1
|
Arnold F, Kupferschmid L, Weissenborn P, Heldmann L, Hummel JF, Zareba P, Sagar, Rogg M, Schell C, Tanriver Y. Tissue-resident memory T cells break tolerance to renal autoantigens and orchestrate immune-mediated nephritis. Cell Mol Immunol 2024; 21:1066-1081. [PMID: 38961265 PMCID: PMC11364874 DOI: 10.1038/s41423-024-01197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
Immune-mediated nephritis is a leading cause of acute kidney injury and chronic kidney disease. While the role of B cells and antibodies has been extensively investigated in the past, the advent of immune-checkpoint inhibitors has led to a reappraisal of the role of T cells in renal immunology. However, it remains elusive how T cells with specificity for renal autoantigens are activated and participate in immune-mediated nephritis. Here, we followed the fate and function of pathogen-activated autoreactive CD8 T cells that are specific for a renal autoantigen. We demonstrate that recently activated splenic CD8 T cells developed a hybrid phenotype in the context of renal autoantigen cross-presentation, combining hallmarks of activation and T cell dysfunction. While circulating memory T cells rapidly disappeared, tissue-resident memory T cells emerged and persisted within the kidney, orchestrating immune-mediated nephritis. Notably, T cells infiltrating kidneys of patients with interstitial nephritis also expressed key markers of tissue residency. This study unveils how a tissue-specific immune response can dissociate from its systemic counterpart driving a compartmentalized immune response in the kidneys of mice and man. Consequently, targeting tissue-resident memory T cells emerges as a promising strategy to control immune-mediated kidney disease.
Collapse
Affiliation(s)
- Frederic Arnold
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laurence Kupferschmid
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Weissenborn
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Heldmann
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paulina Zareba
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Van Der Byl W, Nüssing S, Peters TJ, Ahn A, Li H, Ledergor G, David E, Koh AS, Wagle MV, Deguit CDT, de Menezes MN, Travers A, Sampurno S, Ramsbottom KM, Li R, Kallies A, Beavis PA, Jungmann R, Bastings MMC, Belz GT, Goel S, Trapani JA, Crabtree GR, Chang HY, Amit I, Goodnow CC, Luciani F, Parish IA. The CD8 + T cell tolerance checkpoint triggers a distinct differentiation state defined by protein translation defects. Immunity 2024; 57:1324-1344.e8. [PMID: 38776918 PMCID: PMC11807353 DOI: 10.1016/j.immuni.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.
Collapse
Affiliation(s)
- Willem Van Der Byl
- The Kirby Institute for Infection and Immunity, UNSW, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia
| | - Simone Nüssing
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Timothy J Peters
- Garvan Institute of Medical Research, Sydney, NSW, Australia; University of New South Wales Sydney, Sydney, NSW, Australia
| | - Antonio Ahn
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Hanjie Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Ledergor
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andrew S Koh
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mayura V Wagle
- Garvan Institute of Medical Research, Sydney, NSW, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| | | | - Maria N de Menezes
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Avraham Travers
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Shienny Sampurno
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kelly M Ramsbottom
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maartje M C Bastings
- Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Interfaculty Bioengineering Institute, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gabrielle T Belz
- The Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Shom Goel
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Gerald R Crabtree
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA; Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chris C Goodnow
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Fabio Luciani
- The Kirby Institute for Infection and Immunity, UNSW, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia.
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia.
| |
Collapse
|
3
|
Abstract
The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Current affiliation: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
4
|
He K, Wan T, Wang D, Hu J, Zhou T, Tao W, Wei Z, Lu Q, Zhou R, Tian Z, Flavell RA, Zhu S. Gasdermin D licenses MHCII induction to maintain food tolerance in small intestine. Cell 2023; 186:3033-3048.e20. [PMID: 37327784 DOI: 10.1016/j.cell.2023.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/03/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.
Collapse
Affiliation(s)
- Kaixin He
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingting Wan
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Decai Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ji Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingyue Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wanyin Tao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China; School of Data Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Shaikh H, Pezoldt J, Mokhtari Z, Gamboa Vargas J, Le DD, Peña Mosca J, Arellano Viera E, Kern MA, Graf C, Beyersdorf N, Lutz MB, Riedel A, Büttner-Herold M, Zernecke A, Einsele H, Saliba AE, Ludewig B, Huehn J, Beilhack A. Fibroblastic reticular cells mitigate acute GvHD via MHCII-dependent maintenance of regulatory T cells. JCI Insight 2022; 7:154250. [PMID: 36227687 DOI: 10.1172/jci.insight.154250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
Acute graft versus host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) inflicted by alloreactive T cells primed in secondary lymphoid organs (SLOs) and subsequent damage to aGvHD target tissues. In recent years, Treg transfer and/or expansion has emerged as a promising therapy to modulate aGvHD. However, cellular niches essential for fostering Tregs to prevent aGvHD have not been explored. Here, we tested whether and to what extent MHC class II (MHCII) expressed on Ccl19+ fibroblastic reticular cells (FRCs) shape the donor CD4+ T cell response during aGvHD. Animals lacking MHCII expression on Ccl19-Cre-expressing FRCs (MHCIIΔCcl19) showed aberrant CD4+ T cell activation in the effector phase, resulting in exacerbated aGvHD that was associated with significantly reduced expansion of Foxp3+ Tregs and invariant NK T (iNKT) cells. Skewed Treg maintenance in MHCIIΔCcl19 mice resulted in loss of protection from aGvHD provided by adoptively transferred donor Tregs. In contrast, although FRCs upregulated costimulatory surface receptors, and although they degraded and processed exogenous antigens after myeloablative irradiation, FRCs were dispensable to activate alloreactive CD4+ T cells in 2 mouse models of aGvHD. In summary, these data reveal an immunoprotective, MHCII-mediated function of FRC niches in secondary lymphoid organs (SLOs) after allo-HCT and highlight a framework of cellular and molecular interactions that regulate CD4+ T cell alloimmunity.
Collapse
Affiliation(s)
- Haroon Shaikh
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Joern Pezoldt
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zeinab Mokhtari
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Juan Gamboa Vargas
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Duc-Dung Le
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Josefina Peña Mosca
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Estibaliz Arellano Viera
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Michael Ag Kern
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Caroline Graf
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Niklas Beyersdorf
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Manfred B Lutz
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection (HZI), Würzburg, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| |
Collapse
|
6
|
Lança T, Ungerbäck J, Da Silva C, Joeris T, Ahmadi F, Vandamme J, Svensson-Frej M, Mowat AM, Kotarsky K, Sigvardsson M, Agace WW. IRF8 deficiency induces the transcriptional, functional, and epigenetic reprogramming of cDC1 into the cDC2 lineage. Immunity 2022; 55:1431-1447.e11. [PMID: 35830859 DOI: 10.1016/j.immuni.2022.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDCs) consist of two major functionally and phenotypically distinct subsets, cDC1 and cDC2, whose development is dependent on distinct sets of transcription factors. Interferon regulatory factor 8 (IRF8) is required at multiple stages of cDC1 development, but its role in committed cDC1 remains unclear. Here, we used Xcre-cre to delete Irf8 in committed cDC1 and demonstrate that Irf8 is required for maintaining the identity of cDC1. In the absence of Irf8, committed cDC1 acquired the transcriptional, functional, and chromatin accessibility properties of cDC2. This conversion was independent of Irf4 and was associated with the decreased accessibility of putative IRF8, Batf3, and composite AP-1-IRF (AICE)-binding elements, together with increased accessibility of cDC2-associated transcription-factor-binding elements. Thus, IRF8 expression by committed cDC1 is required for preventing their conversion into cDC2-like cells.
Collapse
Affiliation(s)
- Telma Lança
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| | - Clément Da Silva
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Thorsten Joeris
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Fatemeh Ahmadi
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Julien Vandamme
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Marcus Svensson-Frej
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Allan McI Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Knut Kotarsky
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden; Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - William W Agace
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden.
| |
Collapse
|
7
|
Makris S, de Winde CM, Horsnell HL, Cantoral-Rebordinos JA, Finlay RE, Acton SE. Immune function and dysfunction are determined by lymphoid tissue efficacy. Dis Model Mech 2022; 15:dmm049256. [PMID: 35072206 PMCID: PMC8807573 DOI: 10.1242/dmm.049256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression.
Collapse
Affiliation(s)
- Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Charlotte M. de Winde
- Department for Molecular Cell Biology and Immunology, Amsterdam UMC, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands
| | - Harry L. Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jesús A. Cantoral-Rebordinos
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rachel E. Finlay
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
8
|
Deets KA, Nichols Doyle R, Rauch I, Vance RE. Inflammasome activation leads to cDC1-independent cross-priming of CD8 T cells by epithelial cell-derived antigen. eLife 2021; 10:e72082. [PMID: 34939932 PMCID: PMC8719880 DOI: 10.7554/elife.72082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
The innate immune system detects pathogens and initiates adaptive immune responses. Inflammasomes are central components of the innate immune system, but whether inflammasomes provide sufficient signals to activate adaptive immunity is unclear. In intestinal epithelial cells (IECs), inflammasomes activate a lytic form of cell death called pyroptosis, leading to epithelial cell expulsion and the release of cytokines. Here, we employed a genetic system to show that simultaneous antigen expression and inflammasome activation specifically in IECs is sufficient to activate CD8+ T cells. By genetic elimination of direct T cell priming by IECs, we found that IEC-derived antigens were cross-presented to CD8+ T cells. However, cross-presentation of IEC-derived antigen to CD8+ T cells only partially depended on IEC pyroptosis. In the absence of inflammasome activation, cross-priming of CD8+ T cells required Batf3+ dendritic cells (conventional type one dendritic cells [cDC1]), whereas cross-priming in the presence of inflammasome activation required a Zbtb46+ but Batf3-independent cDC population. These data suggest the existence of parallel inflammasome-dependent and inflammasome-independent pathways for cross-presentation of IEC-derived antigens.
Collapse
Affiliation(s)
- Katherine A Deets
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Randilea Nichols Doyle
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science UniversityPortlandUnited States
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
9
|
Joeris T, Gomez-Casado C, Holmkvist P, Tavernier SJ, Silva-Sanchez A, Klotz L, Randall TD, Mowat AM, Kotarsky K, Malissen B, Agace WW. Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3 +CD8 + T regs. Sci Immunol 2021; 6:6/60/eabd3774. [PMID: 34088744 DOI: 10.1126/sciimmunol.abd3774] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/25/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Although CD8+ T cell tolerance to tissue-specific antigen (TSA) is essential for host homeostasis, the mechanisms underlying peripheral cross-tolerance and whether they may differ between tissue sites remain to be fully elucidated. Here, we demonstrate that peripheral cross-tolerance to intestinal epithelial cell (IEC)-derived antigen involves the generation and suppressive function of FoxP3+CD8+ T cells. FoxP3+CD8+ Treg generation was dependent on intestinal cDC1, whose absence led to a break of tolerance and epithelial destruction. Mechanistically, intestinal cDC1-derived PD-L1, TGFβ, and retinoic acid contributed to the generation of gut-tropic CCR9+CD103+FoxP3+CD8+ Tregs Last, CD103-deficient CD8+ T cells lacked tolerogenic activity in vivo, indicating a role for CD103 in FoxP3+CD8+ Treg function. Our results describe a role for FoxP3+CD8+ Tregs in cross-tolerance in the intestine for which development requires intestinal cDC1.
Collapse
Affiliation(s)
- Thorsten Joeris
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, Kgs. Lyngby 2800, Denmark, Denmark.,Immunology Section, Lund University, Lund 221 84, Sweden
| | | | | | - Simon J Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent 9000, Belgium.,VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, 9000 Ghent, Belgium
| | - Aaron Silva-Sanchez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luisa Klotz
- University Hospital Münster, Department of Neurology with Institute of Translational Neurology, Münster 48149, Germany
| | - Troy D Randall
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Allan M Mowat
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland
| | - Knut Kotarsky
- Immunology Section, Lund University, Lund 221 84, Sweden
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - William W Agace
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, Kgs. Lyngby 2800, Denmark, Denmark. .,Immunology Section, Lund University, Lund 221 84, Sweden
| |
Collapse
|
10
|
Dertschnig S, Evans P, Santos E Sousa P, Manzo T, Ferrer IR, Stauss HJ, Bennett CL, Chakraverty R. Graft-versus-host disease reduces lymph node display of tissue-restricted self-antigens and promotes autoimmunity. J Clin Invest 2020; 130:1896-1911. [PMID: 31917684 PMCID: PMC7108931 DOI: 10.1172/jci133102] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is initially triggered by alloreactive T cells, which damage peripheral tissues and lymphoid organs. Subsequent transition to chronic GVHD involves the emergence of autoimmunity, although the underlying mechanisms driving this process are unclear. Here, we tested the hypothesis that acute GVHD blocks peripheral tolerance of autoreactive T cells by impairing lymph node (LN) display of peripheral tissue–restricted antigens (PTAs). At the initiation of GVHD, LN fibroblastic reticular cells (FRCs) rapidly reduced expression of genes regulated by DEAF1, an autoimmune regulator-like transcription factor required for intranodal expression of PTAs. Subsequently, GVHD led to the selective elimination of the FRC population, and blocked the repair pathways required for its regeneration. We used a transgenic mouse model to show that the loss of presentation of an intestinal PTA by FRCs during GVHD resulted in the activation of autoaggressive T cells and gut injury. Finally, we show that FRCs normally expressed a unique PTA gene signature that was highly enriched for genes expressed in the target organs affected by chronic GVHD. In conclusion, acute GVHD damages and prevents repair of the FRC network, thus disabling an essential platform for purging autoreactive T cells from the repertoire.
Collapse
Affiliation(s)
- Simone Dertschnig
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Pamela Evans
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Pedro Santos E Sousa
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | | | - Ivana R Ferrer
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Hans J Stauss
- Institute of Immunity and Transplantation, London, United Kingdom
| | - Clare L Bennett
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Ronjon Chakraverty
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| |
Collapse
|
11
|
Nüssing S, Trapani JA, Parish IA. Revisiting T Cell Tolerance as a Checkpoint Target for Cancer Immunotherapy. Front Immunol 2020; 11:589641. [PMID: 33072137 PMCID: PMC7538772 DOI: 10.3389/fimmu.2020.589641] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. Nevertheless, the majority of patients do not respond to therapy, meaning a deeper understanding of tumor immune evasion strategies is required to boost treatment efficacy. The vast majority of immunotherapy studies have focused on how treatment reinvigorates exhausted CD8+ T cells within the tumor. In contrast, how therapies influence regulatory processes within the draining lymph node is less well studied. In particular, relatively little has been done to examine how tumors may exploit peripheral CD8+ T cell tolerance, an under-studied immune checkpoint that under normal circumstances prevents detrimental autoimmune disease by blocking the initiation of T cell responses. Here we review the therapeutic potential of blocking peripheral CD8+ T cell tolerance for the treatment of cancer. We first comprehensively review what has been learnt about the regulation of CD8+ T cell peripheral tolerance from the non-tumor models in which peripheral tolerance was first defined. We next consider how the tolerant state differs from other states of negative regulation, such as T cell exhaustion and senescence. Finally, we describe how tumors hijack the peripheral tolerance immune checkpoint to prevent anti-tumor immune responses, and argue that disruption of peripheral tolerance may contribute to both the anti-cancer efficacy and autoimmune side-effects of immunotherapy. Overall, we propose that a deeper understanding of peripheral tolerance will ultimately enable the development of more targeted and refined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Robust Iterative Stimulation with Self-Antigens Overcomes CD8 + T Cell Tolerance to Self- and Tumor Antigens. Cell Rep 2020; 28:3092-3104.e5. [PMID: 31533033 PMCID: PMC6874401 DOI: 10.1016/j.celrep.2019.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022] Open
Abstract
The immune system adapts to constitutive antigens to preserve self-tolerance, which is a major barrier for anti-tumor immunity. Antigen-specific reversal of tolerance constitutes a major goal to spur therapeutic applications. Here, we show that robust, iterative, systemic stimulation targeting tissue-specific antigens in the context of acute infections reverses established CD8+ T cell tolerance to self, including in T cells that survive negative selection. This strategy results in large numbers of circulating and resident memory self-specific CD8+ T cells that are widely distributed and can be co-opted to control established malignancies bearing self-antigen without concomitant autoimmunity. Targeted expansion of both self- and tumor neoantigen-specific T cells acts synergistically to boost anti-tumor immunity and elicits protection against aggressive melanoma. Our findings demonstrate that T cell tolerance can be re-adapted to responsiveness through robust antigenic exposure, generating self-specific CD8+ T cells that can be used for cancer treatment.
Collapse
|
13
|
Tuganbaev T, Mor U, Bashiardes S, Liwinski T, Nobs SP, Leshem A, Dori-Bachash M, Thaiss CA, Pinker EY, Ratiner K, Adlung L, Federici S, Kleimeyer C, Moresi C, Yamada T, Cohen Y, Zhang X, Massalha H, Massasa E, Kuperman Y, Koni PA, Harmelin A, Gao N, Itzkovitz S, Honda K, Shapiro H, Elinav E. Diet Diurnally Regulates Small Intestinal Microbiome-Epithelial-Immune Homeostasis and Enteritis. Cell 2020; 182:1441-1459.e21. [DOI: 10.1016/j.cell.2020.08.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/27/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
|
14
|
Vokali E, Yu SS, Hirosue S, Rinçon-Restrepo M, V Duraes F, Scherer S, Corthésy-Henrioud P, Kilarski WW, Mondino A, Zehn D, Hugues S, Swartz MA. Lymphatic endothelial cells prime naïve CD8 + T cells into memory cells under steady-state conditions. Nat Commun 2020; 11:538. [PMID: 31988323 PMCID: PMC6985113 DOI: 10.1038/s41467-019-14127-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Lymphatic endothelial cells (LECs) chemoattract naïve T cells and promote their survival in the lymph nodes, and can cross-present antigens to naïve CD8+ T cells to drive their proliferation despite lacking key costimulatory molecules. However, the functional consequence of LEC priming of CD8+ T cells is unknown. Here, we show that while many proliferating LEC-educated T cells enter early apoptosis, the remainders comprise a long-lived memory subset, with transcriptional, metabolic, and phenotypic features of central memory and stem cell-like memory T cells. In vivo, these memory cells preferentially home to lymph nodes and display rapid proliferation and effector differentiation following memory recall, and can protect mice against a subsequent bacterial infection. These findings introduce a new immunomodulatory role for LECs in directly generating a memory-like subset of quiescent yet antigen-experienced CD8+ T cells that are long-lived and can rapidly differentiate into effector cells upon inflammatory antigenic challenge.
Collapse
Affiliation(s)
- Efthymia Vokali
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Shann S Yu
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Sachiko Hirosue
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marcela Rinçon-Restrepo
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fernanda V Duraes
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Witold W Kilarski
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Epalinges, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Melody A Swartz
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Liu ZY, Zheng M, Li YM, Fan XY, Wang JC, Li ZC, Yang HJ, Yu JM, Cui J, Jiang JL, Tang J, Chen ZN. RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Am J Cancer Res 2019; 9:3659-3673. [PMID: 31281505 PMCID: PMC6587173 DOI: 10.7150/thno.32126] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/12/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: Necroptosis is a programmed form of non-apoptotic cell death that requires receptor-interacting protein 3 (RIP3). RIP3 has been shown to be relevant in multiple tumor types and has differential impact on tumor progression. We investigated whether RIP3 is involved in the progression of colitis-associated cancer (CAC) in mice. Methods: Tissues from colorectal cancer patients were examined for RIP3 expression. CAC was induced using azoxymethane (AOM) injection followed by dextran sodium sulfate (DSS) treatment in RIP3-deficient or wild-type mice. Colon tissues were collected and analyzed by Western blotting and gene expression profile analyses. Immune cell infiltration and CXCL1 expression were examined by flow cytometry and Real-time PCR, respectively. Results: RIP3 expression was upregulated in mouse CAC and human colon cancer. RIP3-deficient mice showed significantly attenuated colitis-associated tumorigenesis. Bone marrow transplantation experiments suggested that RIP3's function in hematopoietic cells primarily contributes to the phenotype. RIP3 supported epithelial proliferation and tumor growth via JNK signaling but had no effect on apoptosis. RIP3 deletion increased T cell accumulation and reduced infiltration by immunosuppressive subsets of myeloid cells during acute colitis and CAC. The immune-suppressive tumor microenvironment was dependent on RIP3-induced expression of the chemokine attractant CXCL1, and administration of recombinant CXCL1 during CAC restored tumorigenesis in Rip3-/- mice. Conclusion: Our results reveal an unexpected function of RIP3 in enhancing the proliferation of premalignant intestinal epithelial cells (IECs) and promoting myeloid cell-induced adaptive immune suppression. These two distinct mechanisms of RIP3-induced JNK and CXCL1 signalling contribute to CAC progression.
Collapse
|
16
|
Thompson EA, Mitchell JS, Beura LK, Torres DJ, Mrass P, Pierson MJ, Cannon JL, Masopust D, Fife BT, Vezys V. Interstitial Migration of CD8αβ T Cells in the Small Intestine Is Dynamic and Is Dictated by Environmental Cues. Cell Rep 2019; 26:2859-2867.e4. [PMID: 30865878 PMCID: PMC6754515 DOI: 10.1016/j.celrep.2019.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/05/2018] [Accepted: 02/08/2019] [Indexed: 02/08/2023] Open
Abstract
The migratory capacity of adaptive CD8αβ T cells dictates their ability to locate target cells and exert cytotoxicity, which is the basis of immune surveillance for the containment of microbes and disease. The small intestine (SI) is the largest mucosal surface and is a primary site of pathogen entrance. Using two-photon laser scanning microscopy, we found that motility of antigen (Ag)-specific CD8αβ T cells in the SI is dynamic and varies with the environmental milieu. Pathogen-specific CD8αβ T cell movement differed throughout infection, becoming locally confined at memory. Motility was not dependent on CD103 but was influenced by micro-anatomical locations within the SI and by inflammation. CD8 T cells responding to self-protein were initially affected by the presence of self-Ag, but this was altered after complete tolerance induction. These studies identify multiple factors that affect CD8αβ T cell movement in the intestinal mucosa and show the adaptability of CD8αβ T cell motility.
Collapse
Affiliation(s)
- Emily A Thompson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason S Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David J Torres
- Department of Mathematics and Physical Science, Northern New Mexico College, Espanola, NM 87532, USA
| | - Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mark J Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Mihailovic PM, Lio WM, Herscovici R, Chyu KY, Yano J, Zhao X, Zhou J, Zhou B, Freeman MR, Yang W, Shah PK, Cercek B, Dimayuga PC. Keratin 8 is a potential self-antigen in the coronary artery disease immunopeptidome: A translational approach. PLoS One 2019; 14:e0213025. [PMID: 30811493 PMCID: PMC6392305 DOI: 10.1371/journal.pone.0213025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Inflammation is an important risk factor in atherosclerosis, the underlying cause of coronary artery disease (CAD). Unresolved inflammation may result in maladaptive immune responses and lead to immune reactivity to self-antigens. We hypothesized that inflammation in CAD patients would manifest in immune reactivity to self-antigens detectable in soluble HLA-I/peptide complexes in the plasma. Methods Soluble HLA-I/peptide complexes were immuno-precipitated from plasma of male acute coronary syndrome (ACS) patients or age-matched controls and eluted peptides were subjected to mass spectrometry to generate the immunopeptidome. Self-peptides were ranked according to frequency and signal intensity, then mouse homologs of selected peptides were used to test immunologic recall in spleens of male apoE-/- mice fed either normal chow or high fat diet. The peptide detected with highest frequency in patient plasma samples and provoked T cell responses in mouse studies was selected for use as a self-antigen to stimulate CAD patient peripheral blood mononuclear cells (PBMCs). Results The immunopeptidome profile identified self-peptides unique to the CAD patients. The mouse homologs tested showed immune responses in apoE-/- mice. Keratin 8 was selected for further study in patient PBMCs which elicited T Effector cell responses in CAD patients compared to controls, associated with reduced PD-1 mRNA expression. Conclusion An immunopeptidomic strategy to search for self-antigens potentially involved in CAD identified Keratin 8. Self-reactive immune response to Keratin 8 may be an important factor in the inflammatory response in CAD.
Collapse
Affiliation(s)
- Peter M. Mihailovic
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Wai Man Lio
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Romana Herscovici
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Juliana Yano
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Xiaoning Zhao
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jianchang Zhou
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Bo Zhou
- Division of Cancer Biology and Therapeutics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Michael R. Freeman
- Division of Cancer Biology and Therapeutics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Bojan Cercek
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Paul C. Dimayuga
- Oppenheimer Atherosclerosis Research Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abraham TS, Flickinger JC, Waldman SA, Snook AE. TCR Retrogenic Mice as a Model To Map Self-Tolerance Mechanisms to the Cancer Mucosa Antigen GUCY2C. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1301-1310. [PMID: 30642983 PMCID: PMC6363846 DOI: 10.4049/jimmunol.1801206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023]
Abstract
Characterizing self-tolerance mechanisms and their failure is critical to understand immune homeostasis, cancer immunity, and autoimmunity. However, examination of self-tolerance mechanisms has relied primarily on transgenic mice expressing TCRs targeting well-characterized, but nonphysiologic, model Ags, such as OVA and hemagglutinin. Identifying TCRs directed against bona fide self-antigens is made difficult by the extraordinary diversity of TCRs and the low prevalence of Ag-specific clones (<10-100 naive cells per organism), limiting dissection of tolerance mechanisms restricting immunity to self-proteins. In this study, we isolated and characterized TCRs recognizing the intestinal epithelial cell receptor and colorectal cancer Ag GUCY2C to establish a model to study self-antigen-specific tolerance mechanisms. GUCY2C-specific CD4+ effector T cells were isolated from immunized, nontolerant Gucy2c -/- mice. Next-generation sequencing identified GUCY2C-specific TCRs, which were engineered into CD4+ T cells in vitro to confirm TCR recognition of GUCY2C. Further, the generation of "retrogenic" mice by reconstitution with TCR-transduced hematopoietic stem cells resulted in normal CD4+ T cell development, responsiveness to immunization, and GUCY2C-induced tolerance in recipient mice, recapitulating observations in conventional models. This retrogenic model can be employed to define self-tolerance mechanisms restricting T and B cell responses to GUCY2C to optimize colorectal cancer immunotherapy without autoimmunity.
Collapse
Affiliation(s)
- Tara S Abraham
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
19
|
Reprogramming responsiveness to checkpoint blockade in dysfunctional CD8 T cells. Proc Natl Acad Sci U S A 2019; 116:2640-2645. [PMID: 30679280 DOI: 10.1073/pnas.1810326116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Established T cell dysfunction is a barrier to antitumor responses, and checkpoint blockade presumably reverses this. Many patients fail to respond to treatment and/or develop autoimmune adverse events. The underlying reason for T cell responsiveness remains elusive. Here, we show that susceptibility to checkpoint blockade is dependent on the activation status of T cells. Newly activated self-specific CD8 T cells respond to checkpoint blockade and cause autoimmunity, which is mitigated by inhibiting the mechanistic target of rapamycin. However, once tolerance is established, self-specific CD8 T cells display a gene signature comparable to tumor-specific CD8 T cells in a fixed state of dysfunction. Tolerant self-specific CD8 T cells do not respond to single or combinatorial dosing of anti-CTLA4, anti-PD-L1, anti-PD-1, anti-LAG-3, and/or anti-TIM-3. Despite this, T cell responsiveness can be induced by vaccination with cognate antigen, which alters the previously fixed transcriptional signature and increases antigen-sensing machinery. Antigenic reeducation of tolerant T cells synergizes with checkpoint blockade to generate functional CD8 T cells, which eliminate tumors without concomitant autoimmunity and are transcriptionally distinct from classic effector T cells. These data demonstrate that responses to checkpoint blockade are dependent on the activation state of a T cell and show that checkpoint blockade-insensitive CD8 T cells can be induced to respond to checkpoint blockade with robust antigenic stimulation to participate in tumor control.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Both apoptotic and nonapoptotic cell extrusion preserve the barrier functions of epithelia. Live cell extrusion is the paradigm for homeostatic renewal of intestinal epithelial cells (IEC). By extension, as extruded cells are not apoptotic, this form of cell shedding is thought to be largely ignored by lamina propria phagocytes and without immune consequence. RECENT FINDINGS Visualization of apoptotic IEC inside distinct subsets of intestinal phagocytes during homeostasis has highlighted apoptosis as a normal component of the natural turnover of the intestinal epithelium. Analysis of phagocytes with or without apoptotic IEC corpses has shown how apoptotic IEC constrain inflammatory pathways within phagocytes and induce immunosuppressive regulatory CD4 T-cell differentiation. Many of the genes involved overlap with susceptibility genes for inflammatory bowel disease (IBD). SUMMARY Excessive IEC death and loss-of-barrier function is characteristic of IBD. As regulatory and tolerogenic mechanisms are broken in IBD, a molecular understanding of the precise triggers and modes of IEC death as well as their consequences on intestinal inflammation is necessary. This characterization should guide new therapies that restore homeostatic apoptosis, along with its associated programs of immune tolerance and immunosuppression, to achieve mucosal healing and long-term remission.
Collapse
Affiliation(s)
- J. Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
21
|
Mayassi T, Jabri B. Human intraepithelial lymphocytes. Mucosal Immunol 2018; 11:1281-1289. [PMID: 29674648 PMCID: PMC6178824 DOI: 10.1038/s41385-018-0016-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/04/2023]
Abstract
The location of intraepithelial lymphocytes (IEL) between epithelial cells, their effector memory, cytolytic and inflammatory phenotype positions them to kill infected epithelial cells and protect the intestine against pathogens. Human TCRαβ+CD8αβ+ IEL have the dual capacity to recognize modified self via natural killer (NK) receptors (autoreactivity) as well as foreign antigen via the T cell receptor (TCR), which is accomplished in mouse by two cell subsets, the naturally occurring TCRαβ+CD8αα+ and adaptively induced TCRαβ+CD8αβ+ IEL subsets, respectively. The private/oligoclonal nature of the TCR repertoire of both human and mouse IEL suggests local environmental factors dictate the specificity of IEL responses. The line between sensing of foreign antigens and autoreactivity is blurred for IEL in celiac disease, where recognition of stress ligands by induced activating NK receptors in conjunction with inflammatory signals such as IL-15 can result in low-affinity TCR/non-cognate antigen and NK receptor/stress ligand interactions triggering destruction of intestinal epithelial cells.
Collapse
Affiliation(s)
- Toufic Mayassi
- Department of Medicine, University of Chicago, Chicago, USA
- Committee on Immunology, University of Chicago, Chicago, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, USA.
- Committee on Immunology, University of Chicago, Chicago, USA.
- Department of Pathology, University of Chicago, Chicago, USA.
- Department of Pediatrics, University of Chicago, Chicago, USA.
| |
Collapse
|
22
|
Programmed self-assembly of peptide-major histocompatibility complex for antigen-specific immune modulation. Proc Natl Acad Sci U S A 2018; 115:E4032-E4040. [PMID: 29632186 DOI: 10.1073/pnas.1718434115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A technology to prime desired populations of T cells in the body-particularly those that possess low avidity against target antigen-would pave the way for the design of new types of vaccination for intractable infectious diseases or cancer. Here, we report such a technology based on positive feedback-driven, programmed self-assembly of peptide-major histocompatibility complex (pMHC) directly on the membrane of cognate T cells. Our design capitalizes on the unique features of the protein annexin V (ANXA5), which-in a concerted and synergistic manner-couples the early onset of TCR signaling by cognate pMHC with a surge in pMHC-TCR affinity, with repeated pMHC encounters, and with widespread TCR cross-linking. In our system, ANXA5 is linked to pMHC and firmly engages the plasma membrane of cognate T cells upon (and only upon) the early onset of TCR signaling. ANXA5, in turn, exerts a mechanical force that stabilizes interactions at the TCR-pMHC interface and facilitates repeated, serial pMHC encounters. Furthermore, ANXA5 quickly arranges into uniform 2D matrices, thereby prompting TCR cross-linking. Fusion of ANXA5 to pMHC augments lymphocyte activation by several orders of magnitude (>1,000-fold), bypasses the need for costimulation, and breaks tolerance against a model self-antigen in vivo. Our study opens the door to the application of synthetic, feedback-driven self-assembly platforms in immune modulation.
Collapse
|
23
|
Tabatabaei M, Mosaffa N, Ghods R, Nikoo S, Kazemnejad S, Khanmohammadi M, Mirzadegan E, Mahmoudi AR, Bolouri MR, Falak R, Keshavarzi B, Ramezani M, Zarnani AH. Vaccination with human amniotic epithelial cells confer effective protection in a murine model of Colon adenocarcinoma. Int J Cancer 2017; 142:1453-1466. [PMID: 29139122 DOI: 10.1002/ijc.31159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022]
Abstract
As a prophylactic cancer vaccine, human amniotic membrane epithelial cells (hAECs) conferred effective protection in a murine model of colon cancer. The immunized mice mounted strong cross-protective CTL and antibody responses. Tumor burden was significantly reduced in tumor-bearing mice after immunization with hAECs. Placental cancer immunotherapy could be a promising approach for primary prevention of cancer. In spite of being the star of therapeutic strategies for cancer treatment, the results of immunotherapeutic approaches are still far from expectations. In this regard, primary prevention of cancer using prophylactic cancer vaccines has gained considerable attention. The immunologic similarities between cancer development and placentation have helped researchers to unravel molecular mechanisms responsible for carcinogenesis and to take advantage of stem cells from reproductive organs to elicit robust anti-cancer immune responses. Here, we showed that vaccination of mice with human amniotic membrane epithelial cells (hAECs) conferred effective protection against colon cancer and led to expansion of systemic and splenic cytotoxic T cell population and induction of cross-protective cytotoxic responses against tumor cells. Vaccinated mice mounted tumor-specific Th1 responses and produced cross-reactive antibodies against cell surface markers of cancer cells. Tumor burden was also significantly reduced in tumor-bearing mice immunized with hAECs. Our findings pave the way for potential future application of hAECs as an effective prophylactic cancer vaccine.
Collapse
Affiliation(s)
- M Tabatabaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Nikoo
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - S Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - M Khanmohammadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - E Mirzadegan
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - A R Mahmoudi
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - M R Bolouri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - R Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - B Keshavarzi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Ramezani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - A H Zarnani
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
24
|
Mihailovic PM, Lio WM, Yano J, Zhao X, Zhou J, Chyu KY, Shah PK, Cercek B, Dimayuga PC. The cathelicidin protein CRAMP is a potential atherosclerosis self-antigen in ApoE(-/-) mice. PLoS One 2017; 12:e0187432. [PMID: 29091929 PMCID: PMC5665601 DOI: 10.1371/journal.pone.0187432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022] Open
Abstract
Auto-immunity is believed to contribute to inflammation in atherosclerosis. The antimicrobial peptide LL-37, a fragment of the cathelicidin protein precursor hCAP18, was previously identified as an autoantigen in psoriasis. Given the reported link between psoriasis and coronary artery disease, the biological relevance of the autoantigen to atherosclerosis was tested in vitro using a truncated (t) form of the mouse homolog of hCAP18, CRAMP, on splenocytes from athero-prone ApoE(-/-) mice. Stimulation with tCRAMP resulted in increased CD8+ T cells with Central Memory and Effector Memory phenotypes in ApoE(-/-) mice, differentially activated by feeding with normal chow or high fat diet. Immunization of ApoE(-/-) with different doses of the shortened peptide (Cramp) resulted in differential outcomes with a lower dose reducing atherosclerosis whereas a higher dose exacerbating the disease with increased neutrophil infiltration of the atherosclerotic plaques. Low dose Cramp immunization also resulted in increased splenic CD8+ T cell degranulation and reduced CD11b+CD11c+ conventional dendritic cells (cDCs), whereas high dose increased CD11b+CD11c+ cDCs. Our results identified CRAMP, the mouse homolog of hCAP-18, as a potential self-antigen involved in the immune response to atherosclerosis in the ApoE(-/-) mouse model.
Collapse
Affiliation(s)
- Peter M. Mihailovic
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Wai Man Lio
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Juliana Yano
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Xiaoning Zhao
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Jianchang Zhou
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Bojan Cercek
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Paul C. Dimayuga
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Houston SA, Cerovic V, Thomson C, Brewer J, Mowat AM, Milling S. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol 2016; 9:468-78. [PMID: 26329428 DOI: 10.1038/mi.2015.77] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/19/2015] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) in the small intestine (SI) and colon are fundamental to direct intestinal immune responses; they migrate to the mesenteric lymph nodes (MLNs) and prime T cells. We demonstrate anatomical segregation of lymphatic drainage from the intestine, specifically that DCs from the SI and colon migrate to different nodes within the MLN, here called the sMLN and cMLN. As a consequence, different frequencies of DC subsets observed in the SI and colon are reflected among the DCs in the sMLN and cMLN. Consistent with the SI's function in absorbing food, fed antigen is presented in the sMLN, but not in the cMLN. Furthermore, the levels of expression of CCR9 and α4β7 are increased on T cells in the sMLN compared with the cMLN. DCs from the cMLN and colon are unable to metabolize vitamin A to retinoic acid (RA); thus, DCs may contribute to the differential expression of tissue homing markers observed in the sMLN and cMLN. In summary, the sMLN and cMLN, and the DCs that migrate to these LNs are anatomically and immunologically separate. This segregation allows immune responses in the SI and colon to be controlled independently.
Collapse
Affiliation(s)
- S A Houston
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - V Cerovic
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - C Thomson
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J Brewer
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - A M Mowat
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - S Milling
- Centre for Immunobiology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Hirosue S, Dubrot J. Modes of Antigen Presentation by Lymph Node Stromal Cells and Their Immunological Implications. Front Immunol 2015; 6:446. [PMID: 26441957 PMCID: PMC4561840 DOI: 10.3389/fimmu.2015.00446] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Antigen presentation is no longer the exclusive domain of cells of hematopoietic origin. Recent works have demonstrated that lymph node stromal cell (LNSC) populations, such as fibroblastic reticular cells, lymphatic and blood endothelial cells, not only provide a scaffold for lymphocyte interactions but also exhibit active immunomodulatory roles that are critical to mounting and resolving effective immune responses. Importantly, LNSCs possess the ability to present antigens and establish antigen-specific interactions with T cells. One example is the expression of peripheral tissue antigens, which are presented on major histocompatibility complex (MHC)-I molecules with tolerogenic consequences on T cells. Additionally, exogenous antigens, including self and tumor antigens, can be processed and presented on MHC-I complexes, which result in dysfunctional activation of antigen-specific CD8+ T cells. While MHC-I is widely expressed on cells of both hematopoietic and non-hematopoietic origins, antigen presentation via MHC-II is more precisely regulated. Nevertheless, LNSCs are capable of endogenously expressing, or alternatively, acquiring MHC-II molecules. Transfer of antigen between LNSC and dendritic cells in both directions has been recently suggested to promote tolerogenic roles of LNSCs on the CD4+ T cell compartment. Thus, antigen presentation by LNSCs is thought to be a mechanism that promotes the maintenance of peripheral tolerance as well as generates a pool of diverse antigen-experienced T cells for protective immunity. This review aims to integrate the current and emerging literature to highlight the importance of LNSCs in immune responses, and emphasize their role in antigen trafficking, retention, and presentation.
Collapse
Affiliation(s)
- Sachiko Hirosue
- Institute of Bioengineering, École Polytechnique Fédéral de Lausanne , Lausanne , Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, Université de Genève , Geneva , Switzerland
| |
Collapse
|
27
|
Bergsbaken T, Bevan MJ. Cutting Edge: Caspase-11 Limits the Response of CD8+ T Cells to Low-Abundance and Low-Affinity Antigens. THE JOURNAL OF IMMUNOLOGY 2015; 195:41-5. [PMID: 25980012 DOI: 10.4049/jimmunol.1500812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 11/19/2022]
Abstract
Inflammatory caspases, including caspase-11, are upregulated in CD8(+) T cells after Ag-specific activation, but little is known about their function in T cells. We report that caspase-11-deficient (Casp11(-/-)) T cells proliferated more readily in response to low-affinity and low-abundance ligands both in vitro and in vivo due to an increased ability to signal through the TCR. In addition to increased numbers, Casp11(-/-) T cells had enhanced effector function compared with wild-type cells, including increased production of IL-2 and reduced expression of CD62L. Casp11(-/-) T cells specific for endogenous Ags were more readily deleted than wild-type cells. These data indicate that caspase-11 negatively regulates TCR signaling, possibly through its ability to regulate actin polymerization, and inhibiting its activity could enhance the expansion and function of low-affinity T cells.
Collapse
Affiliation(s)
- Tessa Bergsbaken
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109
| | - Michael J Bevan
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109
| |
Collapse
|
28
|
Brown FD, Turley SJ. Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. THE JOURNAL OF IMMUNOLOGY 2015; 194:1389-94. [PMID: 25663676 DOI: 10.4049/jimmunol.1402520] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The connective tissue of any organ in the body is generally referred to as stroma. This complex network is commonly composed of leukocytes, extracellular matrix components, mesenchymal cells, and a collection of nerves, blood, and lymphoid vessels. Once viewed primarily as a structural entity, stromal cells of mesenchymal origin are now being intensely examined for their ability to directly regulate various components of immune cell function. There is particular interest in the ability of stromal cells to influence the homeostasis, activation, and proliferation of T lymphocytes. One example of this regulation occurs in the lymph node, where fibroblastic reticular cells support the maintenance of naive T cells, induce Ag-specific tolerance, and restrict the expansion of newly activated T cells. In an effort to highlight the varied immunoregulatory properties of fibroblastic reticular cells, we reviewed the most recent advances in this field and provide some insights into potential future directions.
Collapse
Affiliation(s)
- Flavian D Brown
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; and
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080
| |
Collapse
|
29
|
Rogoz A, Reis BS, Karssemeijer RA, Mucida D. A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J Immunol Methods 2015; 421:89-95. [PMID: 25841547 DOI: 10.1016/j.jim.2015.03.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 11/24/2022]
Abstract
The constant interaction between intestinal epithelial cells (IECs) and intraepithelial lymphocytes (IELs) is thought to regulate mucosal barrier function and immune responses against invading pathogens. IELs represent a heterogeneous population of mostly activated and antigen-experienced T cells, but the biological function of IELs and their relationship with IECs is still poorly understood. Here, we describe a method to study T-cell-epithelial cell interactions using a recently established long-term intestinal "enteroid" culture system. This system allowed the study of peripheral T cell survival, proliferation, differentiation and behavior during long-term co-cultures with crypt-derived 3-D enteroids. Peripheral T cells activated in the presence of enteroids acquire several features of IELs, including morphology, membrane markers and movement in the epithelial layer. This co-culture system may facilitate the investigation of complex interactions between intestinal epithelial cells and immune cells, particularly allowing long term-cultures and studies targeting specific pathways in IEC or immune cell compartments.
Collapse
Affiliation(s)
- Aneta Rogoz
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Roos A Karssemeijer
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
30
|
Pauken KE, Nelson CE, Martinov T, Spanier JA, Heffernan JR, Sahli NL, Quarnstrom CF, Osum KC, Schenkel JM, Jenkins MK, Blazar BR, Vezys V, Fife BT. Cutting edge: identification of autoreactive CD4+ and CD8+ T cell subsets resistant to PD-1 pathway blockade. THE JOURNAL OF IMMUNOLOGY 2015; 194:3551-3555. [PMID: 25769925 DOI: 10.4049/jimmunol.1402262] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/13/2015] [Indexed: 12/26/2022]
Abstract
Programmed death-1 (PD-1) promotes T cell tolerance. Despite therapeutically targeting this pathway for chronic infections and tumors, little is known about how different T cell subsets are affected during blockade. We examined PD-1/PD ligand 1 (PD-L1) regulation of self-antigen-specific CD4 and CD8 T cells in autoimmune-susceptible models. PD-L1 blockade increased insulin-specific effector CD4 T cells in type 1 diabetes. However, anergic islet-specific CD4 T cells were resistant to PD-L1 blockade. Additionally, PD-L1 was critical for induction, but not maintenance, of CD8 T cell intestinal tolerance. PD-L1 blockade enhanced functionality of effector T cells, whereas established tolerant or anergic T cells were not dependent on PD-1/PD-L1 signaling to remain unresponsive. This highlights the existence of Ag-experienced T cell subsets that do not rely on PD-1/PD-L1 regulation. These findings illustrate how positive treatment outcomes and autoimmunity development during PD-1/PD-L1 inhibition are linked to the differentiation state of a T cell.
Collapse
Affiliation(s)
- Kristen E Pauken
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,University of Pennsylvania, Philadelphia, PA 19104
| | - Christine E Nelson
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Justin A Spanier
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - James R Heffernan
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Nathanael L Sahli
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Clare F Quarnstrom
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Kevin C Osum
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Jason M Schenkel
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Marc K Jenkins
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Bruce R Blazar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Vaiva Vezys
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
31
|
Cerovic V, Houston SA, Westlund J, Utriainen L, Davison ES, Scott CL, Bain CC, Joeris T, Agace WW, Kroczek RA, Mowat AM, Yrlid U, Milling SWF. Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol 2015; 8:38-48. [PMID: 24850430 PMCID: PMC4156465 DOI: 10.1038/mi.2014.40] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/18/2014] [Indexed: 02/04/2023]
Abstract
Cross-presentation of cellular antigens is crucial for priming CD8(+) T cells, and generating immunity to intracellular pathogens--particularly viruses. It is unclear which intestinal phagocytes perform this function in vivo. To address this, we examined dendritic cells (DCs) from the intestinal lymph of IFABP-tOVA 232-4 mice, which express ovalbumin in small intestinal epithelial cells (IECs). Among lymph DCs (LDCs) only CD103(+) CD11b(-) CD8α(+) DCs cross-present IEC-derived ovalbumin to CD8(+) OT-I T cells. Similarly, in the mesenteric lymph nodes (MLNs), cross-presentation of IEC-ovalbumin was limited to the CD11c(+) MHCII(hi) CD8α(+) migratory DCs, but absent from all other subsets, including the resident CD8α(hi) DCs. Crucially, delivery of purified CD8α(+) LDCs, but not other LDC subsets, into the MLN subcapsular lymphatic sinus induced proliferation of ovalbumin-specific, gut-tropic CD8(+) T cells in vivo. Finally, in 232-4 mice treated with R848, CD8α(+) LDCs were uniquely able to cross-prime interferon γ-producing CD8(+) T cells and drive their migration to the intestine. Our results clearly demonstrate that migrating CD8α(+) intestinal DCs are indispensable for cross-presentation of cellular antigens and, in conditions of inflammation, for the initial differentiation of effector CD8(+) T cells. They may therefore represent an important target for the development of antiviral vaccinations.
Collapse
Affiliation(s)
- V Cerovic
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,()
| | - S A Houston
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J Westlund
- Department of Medical Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - L Utriainen
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - E S Davison
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - C L Scott
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - C C Bain
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - T Joeris
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - W W Agace
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden,Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - R A Kroczek
- Department of Molecular Immunology, Robert Koch-Institute, Berlin, Germany
| | - A M Mowat
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - U Yrlid
- Department of Medical Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - S WF Milling
- Centre for Immunobiology, Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
32
|
Sowell RT, Rogozinska M, Nelson CE, Vezys V, Marzo AL. Cutting edge: generation of effector cells that localize to mucosal tissues and form resident memory CD8 T cells is controlled by mTOR. THE JOURNAL OF IMMUNOLOGY 2014; 193:2067-71. [PMID: 25070853 DOI: 10.4049/jimmunol.1400074] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mucosal tissues are subject to frequent pathogen exposure and are major sites for transmission of infectious disease. CD8 T cells play a critical role in controlling mucosa-acquired infections even though their migration into mucosal tissues is tightly regulated. The mechanisms and signals that control the formation of tissue-resident memory CD8 T cells are poorly understood; however, one key regulator of memory CD8 T cell differentiation, mammalian target of rapamycin kinase, can be inhibited by rapamycin. We report that, despite enhancing the formation of memory CD8 T cells in secondary lymphoid tissues, rapamycin inhibits the formation of resident memory CD8 T cells in the intestinal and vaginal mucosa. The ability of rapamycin to block the formation of functional resident CD8 T cells in mucosal tissues protected mice from a model of CD8 T cell-mediated lethal intestinal autoimmunity. These findings demonstrate an opposing role for mammalian target of rapamycin in the formation of resident versus nonresident CD8 T cell immunity.
Collapse
Affiliation(s)
- Ryan T Sowell
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612
| | - Magdalena Rogozinska
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612
| | - Christine E Nelson
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Vaiva Vezys
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Amanda L Marzo
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612;
| |
Collapse
|
33
|
Eickmeier I, Seidel D, Grün JR, Derkow K, Lehnardt S, Kühl AA, Hamann A, Schott E. Influence of CD8 T cell priming in liver and gut on the enterohepatic circulation. J Hepatol 2014; 60:1143-50. [PMID: 24560659 DOI: 10.1016/j.jhep.2014.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The enterohepatic circuit of T cells may be responsible for the development of autoimmune liver disease. We employed transgenic mice to characterize phenotype and migration patterns of CD8 T cells activated in liver and gut. METHODS We studied the migration of antigen-specific CD8 T cells primed in liver or gut after transfer in wild-type mice or mice that express ovalbumin in liver or gut. We performed transcriptome analysis of these two distinct T cell populations and confirmed our findings by flow cytometry. RESULTS Specific migration patterns were induced by activation of CD8 T cells in gut or liver. Gut-activated CD8 T cells expressed α4β7 and CCR9 and migrated to the gut and to the liver. Liver-activated T cells expressed integrins α4, α6, β1, α4β7 as well as CD62L, Ly6C, and neuropilin-1 and retained the capability to re-circulate through lymph nodes. Presence of the antigen increased retention of both types of activated T cells in the liver, but migration of liver-activated T cells to the gut was prohibited. CONCLUSIONS CD8 T cells primed in the liver in vivo are not capable of migrating to the gut, implying that the enterohepatic circuit of CD8 T cells is in fact a one-way road from the gut to the liver. Priming of CD8 T cells in the liver results in a distinct phenotype with attributes of central memory cells and induces a unique homing pattern. Gut-primed T cells preferentially home to the liver, in principle enabling them to induce autoimmune liver disease.
Collapse
Affiliation(s)
- Ira Eickmeier
- Dept. of Hepatology and Gastroenterology, Charité Universitätsmedizin, CVK, Berlin, Germany
| | - Daniel Seidel
- Dept. of Hepatology and Gastroenterology, Charité Universitätsmedizin, CVK, Berlin, Germany
| | | | - Katja Derkow
- Dept. of Neurology, Charité Universitätsmedizin, CCM, Berlin, Germany
| | - Seija Lehnardt
- Dept. of Neurology, Charité Universitätsmedizin, CCM, Berlin, Germany; Cluster of Excellence NeuroCure, Charité Universitätsmedizin Berlin, Germany
| | - Anja A Kühl
- Dept. of Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin, CBF, Berlin, Germany
| | - Alf Hamann
- Dept. of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, CCM, Berlin, Germany
| | - Eckart Schott
- Dept. of Hepatology and Gastroenterology, Charité Universitätsmedizin, CVK, Berlin, Germany.
| |
Collapse
|
34
|
Seidel D, Eickmeier I, Kühl AA, Hamann A, Loddenkemper C, Schott E. CD8 T cells primed in the gut-associated lymphoid tissue induce immune-mediated cholangitis in mice. Hepatology 2014; 59:601-11. [PMID: 24038154 DOI: 10.1002/hep.26702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/18/2013] [Indexed: 12/19/2022]
Abstract
UNLABELLED The pathogenesis of primary sclerosing cholangitis (PSC) remains poorly understood. Since PSC predominantly occurs in patients with inflammatory bowel disease, autoimmunity triggered by activated T cells migrating from the gut to the liver is a possible mechanism. We hypothesized that T cells primed in the gut-associated lymphoid tissue (GALT) by a specific antigen migrate to the liver and cause cholangitis when they recognize the same antigen on cholangiocytes. We induced ovalbumin-dependent colitis in mice that express ovalbumin in biliary epithelia (ASBT-OVA mice) and crossed ASBT-OVA mice with mice that express ovalbumin in enterocytes (iFABP-OVA mice). We analyzed T-cell activation in the GALT and crossreactivity to the same antigen in the liver as well as the effects of colitis per se on antigen-presentation and T-cell activation in the liver. Intrarectal application of ovalbumin followed by transfer of CD8 OT-I T cells led to antigen-dependent colitis. CD8 T cells primed in the GALT acquired effector function and the capability to migrate to the liver, where they caused cholangitis in a strictly antigen-dependent manner. Likewise, cholangitis developed in mice expressing ovalbumin simultaneously in biliary epithelia and enterocytes after transfer of OT-I T cells. Dextran sodium sulfate colitis led to increased levels of inflammatory cytokines in the portal venous blood, induced activation of resident liver dendritic cells, and promoted the induction of T-cell-dependent cholangitis. CONCLUSION Our data strengthen the notion that immune-mediated cholangitis is caused by T cells primed in the GALT and provide the first link between colitis and cholangitis in an antigen-dependent mouse model.
Collapse
Affiliation(s)
- Daniel Seidel
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin, CVK, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Topham DJ, Chapman TJ, Richter M. Lymphoid and extralymphoid CD4 T cells that orchestrate the antiviral immune response. Expert Rev Clin Immunol 2014; 2:267-76. [DOI: 10.1586/1744666x.2.2.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Katoh H, Wang D, Daikoku T, Sun H, Dey SK, DuBois RN. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 2013; 24:631-44. [PMID: 24229710 PMCID: PMC3928012 DOI: 10.1016/j.ccr.2013.10.009] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/09/2013] [Accepted: 10/03/2013] [Indexed: 12/21/2022]
Abstract
A large body of evidence indicates that chronic inflammation is one of several key risk factors for cancer initiation, progression, and metastasis. However, the underlying mechanisms responsible for the contribution of inflammation and inflammatory mediators to cancer remain elusive. Here, we present genetic evidence that loss of CXCR2 dramatically suppresses chronic colonic inflammation and colitis-associated tumorigenesis through inhibiting infiltration of myeloid-derived suppressor cells (MDSCs) into colonic mucosa and tumors in a mouse model of colitis-associated cancer. CXCR2 ligands were elevated in inflamed colonic mucosa and tumors and induced MDSC chemotaxis. Adoptive transfer of wild-type MDSCs into Cxcr2(-/-) mice restored AOM/DSS-induced tumor progression. MDSCs accelerated tumor growth by inhibiting CD8(+) T cell cytotoxic activity.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287
| | - Dingzhi Wang
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287
| | - Takiko Daikoku
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, OH 45229
| | - Haiyan Sun
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287
| | - Sudhansu K. Dey
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, OH 45229
| | - Raymond N. DuBois
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287
- Department of Chemistry and Biology, Arizona State University, Tempe, AZ 85287
- Correspondence to: Raymond N. DuBois, MD. Ph.D., Executive Director of the Biodesign Institute at Arizona State University, PO Box 875001, 1001, S. McAllister Ave. Tempe, AZ 85287, Tel: 480-965-1228 and Fax: 480-727-9550,
| |
Collapse
|
37
|
Vianello F, Cannella L, Coe D, Chai JG, Golshayan D, Marelli-Berg FM, Dazzi F. Enhanced and aberrant T cell trafficking following total body irradiation: a gateway to graft-versus-host disease? Br J Haematol 2013; 162:808-18. [PMID: 23855835 DOI: 10.1111/bjh.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023]
Abstract
Pre-transplant conditioning regimens play a major role in triggering graft-versus-host disease (GVHD). This study investigated the effect of irradiation on donor T cell trafficking to lymphoid and non-lymphoid tissues by comparing the migration of carboxy-fluorescein diacetate succinimidyl ester-labelled, naïve donor T lymphocytes in vivo in irradiated and non-irradiated syngeneic mice recipients. Recruitment of adoptively transferred naïve T cells to secondary lymphoid organs was increased in irradiated mice and naïve T cells also aberrantly localized to non-lymphoid tissues. Irradiation also induced aberrant effector memory T cell migration into lymph nodes and their localization to homing-privileged non-lymphoid sites, such as the gut. The presence of a minor histocompatibility mismatch further enhanced the aberrant accumulation of T cells in both lymphoid and non-lymphoid tissue, whilst their migratory pattern was not modified as compared to fully matched irradiated recipients. These effects correlated with decreased permeability of, and the secretion of chemotactic factors by the endothelium. Our findings are consistent with the possibility that excessive, dysregulated extravasation of T cells induced by irradiation promotes the development of GVHD.
Collapse
Affiliation(s)
- Fabrizio Vianello
- Stem Cell Biology Section, Department of Haematology, Imperial College, London, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Malhotra D, Fletcher AL, Turley SJ. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev 2013; 251:160-76. [PMID: 23278748 DOI: 10.1111/imr.12023] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secondary lymphoid organs (SLOs), including lymph nodes, Peyer's patches, and the spleen, have evolved to bring cells of the immune system together. In these collaborative environments, lymphocytes scan the surfaces of antigen-presenting cells for cognate antigens, while moving along stromal networks. The cell-cell interactions between stromal and hematopoietic cells in SLOs are therefore integral to the normal functioning of these tissues. Not only do stromal cells physically construct SLO architecture but they are essential for regulating hematopoietic populations within these domains. Stromal cells interact closely with lymphocytes and dendritic cells, providing scaffolds on which these cells migrate, and recruiting them into niches by secreting chemokines. Within lymph nodes, stromal cell-ensheathed conduit networks transport small antigens deep into the SLO parenchyma. More recently, stromal cells have been found to induce peripheral CD8(+) T-cell tolerance and control the extent to which newly activated T cells proliferate within lymph nodes. Thus, stromal-hematopoietic crosstalk has important consequences for regulating immune cell function within SLOs. In addition, stromal cell interactions with hematopoietic cells, other stroma, and the inflammatory milieu have profound effects on key stromal functions. Here, we examine ways in which these interactions within the lymph node environment influence the adaptive immune response.
Collapse
Affiliation(s)
- Deepali Malhotra
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
39
|
Distinct mechanisms mediate naive and memory CD8 T-cell tolerance. Proc Natl Acad Sci U S A 2012; 109:21438-43. [PMID: 23236165 DOI: 10.1073/pnas.1217409110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Peripheral tolerance to developmentally regulated antigens is necessary to sustain tissue homeostasis. We have now devised an inducible and reversible system that allows interrogation of T-cell tolerance induction in endogenous naïve and memory CD8 T cells. Our data show that peripheral CD8 T-cell tolerance can be preserved through two distinct mechanisms, antigen addiction leading to anergy for naïve T cells and ignorance for memory T cells. Induction of antigen in dendritic cells resulted in substantial expansion and maintenance of endogenous antigen-specific CD8 T cells. The self-reactive cells initially exhibited effector activity but eventually became unresponsive. Upon antigen removal, the antigen-specific population waned, resulting in development of a self-specific memory subset that recalled to subsequent challenge. In striking contrast to naïve CD8 T cells, preexisting antigen-specific memory CD8 T cells failed to expand after antigen induction and essentially ignored the antigen despite widespread expression by dendritic cells. The inclusion of inflammatory signals partially overcame memory CD8 T-cell ignorance of self-antigen. Thus, peripheral CD8 T-cell tolerance for naïve CD8 T cells depended on the continuous presence of antigen, whereas memory CD8 T cells were prohibited from autoreactivity in the absence of inflammation.
Collapse
|
40
|
Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, Beura LK, Lucas PJ, Artis D, Wherry EJ, Hogquist K, Vezys V, Masopust D. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:4866-75. [PMID: 22504644 PMCID: PMC3345065 DOI: 10.4049/jimmunol.1200402] [Citation(s) in RCA: 514] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Differentiation and maintenance of recirculating effector memory CD8 T cells (T(EM)) depends on prolonged cognate Ag stimulation. Whether similar pathways of differentiation exist for recently identified tissue-resident effector memory T cells (T(RM)), which contribute to rapid local protection upon pathogen re-exposure, is unknown. Memory CD8αβ(+) T cells within small intestine epithelium are well-characterized examples of T(RM), and they maintain a long-lived effector-like phenotype that is highly suggestive of persistent Ag stimulation. This study sought to define the sources and requirements for prolonged Ag stimulation in programming this differentiation state, including local stimulation via cognate or cross-reactive Ags derived from pathogens, microbial flora, or dietary proteins. Contrary to expectations, we found that prolonged cognate Ag stimulation was dispensable for intestinal T(RM) ontogeny. In fact, chronic antigenic stimulation skewed differentiation away from the canonical intestinal T cell phenotype. Resident memory signatures, CD69 and CD103, were expressed in many nonlymphoid tissues including intestine, stomach, kidney, reproductive tract, pancreas, brain, heart, and salivary gland and could be driven by cytokines. Moreover, TGF-β-driven CD103 expression was required for T(RM) maintenance within intestinal epithelium in vivo. Thus, induction and maintenance of long-lived effector-like intestinal T(RM) differed from classic models of T(EM) ontogeny and were programmed through a novel location-dependent pathway that was required for the persistence of local immunological memory.
Collapse
Affiliation(s)
- Kerry A Casey
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathryn A Fraser
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason M Schenkel
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy Moran
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C Abt
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine. Philadelphia, PA 19104, USA
| | - Lalit K Beura
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Philip J Lucas
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Artis
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - E John Wherry
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Kristin Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vaiva Vezys
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Franck E, Bonneau C, Jean L, Henry JP, Lacoume Y, Salvetti A, Boyer O, Adriouch S. Immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8+ T cells. PLoS One 2012; 7:e36444. [PMID: 22570714 PMCID: PMC3343038 DOI: 10.1371/journal.pone.0036444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/04/2012] [Indexed: 11/29/2022] Open
Abstract
Muscle potentially represents the most abundant source of autoantigens of the body and can be targeted by a variety of severe autoimmune diseases. Yet, the mechanisms of immunological tolerance toward muscle autoantigens remain mostly unknown. We investigated this issue in transgenic SM-Ova mice that express an ovalbumin (Ova) neo-autoantigen specifically in skeletal muscle. We previously reported that antigen specific CD4+ T cell are immunologically ignorant to endogenous Ova in this model but can be stimulated upon immunization. In contrast, Ova-specific CD8+ T cells were suspected to be either unresponsive to Ova challenge or functionally defective. We now extend our investigations on the mechanisms governing CD8+ tolerance in SM-Ova mice. We show herein that Ova-specific CD8+ T cells are not detected upon challenge with strongly immunogenic Ova vaccines even after depletion of regulatory T cells. Ova-specific CD8+ T cells from OT-I mice adoptively transferred to SM-Ova mice started to proliferate in vivo, acquired CD69 and PD-1 but subsequently down-regulated Bcl-2 and disappeared from the periphery, suggesting a mechanism of peripheral deletion. Peripheral deletion of endogenous Ova-specific cells was formally demonstrated in chimeric SM-Ova mice engrafted with bone marrow cells containing T cell precursors from OT-I TCR-transgenic mice. Thus, the present findings demonstrate that immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8+ T cells.
Collapse
Affiliation(s)
- Emilie Franck
- Inserm, U905, Rouen, France
- University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Normandy, France
| | - Carole Bonneau
- Inserm, U905, Rouen, France
- University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Normandy, France
| | - Laetitia Jean
- Inserm, U905, Rouen, France
- University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Normandy, France
| | - Jean-Paul Henry
- University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Normandy, France
- Inserm, U1096, Rouen, France
| | - Yann Lacoume
- University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Normandy, France
| | - Anna Salvetti
- Inserm, U758, Ecole Normale Supérieure de Lyon (ENS), Lyon, France
| | - Olivier Boyer
- Inserm, U905, Rouen, France
- University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Normandy, France
- Department of Immunology, Rouen University Hospital, Rouen, France
- * E-mail: (OB); (SA)
| | - Sahil Adriouch
- Inserm, U905, Rouen, France
- University of Rouen, Institute for Research and Innovation in Biomedicine (IRIB), Normandy, France
- * E-mail: (OB); (SA)
| |
Collapse
|
42
|
Mizoguchi A. Animal models of inflammatory bowel disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:263-320. [PMID: 22137435 DOI: 10.1016/b978-0-12-394596-9.00009-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is medicated by genetic, immune, and environmental factors. At least 66 different kinds of animal models have been established to study IBD, which are classified primarily into chemically induced, cell-transfer, congenial mutant, and genetically engineered models. These IBD models have provided significant contributions to not only dissect the mechanism but also develop novel therapeutic strategies for IBD. In addition, recent advances on genetically engineered techniques such as cell-specific and inducible knockout as well as knockin mouse systems have brought novel concepts on IBD pathogenesis to the fore. Further, mouse models, which lack some IBD susceptibility genes, have suggested more complicated mechanism of IBD than previously predicted. This chapter summarizes the distinct feature of each murine IBD model and discusses the previous and current lessons from the IBD models.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Pathology, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Snook AE, Magee MS, Marszalowicz GP, Schulz S, Waldman SA. Epitope-targeted cytotoxic T cells mediate lineage-specific antitumor efficacy induced by the cancer mucosa antigen GUCY2C. Cancer Immunol Immunother 2011; 61:713-23. [PMID: 22057677 DOI: 10.1007/s00262-011-1133-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/18/2011] [Indexed: 12/11/2022]
Abstract
Guanylyl cyclase C (GUCY2C) is the index cancer mucosa antigen, an emerging class of immunotherapeutic targets for the prevention of recurrent metastases originating in visceral epithelia. GUCY2C is an autoantigen principally expressed by intestinal epithelium, and universally by primary and metastatic colorectal tumors. Immunization with adenovirus expressing the structurally unique GUCY2C extracellular domain (GUCY2C(ECD); Ad5-GUCY2C) produces prophylactic and therapeutic protection against GUCY2C-expressing colon cancer metastases in mice, without collateral autoimmunity. GUCY2C antitumor efficacy is mediated by a unique immunological mechanism involving lineage-specific induction of antigen-targeted CD8(+) T cells, without CD4(+) T cells or B cells. Here, the unusual lineage specificity of this response was explored by integrating high-throughput peptide screening and bioinformatics, revealing the role for GUCY2C-directed CD8(+) T cells targeting specific epitopes in antitumor efficacy. In BALB/c mice vaccinated with Ad5-GUCY2C, CD8(+) T cells recognize the dominant GUCY2C(254-262) epitope in the context of H-2K(d), driving critical effector functions including interferon gamma secretion, cytolysis ex vivo and in vivo, and antitumor efficacy. The ability of GUCY2C to induce lineage-specific responses targeted to cytotoxic CD8(+) T cells recognizing a single epitope mediating antitumor efficacy without autoimmunity highlights the immediate translational potential of cancer mucosa antigen-based vaccines for preventing metastases of mucosa-derived cancers.
Collapse
Affiliation(s)
- Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
44
|
Lukacs-Kornek V, Malhotra D, Fletcher AL, Acton SE, Elpek KG, Tayalia P, Collier AR, Turley SJ. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol 2011; 12:1096-104. [PMID: 21926986 DOI: 10.1038/ni.2112] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/18/2011] [Indexed: 12/11/2022]
Abstract
Fibroblastic reticular cells (FRCs) and lymphatic endothelial cells (LECs) are nonhematopoietic stromal cells of lymphoid organs. They influence the migration and homeostasis of naive T cells; however, their influence on activated T cells remains undescribed. Here we report that FRCs and LECs inhibited T cell proliferation through a tightly regulated mechanism dependent on nitric oxide synthase 2 (NOS2). Expression of NOS2 and production of nitric oxide paralleled the activation of T cells and required a tripartite synergism of interferon-γ, tumor necrosis factor and direct contact with activated T cells. Notably, in vivo expression of NOS2 by FRCs and LECs regulated the size of the activated T cell pool. Our study elucidates an as-yet-unrecognized role for the lymph node stromal niche in controlling T cell responses.
Collapse
Affiliation(s)
- Veronika Lukacs-Kornek
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kang SS, Herz J, Kim JV, Nayak D, Stewart-Hutchinson P, Dustin ML, McGavern DB. Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection. ACTA ACUST UNITED AC 2011; 208:747-59. [PMID: 21464219 PMCID: PMC3135345 DOI: 10.1084/jem.20101295] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Virus-specific cytotoxic CD8+ T cells are in cell cycle as they transit from lymphoid tissues to sites of infection. After virus infection, cytotoxic T lymphocytes (CTLs) divide rapidly to eradicate the pathogen and prevent the establishment of persistence. The magnitude of an antiviral CTL response is thought to be controlled by the initiation of a cell cycle program within lymphoid tissues. However, it is presently not known whether this division program proceeds during migration or is influenced locally at sites of viral infection. We demonstrate that antiviral CTLs remain in cell cycle while transiting to infected tissues. Up to one third of virus-specific CTLs within blood were found to be in cell cycle after infection with lymphocytic choriomeningitis virus or vesicular stomatitis virus. Using two-photon microscopy, we found that effector CTL divided rapidly upon arrest in the virus-infected central nervous system as well as in meningeal blood vessels. We also observed that MHC I–dependent interactions, but not costimulation, influenced the division program by advancing effector CTL through stages of the cell cycle. These results demonstrate that CTLs are poised to divide in transit and that their numbers can be influenced locally at the site of infection through interactions with cells displaying cognate antigen.
Collapse
Affiliation(s)
- Silvia S Kang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Lukacs-Kornek V, Turley SJ. Self-antigen presentation by dendritic cells and lymphoid stroma and its implications for autoimmunity. Curr Opin Immunol 2011; 23:138-45. [PMID: 21168318 PMCID: PMC3042528 DOI: 10.1016/j.coi.2010.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/10/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022]
Abstract
The induction and maintenance of T cell tolerance is essential to prevent autoimmunity. A combination of central and peripheral mechanisms acts to control autoreactive T cells. In secondary lymphoid organs, dendritic cells (DCs) presenting self-antigen were thought to play a major role in the induction of peripheral T cell tolerance. Multiple recent studies have demonstrated that DCs are not absolutely essential to induce and maintain tolerance. Furthermore, it has also been recently shown that non-hematopoietic stromal cells expressing peripheral tissue-restricted antigens can induce T cell tolerance, independently of DCs. Together these studies imply that peripheral tolerance is more complex than previously thought and a consequence of the tolerogenic functions of the hematopoietic and non-hematopoietic compartments within secondary lymphoid organs.
Collapse
|
47
|
Fletcher AL, Malhotra D, Turley SJ. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol 2011; 32:12-8. [PMID: 21147035 PMCID: PMC3163075 DOI: 10.1016/j.it.2010.11.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 01/14/2023]
Abstract
Research into how self-reactive T cells are tolerized in lymph nodes has focused largely on dendritic cells (DCs). We now know that lymph node stromal cells (LNSC) are important mediators of deletional tolerance to peripheral tissue-restricted antigens (PTAs), which are constitutively expressed and presented by LNSCs. Of the major LNSC subsets, fibroblastic reticular cells and lymphatic endothelial cells are known to directly induce tolerance of responding naïve CD8 T cells. The biological outcome of this interaction fills a void otherwise not covered by DCs or thymic stromal cells. These findings, we suggest, necessitate a broadening of peripheral tolerance theory to include steady-state presentation of clinically relevant PTA to naïve CD8 T cells by lymph node-resident stroma.
Collapse
Affiliation(s)
- Anne L. Fletcher
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, USA
| | - Deepali Malhotra
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, USA
| | - Shannon J. Turley
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, USA
- Department of Pathology, Harvard Medical School, Boston, USA
| |
Collapse
|
48
|
Link A, Bachmann MF. Immunodrugs: breaking B- but not T-cell tolerance with therapeutic anticytokine vaccines. Immunotherapy 2010; 2:561-74. [PMID: 20636009 DOI: 10.2217/imt.10.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathology in most chronic inflammatory diseases is characterized by an imbalance in cytokine expression. Targeting cytokines with monoclonal antibodies has proven to be a highly effective treatment. However, monoclonal antibody therapy has disadvantages such as high production costs, generation of antimonoclonal antibodies and the inconvenience of frequent injections. Therapeutic vaccines have the potential to overcome these limitations. The aim of active vaccination is to induce B-cell responses and obtain autoantibodies capable of neutralizing the interaction of the targeted cytokine with its receptor. In order to achieve this, therapeutic vaccines need to circumvent the potent tolerance mechanisms that exist to prevent immune responses against self-molecules. This article focuses on the tolerance mechanisms of the B- and T-cell compartments and how these may be manipulated to obtain high-affinity autoantibodies without inducing potentially dangerous autoreactive T-cell responses.
Collapse
Affiliation(s)
- Alexander Link
- Cytos Biotechnology AG, CH-8952 Zurich-Schlieren, Switzerland
| | | |
Collapse
|
49
|
The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 2010; 10:813-25. [DOI: 10.1038/nri2886] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Miyagawa F, Gutermuth J, Zhang H, Katz SI. The use of mouse models to better understand mechanisms of autoimmunity and tolerance. J Autoimmun 2010; 35:192-8. [PMID: 20655706 PMCID: PMC2956781 DOI: 10.1016/j.jaut.2010.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major emphasis of our studies has been on developing a better understanding of how and why the skin serves as a target for immune reactions as well as how the skin evades becoming a target for destruction. For these studies we developed transgenic mice that express a membrane-tethered form of a model self antigen, chicken ovalbumin (mOVA), under the control of a keratin 14 (K14) promoter. K14-mOVA transgenic mice that express OVA mRNA and protein in the epithelia have been assessed for their immune responsiveness to OVA and are being used as targets for T cells obtained from OT-1 transgenic mice whose CD8+ T cells carry a Vα2/Vβ5-transgenic T cell receptor with specificity for the OVA(257-264)-peptides (OVAp) in association with class I MHC antigens. Some of the K14-mOVA transgenic mice develop a graft-versus-host-like disease (GvHD) when the OT-1 cells are injected while others appear to be tolerant to the OT-1 cells. We found that γc cytokines, especially IL-15, determine whether autoimmunity or tolerance ensues in K14-mOVA Tg mice. We also developed transgenic mice that express soluble OVA under the control of a K14 promoter (K14-sOVA) that die within 5-8 days after adoptive transfer of OT-1 cells and identified these mice as a model for more acute GvHD-like reactions. Spontaneous autoimmunity occurs when these K14-sOVA mice are crossed with the OT-I mice. In contrast, we found that preventive or therapeutic OVAp injections induced a dose-dependent increase in survival. In this review the characterization of 5 strains of K14-OVATg mice and underlying mechanisms involved in autoimmune reactions in these Tg mice are discussed. We also describe a strategy to break tolerance and describe how the autoimmunity can be obviated using OVAp. Finally, a historical overview of using transgenic mice to assess the mechanisms of tolerance is also provided.
Collapse
Affiliation(s)
- Fumi Miyagawa
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|