1
|
Xu C, Jing W, Liu C, Yuan B, Zhang X, Liu L, Zhang F, Chen P, Liu Q, Wang H, Du X. Cytoplasmic DNA and AIM2 inflammasome in RA: where they come from and where they go? Front Immunol 2024; 15:1343325. [PMID: 39450183 PMCID: PMC11499118 DOI: 10.3389/fimmu.2024.1343325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease of undetermined etiology characterized by symmetric synovitis with predominantly destructive and multiple joint inflammation. Cytoplasmic DNA sensors that recognize protein molecules that are not themselves or abnormal dsDNA fragments play an integral role in the generation and perpetuation of autoimmune diseases by activating different signaling pathways and triggering innate immune signaling pathways and host defenses. Among them, melanoma deficiency factor 2 (AIM2) recognizes damaged DNA and double-stranded DNA and binds to them to further assemble inflammasome, initiating the innate immune response and participating in the pathophysiological process of rheumatoid arthritis. In this article, we review the research progress on the source of cytoplasmic DNA, the mechanism of assembly and activation of AIM2 inflammasome, and the related roles of other cytoplasmic DNA sensors in rheumatoid arthritis.
Collapse
Affiliation(s)
- Conghui Xu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Zheng's Acupuncture, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Fengfan Zhang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Qiang Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
2
|
Haycock J, Maehr T, Dastjerdi A, Steinbach F. Immunostimulation of Asian elephant ( Elephas maximus) blood cells by parapoxvirus ovis and CpG motif-containing bacterial plasmid DNA upregulates innate immune gene expression. Front Immunol 2024; 15:1329820. [PMID: 38590526 PMCID: PMC10999609 DOI: 10.3389/fimmu.2024.1329820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
The immune system of Asian elephants (Elephas maximus) is poorly studied, compared to that of livestock, rodents or humans. The innate immune response has become a focus of interest in relation to Elephant endotheliotropic herpesviruses (EEHVs). EEHVs cause a fatal hemorrhagic disease (EEHV-HD) and are a significant threat to captive Asian elephant populations worldwide. Similar to other herpesvirus infections, nearly all animals become infected, but only some develop disease. As progression to EEHV-HD is often acute, a robust innate immune response is crucial to control EEHV infections. This is invariably true of the host in the first instance, but it can also potentially be modulated by intervention strategies. Here, two immunostimulant veterinary medicinal products, authorized for use in domestic species, were tested for their ability to induce innate anti-viral immune responses in Asian elephant blood cells. Sequence data were obtained for a range of previously unidentified Asian elephant immune genes, including C-X-C motif chemokine ligand 10 (CXCL10), interferon stimulated gene 15 (ISG15) and myxovirus GTPase 1 (Mx1), and were employed in the design of species-specific qPCR assays. These assays were subsequently used in analyses to determine fold changes in gene expression over a period of 24 hours. This study demonstrates that both immunostimulant medications are capable of inducing significant innate anti-viral immune responses which suggests that both could be beneficial in controlling EEHV infections in Asian elephants.
Collapse
Affiliation(s)
- Jonathan Haycock
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Tanja Maehr
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Akbar Dastjerdi
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Falko Steinbach
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
3
|
Green M, Al-Humadi N. Preclinical Toxicology of Vaccines. A COMPREHENSIVE GUIDE TO TOXICOLOGY IN NONCLINICAL DRUG DEVELOPMENT 2024:849-876. [DOI: 10.1016/b978-0-323-85704-8.00003-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Guo F, Yang J, Abd El-Aty AM, Wang R, Ju X. Base composition, adaptation, and evolution of goose astroviruses: codon-based investigation. Poult Sci 2023; 102:103029. [PMID: 37713803 PMCID: PMC10511809 DOI: 10.1016/j.psj.2023.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Goose astroviruses (GoAstVs) are causative agents that account for fatal infection of goslings characterized by visceral urate deposition, resulting in severe economic losses in major goose-producing regions in China since 2017. In this study, we sought to unravel the intrinsic properties associated with adaptation and evolution in the host environment of GoAstVs. Consistent results from phylogenetic analysis and correspondence analysis performed on the codon usage patterns (CUPs) reveal 2 clusters of GoAstVs, namely, GoAstV-1 and GoAstV-2. However, multiple similar compositional characteristics were found, despite the high divergence between GoAstV-1 and GoAstV-2. Studies on the base composition of GoAstVs reveal an A/U bias, indicating a compositional constraint, while natural selection prevailed in determining the CUPs in the virus genome based on our neutrality plot analysis, reflecting high adaptive pressure to fit the host environment. Codon adaptation index (CAI) analysis revealed a higher degree of fitness to the CUPs of the corresponding host for GoAstVs than avian influenza virus and betacoronaviruses, which may be a favorable factor contributing to the high pathogenicity and wide distribution of GoAstVs in goslings. In addition, GoAstVs were less adapted to ducks and chickens, with significantly lower CAI values than to geese, which may be a reason for the different prevalence of GoAstVs among these species. Extensive investigations on dinucleotide distribution revealed a significant suppression of the CpG and UpA motifs in the virus genome, which may facilitate adaptation to the host's innate immune system by evading surveillance. In addition, our study reported the trends of increasing fitness to the host's microenvironment for GoAstVs through increasing adaptation to host CUPs and ongoing reduction of CpG motifs in the virus genome. The present analysis deepens our understanding of the basic biology, pathogenesis, adaptation and evolutionary pattern of GoAstVs, and contributes to the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Fucheng Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinjin Yang
- Technology Center of Zhanjiang Customs District, Zhanjiang, 524000, Guangdong, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Ruichen Wang
- Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing 102206, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, 524088, China; Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| |
Collapse
|
5
|
Champagne-Jorgensen K, Luong T, Darby T, Roach DR. Immunogenicity of bacteriophages. Trends Microbiol 2023; 31:1058-1071. [PMID: 37198061 DOI: 10.1016/j.tim.2023.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Hundreds of trillions of diverse bacteriophages (phages) peacefully thrive within and on the human body. However, whether and how phages influence their mammalian hosts is poorly understood. In this review, we explore current knowledge and present growing evidence that direct interactions between phages and mammalian cells often induce host inflammatory and antiviral immune responses. We show evidence that, like viruses of the eukaryotic host, phages are actively internalized by host cells and activate conserved viral detection receptors. This interaction often generates proinflammatory cytokine secretion and recruitment of adaptive immune programs. However, significant variability exists in phage-immune interactions, suggesting an important role for structural phage characteristics. The factors leading to the differential immunogenicity of phages remain largely unknown but are highly influenced by their human and bacterial hosts.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Taylor Darby
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Dwayne R Roach
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
6
|
Zhang L, Zhang L, Wang Y, Jiang K, Gao C, Zhang P, Xie Y, Wang B, Zhao Y, Xiao H, Song J. Regulating the surface topography of CpG nanoadjuvants via coordination-driven self-assembly for enhanced tumor immunotherapy. NANOSCALE ADVANCES 2023; 5:4758-4769. [PMID: 37705793 PMCID: PMC10496906 DOI: 10.1039/d3na00322a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/09/2023] [Indexed: 09/15/2023]
Abstract
Immunoadjuvants play a key role in enhancing the efficacy of therapeutic tumor vaccines for treating malignant and recurrent cancers. However, due to the bottleneck in the rational design and mechanistic understanding of novel adjuvants, currently available immunoadjuvants in clinical practice are very limited. To boost adjuvant design and development, herein we propose a surface topography regulatory strategy for constructing novel adjuvants with improved adjuvant properties. One of the licensed adjuvants with a well-defined molecular mechanism of immune activation, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs), was used as the material framework. We constructed immunostimulatory CpG nanoparticles (CpG NPs) with different surface topographies by coordination-driven self-assembly between CpG ODNs and ferrous ions. These self-assembled CpG NPs combine the biological and physical activation abilities of innate immunity and can be used as adjuvants of tumor antigens for malignant tumor immunotherapy. The experimental results showed that these CpG NPs could rapidly enter innate immune cells and remold the tumor microenvironment (TME) to enhance anti-tumor immunotherapy via (i) inducing proinflammatory cytokine production; (ii) promoting the transformation of macrophages from immunosuppressed M2 types into immunoactivated M1 types; (iii) amplifying the antigen presentation of mature dendritic cells (DCs), and (iv) activating T cells in tumor sites. Among the prepared nanostructures, pompon-shaped nanoparticles (NPpo) showed the strongest adjuvant properties and anti-tumor immunotherapeutic effect as the adjuvant of ovalbumin in melanoma-bearing mice. Overall, this work provides an effective strategy for designing novel adjuvants for activating the immunosuppressed TME to enable better cancer immunotherapy.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou Zhejiang 310024 China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- School of Pharmacy, Changzhou University Changzhou Jiangsu 213164 China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yuqi Wang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Chao Gao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Pengfei Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Yujie Xie
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yun Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou Zhejiang 310024 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
7
|
Klinman DM, Goguet E, Tross D. TLR Agonist Therapy of Metastatic Breast Cancer in Mice. J Immunother 2023; 46:170-177. [PMID: 37103328 PMCID: PMC10168108 DOI: 10.1097/cji.0000000000000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
Toll-like receptor (TLR) 7/8 and 9 agonists stimulate an innate immune response that supports the development of tumor-specific immunity. Previous studies showed that either agonist individually could cure mice of small tumors and that when used in combination, they could prevent the progression of larger tumors (>300 mm 3 ). To examine whether these agents combined could control metastatic disease, syngeneic mice were challenged with the highly aggressive 66cl4 triple-negative breast tumor cell line. Treatment was not initiated until pulmonary metastases were established, as verified by bioluminescent imaging of luciferase-tagged tumor cells. Results show that combined therapy with TLR7/8 and TLR9 agonists delivered to both primary and metastatic tumor sites significantly reduced tumor burden and extended survival. The inclusion of cyclophosphamide and anti-PD-L1 resulted in optimal tumor control, characterized by a 5-fold increase in the average duration of survival.
Collapse
|
8
|
Hansoongnern P, Phecharat N, Wasanasuk K, Tommeurd W, Chankeeree P, Lekcharoensuk C, Semkum P, Pinitkiatisakul S, Lekcharoensuk P. Encapsidated-CpG ODN enhances immunogenicity of porcine circovirus type 2 virus-like particles. Vet Microbiol 2022; 275:109583. [DOI: 10.1016/j.vetmic.2022.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/27/2022]
|
9
|
Liu C, Zheng J, Ou X, Han Y. Anti-cancer Substances and Safety of Lactic Acid Bacteria in Clinical Treatment. Front Microbiol 2021; 12:722052. [PMID: 34721321 PMCID: PMC8548880 DOI: 10.3389/fmicb.2021.722052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are a kind of Gram-positive bacteria which can colonize in the biological gastrointestinal tract and play a variety of probiotic roles. LAB have a wide range of applications in industry, animal husbandry, planting, food safety, and medical science fields. Previous studies on LAB have typically concentrated on their effects on improving the digestion and absorption of the gastrointestinal tract, regulating the balance of the microflora, and inhibiting the production and accumulation of toxic substances. The resistance of LAB to cancer is a topic of growing interest and relevance. This paper provided a summary of bio-active substances of LAB when they act against cancer, as well as the safety of LAB in clinical cancer treatment. Moreover, this paper further discussed several possible directions for future research and the potential application of LAB as anti-cancer therapy.
Collapse
Affiliation(s)
- Chaoran Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiaqi Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xuan Ou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Kim H, Zhang W, Hwang J, An EK, Choi YK, Moon E, Loznik M, Huh YH, Herrmann A, Kwak M, Jin JO. Carrier-free micellar CpG interacting with cell membrane for enhanced immunological treatment of HIV-1. Biomaterials 2021; 277:121081. [PMID: 34481291 DOI: 10.1016/j.biomaterials.2021.121081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Unmethylated CpG motifs activate toll-like receptor 9 (TLR9), leading to sequence- and species-specific immune stimulation. Here, we engineered a CpG oligodeoxyribonucleotide (ODN) with multiple hydrophobic moieties, so-called lipid-modified uracil, which resulted in a facile micelle formation of the stimulant. The self-assembled CpG nanostructure (U4CpG) containing the ODN 2216 sequence was characterized by various spectroscopic and microscopic methods together with molecular dynamics simulations. Next, we evaluated the nano-immunostimulant for enhancement of anti-HIV immunity. U4CpG treatment induced activation of plasmacytoid dendritic cells (pDCs) and natural killer (NK) cells in healthy human peripheral blood, which produced type I interferons (IFNs) and IFN-γ in human peripheral blood mononuclear cells (PBMCs). Moreover, we validated the activation and promotion efficacy of U4CpG in patient-derived blood cells, and HIV-1 spread was significantly suppressed by a low dosage of the immunostimulant. Furthermore, U4CpG-treated PBMC cultured medium elicited transcription of latent HIV-1 in U1 cells indicating that U4CpG reversed HIV-1 latency. Thus, the functions of U4CpG in eradicating HIV-1 by enhancing immunity and reversing latency make the material a potential candidate for clinical studies dealing with viral infection.
Collapse
Affiliation(s)
- Haejoo Kim
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yeol Kyo Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eunyoung Moon
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Mark Loznik
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea; DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
11
|
Podlacha M, Grabowski Ł, Kosznik-Kawśnicka K, Zdrojewska K, Stasiłojć M, Węgrzyn G, Węgrzyn A. Interactions of Bacteriophages with Animal and Human Organisms-Safety Issues in the Light of Phage Therapy. Int J Mol Sci 2021; 22:8937. [PMID: 34445641 PMCID: PMC8396182 DOI: 10.3390/ijms22168937] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages are viruses infecting bacterial cells. Since there is a lack of specific receptors for bacteriophages on eukaryotic cells, these viruses were for a long time considered to be neutral to animals and humans. However, studies of recent years provided clear evidence that bacteriophages can interact with eukaryotic cells, significantly influencing the functions of tissues, organs, and systems of mammals, including humans. In this review article, we summarize and discuss recent discoveries in the field of interactions of phages with animal and human organisms. Possibilities of penetration of bacteriophages into eukaryotic cells, tissues, and organs are discussed, and evidence of the effects of phages on functions of the immune system, respiratory system, central nervous system, gastrointestinal system, urinary tract, and reproductive system are presented and discussed. Modulations of cancer cells by bacteriophages are indicated. Direct and indirect effects of virulent and temperate phages are discussed. We conclude that interactions of bacteriophages with animal and human organisms are robust, and they must be taken under consideration when using these viruses in medicine, especially in phage therapy, and in biotechnological applications.
Collapse
Affiliation(s)
- Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (Ł.G.); (K.K.-K.)
| | - Katarzyna Kosznik-Kawśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (Ł.G.); (K.K.-K.)
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (K.Z.); (M.S.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (Ł.G.); (K.K.-K.)
| |
Collapse
|
12
|
Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J 2021; 18:166. [PMID: 34389034 PMCID: PMC8361246 DOI: 10.1186/s12985-021-01633-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.
Collapse
Affiliation(s)
- Jalen Singh
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Karen Mossman
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
13
|
Single-molecule micromanipulation studies of methylated DNA. Biophys J 2021; 120:2148-2155. [PMID: 33838135 DOI: 10.1016/j.bpj.2021.03.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylated at the five-carbon position is the most widely studied reversible DNA modification. Prior findings indicate that methylation can alter mechanical properties. However, those findings were qualitative and sometimes contradictory, leaving many aspects unclear. By applying single-molecule magnetic force spectroscopy techniques allowing for direct manipulation and dynamic observation of DNA mechanics and mechanically driven strand separation, we investigated how CpG and non-CpG cytosine methylation affects DNA micromechanical properties. We quantitatively characterized DNA stiffness using persistence length measurements from force-extension curves in the nanoscale length regime and demonstrated that cytosine methylation results in longer contour length and increased DNA flexibility (i.e., decreased persistence length). In addition, we observed the preferential formation of plectonemes over unwound single-stranded "bubbles" of DNA under physiologically relevant stretching forces and supercoiling densities. The flexibility and high structural stability of methylated DNA is likely to have significant consequences on the recruitment of proteins recognizing cytosine methylation and DNA packaging.
Collapse
|
14
|
Liu H, Meng S, Yang N, Chen J, Yao H, Zhang Y, Zhang H, Lei B, Wang X, Chen S, Wang T, Wang Y, Wang J, Zhang W. Identification and functional study of novel oligonucleotides: CpG Seq 13 and CpG Seq 19. Immunotherapy 2021; 13:571-585. [PMID: 33781095 DOI: 10.2217/imt-2019-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study explored new immunoadjuvants with stronger immune activity to enhance therapeutic effects against leukemia. Materials & methods: Whole blood and bone marrow of acute myeloid leukemia (AML) patients and healthy volunteers were collected. Isolated mononuclear cells were treated with two newly designed CpG oligodeoxynucleotides, CpG sequence 13 and 19, and known CpG oligodeoxynucleotides and analyzed via flow cytometry. Results: CpG Seq 13 and 19 possess strong immune activation and enhance the proliferation, degranulation and cytotoxicity of T cells. They also inhibit AML cell proliferation. When CpG Seq 13/19 are combined with anti-OX40 antibodies, the cytotoxicity of T cells on AML cells are further enhanced. Conclusion: CpG Seq 13 and 19 are strong immune adjuvant candidates for AML treatment.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shan Meng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Nan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinqiu Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huan Yao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Lei
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xugeng Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Sheping Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ting Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yueli Wang
- Department of Hematology, South Hospital, Tongchuan People's Hospital, Tongchuan, 727000, China
| | - Jin Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wanggang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
15
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
16
|
Slobodkina E, Boldyreva M, Karagyaur M, Eremichev R, Alexandrushkina N, Balabanyan V, Akopyan Z, Parfyonova Y, Tkachuk V, Makarevich P. Therapeutic Angiogenesis by a "Dynamic Duo": Simultaneous Expression of HGF and VEGF165 by Novel Bicistronic Plasmid Restores Blood Flow in Ischemic Skeletal Muscle. Pharmaceutics 2020; 12:E1231. [PMID: 33353116 PMCID: PMC7766676 DOI: 10.3390/pharmaceutics12121231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic angiogenesis is a promising strategy for relief of ischemic conditions, and gene delivery was used to stimulate blood vessels' formation and growth. We have previously shown that intramuscular injection of a mixture containing plasmids encoding vascular endothelial growth factor (VEGF)165 and hepatocyte growth factor (HGF) leads to restoration of blood flow in mouse ischemic limb, and efficacy of combined delivery was superior to each plasmid administered alone. In this work, we evaluated different approaches for co-expression of HGF and VEGF165 genes in a panel of candidate plasmid DNAs (pDNAs) with internal ribosome entry sites (IRESs), a bidirectional promoter or two independent promoters for each gene of interest. Studies in HEK293T culture showed that all plasmids provided synthesis of HGF and VEGF165 proteins and stimulated capillary formation by human umbilical vein endothelial cells (HUVEC), indicating the biological potency of expressed factors. Tests in skeletal muscle explants showed a dramatic difference and most plasmids failed to express HGF and VEGF165 in a significant quantity. However, a bicistronic plasmid with two independent promoters (cytomegalovirus (CMV) for HGF and chicken b-actin (CAG) for VEGF165) provided expression of both grow factors in skeletal muscle at an equimolar ratio. Efficacy tests of bicistronic plasmid were performed in a mouse model of hind limb ischemia. Intramuscular administration of plasmid induced significant restoration of perfusion compared to an empty vector and saline. These findings were supported by increased CD31+ capillary density in animals that received pHGF/VEGF. Overall, our study reports a first-in-class candidate gene therapy drug to deliver two pivotal angiogenic growth factors (HGF and VEGF165) with properties that provide basis for future development of treatment for an unmet medical need-peripheral artery disease and associated limb ischemia.
Collapse
Affiliation(s)
- Ekaterina Slobodkina
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Maria Boldyreva
- National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia;
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), 109028 Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Roman Eremichev
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Natalia Alexandrushkina
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Vadim Balabanyan
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Zhanna Akopyan
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Yelena Parfyonova
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia;
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
- National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia;
| | - Pavel Makarevich
- Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia; (M.K.); (N.A.); (V.B.); (Z.A.); (Y.P.); (V.T.); (P.M.)
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia;
| |
Collapse
|
17
|
Nguyen H, Gazy N, Venketaraman V. A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. Int J Mol Sci 2020; 21:E6148. [PMID: 32858917 PMCID: PMC7503332 DOI: 10.3390/ijms21176148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a highly infectious acid-fast bacillus and is known to cause tuberculosis (TB) in humans. It is a leading cause of death from a sole infectious agent, with an estimated 1.5 million deaths yearly worldwide, and up to one third of the world's population has been infected with TB. The virulence and susceptibility of Mtb are further amplified in the presence of Human Immunodeficiency Virus (HIV). Coinfection with Mtb and HIV forms a lethal combination. Previous studies had demonstrated the synergistic effects of Mtb and HIV, with one disease accelerating the disease progression of the other through multiple mechanisms, including the modulation of the immune response to these two pathogens. The response of the endosomal pattern recognition receptors to these two pathogens, specifically toll-like receptors (TLR)-3, -7, and -9, has not been elucidated, with some studies producing mixed results. This article seeks to review the roles of TLR-3, -7, and -9 in response to Mtb infection, as well as Mtb-HIV-coinfection via Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing INF-β (TRIF)-dependent and myeloid differentiation factor 88 (MyD88)-dependent pathways.
Collapse
Affiliation(s)
- Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nicky Gazy
- Beaumont Health System, 5450 Fort St, Trenton, MI 48183, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|
18
|
Abstract
Trichomonas vaginalis is an extracellular parasite that colonizes the human urogenital tract leading to trichomoniasis, the most common sexually-transmitted non-viral disease worldwide. The immune response plays a critical role in the host defense against this parasite. Trichomonas' DNA contains unmethylated CpG motifs (CpGDNA) that in other microorganisms act as modulators of the immune response. However, the molecular mechanisms responsible for CpGDNA immune modulation are still unclear. As macrophages participate in the first line of defense against infection, we investigated the type of immune response of murine macrophages to T. vaginalis DNA (TvDNA). We observed high expression of the proinflammatory cytokines IL-6 and IL-12p40 in macrophages stimulated with TvDNA. In contrast, the anti-inflammatory response, assessed by IL-10 and IL-13 mRNA expression was delayed. This suggests that the immune response induced by TvDNA is modulated through cytokine production, mediated partly by NADPH-oxidase activity, as TvDNA induced reactive species of oxygen production and a rounded morphology in macrophages indicative of an M1 phenotype. Furthermore, infected mice pretreated with TvDNA displayed persistent vulvar inflammation and decreased parasite viability consistent with higher proinflammatory cytokine levels during infection compared to untreated mice. Overall, our findings suggest that TvDNA pretreatment modulates the immune response favouring parasite elimination.
Collapse
|
19
|
Electrotransfer of CpG free plasmids enhances gene expression in skin. Bioelectrochemistry 2019; 130:107343. [PMID: 31401517 DOI: 10.1016/j.bioelechem.2019.107343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
Skin is a very suitable target for gene therapy and DNA vaccination due to its accessibility, its surface and its ability to produce transgenes. Gene electrotransfer (GET) to the skin is under development for clinical applications for DNA vaccine or local treatment such as wound healing. Local treatments are effective if the expression of the plasmid affects only the local environment (skin) by inducing an efficient concentration over a prolonged period. In this study, we evaluate the control of expression in the skin of a plasmid coding a fluorescent protein by its CpG (cytosine-phosphate-guanine motif) content. Two fluorescent reporter genes are evaluated: tdTomato and GFP. The expression is followed on the long term by in vivo fluorescence imaging. Our results show that GET mediated expression in the skin can be controlled by the CpG content of the plasmid. Long term expression (>120 days) can be obtained at high level with CpG-free constructs associated with a proper design of the electrodes where the field distribution mediating the gene electrotransfer is present deep in the skin.
Collapse
|
20
|
Zhang S, Cai H, Cao D, Deng J, Jia J, Li J, Ming F, Zhao P, Ma M, Liang Q, Zeng M, Zhang L. Recombinant plasmids containing CpG with porcine host defense peptides (PR-39/pBD-1) modulates the innate and adaptive intestinal immune responses (including maternal-derived) in piglets. Int Immunopharmacol 2019; 70:467-476. [DOI: 10.1016/j.intimp.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 01/12/2023]
|
21
|
Wang Y, Li X, Zhang Y, Wang L, Yang Z. A supramolecular hydrogel to boost the production of antibodies for phosphorylated proteins. Chem Commun (Camb) 2019; 55:12388-12391. [DOI: 10.1039/c9cc05633e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We reported on a method of using hydrogels to selectively increase the production of antibodies for phosphorylated proteins.
Collapse
Affiliation(s)
- Youzhi Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Design
- Nankai University
- Tianjin 300071
- P. R. China
- Key Laboratory of Bioactive Materials
| | - Xinxin Li
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
| | - Yiming Zhang
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- State Key Laboratory of Medicinal Chemical Biology, and Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
| | - Ling Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Design
- Nankai University
- Tianjin 300071
- P. R. China
| | - Zhimou Yang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Design
- Nankai University
- Tianjin 300071
- P. R. China
- Key Laboratory of Bioactive Materials
| |
Collapse
|
22
|
Brain microglia activation induced by intracranial administration of oligonucleotides and its pharmacological modulation. Drug Deliv Transl Res 2018; 8:1345-1354. [PMID: 29869293 DOI: 10.1007/s13346-018-0535-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oligonucleotide overloading results in type I interferonopathies such as the Aicardi-Goutiéres Syndrome, a progressive encephalopathy determined by an immune response against endogenous DNA/RNA molecules. No therapy targeting pathogenic mechanisms is available for affected patients. Accordingly, we set up an in vitro/in vivo experimental model aimed at reproducing the pathogenic mechanisms of type I interferonopathies, in order to develop an effective pharmacological modulation and toxicological alterations caused by intracranial delivery of encapsulated CpG. The in vitro model used Aicardi-Goutiéres Syndrome immortalized lymphocytes activated by interferon I and co-cultured with human astrocytes; lymphocyte neurotoxicity was attenuated by the calcineurin-inhibitor Tacrolimus and by the anti-interferon monoclonal antibody Sifalimumab. The in vivo model was set up in mice by subcutaneous injection of encapsulated CpG oligonucleotides; the immune-stimulating activity was demonstrated by cytometric analysis in the spleen. To mime pathogenesis of type I interferonopathies in the central nervous system, CpG oligonucleotides were administered intracranially in mice. In the brain, CpG overload induced a rapid activation of macrophage-like microglial cells and focal accumulation mononuclear cells. The subcutaneous administration of Tacrolimus and, more potently, Sifalimumab attenuated CpG-induced brain alterations. These findings shed light on molecular mechanisms triggered by oligonucleotides to induce brain damage. Monoclonal antibodies inhibiting interferon seem a promising therapeutic strategy to protect brain in type I interferonopathies.
Collapse
|
23
|
Hwang J, Lee D, Seo Y, Son J, Jo Y, Lee K, Park C, Choi J. Engineered nanomaterials for their applications in theragnostics. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Alnazawi M, Altaher A, Kandeel M. Comparative Genomic Analysis MERS CoV Isolated from Humans and Camels with Special Reference to Virus Encoded Helicase. Biol Pharm Bull 2018; 40:1289-1298. [PMID: 28769010 DOI: 10.1248/bpb.b17-00241] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS CoV) is a new emerging viral disease characterized by high fatality rate. Understanding MERS CoV genetic aspects and codon usage pattern is important to understand MERS CoV survival, adaptation, evolution, resistance to innate immunity, and help in finding the unique aspects of the virus for future drug discovery experiments. In this work, we provide comprehensive analysis of 238 MERS CoV full genomes comprised of human (hMERS) and camel (cMERS) isolates of the virus. MERS CoV genome shaping seems to be under compositional and mutational bias, as revealed by preference of A/T over G/C nucleotides, preferred codons, nucleotides at the third position of codons (NT3s), relative synonymous codon usage, hydropathicity (Gravy), and aromaticity (Aromo) indices. Effective number of codons (ENc) analysis reveals a general slight codon usage bias. Codon adaptation index reveals incomplete adaptation to host environment. MERS CoV showed high ability to resist the innate immune response by showing lower CpG frequencies. Neutrality evolution analysis revealed a more significant role of mutation pressure in cMERS over hMERS. Correspondence analysis revealed that MERS CoV genomes have three genetic clusters, which were distinct in their codon usage, host, and geographic distribution. Additionally, virtual screening and binding experiments were able to identify three new virus-encoded helicase binding compounds. These compounds can be used for further optimization of inhibitors.
Collapse
Affiliation(s)
- Mohamed Alnazawi
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University
| | - Abdallah Altaher
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University
| | - Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University
| |
Collapse
|
25
|
Firouzmand H, Sahranavard M, Badiee A, Khamesipour A, Alavizadeh SH, Samiei A, Soroush D, Tavassoti Kheiri M, Mahboudi F, Jaafari MR. The role of LPD-nanoparticles containing recombinant major surface glycoprotein of Leishmania (rgp63) in protection against leishmaniasis in murine model. Immunopharmacol Immunotoxicol 2017; 40:72-82. [PMID: 29210292 DOI: 10.1080/08923973.2017.1407941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Leishmaniasis is a major public health problem. Despite numerous attempts, yet there is no effective vaccine against human leishmaniasis, mainly due to a lack of an effective vaccine delivery system as well as adjuvant. OBJECTIVE(S) The aim of this study was to evaluate the ability of recombinant glycoprotein 63 (rgp63) as a model of Leishmania antigen, entrapped in liposome-polycation-DNA (LPD) complexes nanoparticles in inducing cell mediated immune (CMI) response and protecting against L. major in BALB/c mice. MATERIALS AND METHODS To this end, the abundant leishmania promastigote cell surface glycoprotein, gp63, was entrapped in nano-sized LPD (CpG) particles, (LPD (CpG)-rgp63), and BALB/c mice were immunized three times with either (LPD (CpG)-rgp63) or rgp63-CpG DNA or LPD (CpG) or free rgp63 and dextrose 5%. Various parameters including footpad thickness, splenic load of L. major parasites, rgp63-binding IgGs and also cytokine levels of rgp63-reactive T lymphocytes were then compared among different vaccinated animals. RESULTS The lowest number of parasites in spleen, the higher levels of IgG2a after challenge infection, the minimal footpad swelling and high level of IFN-γ secretion, all indicated that adjuvants and antigen-delivery systems are essential in modifying immune responses; as mice received LPD (CpG)-rgp63 induced immune response stronger than the other groups. CONCLUSIONS This study demonstrates that LPD nanoparticle is a promising and adaptable delivery system which could be modified towards specific vaccine targets to induce a more potent immune response in combination with rgp63.
Collapse
Affiliation(s)
- Hengameh Firouzmand
- a Nanotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mehrnosh Sahranavard
- a Nanotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran.,b Department of Pharmaceutical Nanotechnology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Ali Badiee
- b Department of Pharmaceutical Nanotechnology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran.,c Biotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Ali Khamesipour
- d Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences , Bandar Abbas , Iran
| | - Seyedeh Hoda Alavizadeh
- b Department of Pharmaceutical Nanotechnology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran.,c Biotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Afshin Samiei
- e Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences , Tehran , Iran
| | - Dina Soroush
- a Nanotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| | | | - Fereidoun Mahboudi
- f Biotechnology Research Center, Pasteur Institute of Iran , Tehran , Iran
| | - Mahmoud Reza Jaafari
- a Nanotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran.,b Department of Pharmaceutical Nanotechnology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran.,c Biotechnology Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
26
|
Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD, Miranda-Díaz AG. The Role of Oxidative Stress, Mitochondrial Function, and Autophagy in Diabetic Polyneuropathy. J Diabetes Res 2017; 2017:1673081. [PMID: 29204450 PMCID: PMC5674726 DOI: 10.1155/2017/1673081] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most frequent and prevalent chronic complication of diabetes mellitus (DM). The state of persistent hyperglycemia leads to an increase in the production of cytosolic and mitochondrial reactive oxygen species (ROS) and favors deregulation of the antioxidant defenses that are capable of activating diverse metabolic pathways which trigger the presence of nitro-oxidative stress (NOS) and endoplasmic reticulum stress. Hyperglycemia provokes the appearance of micro- and macrovascular complications and favors oxidative damage to the macromolecules (lipids, carbohydrates, and proteins) with an increase in products that damage the DNA. Hyperglycemia produces mitochondrial dysfunction with deregulation between mitochondrial fission/fusion and regulatory factors. Mitochondrial fission appears early in diabetic neuropathy with the ability to facilitate mitochondrial fragmentation. Autophagy is a catabolic process induced by oxidative stress that involves the formation of vesicles by the lysosomes. Autophagy protects cells from diverse stress factors and routine deterioration. Clarification of the mechanisms involved in the appearance of complications in DM will facilitate the selection of specific therapeutic options based on the mechanisms involved in the metabolic pathways affected. Nowadays, the antioxidant agents consumed exogenously form an adjuvant therapeutic alternative in chronic degenerative metabolic diseases, such as DM.
Collapse
Affiliation(s)
- Sonia Sifuentes-Franco
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Fermín Paul Pacheco-Moisés
- Department of Chemistry, University Centre for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Adolfo Daniel Rodríguez-Carrizalez
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, JAL, Mexico
| |
Collapse
|
27
|
Sanjaya A, Elder JR, Shah DH. Identification of new CpG oligodeoxynucleotide motifs that induce expression of interleukin-1β and nitric oxide in avian macrophages. Vet Immunol Immunopathol 2017; 192:1-7. [PMID: 29042009 DOI: 10.1016/j.vetimm.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
Unmethylated CpG motifs are known to stimulate mammalian toll-like receptor-9 expressing cells such as macrophages. However, the magnitude of immune-stimulation by CpG-motif can be sequence- and host-specific, implying the importance of identifying new immune-stimulatory motifs. This study aimed to determine the frequency distribution of 256 unique hexamers CpG-motifs in the Salmonella genome and to characterize their immune-stimulatory activity in avian host. We synthesized 256 CpG oligodeoxynucleotides (CpG-ODNs) each containing triplicates of a unique hexamer CpG-motif and tested their ability to induce expression of pro-inflammatory cytokine IL-1β in avian macrophages using q-RT PCR in four rounds of screening assays. CpG-ODNs that induced significantly higher IL-1β expression were also subjected to Griess assay to determine their ability to induce nitric oxide (NO) production in avian macrophages. This analysis resulted in identification of 7 CpG-ODNs that consistently induced IL-1β expression and NO production in avian macrophages at a level similar to the expression achieved using commercially available PTO-CpG-ODN 2007 and LPS derived from Salmonella. To the best of our knowledge, this is the first report showing comprehensive screening of all possible unique CpG hexamer (n=256) motifs for their ability to induce IL-1β expression and NO production in avian macrophages. We also show that the newly identified CpG-motifs with high immune-stimulatory activity are widely distributed in Salmonella genome. The CpG-ODNs identified in this study may serve as promising immunoprophylactics to potentiate innate responses in chickens against Salmonella and other infectious agents.
Collapse
Affiliation(s)
- Astia Sanjaya
- Department of Veterinary Microbiology and Pathology, United States
| | - Jacob R Elder
- Department of Veterinary Microbiology and Pathology, United States
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, United States; Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, United States.
| |
Collapse
|
28
|
Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation. J Immunol Res 2017; 2017:7807313. [PMID: 28894754 PMCID: PMC5574364 DOI: 10.1155/2017/7807313] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.
Collapse
|
29
|
Abstract
Immunity to targeted infectious diseases may be conferred or enhanced by vaccines, which are manufactured from recombinant forms as well as inactivated or attenuated organisms. These vaccines have to meet requirements for safety, quality, and efficacy. In addition to antigenic components, various adjuvants may be included in vaccines to evoke an effective immune response. To ensure the safety of new vaccines, preclinical toxicology studies are conducted prior to the initiation of, and concurrently with, clinical studies. There are five different types of preclinical toxicology study in the evaluation of vaccine safety: single and/or repeat dose, reproductive and developmental, mutagenicity, carcinogenicity, and safety pharmacology. If any adverse effects are observed in the course of these studies, they should be fully evaluated and a final safety decision made accordingly. Successful preclinical toxicology studies depend on multiple factors including using the appropriate study designs, using the right animal model, and evoking an effective immune response. Additional in vivo and in vitro assays that establish the identity, purity, safety, and potency of the vaccine play a significant role in assessing critical characteristics of vaccine safety.
Collapse
|
30
|
Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling. J Immunol Res 2016; 2016:4368101. [PMID: 28116318 PMCID: PMC5223024 DOI: 10.1155/2016/4368101] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.
Collapse
|
31
|
Akira S, Hoshino K, Kaisho T. The role of Toll-like receptors and MyD88 in innate immune responses. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519000060050901] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toll-like receptors (TLRs) are phylogenetically conserved receptors that recognize pathogen associated molecular patterns (PAMPS). We previously generated mice lacking TLR2 and TLR4 and showed the differential role of TLR2 and TLR4 in microbial recognition. TLR4 functions as the transmembrane component of the lipopolysaccharide (LPS) receptor, while TLR2 recognizes peptidoglycan from Gram-positive bacteria and lipoprotein. We also generated mice lacking MyD88, an adaptor involved in IL-1R/TLR signalings. The responses to a variety of bacterial components were completely abrogated in MyD88-deficient cells. However, unlike the signaling mediated by other bacterial components such as lipoprotein and bacterial DNA, activation of NF-κB and MAP kinases was induced in response to LPS even in the absence of MyD88, which indicates the existence of a MyD88-independent pathway. We have recently found that the MyD88-independent pathway is involved in LPS-induced maturation of dendritic cells (DCs).
Collapse
Affiliation(s)
- Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University; CREST of Japan Science and Technology Corporation, Osaka, Japan, -u.ac.jp
| | - Katsuaki Hoshino
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University; CREST of Japan Science and Technology Corporation, Osaka, Japan
| | - Tsuneyasu Kaisho
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University; CREST of Japan Science and Technology Corporation, Osaka, Japan
| |
Collapse
|
32
|
Hazan-Halevy I, Landesman-Milo D, Rosenblum D, Mizrahy S, Ng BD, Peer D. Immunomodulation of hematological malignancies using oligonucleotides based-nanomedicines. J Control Release 2016; 244:149-156. [PMID: 27491881 DOI: 10.1016/j.jconrel.2016.07.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
Hematological malignancies are a group of diseases characterized by clonal proliferation of blood-forming cells. Malignant blood cells are classified as myeloid or lymphoid cells depending on their stem cell origin. Lymphoid malignancies are characterized by lymphocyte accumulation in the blood stream, in the bone marrow, or in lymphatic nodes and organs. Several of these diseases are associated with chromosomal translocations, which cause gene fusion and amplification of expression, while others are characterized with aberrant expression of oncogenes. Overall, these genes play a major role in development and maintenance of malignant clones. The discovery of antisense oligonucleotides and RNA interference (RNAi) mechanisms offer new tools to specifically manipulate gene expression. Systemic delivery of inhibitory oligonucleotides molecules for manipulation of gene expression in lymphocytes holds a great potential for facilitating the development of an oligonucleotides -based therapy platform for lymphoid blood cancer. However, lymphocytes are among the most difficult targets for oligonucleotides delivery, as they are resistant to conventional transfection reagents and are dispersed throughout the body, making it difficult to successfully localize or deliver oligonucleotides payloads via systemic administration. In this review, we will survey the latest progress in the field of oligonucleotides based nanomedicine in the heterogeneous group of hematological malignancies with special emphasis on RNA based strategies. We will describe the most advanced non-viral nanocarriers for RNA delivery to malignant blood cells. We will also discuss targeted strategies for cell specific delivery of RNA molecules using nanoparticles and the therapeutic benefit of manipulating gene function in hematological malignancies. Finally, we will focus on the ex vivo, in vivo, and clinical trial strategies, that are currently under development in hematological malignancies - strategies that might increase the arsenal of drugs available to hematologists in the upcoming years.
Collapse
Affiliation(s)
- Inbal Hazan-Halevy
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dalit Landesman-Milo
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rosenblum
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shoshy Mizrahy
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Brandon D Ng
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
33
|
Chikh G, Luu R, Patel S, Davis HL, Weeratna RD. Effects of KLK Peptide on Adjuvanticity of Different ODN Sequences. Vaccines (Basel) 2016; 4:vaccines4020014. [PMID: 27153098 PMCID: PMC4931631 DOI: 10.3390/vaccines4020014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
Endosomal Toll-like receptors (TLR) such as TLR3, 7, 8 and 9 recognize pathogen associated nucleic acids. While DNA sequence does influence degree of binding to and activation of TLR9, it also appears to influence the ability of the ligand to reach the intracellular endosomal compartment. The KLK (KLKL5KLK) antimicrobial peptide, which is immunostimulatory itself, can translocate into cells without cell membrane permeabilization and thus can be used for endosomal delivery of TLR agonists, as has been shown with the IC31 formulation that contains an oligodeoxynucleotide (ODN) TLR9 agonist. We evaluated the adjuvant activity of KLK combined with CpG or non-CpG (GpC) ODN synthesized with nuclease resistant phosphorothioate (S) or native phosphodiester (O) backbones with ovalbumin (OVA) antigen in mice. As single adjuvants, CpG(S) gave the strongest enhancement of OVA-specific immunity and the addition of KLK provided no benefit and was actually detrimental for some readouts. In contrast, KLK enhanced the adjuvant effects of CpG(O) and to a lesser extent of GpC (S), which on their own had little or no activity. Indeed while CD8 T cells, IFN-γ secretion and humoral response to vaccine antigen were enhanced when CpG(O) was combined with KLK, only IFN-γ secretion was enhanced when GpC (S) was combined to KLK. The synergistic adjuvant effects with KLK/ODN combinations were TLR9-mediated since they did not occur in TLR9 knock-out mice. We hypothesize that a nuclease resistant ODN with CpG motifs has its own mechanism for entering cells to reach the endosome. For ODN without CpG motifs, KLK appears to provide an alternate mechanism for accessing the endosome, where it can activate TLR9, albeit with lower potency than a CpG ODN. For nuclease sensitive (O) backbone ODN, KLK may also provide protection from nucleases in the tissues.
Collapse
Affiliation(s)
- Ghania Chikh
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Rachel Luu
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Shobhna Patel
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Heather L Davis
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Risini D Weeratna
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| |
Collapse
|
34
|
Park BK, Choi SH, Kim YE, Park S, Lee Y, Lee KW, Kwon HJ. Monoclonal Antibodies Against the Human Respiratory Syncytial Virus Obtained by Immunization with Epitope Peptides and CpG-DNA-liposome Complex. Monoclon Antib Immunodiagn Immunother 2016; 34:101-9. [PMID: 25897608 DOI: 10.1089/mab.2014.0089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of pulmonary inflammation in infants, young children, and immunocompromised adults. However, the RSV vaccine is not yet available commercially. The RSV-F glycoprotein mediates virus-host cell fusion, leading to syncytial formation; therefore, the RSV-F glycoprotein has been a treatment target for prevention and therapy of RSV infection. To produce the RSV-F-protein epitope-specific monoclonal antibody (MAb), BALB/c mice were immunized with a complex consisting of epitope peptide and MB-ODN 4531(O), encapsulated in a phosphatidyl-β-oleoyl-γ-palmitoyl ethanolamine (DOPE):cholesterol hemisuccinate (CHEMS) complex (Lipoplex(O)). Using conventional hybridoma technology, we obtained two clones able to produce antibodies reactive to two B-cell epitopes of RSV-F protein. Each anti-RSV-F glycoprotein MAb efficiently binds to each epitope. The F7-1A9D10 clone showed specific binding with RSV-F protein. There was no specific protein detected by Western blot analysis using F9 epitope-specific anti-RSV-F glycoprotein MAb (clone F9-1A6C8). However, based on confocal-image analysis, the antibody from the F9-1A6C8 clone showed specific binding with RSV-F protein. It is important that further study on possible applications for passive immunotherapy against RSV infection, such as therapeutic antibody production, is carried out.
Collapse
Affiliation(s)
- Byoung Kwon Park
- 1 Department of Microbiology, Hallym University , Chuncheon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Bayik D, Gursel I, Klinman DM. Structure, mechanism and therapeutic utility of immunosuppressive oligonucleotides. Pharmacol Res 2016; 105:216-25. [PMID: 26779666 DOI: 10.1016/j.phrs.2015.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022]
Abstract
Synthetic oligodeoxynucleotides that can down-regulate cellular elements of the immune system have been developed and are being widely studied in preclinical models. These agents vary in sequence, mechanism of action, and cellular target(s) but share the ability to suppress a plethora of inflammatory responses. This work reviews the types of immunosuppressive oligodeoxynucleotide (Sup ODN) and compares their therapeutic activity against diseases characterized by pathologic levels of immune stimulation ranging from autoimmunity to septic shock to cancer (see graphical abstract). The mechanism(s) underlying the efficacy of Sup ODN and the influence size, sequence and nucleotide backbone on function are considered.
Collapse
Affiliation(s)
- Defne Bayik
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey
| | - Ihsan Gursel
- Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey.
| | - Dennis M Klinman
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
36
|
Yagnik B, Padh H, Desai P. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis. Microbes Infect 2015; 18:237-44. [PMID: 26655884 DOI: 10.1016/j.micinf.2015.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/31/2015] [Accepted: 11/22/2015] [Indexed: 10/22/2022]
Abstract
Use of food grade Lactococcus lactis (L. lactis) is fast emerging as a safe alternative for delivery of DNA vaccine. To attain efficient DNA delivery, L. lactis, a non-invasive bacterium is converted to invasive strain either by expressing proteins like Internalin A (InlA) or Fibronectin binding protein A (FnBPA) or through chemical treatments. However the safety status of invasive L. lactis is questionable. In the present report, we have shown that non-invasive L. lactis efficiently delivered the newly constructed reporter plasmid pPERDBY to mammalian cells without any chemical enhancers. The salient features of the vector are; I) Ability to replicate in two different hosts; Escherichia coli (E. coli) and Lactic Acid Bacteria (LAB), II) One of the smallest reporter plasmid for DNA vaccine, III) Enhanced Green Fluorescence Protein (EGFP) linked to Multiple Cloning Site (MCS), IV) Immunostimulatory CpG motifs functioning as an adjuvant. Expression of EGFP in pPERDBY transfected CHO-K1 and Caco-2 cells demonstrates its functionality. Non-invasive r-L. lactis was found efficient in delivering pPERDBY to Caco-2 cells. The in vitro data presented in this article supports the hypothesis that in the absence of invasive proteins or relevant chemical treatment, L. lactis was found efficient in delivering DNA to mammalian cells.
Collapse
Affiliation(s)
- Bhrugu Yagnik
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad 380054, Gujarat, India.
| | - Harish Padh
- Sardar Patel University, Vallabh Vidhyanagar 388120, Gujarat, India.
| | - Priti Desai
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad 380054, Gujarat, India.
| |
Collapse
|
37
|
Tom J, Dotsey EY, Wong HY, Stutts L, Moore T, Davies DH, Felgner P, Esser-Kahn AP. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists. ACS CENTRAL SCIENCE 2015; 1:439-448. [PMID: 26640818 PMCID: PMC4665084 DOI: 10.1021/acscentsci.5b00274] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 05/17/2023]
Abstract
We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines.
Collapse
Affiliation(s)
- Janine
K. Tom
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Emmanuel Y. Dotsey
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Hollie Y. Wong
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Lalisa Stutts
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Troy Moore
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - D. Huw Davies
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Philip
L. Felgner
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron P. Esser-Kahn
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
- E-mail:
| |
Collapse
|
38
|
Stermann A, Huebener N, Seidel D, Fest S, Eschenburg G, Stauder M, Schramm A, Eggert A, Lode HN. Targeting of MYCN by means of DNA vaccination is effective against neuroblastoma in mice. Cancer Immunol Immunother 2015; 64:1215-27. [PMID: 26076666 PMCID: PMC11028418 DOI: 10.1007/s00262-015-1733-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/04/2015] [Indexed: 01/21/2023]
Abstract
The MYCN oncogene is a strong genetic marker associated with poor prognosis in neuroblastoma (NB). Therefore, MYCN gene amplification and subsequent overexpression provide a possible target for new treatment approaches in NB. We first identified an inverse correlation of MYCN expression with CD45 mRNA in 101 NB tumor samples. KEGG mapping further revealed that MYCN expression was associated with immune-suppressive pathways characterized by a down-regulation of T cell activation and up-regulation of T cell inhibitory gene transcripts. We then aimed to investigate whether DNA vaccination against MYCN is effective to induce an antigen-specific and T cell-mediated immune response. For this purpose, we generated a MYCN-expressing syngeneic mouse model by MYCN gene transfer to NXS2 cells. MYCN-DNA vaccines were engineered based on the pCMV-F3Ub plasmid backbone to drive ubiquitinated full-length MYCN-cDNA and minigene expression. Vaccines were delivered orally with attenuated S. typhimurium strain SL7207 as a carrier. Immunization with both MYCN-DNA vaccines significantly reduced primary tumor growth of MYCN-expressing NB cells in contrast to negative controls. The immune response was mediated by tumor-infiltrating T cells in vivo, which revealed MYCN-specific and MHC class I-restricted lysis of inducible MYCN-expressing NB target cells in vitro. Finally, these antigen-specific T cells also killed MYCN-negative mammary carcinoma cells pulsed with MYCN peptides in contrast to controls. In summary, we demonstrate proof of concept that MYCN can be targeted by DNA vaccination, which may provide an approach to overcoming MYCN immune-suppressive activities in patients with MYCN-amplified disease.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Carcinoma/immunology
- Carcinoma/microbiology
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/microbiology
- Mice
- Mice, Inbred Strains
- N-Myc Proto-Oncogene Protein
- Neoplasm Transplantation
- Neoplasms, Experimental
- Neuroblastoma/genetics
- Neuroblastoma/immunology
- Neuroblastoma/microbiology
- Peptide Fragments
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Salmonella Vaccines/administration & dosage
- Salmonella typhimurium/immunology
- Transgenes/genetics
- Tumor Burden
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, DNA/administration & dosage
Collapse
Affiliation(s)
- Alexander Stermann
- Pediatric Hematology and Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str 1, 17475 Greifswald, Germany
| | - Nicole Huebener
- Genetics of Metabolic and Reproductive Disorders, Max Delbrück Center for Molecular Medicine Berlin, Berlin, Germany
| | - Diana Seidel
- Pediatric Hematology and Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str 1, 17475 Greifswald, Germany
| | - Stefan Fest
- Department of Pediatrics, Otto-von-Guericke University, Magdeburg, Germany
| | - Georg Eschenburg
- Department and Clinic of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Stauder
- Department of Pediatric Oncology and Hematology, University Children’s Hospital Essen, Essen, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children’s Hospital Essen, Essen, Germany
| | - Angelika Eggert
- Pediatric Oncology and Hematology, Charité University Medicine Berlin, Berlin, Germany
| | - Holger N. Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str 1, 17475 Greifswald, Germany
| |
Collapse
|
39
|
Vogel AJ, Brown DM. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol 2015; 6:327. [PMID: 26161083 PMCID: PMC4479795 DOI: 10.3389/fimmu.2015.00327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023] Open
Abstract
Despite extensive research, influenza A virus (IAV) remains a major cause of morbidity, mortality, and healthcare expenditure. Emerging pandemics from highly pathogenic IAV strains, such as H5N1 and pandemic H1N1, highlight the need for universal, cross-protective vaccines. Current vaccine formulations generate strain-specific neutralizing antibodies primarily against the outer coat proteins, hemagglutinin and neuraminidase. In contrast to these highly mutable proteins, internal proteins of IAV are more conserved and are a favorable target for developing vaccines that induce strong T cell responses in addition to humoral immunity. Here, we found that intranasal administration with a single dose of CpG and inactivated x31 (H3N2) reduced viral titers and partially protected mice from a heterosubtypic challenge with a lethal dose of PR8 (H1N1). Early after immunization, vaccinated mice showed increased innate immune activation with high levels of MHCII and CD86 expression on dendritic cells in both draining lymph nodes and lungs. Three days after immunization, CD4 and CD8 cells in the lung upregulated CD69, suggesting that activated lymphocytes are present at the site of vaccine administration. The ensuing effector Th1 responses were capable of producing multiple cytokines and were present at least 30 days after immunization. Furthermore, functional memory responses were observed, as antigen-specific IFN-γ+ and GrB+ cells were detected early after lethal infection. Together, this work provides evidence for using pattern recognition receptor agonists as a mucosal vaccine platform for inducing robust T cell responses capable of protecting against heterologous IAV challenges.
Collapse
Affiliation(s)
- Alexander J Vogel
- School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, NE , USA ; Nebraska Center for Virology, University of Nebraska-Lincoln , Lincoln, NE , USA
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, NE , USA ; Nebraska Center for Virology, University of Nebraska-Lincoln , Lincoln, NE , USA
| |
Collapse
|
40
|
Gu X, Wu G, Yao Y, Zeng J, Shi D, Lv T, Luo L, Song Y. Intratracheal administration of mitochondrial DNA directly provokes lung inflammation through the TLR9-p38 MAPK pathway. Free Radic Biol Med 2015; 83:149-58. [PMID: 25772007 DOI: 10.1016/j.freeradbiomed.2015.02.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/14/2015] [Accepted: 02/25/2015] [Indexed: 01/07/2023]
Abstract
An increasing number of studies have focused on the phenomenon that mitochondrial DNA (mtDNA) activates innate immunity responses. However, the specific role of mtDNA in inflammatory lung disease remains elusive. This study was designed to examine the proinflammatory effects of mtDNA in lungs and to investigate the putative mechanisms. C57BL/6 mice were challenged intratracheally with mtDNA with or without pretreatment with chloroquine. Changes in pulmonary histopathology, cytokine concentrations, and phosphorylation levels of p38 MAPK were assayed at four time points. In in vitro experiments, THP-1 macrophages were pretreated or not pretreated with chloroquine, TLR9 siRNA, p38 MAPK siRNA, or SB203580 and then incubated with mtDNA. The levels of cytokines and p-p38 MAPK were detected by ELISA and Western blot, respectively. The intratracheal administration of mtDNA induced infiltration of inflammatory cells, production of proinflammatory cytokines (including IL-1β, IL-6, and TNF-α), and activation of p38 MAPK. The chloroquine pretreatment resulted in an abatement of mtDNA-induced local lung inflammation. In vitro experiments showed that the exposure of THP-1 macrophages to mtDNA also led to a significant upregulation of IL-1β, IL-6, and TNF-α and the activation of p38 MAPK. And these responses were inhibited either by chloroquine and TLR9 siRNA or by SB203580 and p38 MAPK siRNA pretreatment. The intratracheal administration of mtDNA induced a local inflammatory response in the mouse lung that depended on the interactions of mtDNA with TLR9 and may be correlated with infiltrating macrophages that could be activated by mtDNA exposure via the TLR9-p38 MAPK signal transduction pathway.
Collapse
Affiliation(s)
- Xiaoling Gu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Guannan Wu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Yanwen Yao
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Junli Zeng
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Donghong Shi
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Liang Luo
- Intensive Care Unit, Wuxi Second Affiliated Hospital, Nanjing Medical University, Wuxi, Jiangsu Province 210004, People's Republic of China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002, People's Republic of China.
| |
Collapse
|
41
|
Li J, Shi JL, Wu XY, Fu F, Yu J, Yuan XY, Peng Z, Cong XY, Xu SJ, Sun WB, Cheng KH, Du YJ, Wu JQ, Wang JB, Huang BH. Improvement of the Immunogenicity of Porcine Circovirus Type 2 DNA Vaccine by Recombinant ORF2 Gene and CpG Motifs. Viral Immunol 2015; 28:290-6. [PMID: 26046831 DOI: 10.1089/vim.2014.0121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nowadays, adjuvant is still important for boosting immunity and improving resistance in animals. In order to boost the immunity of porcine circovirus type 2 (PCV2) DNA vaccine, CpG motifs were inserted. In this study, the dose-effect was studied, and the immunity of PCV2 DNA vaccines by recombinant open reading frame 2 (ORF2) gene and CpG motifs was evaluated. Three-week-old Changbai piglets were inoculated intramuscularly with 200 μg, 400 μg, and 800 μg DNA vaccines containing 14 and 18 CpG motifs, respectively. Average gain and rectum temperature were recorded everyday during the experiments. Blood was collected from the piglets after vaccination to detect the changes of specific antibodies, interleukin-2, and immune cells every week. Tissues were collected for histopathology and polymerase chain reaction. The results indicated that compared to those of the control piglets, all concentrations of two DNA vaccines could induce PCV2-specific antibodies. A cellular immunity test showed that PCV2-specific lymphocytes proliferated the number of TH, TC, and CD3+ positive T-cells raised in the blood of DNA vaccine immune groups. There was no distinct pathological damage and viremia occurring in pigs that were inoculated with DNA vaccines, but there was some minor pathological damage in the control group. The results demonstrated that CpG motifs as an adjuvant could boost the humoral and cellular immunity of pigs to PCV2, especially in terms of cellular immunity. Comparing two DNA vaccines that were constructed, the one containing 18 CpG motifs was more effective. This is the first report that CpG motifs as an adjuvant insert to the PCV2 DNA vaccine could boost immunity.
Collapse
Affiliation(s)
- Jun Li
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jian-Li Shi
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiao-Yan Wu
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fang Fu
- 2Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiang Yu
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiao-Yuan Yuan
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhe Peng
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiao-Yan Cong
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shao-Jian Xu
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wen-Bo Sun
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kai-Hui Cheng
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yi-Jun Du
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jia-Qiang Wu
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jin-Bao Wang
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Bao-Hua Huang
- 1Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
42
|
Principles of innate immunity. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Wong SP, Argyros O, Harbottle RP. Sustained expression from DNA vectors. ADVANCES IN GENETICS 2014; 89:113-152. [PMID: 25620010 DOI: 10.1016/bs.adgen.2014.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.
Collapse
Affiliation(s)
- Suet Ping Wong
- Leukocyte Biology Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Orestis Argyros
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Richard P Harbottle
- DNA Vector Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Abstract
The 1957 A/H2N2 influenza virus caused an estimated 2 million fatalities during the pandemic. Since viruses of the H2 subtype continue to infect avian species and pigs, the threat of reintroduction into humans remains. To determine factors involved in the zoonotic origin of the 1957 pandemic, we performed analyses on genetic sequences of 175 newly sequenced human and avian H2N2 virus isolates and all publicly available influenza virus genomes.
Collapse
|
45
|
Xia Y, Gupta GK, Castano AP, Mroz P, Avci P, Hamblin MR. CpG oligodeoxynucleotide as immune adjuvant enhances photodynamic therapy response in murine metastatic breast cancer. JOURNAL OF BIOPHOTONICS 2014; 7:897-905. [PMID: 23922221 PMCID: PMC3917974 DOI: 10.1002/jbio.201300072] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/28/2013] [Accepted: 07/06/2013] [Indexed: 05/07/2023]
Abstract
Breast cancer is the most common cause of cancer death in women. The side effects and complications following current breast cancer therapy can be devastating. Moreover, the prognosis in late stages of the diseases is usually poor. Photodynamic therapy (PDT) is a promising cancer treatment modality that is capable of both local tumor destruction and immune stimulation. However, treatment with PDT alone is often non-curative due to tumor-induced immune cell dysfunction and immune suppression. This phenomenon has motivated a new approach by combining immunostimulants with PDT to enhance anti-tumor immunity. In the present study, we investigated PDT mediated by verteporfin and 690 nm light delivered 15 min later, in combination with an immunomodulation approach using CpG oligodeoxynucleotide for the treatment of 4T1 metastatic breast cancer in a BALB/c immunocompetent mouse model. In vitro, CpG primed immature dendritic cells (DC) via toll like receptor 9 to phagocytose PDT killed tumor cells leading to DC maturation and activation. Peritumoral injection of CpG after PDT in mice gave improved local tumor control and a survival advantage compared to either treatment alone (p < 0.05). CpG may be a valuable dendritic cell targeted immunoadjuvant to combine with PDT.
Collapse
Affiliation(s)
- Yumin Xia
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Gaurav K. Gupta
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Ana P. Castano
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Pinar Avci
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, 1085, Hungary
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
46
|
Mancini RJ, Stutts L, Ryu KA, Tom JK, Esser-Kahn AP. Directing the immune system with chemical compounds. ACS Chem Biol 2014; 9:1075-85. [PMID: 24690004 PMCID: PMC5674983 DOI: 10.1021/cb500079s] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Agonists of immune cell receptors direct innate and adaptive immunity. These agonists range in size and complexity from small molecules to large macromolecules. Here, agonists of a class of immune cell receptors known as the Toll-like receptors (TLRs) are highlighted focusing on the distinctive molecular moieties that pertain to receptor binding and activation. How the structure and combined chemical signals translate into a variety of immune responses remain major questions in the field. In this structure-focused review, we outline potential areas where the tools of chemical biology could help decipher the emerging molecular codes that direct immune stimulation.
Collapse
Affiliation(s)
- Rock J Mancini
- Department of Chemistry, Chemical Engineering and Materials Science, and Biomedical Engineering, University of California Irvine , 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | | | | | | | | |
Collapse
|
47
|
Zhao BG, Vasilakos JP, Tross D, Smirnov D, Klinman DM. Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors. J Immunother Cancer 2014; 2:12. [PMID: 24982761 PMCID: PMC4075973 DOI: 10.1186/2051-1426-2-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/01/2014] [Indexed: 12/14/2022] Open
Abstract
Background The TLR7/8 agonist 3M-052 and the TLR9 agonist CpG ODN both trigger innate immune responses that support the induction of tumor-specific immunity. Previous studies showed that these agonists used individually could improve the survival of mice challenged with small tumors but were of limited therapeutic benefit against large/advanced tumors. Methods Normal mice were challenged with syngeneic tumors. Once these tumors reached clinically detectable size (500–800 mm3) they were treated by intra-tumoral injection with 3M-052 and/or CpG ODN. Anti-tumor immunity and tumor growth were evaluated. Results The co-delivery of agonists targeting TLRs 7, 8 and 9 increased the number and tumoricidal activity of tumor infiltrating CTL and NK cells while reducing the frequency of immunosuppressive MDSC. The combination of 3M-052 plus CpG ODN (but not each agent alone) eradicated large primary tumors and established long-term protective immunity. Conclusion The combination of agonists targeting TLRs 7/8 and 9 represents a significant improvement in cancer immunotherapy.
Collapse
Affiliation(s)
- By Gan Zhao
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick MD 21702, USA
| | | | - Debra Tross
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick MD 21702, USA
| | - Dmitri Smirnov
- 3M Drug Delivery Systems Division, St. Paul MN 55144, USA
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick MD 21702, USA
| |
Collapse
|
48
|
DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol 2014; 7:215-26. [PMID: 24150257 DOI: 10.1038/mi.2013.77] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/27/2013] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease (COPD), a progressive lung disease characterized by sustained neutrophilic airway inflammation, is caused by chronic exposure to noxious stimuli, e.g., cigarette smoke. This chronic exposure can induce immunogenic cell death of structural airway cells, inducing the release of damage-associated molecular patterns (DAMPs). Levels of several DAMPs, including S100 proteins, defensins, and high-mobility group box-1 (HMGB1), are increased in extracellular lung fluids of COPD patients. As DAMPs can attract and activate immune cells upon binding to pattern recognition receptors, we propose that their release may contribute to neutrophilic airway inflammation. In this review, we discuss the novel role of DAMPs in COPD pathogenesis. Relevant DAMPs are categorized based on their subcellular origin, i.e. cytoplasm, endoplasmic reticulum, nucleus, and mitochondria. Furthermore, their potential role in the pathophysiology of COPD will be discussed.
Collapse
|
49
|
Atzeni F, Sarzi-Puttini P. Autoantibody production in patients treated with anti-TNF-α. Expert Rev Clin Immunol 2014; 4:275-80. [DOI: 10.1586/1744666x.4.2.275] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Tom JK, Mancini RJ, Esser-Kahn AP. Covalent modification of cell surfaces with TLR agonists improves & directs immune stimulation. Chem Commun (Camb) 2013; 49:9618-20. [PMID: 24022092 PMCID: PMC4399865 DOI: 10.1039/c3cc45468a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a primary example of a cell surface modified with a synergistic combination of agonists to tune immune stimulation. A model cell line, Lewis Lung Carcinoma, was covalently modified with CpG-oligonucleotides and lipoteichoic acid, both Toll-like receptor (TLR) agonists. The immune-stimulating constructs provided greater stimulation of NF-κB in a model cell line and bone marrow-derived dendritic cells than the components unconjugated in solution.
Collapse
Affiliation(s)
- Janine K Tom
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|