain regions that have not been previously reported, such as striatum, septum, and superior colliculus. Highest levels of expression were found in cortex, medial septum, dentate gyrus, some hypothalamic nuclei, and substantia nigra. Interestingly, we observed that, in the superior colliculus, Nurr1 protein is localized in the cytoplasm of cells, whereas, in other regions, it was localized mainly in the nuclei, suggesting that Nurr1 subcellular localization is regulated and may have functional implications. Dopamine depletion induced by an injection of 6-hydroxydopamine into the striatum produced an increase in the number of cells expressing Nurr1 mRNA and protein in both substantia nigra compacta and substantia nigra reticulata, ipsilateral and contralateral to the lesioned side, measured 24 hr after the 6-hydroxydopamine injection. These results suggest that Nurr1 may be involved in many neuronal functions in the adult central nervous system and, in particular, might be related to the compensation processes that take place in dopaminergic cells in order to normalize extracellular dopamine levels in the striatum.
Collapse
Affiliation(s)
- Viviana Ojeda
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
22
|
Tan EK, Chung H, Zhao Y, Shen H, Chandran VR, Tan C, Teoh ML, Yih Y, Pavanni R, Wong MC. Genetic analysis of Nurr1 haplotypes in Parkinson's disease. Neurosci Lett 2003; 347:139-42. [PMID: 12875905 DOI: 10.1016/s0304-3940(03)00539-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nurr1 gene plays an important role in the development of the mesencephalic dopaminergic system. Genetic variability of Nurr1 gene may be associated with risk of Parkinson's disease (PD). We found three polymorphic loci (c.-2922(C)2-3, IVS6+18insG and EX8+657 (9-10CA)) of the Nurr1 gene in our PD patients and a novel intron 7+33 C-->T variant in one PD patient. We proceeded to perform a haplotype analysis in a case control study. A total of 202 PD patients (mean age 65.04+/-9.44 years, 55.4% men) and 202 age, gender and race matched controls (mean age 64.33+/-10.12 years, 54.0% men) were studied. The intron 7+33 C-->T variant was present in only one of the PD patients (0.5%) but in none of the controls. The Nurr1 mRNA levels in the lymphocytes did not significantly differ between the affected patient and controls. We found complete linkage disequilibrium between c.-2922(C)2-3 and IVS6+18insG polymorphic loci (D=0.25). Analysis of the three loci haplotype frequencies did not demonstrate any significant difference between PD and controls. There were also no significant differences in the haplotype frequencies between young and late onset PD patients. In conclusion, we demonstrated a large common haplotype block spanning the Nurr1 gene in our population. The intron 7+33 C-->T variant most likely represents either a non-functional mutation or a rare polymorphism in our study population. Our study suggests that Nurr1 variability is unlikely to play a major role in the majority of our PD patients.
Collapse
Affiliation(s)
- Eng-King Tan
- Division of Research, SingHealth, Singapore, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Werme M, Hermanson E, Carmine A, Buervenich S, Zetterström RH, Thorén P, Ogren SO, Olson L, Perlmann T, Brené S. Decreased ethanol preference and wheel running in Nurr1-deficient mice. Eur J Neurosci 2003; 17:2418-24. [PMID: 12814373 DOI: 10.1046/j.1460-9568.2003.02666.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nurr1 (Nr4a2) is a transcription factor expressed in dopamine cells from early development and throughout life. Null mutants for Nurr1 lack the ventral midbrain dopamine neurons and die soon after birth. Animals with a heterozygous deletion are viable and display no apparent abnormality. We have investigated the impact of heterozygous deletion of Nurr1 on ethanol consumption in adult mice as a model for drug-induced reward and on wheel running as a model for natural reward. Interestingly, Nurr1 heterozygous mice never developed high ethanol consumption nor did they develop as much running behaviour as did the wild-type animals. Thus, Nurr1 appears to have a key role for the reinforcing properties of ethanol and running that underlies the development of excessive reward-seeking behaviours characteristic for addiction. Quantitative trait loci mapping using C57Bl/6 and DBA/2 mice describe a locus for ethanol preference on chromosome 2, wherein Nurr1 is located. We found two dinucleotide repeats in the Nurr1 promoter that were longer in mice with low preference for ethanol (DBA/2 and 129/Sv) than in mice with high preference for ethanol (C57Bl/6J and C57Bl/6NIH). These sequential data are compatible with Nurr1 as a candidate gene responsible for the quantitative trait loci for ethanol preference on mouse chromosome 2. Together, our data thus imply involvement of Nurr1 in the transition to a state of high ethanol consumption as well as in the development of a high amount of wheel running in mice.
Collapse
Affiliation(s)
- Martin Werme
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Iwayama-Shigeno Y, Yamada K, Toyota T, Shimizu H, Hattori E, Yoshitsugu K, Fujisawa T, Yoshida Y, Kobayashi T, Toru M, Kurumaji A, Detera-Wadleigh S, Yoshikawa T. Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 118B:20-4. [PMID: 12627459 DOI: 10.1002/ajmg.b.10053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dysregulation in dopaminergic neurotransmission might play a role in the pathogenesis of schizophrenia, and therefore genetic components of the dopamine (DA) pathway may confer risk. The NR4A2 (Nurr1) gene is essential for the development and maintenance of mesencephalic DA-synthesizing neurons. Moreover, Nurr1 forms a heterodimer with the retinoid X receptor and disturbances in the retinoid-signaling cascade may be involved in susceptibility to schizophrenia. To investigate the potential genetic contribution of NR4A2, we performed a case-control association study using three common variants in the gene [-2922(C)2-3, IVS6 + 17 approximately +18insG, EX8 + 657(CA)9-10] that were in strong linkage disequilibrium with each other. We did not detect a significant allelic or genotypic association. Haplotypes derived from all three polymorphisms generated similar results. These data do not support the notion that the NR4A2 gene plays a major role in risk for schizophrenia among Japanese individuals.
Collapse
Affiliation(s)
- Yoshimi Iwayama-Shigeno
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK. Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 2003; 33:85-9. [PMID: 12496759 DOI: 10.1038/ng1066] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2002] [Accepted: 11/05/2002] [Indexed: 12/31/2022]
Abstract
NR4A2, encoding a member of nuclear receptor superfamily, is essential for the differentiation of the nigral dopaminergic neurons. To determine whether NR4A2 is a susceptibility gene for Parkinson disease, we carried out genetic analyses in 201 individuals affected with Parkinson disease and 221 age-matched unaffected controls. We identified two mutations in NR4A2 associated with Parkinson disease (-291Tdel and -245T-->G), which map to the first exon of NR4A2 and affect one allele in 10 of 107 individuals with familial Parkinson disease but not in any individuals with sporadic Parkinson disease (n = 94) or in unaffected controls (n = 221). The age at onset of disease and clinical features of these ten individuals were not different from those of individuals with typical Parkinson disease. The mutations resulted in a marked decrease in NR4A2 mRNA levels in transfected cell lines and in lymphocytes of affected individuals. Additionally, mutations in NR4A2 affect transcription of the gene encoding tyrosine hydroxylase. These data suggest that mutations in NR4A2 can cause dopaminergic dysfunction, associated with Parkinson disease.
Collapse
Affiliation(s)
- Wei-Dong Le
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Satoh JI, Kuroda Y. The constitutive and inducible expression of Nurr1, a key regulator of dopaminergic neuronal differentiation, in human neural and non-neural cell lines. Neuropathology 2002; 22:219-32. [PMID: 12564761 DOI: 10.1046/j.1440-1789.2002.00460.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nur-related factor 1 (Nurr1), nerve growth factor-induced gene B (NGFI-B) and neuron-derived orphan receptor-1 (NOR-1) constitute the orphan nuclear receptor subfamily of transcription factors. Previous studies showed that midbrain dopaminergic neuronal precursor cells failed to differentiate in Nurr1-deficient mice. To investigate a role of Nurr1 in human neuronal function, Nurr1 mRNA expression was studied in human neural cell lines by RT-PCR and northern blot analysis. Nurr1, NGFI-B and NOR-1 mRNA were coexpressed in all human neural and nonneural cell lines under the serum-containing culture condition, except for SK-N-SH neuroblastoma, in which Nurr1 mRNA was undetectable. The levels of Nurr1, NGFI-B and NOR-1 mRNA were elevated markedly in NTera2 teratocarcinoma-derived neurons (NTera2-N), a model of differentiated human neurons, following a 1.5 or 3 h-exposure to 1 mM dibutyryl cyclic AMP or 100 nm phorbol 12-myristate 13-acetate. NGFI-B mRNA levels were also elevated in NTera2-N cells by exposure to 100 ng/mL brain-derived neurotrophic factor (BDNF). To identify Nurr1-target genes, the mRNA expression of 27 genes potentially involved in dopaminergic neuronal differentiation and survival, including BDNF, glia-derived neurotrophic factor, their receptors, tyrosine hydroxylase and alpha-synuclein, were studied in HEK293 cells following overexpression of Nurr1. None of these genes examined, however, showed significant changes. These results indicate that Nurr1, NGFI-B and NOR-1 mRNA are expressed constitutively in various human neural and non-neural cell lines under the serum-containing culture condition, and their levels are up-regulated in human neurons by activation of protein kinase A or protein kinase C pathway, although putative coactivators expressed in dopaminergic neuronal precursor cells might be required for efficient transcriptional activation of Nurr1-target genes.
Collapse
MESH Headings
- Blotting, Northern
- Brain-Derived Neurotrophic Factor/pharmacology
- Bucladesine/pharmacology
- Cell Culture Techniques
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/drug effects
- Enzyme Activators/pharmacology
- Gene Expression Regulation
- Humans
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/drug effects
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid
- Receptors, Thyroid Hormone
- Reverse Transcriptase Polymerase Chain Reaction
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/biosynthesis
- Transcription Factors/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Immunology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan.
| | | |
Collapse
|
27
|
Abstract
The members of the nuclear receptor superfamily are known to mediate a wide array of basic biological processes, such as regulation of cell growth and differentiation, and induction of apoptosis. In several human malignancies, this central control function of nuclear receptors is disturbed, which seems to play an important role in tumor development and progression. Many nuclear receptor genes have been reported to be downregulated in malignancies; however, only a few mutations, gene arrangements, deletions or similar genetic changes have been shown to occur in these tumors. During the last decade, increasing attention has been directed towards epigenetic mechanisms of gene regulation such as DNA methylation. Many nuclear receptor genes can be silenced through aberrant methylation in tumors; epigenetic silencing, therefore, represents an additional mechanism that modifies expression of key genes during carcinogenesis. This review will give insights into the role of DNA methylation in the silencing of nuclear receptor genes and its involvement in human malignancies.
Collapse
Affiliation(s)
- J Berger
- Department of Obstetrics and Gynecology, University Hospital, 6020 Innsbruck, Austria
| | | |
Collapse
|
28
|
Chen YH, Tsai MT, Shaw CK, Chen CH. Mutation analysis of the human NR4A2 gene, an essential gene for midbrain dopaminergic neurogenesis, in schizophrenic patients. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 105:753-7. [PMID: 11803525 DOI: 10.1002/ajmg.10036] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies have revealed that an orphan receptor gene of the steroid/thyroid hormone nuclear receptor superfamily, the Nurr1 gene, is essential for the neurogenesis and differentiation of dopaminergic neurons in the midbrain of mice. Transgenic mice lacking the Nurr1 gene soon die after birth and are devoid of dopaminergic neurons in the midbrain. Heterozygous mice survive postnatally without obvious locomotor deficits; however, they have increased vulnerability to dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In view of the importance of dopamine neurotransmission in brain function, we were interested to know if the human homologous gene of murine Nurr1, the NR4A2 gene, may play a role in the pathogenesis of schizophrenia. We systematically sequenced all the exons of the human NR4A2 gene to search for molecular variants in a cohort of Chinese schizophrenic patients from Taiwan. Two molecular variants were identified: a G-insertion in intron 6 (designated IVS6 + 17 [see text] + 18insG), and a G-deletion in the untranslated exon 1 (designated c.-469delG). The IVS6 + 17 [see text] + 18insG is a polymorphic one; further case control study, however, did not reveal association of this polymorphism with schizophrenia. The c.-469delG is a rare variant found in two unrelated patients among 177 schizophrenic patients, but not in 130 nonpsychotic controls. The result suggests that the c.-469delG and possibly other variants of the NR4A2 gene may be of relevance to the complex factors involved in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Y H Chen
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien City, Taiwan
| | | | | | | |
Collapse
|
29
|
Buervenich S, Carmine A, Arvidsson M, Xiang F, Zhang Z, Sydow O, Jönsson EG, Sedvall GC, Leonard S, Ross RG, Freedman R, Chowdari KV, Nimgaonkar VL, Perlmann T, Anvret M, Olson L. NURR1 mutations in cases of schizophrenia and manic-depressive disorder. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 96:808-13. [PMID: 11121187 DOI: 10.1002/1096-8628(20001204)96:6<808::aid-ajmg23>3.0.co;2-e] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Transgenic mice lacking the nuclear orphan transcription factor Nur-related receptor 1 (Nurr1) fail to develop mesencephalic dopamine neurons. There is a highly homologous NURR1 gene in humans (formerly known as NOT) which therefore constitutes a good candidate gene for neurologic and psychiatric disorders with an involvement of the dopamine neuron system, such as Parkinson's disease, schizophrenia, and manic-depression. By direct sequencing of genomic DNA, we found two different missense mutations in the third exon of NURR1 in two schizophrenic patients and another missense mutation in the same exon in an individual with manic-depressive disorder. All three mutations caused a similar reduction of in vitro transcriptional activity of NURR1 dimers of about 30-40%. Neither of these amino acid changes, nor any sequence changes whatsoever, were found in patients with Parkinson's disease or control DNA material of normal populations. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:808-813, 2000.
Collapse
Affiliation(s)
- S Buervenich
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tseng KY, Roubert C, Do L, Rubinstein M, Kelly MA, Grandy DK, Low MJ, Gershanik OS, Murer MG, Giros B, Raisman-Vozari R. Selective increase of Nurr1 mRNA expression in mesencephalic dopaminergic neurons of D2 dopamine receptor-deficient mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:1-6. [PMID: 11039723 DOI: 10.1016/s0169-328x(00)00107-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The orphan nuclear receptor Nurr1 is critical for the survival of mesencephalic dopaminergic precursor neurons. Little is known about the mechanisms that regulate Nurr1 expression in vivo. Other members of this receptor family have been shown to be activated by dopamine. We sought to determine if Nurr1 expression is also regulated by endogenous dopamine through dopamine receptors. Consequently, we investigated the expression of Nurr1 mRNA in genetically modified mice lacking both functional copies of the D2 dopamine receptor gene and in their congenic siblings. Quantitative in situ hybridization demonstrated a significant increased expression of Nurr1 mRNA in the substantia nigra pars compacta and the ventral tegmental area of D2 dopamine receptor -/- mice. No change in Nurr1 expression was detected in other brain regions, such as the habenular nuclei and temporal cortex. Among the cell groups studied, mesencephalic dopaminergic neurons are unique in that they express both Nurr1 and the D2 dopamine receptor, and synthesize dopamine. Thus, it seems plausible that the selective increase in Nurr1 expression observed in D2 receptor-deficient mice is the consequence of an impaired dopamine autoreceptor function.
Collapse
Affiliation(s)
- K Y Tseng
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|