1
|
Arvizu-Rubio VJ, García-Carnero LC, Mora-Montes HM. Moonlighting proteins in medically relevant fungi. PeerJ 2022; 10:e14001. [PMID: 36117533 PMCID: PMC9480056 DOI: 10.7717/peerj.14001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/13/2022] [Indexed: 01/19/2023] Open
Abstract
Moonlighting proteins represent an intriguing area of cell biology, due to their ability to perform two or more unrelated functions in one or many cellular compartments. These proteins have been described in all kingdoms of life and are usually constitutively expressed and conserved proteins with housekeeping functions. Although widely studied in pathogenic bacteria, the information about these proteins in pathogenic fungi is scarce, but there are some reports of their functions in the etiological agents of the main human mycoses, such as Candida spp., Paracoccidioides brasiliensis, Histoplasma capsulatum, Aspergillus fumigatus, Cryptococcus neoformans, and Sporothrix schenckii. In these fungi, most of the described moonlighting proteins are metabolic enzymes, such as enolase and glyceraldehyde-3-phosphate dehydrogenase; chaperones, transcription factors, and redox response proteins, such as peroxiredoxin and catalase, which moonlight at the cell surface and perform virulence-related processes, contributing to immune evasion, adhesions, invasion, and dissemination to host cells and tissues. All moonlighting proteins and their functions described in this review highlight the limited information about this biological aspect in pathogenic fungi, representing this a relevant opportunity area that will contribute to expanding our current knowledge of these organisms' pathogenesis.
Collapse
|
2
|
Oliveira FCS, Pessoa WFB, Mares JH, Freire HPS, Souza EAD, Pirovani CP, Romano CC. Differentially expressed proteins in the interaction of Paracoccidioides lutzii with human monocytes. Rev Iberoam Micol 2021; 38:159-167. [PMID: 34802898 DOI: 10.1016/j.riam.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Fungi of the genus Paracoccidioides are the etiological agents of paracoccidioidomycosis, a highly prevalent mycosis in Latin America. Infection in humans occurs by the inhalation of conidia, which later revert to the form of yeast. In this context, macrophages are positioned as an important line of defense, assisting in the recognition and presentation of antigens, as well as producing reactive oxygen species that inhibit fungal spreading. AIMS The objective of this study was to identify differentially expressed proteins during the interaction between Paracoccidioides lutzii Pb01 strain and human U937 monocytes. METHODS Two-dimensional electrophoresis, combined with mass spectrometry, was used to evaluate the differential proteomic profiles of the fungus P. lutzii (Pb01) interacting with U937 monocytes. RESULTS It was possible to identify 25 proteins differentially expressed by Pb01 alone and after interacting with U937 monocytes. Most of these proteins are directly associated with fungal metabolism for energy generation, such as glyceraldehyde-3-phosphate dehydrogenase, and intracellular adaptation to monocytes. Antioxidant proteins involved in the response to oxidative stress, such as peroxiredoxin, cytochrome, and peroxidase, were expressed in greater quantity in the interaction with monocytes, suggesting their association with survival mechanisms inside phagocytic cells. We also identified 12 proteins differentially expressed in monocytes before and after the interaction with the fungus; proteins involved in the reorganization of the cytoskeleton, such as vimentin, and proteins involved in the response to oxidative stress, such as glioxalase 1, were identified. CONCLUSIONS The results of this proteomic study of a P. lutzii isolate are novel, mimicking in vitro what occurs in human infections. In addition, the proteins identified may aid to understand fungal-monocyte interactions and the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Flamélia Carla Silva Oliveira
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Wallace Felipe Blohem Pessoa
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Joise Hander Mares
- Department of Physiology and Pathology - Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Herbert Pina Silva Freire
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil; Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Ednara Almeida de Souza
- Department of Biological Sciences, Laboratory of Immunology, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil; Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Carla Cristina Romano
- Department of Biological Sciences, Proteomics Laboratory, Biotechnology and Genetics Center, State University of Santa Cruz, Ilhéus, Bahia, Brazil.
| |
Collapse
|
3
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
4
|
Rodrigues AM, Kubitschek-Barreira PH, Pinheiro BG, Teixeira-Ferreira A, Hahn RC, de Camargo ZP. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040357. [PMID: 33322269 PMCID: PMC7770604 DOI: 10.3390/jof6040357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the fungal pathogen Paracoccidioides brasiliensis and related species. Whole-genome sequencing and stage-specific proteomic analysis of Paracoccidioides offer the opportunity to profile humoral immune responses against P. lutzii and P. brasiliensis s. str. infection using innovative screening approaches. Here, an immunoproteomic approach was used to identify PCM-associated antigens that elicit immune responses by combining 2-D electrophoresis of P. lutzii and P. brasiliensis proteomes, immunological detection using a gold-standard serum, and mass spectrometry analysis. A total of 16 and 25 highly immunoreactive proteins were identified in P. lutzii and P. brasiliensis, respectively, and 29 were shown to be the novel antigens for Paracoccidioides species, including seven uncharacterized proteins. Among the panel of proteins identified, most are involved in metabolic pathways, carbon metabolism, and biosynthesis of secondary metabolites in both immunoproteomes. Remarkably, six isoforms of the surface-associated enolase in the range of 54 kDa were identified as the major antigens in human PCM due to P. lutzii. These novel immunoproteomes of Paracoccidioides will be employed to develop a sensitive and affordable point-of-care diagnostic assay and an effective vaccine to identify infected hosts and prevent infection and development of human PCM. These findings provide a unique opportunity for the refinement of diagnostic tools of this important neglected systemic mycosis, which is usually associated with poverty.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| | - Paula Helena Kubitschek-Barreira
- Department of Cellular Biology, Roberto Alcantara Gomes Institute of Biology, Rio de Janeiro State University (UERJ), Rio de Janeiro 20511010, Brazil;
| | - Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
| | - André Teixeira-Ferreira
- Toxinology Laboratory, Department of Physiology and Pharmacodynamics, Fiocruz, Rio de Janeiro 21040900, Brazil;
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 78060900, Brazil;
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil;
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: (A.M.R.); (Z.P.d.C.); Tel.: +55-1155764551 (ext. 1540) (A.M.R.); +55-1155764551 (ext. 1512) (Z.P.d.C.)
| |
Collapse
|
5
|
do Amaral CC, Fernandes GF, Rodrigues AM, Burger E, de Camargo ZP. Proteomic analysis of Paracoccidioides brasiliensis complex isolates: Correlation of the levels of differentially expressed proteins with in vivo virulence. PLoS One 2019; 14:e0218013. [PMID: 31265468 PMCID: PMC6605636 DOI: 10.1371/journal.pone.0218013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/23/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is a systemic mycosis commonly found in Latin America that is caused by distinct species of Paracoccidioides genus: Paracoccidioides brasiliensis complex (S1, PS2, PS3 and PS4) and Paracoccidioides lutzii. Its pathobiology has been recently explored by different approaches to clarify the mechanisms of host-pathogen interactions underpinning PCM. The diversity of clinical forms of this disease has been attributed to both host- and fungus-related factors. METHODOLOGY/PRINCIPAL FINDINGS For better understanding of the molecular underpinnings of host-fungus interactions, we evaluated in vivo virulence of nine Paracoccidioides brasiliensis complex isolates and correlated it to protein expression profiles obtained by two-dimensional gel electrophoresis. Based on the recovery of viable fungi from mouse organs, the isolates were classified as those having low, moderate, or high virulence. Highly virulent isolates overexpressed proteins related to adhesion process and stress response, probably indicating important roles of those fungal proteins in regulating the colonization capacity, survival, and ability to escape host immune system reaction. Moreover, highly virulent isolates exhibited enhanced expression of glycolytic pathway enzymes concomitantly with repressed expression of succinyl-CoA ligase beta chain, a protein related to the tricarboxylic acid cycle. CONCLUSIONS/SIGNIFICANCE Our findings may point to the mechanisms used by highly virulent P. brasiliensis isolates to withstand host immune reactions and to adapt to transient iron availability as strategies to survive and overcome stress conditions inside the host.
Collapse
Affiliation(s)
- Cristiane Candida do Amaral
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Geisa Ferreira Fernandes
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Zoilo Pires de Camargo
- Department of Microbiology, Immunology and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
6
|
Identification and characterization of Paracoccidioides lutzii proteins interacting with macrophages. Microbes Infect 2019; 21:401-411. [PMID: 30951888 DOI: 10.1016/j.micinf.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/26/2022]
Abstract
Paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a systemic disorder that involves the lungs and other organs. The adherence of pathogenic microorganisms to host tissues is an essential event in the onset of colonization and spread. The host-pathogen interaction is a complex interplay between the defense mechanisms of the host and the efforts of pathogenic microorganisms to colonize it. Therefore, the identification of fungi proteins interacting with host proteins is an important step understanding the survival strategies of the fungus within the host. In this paper, we used affinity chromatography based on surface proteomics (ACSP) to investigate the interactions of pathogen proteins with host surface molecules. Paracoccidioides lutzii extracts enriched of surface proteins were captured by chromatographic resin, which was immobilized with macrophage cell surface proteins, and identified by mass spectrometry. A total of 215 proteins of P. lutzii were identified interacting with macrophage proteins. In silico analysis classified those proteins according to the presence of sites for N- and O-glycosylation and secretion by classical and non-classical pathways. Serine proteinase (SP) and fructose-1,6-bisphosphate aldolase (FBA) were identified in our proteomics analysis. Immunolocalization assay and flow cytometry both showed an increase in the expression of these two proteins during host-pathogen interaction.
Collapse
|
7
|
Zeng X, Kudinha T, Kong F, Zhang QQ. Comparative Genome and Transcriptome Study of the Gene Expression Difference Between Pathogenic and Environmental Strains of Prototheca zopfii. Front Microbiol 2019; 10:443. [PMID: 30899253 PMCID: PMC6416184 DOI: 10.3389/fmicb.2019.00443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/20/2019] [Indexed: 01/20/2023] Open
Abstract
Prototheca zopfii commonly exists in the environment, and causes invasive infections (protothecosis) in humans. The morbidity of protothecosis has increased rapidly in recent years, especially in systemic infections of patients with an impaired immune system. The infection in immunocompromised patients has a poor prognosis due to limited understanding of the pathogenesis of the disease, as most previous studies mainly focused on classification and recognition of pathogenic strains. In this study, we constructed the genome and transcriptome of two pathogenic strains and one environmental strain, by next generation sequencing methods. Based on our preliminary gene expression findings, genes in P. zopfii pathogenic strains are significantly up-regulated in metabolism in peroxisome, such as glyoxylate cycle, which may improve the organism's resistance to the harsh environment in phagolysosome of macrophage and its ability to survive in an anaerobic environment. We also found some significant up-regulated genes, which are related to adherence and penetration in dermatophytes, and we speculate that this may enhance the virulence capacity of pathogenic strains. Finally, the genomes and transcriptomes of P. zopfii described here provide some base for further studies on the pathogenesis of this organism.
Collapse
Affiliation(s)
- Xuanhao Zeng
- Division of Mycology, Huashan Hospital, Fudan University, Shanghai, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, NSW, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, The University of Sydney, Sydney, NSW, Australia
| | - Qiang-Qiang Zhang
- Division of Mycology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis. Sci Rep 2018. [PMID: 29520092 PMCID: PMC5843658 DOI: 10.1038/s41598-018-22709-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sporothrix brasiliensis is the most virulent fungus of the Sporothrix complex and is the main species recovered in the sporotrichosis zoonotic hyperendemic area in Rio de Janeiro. A vaccine against S. brasiliensis could improve the current sporotrichosis situation. Here, we show 3 peptides from S. brasiliensis immunogenic proteins that have a higher likelihood for engaging MHC-class II molecules. We investigated the efficiency of the peptides as vaccines for preventing subcutaneous sporotrichosis. In this study, we observed a decrease in lesion diameters in peptide-immunized mice, showing that the peptides could induce a protective immune response against subcutaneous sporotrichosis. ZR8 peptide is from the GP70 protein, the main antigen of the Sporothrix complex, and was the best potential vaccine candidate by increasing CD4+ T cells and higher levels of IFN-γ, IL-17A and IL-1β characterizing a strong cellular immune response. This immune environment induced a higher number of neutrophils in lesions that are associated with fungus clearance. These results indicated that the ZR8 peptide induces a protective immune response against subcutaneous sporotrichosis and is a vaccine candidate against S. brasiliensis infection.
Collapse
|
9
|
Identification of T helper (Th)1- and Th2-associated antigens of Cryptococcus neoformans in a murine model of pulmonary infection. Sci Rep 2018; 8:2681. [PMID: 29422616 PMCID: PMC5805727 DOI: 10.1038/s41598-018-21039-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Cryptococcosis, caused by Cryptococcus neoformans, has been demonstrated to be controlled by T helper (Th)1 cells while Th2 cells are associated with fungal growth and dissemination. Although cryptococcal immunoreactive protein antigens were previously identified, their association with Th1 or Th2 immune responses was not provided. In mice, Th1-dependent IFN-γ induces the production of IgG2a, whereas the Th2 cytokine IL-4 stimulates the expression of IgG1 rendering each isotype an indicator of the underlying Th cell response. Therefore, we performed an immunoproteomic study that distinguishes Th1- and Th2-associated antigens by their reactivity with Th1-dependent IgG2a or Th2-dependent IgG1 antibodies in sera from C. neoformans-infected wild-type mice. We additionally analysed sera from Th2-prone IL-12-deficient and Th1-prone IL-4Rα-deficient mice extending the results found in wild-type mice. In total, ten, four, and three protein antigens associated with IgG1, IgG2a, or both isotypes, respectively, were identified. Th2-associated antigens represent promising candidates for development of immunotherapy regimens, whereas Th1-associated antigens may serve as candidates for vaccine development. In conclusion, this study points to intrinsic immunomodulatory effects of fungal antigens on the process of Th cell differentiation based on the identification of cryptococcal protein antigens specifically associated with Th1 or Th2 responses throughout mice of different genotypes.
Collapse
|
10
|
Baeza LC, da Mata FR, Pigosso LL, Pereira M, de Souza GHMF, Coelho ASG, de Almeida Soares CM. Differential Metabolism of a Two-Carbon Substrate by Members of the Paracoccidioides Genus. Front Microbiol 2017; 8:2308. [PMID: 29230201 PMCID: PMC5711815 DOI: 10.3389/fmicb.2017.02308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022] Open
Abstract
The genus Paracoccidioides comprises known fungal pathogens of humans and can be isolated from different infection sites. Metabolic peculiarities in different members of the Paracoccidioides led us to perform proteomic studies in the presence of the two-carbon molecule acetate, which predominates in the nutrient-poor environment of the phagosome. To investigate the expression rates of proteins of different members of Paracoccidioides, including one isolate of P. lutzii (Pb01) and three isolates of P. brasiliensis (Pb03, Pb339, and PbEPM83), using sodium acetate as a carbon source, proteins were quantified using label-free and data-independent liquid chromatography-mass spectrometry. Protein profiles of the isolates were statistically analyzed, revealing proteins that were differentially expressed when the fungus was cultivated in a non-preferential carbon source rather than glucose. A total of 1,160, 1,211, 1,280, and 1,462 proteins were reproducibly identified and relatively quantified in P. lutzii and the P. brasiliensis isolates Pb03, Pb339, and PbEPM83, respectively. Notably, 526, 435, 744, and 747 proteins were differentially expressed among P. lutzii and the P. brasiliensis isolates Pb03, Pb339, and PbEPM83, respectively, with a fold-change equal to or higher than 1.5. This analysis revealed that reorganization of metabolism occurred through the induction of proteins related to gluconeogenesis, glyoxylic/glyoxylate cycle, response to stress, and degradation of amino acids in the four isolates. The following differences were observed among the isolates: higher increases in the expression levels of proteins belonging to the TCA and respiratory chain in PbEPM83 and Pb01; increase in ethanol production in Pb01; utilization of cell wall components for gluconeogenesis in Pb03 and PbEPM83; and increased β-oxidation and methylcitrate cycle proteins in Pb01and PbEPM83. Proteomic profiles indicated that the four isolates reorganized their metabolism in different manners to use acetate as a carbon source.
Collapse
Affiliation(s)
- Lilian C. Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Fabiana R. da Mata
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Laurine L. Pigosso
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gustavo H. M. F. de Souza
- Mass Spectrometry Applications Research & Development Laboratory, Waters Corporation, São Paulo, Brazil
| | - Alexandre S. G. Coelho
- Laboratório de Genética e Genômica de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Célia M. de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
11
|
Identification of membrane proteome of Paracoccidioides lutzii and its regulation by zinc. Future Sci OA 2017; 3:FSO232. [PMID: 29134119 PMCID: PMC5676091 DOI: 10.4155/fsoa-2017-0044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Aim: During infection development in the host, Paracoccidioides spp. faces the deprivation of micronutrients, a mechanism called nutritional immunity. This condition induces the remodeling of proteins present in different metabolic pathways. Therefore, we attempted to identify membrane proteins and their regulation by zinc in Paracoccidioides lutzii. Materials & methods: Membranes enriched fraction of yeast cells of P. lutzii were isolated, purified and identified by 2D LC–MS/MS detection and database search. Results & conclusion: Zinc deprivation suppressed the expression of membrane proteins such as glycoproteins, those involved in cell wall synthesis and those related to oxidative phosphorylation. This is the first study describing membrane proteins and the effect of zinc deficiency in their regulation in one member of the genus Paracoccidioides. The methodology of protein identification allows the characterization of biological processes performed by those molecules. Therefore, we performed a membrane proteomic analysis of Paracoccidioides lutzii and further evaluated the responses of the fungus to zinc deprivation. The results obtained in the work allowed the characterization of membrane proteins present in organelles that are related to different cellular functions. Zinc deprivation changes processes related to cellular physiology and metabolism. These results help us to understand the process of pathogen–host interaction, since zinc deprivation is a condition present during infection.
Collapse
|
12
|
Camacho E, Niño-Vega GA. Paracoccidioides Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators Inflamm 2017; 2017:5313691. [PMID: 28553014 PMCID: PMC5434249 DOI: 10.1155/2017/5313691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Paracoccidioides spp. are dimorphic fungal pathogens responsible for one of the most relevant systemic mycoses in Latin America, paracoccidioidomycosis (PCM). Their exact ecological niche remains unknown; however, they have been isolated from soil samples and armadillos (Dasypus novemcinctus), which have been proposed as animal reservoir for these fungi. Human infection occurs by inhalation of conidia or mycelia fragments and is mostly associated with immunocompetent hosts inhabiting and/or working in endemic rural areas. In this review focusing on the pathogen perspective, we will discuss some of the microbial attributes and molecular mechanisms that enable Paracoccidioides spp. to tolerate, adapt, and ultimately avoid the host immune response, establishing infection.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunobiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, GTO, Mexico
| |
Collapse
|
13
|
de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva ACA, Da Silva JDF, Singulani JDL, Alarcon KM, Fusco-Almeida AM, Mendes-Giannini MJS. Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis. Front Microbiol 2015; 6:1319. [PMID: 26635779 PMCID: PMC4658449 DOI: 10.3389/fmicb.2015.01319] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is multi-factorial and involves host-pathogen interactions (adaptation, adhesion, and invasion), as well as fungal virulence and host immune response. In this review, we demonstrated the glycoproteins and polysaccharides network, which composes the cell wall of Paracoccidioides spp. These are important for the change of conidia or mycelial (26°C) to parasitic yeast (37°C). The morphological switch, a mechanism for the pathogen to adapt and thrive inside the host, is obligatory for the establishment of the infection and seems to be related to pathogenicity. For these fungi, one of the most important steps during the interaction with the host is the adhesion. Cell surface proteins called adhesins, responsible for the first contact with host cells, contribute to host colonization and invasion by mediating this process. These fungi also present the capacity to form biofilm and through which they may evade the host's immune system. During infection, Paracoccidioides spp. can interact with different host cell types and has the ability to modulate the host's adaptive and/or innate immune response. In addition, it participates and interferes in the coagulation system and phenomena like cytoskeletal rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their endemic areas expanding in correlation with the expansion of agriculture. In response, several studies were developed to understand the infection using in vitro and in vivo systems, including alternative non-mammal models. Moreover, new advances were made in treating these infections using both well-established and new antifungal agents. These included natural and/or derivate synthetic substances as well as vaccines, peptides, and anti-adhesins sera. Because of all the advances in the PCM study, this review has the objective to summarize all of the recent discoveries on Paracoccidioides-host interaction, with particular emphasis on fungi surface proteins (molecules that play a fundamental role in the adhesion and/or dissemination of the fungi to host-cells), as well as advances in the treatment of PCM with new and well-established antifungal agents and approaches.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Patrícia A Assato
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Caroline M Marcos
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana C A de Paula E Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Julhiany De Fátima Da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Kaila M Alarcon
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| |
Collapse
|
14
|
Scorzoni L, de Paula e Silva ACA, Singulani JDL, Leite FS, de Oliveira HC, Moraes da Silva RA, Fusco-Almeida AM, Mendes-Giannini MJS. Comparison of virulence between Paracoccidioides brasiliensis and Paracoccidioides lutzii using Galleria mellonella as a host model. Virulence 2015; 6:766-76. [PMID: 26552324 PMCID: PMC4826127 DOI: 10.1080/21505594.2015.1085277] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 10/22/2022] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis, endemic in Latin America. The etiologic agents of this mycosis are composed of 2 species: Paracoccidioides brasiliensis and P. lutzii. Murine animal models are the gold standard for in vivo studies; however, ethical, economical and logistical considerations limit their use. Galleria mellonella is a suitable model for in vivo studies of fungal infections. In this study, we compared the virulence of P. brasiliensis and P. lutzii in G. mellonella model. The deaths of larvae infected with P. brasiliensis or P. lutzii were similar, and both species were able to reduce the number of hemocytes, which were estimated by microscopy and flow cytometer. Additionally, the phagocytosis percentage was similar for both species, but when we analyze hemocyte-Paracoccidioides spp. interaction using flow cytometer, P. lutzii showed higher interactions with hemocytes. The gene expression of gp43 as well as this protein was higher for P. lutzii, and this expression may contribute to a greater adherence to hemocytes. These results helped us evaluate the behavior of Paracoccidioides spp in G. mellonella, which is a convenient model for investigating the host-Paracoccidioides spp. interaction.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Carolina Alves de Paula e Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Fernanda Sangalli Leite
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Rosangela Aparecida Moraes da Silva
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas; UNESP-Univ Estadual Paulista; Campus Araraquara; Departamento de Análises Clínicas e Núcleo de Proteômica; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| |
Collapse
|
15
|
Irrgang A, Murugaiyan J, Weise C, Azab W, Roesler U. Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii. Front Cell Infect Microbiol 2015; 5:67. [PMID: 26484314 PMCID: PMC4586511 DOI: 10.3389/fcimb.2015.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/11/2015] [Indexed: 01/28/2023] Open
Abstract
Microalgae of the genus Prototheca (P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI-TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.
Collapse
Affiliation(s)
- Alexandra Irrgang
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| | - Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| | - Christoph Weise
- Institute for Chemistry and Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Walid Azab
- Institute of Virology, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
16
|
Parente-Rocha JA, Parente AFA, Baeza LC, Bonfim SMRC, Hernandez O, McEwen JG, Bailão AM, Taborda CP, Borges CL, Soares CMDA. Macrophage Interaction with Paracoccidioides brasiliensis Yeast Cells Modulates Fungal Metabolism and Generates a Response to Oxidative Stress. PLoS One 2015; 10:e0137619. [PMID: 26360774 PMCID: PMC4567264 DOI: 10.1371/journal.pone.0137619] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/20/2015] [Indexed: 02/06/2023] Open
Abstract
Macrophages are key players during Paracoccidioides brasiliensis infection. However, the relative contribution of the fungal response to counteracting macrophage activity remains poorly understood. In this work, we evaluated the P. brasiliensis proteomic response to macrophage internalization. A total of 308 differentially expressed proteins were detected in P. brasiliensis during infection. The positively regulated proteins included those involved in alternative carbon metabolism, such as enzymes involved in gluconeogenesis, beta-oxidation of fatty acids and amino acids catabolism. The down-regulated proteins during P. brasiliensis internalization in macrophages included those related to glycolysis and protein synthesis. Proteins involved in the oxidative stress response in P. brasiliensis yeast cells were also up-regulated during macrophage infection, including superoxide dismutases (SOD), thioredoxins (THX) and cytochrome c peroxidase (CCP). Antisense knockdown mutants evaluated the importance of CCP during macrophage infection. The results suggested that CCP is involved in a complex system of protection against oxidative stress and that gene silencing of this component of the antioxidant system diminished the survival of P. brasiliensis in macrophages and in a murine model of infection.
Collapse
Affiliation(s)
- Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ana Flávia Alves Parente
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Orville Hernandez
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
- Grupo de Investigación MICROBA, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Juan G. McEwen
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
- Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Carlos Pelleschi Taborda
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Laboratório de Micologia, Universidade de São Paulo, São Paulo, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
17
|
Longo LVG, Nakayasu ES, Pires JHS, Gazos-Lopes F, Vallejo MC, Sobreira TJP, Almeida IC, Puccia R. Characterization of Lipids and Proteins Associated to the Cell Wall of the Acapsular Mutant Cryptococcus neoformans Cap 67. J Eukaryot Microbiol 2015; 62:591-604. [PMID: 25733123 DOI: 10.1111/jeu.12213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 01/02/2023]
Abstract
Cryptococcus neoformans is an opportunistic human pathogen that causes life-threatening meningitis. In this fungus, the cell wall is exceptionally not the outermost structure due to the presence of a surrounding polysaccharide capsule, which has been highly studied. Considering that there is little information about C. neoformans cell wall composition, we aimed at describing proteins and lipids extractable from this organelle, using as model the acapsular mutant C. neoformans cap 67. Purified cell wall preparations were extracted with either chloroform/methanol or hot sodium dodecyl sulfate. Total lipids fractionated in silica gel 60 were analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS), while trypsin digested proteins were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We detected 25 phospholipid species among phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid. Two glycolipid species were identified as monohexosyl ceramides. We identified 192 noncovalently linked proteins belonging to different metabolic processes. Most proteins were classified as secretory, mainly via nonclassical mechanisms, suggesting a role for extracellular vesicles (EV) in transwall transportation. In concert with that, orthologs from 86% of these proteins have previously been reported both in fungal cell wall and/or in EV. The possible role of the presently described structures in fungal-host relationship is discussed.
Collapse
Affiliation(s)
- Larissa V G Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| | - Ernesto S Nakayasu
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, 79968-0519, Texas, USA
| | - Jhon H S Pires
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| | - Felipe Gazos-Lopes
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, 79968-0519, Texas, USA
| | - Milene C Vallejo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| | - Tiago J P Sobreira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, 13083-970, São Paulo, Brazil
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, 79968-0519, Texas, USA
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| |
Collapse
|
18
|
Chaves EGA, Weber SS, Báo SN, Pereira LA, Bailão AM, Borges CL, Soares CMDA. Analysis of Paracoccidioides secreted proteins reveals fructose 1,6-bisphosphate aldolase as a plasminogen-binding protein. BMC Microbiol 2015; 15:53. [PMID: 25888027 PMCID: PMC4357084 DOI: 10.1186/s12866-015-0393-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/18/2015] [Indexed: 12/26/2022] Open
Abstract
Background Despite being important thermal dimorphic fungi causing Paracoccidioidomycosis, the pathogenic mechanisms that underlie the genus Paracoccidioides remain largely unknown. Microbial pathogens express molecules that can interact with human plasminogen, a protein from blood plasma, which presents fibrinolytic activity when activated into plasmin. Additionally, plasmin exhibits the ability of degrading extracellular matrix components, favoring the pathogen spread to deeper tissues. Previous work from our group demonstrated that Paracoccidioides presents enolase, as a protein able to bind and activate plasminogen, increasing the fibrinolytic activity of the pathogen, and the potential for adhesion and invasion of the fungus to host cells. By using proteomic analysis, we aimed to identify other proteins of Paracoccidioides with the ability of binding to plasminogen. Results In the present study, we employed proteomic analysis of the secretome, in order to identify plasminogen-binding proteins of Paracoccidioides, Pb01. Fifteen proteins were present in the fungal secretome, presenting the ability to bind to plasminogen. Those proteins are probable targets of the fungus interaction with the host; thus, they could contribute to the invasiveness of the fungus. For validation tests, we selected the protein fructose 1,6-bisphosphate aldolase (FBA), described in other pathogens as a plasminogen-binding protein. The protein FBA at the fungus surface and the recombinant FBA (rFBA) bound human plasminogen and promoted its conversion to plasmin, potentially increasing the fibrinolytic capacity of the fungus, as demonstrated in fibrin degradation assays. The addition of rFBA or anti-rFBA antibodies was capable of reducing the interaction between macrophages and Paracoccidioides, possibly by blocking the binding sites for FBA. These data reveal the possible participation of the FBA in the processes of cell adhesion and tissue invasion/dissemination of Paracoccidioides. Conclusions These data indicate that Paracoccidioides is a pathogen that has several plasminogen-binding proteins that likely play important roles in pathogen-host interaction. In this context, FBA is a protein that might be involved somehow in the processes of invasion and spread of the fungus during infection.
Collapse
Affiliation(s)
- Edilânia Gomes Araújo Chaves
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Simone Schneider Weber
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Sonia Nair Báo
- Laboratório de Microscopia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil.
| | - Luiz Augusto Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
19
|
Marcos CM, de Oliveira HC, da Silva JDF, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. The multifaceted roles of metabolic enzymes in the Paracoccidioides species complex. Front Microbiol 2014; 5:719. [PMID: 25566229 PMCID: PMC4271699 DOI: 10.3389/fmicb.2014.00719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022] Open
Abstract
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Julhiany de F da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
20
|
de Oliveira HC, da Silva JDF, Matsumoto MT, Marcos CM, Peres da Silva R, Moraes da Silva RA, Labate MTV, Labate CA, Fusco Almeida AM, Mendes Giannini MJS. Alterations of protein expression in conditions of copper-deprivation for Paracoccidioides lutzii in the presence of extracellular matrix components. BMC Microbiol 2014; 14:302. [PMID: 25609357 PMCID: PMC4302596 DOI: 10.1186/s12866-014-0302-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Paracoccidioides spp is a fungi genus and the agent of paracoccidioidomycosis. The strategies of infection used by these pathogens involve the expression of proteins related to adaptation to the host, particularly regarding the uptake of micronutrients. This study analyzed the adhesion of Paracoccidioides lutzii during conditions of copper (Cu) and iron (Fe) deprivation, while also evaluating the proteins expressed in conditions of Cu depletion in the presence of four extracellular matrix (ECM) components (laminin, fibronectin and types I and IV collagen). Results We cultured the P. lutzii in a chemically defined media without Cu and Fe. The fungus was then placed in contact with different ECM components and adhesion was evaluated. A significant increase in binding to all ECM components was observed when the fungus was cultured without Cu; which might be related to some adhesins expression. A proteomic assay was developed and revealed 39 proteins expressed that are involved in processes such as virulence, protein synthesis, metabolism, energy, transcription, transport, stress response and the cell cycle when the fungus was interacting with the ECM components. The up-regulated expression of two important adhesins, enolase and 14-3-3, was observed at the fungal cell wall during the interaction with the ECM components, indicating the role of these proteins in the Paracoccidioides–host interaction. Conclusions This study is important for determining prospective proteins that may be involved in the interaction of Paracoccidioides with a host. Understanding the adaptive response to different growth conditions, elucidating the processes of adhesion and cell invasion, and identifying the proteins that are differentially expressed during the fungus-host interaction may help elucidate mechanisms used for survival and growth of Paracoccidioides in various human tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0302-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria José Soares Mendes Giannini
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Laboratório de Micologia Clinica, Rodovia Araraquara-Jaú, Km 1, Araraquara, SP, Brazil.
| |
Collapse
|
21
|
Abstract
Sporotrichosis is a chronic infection of the skin and subcutaneous tissues of human and other mammals caused by a complex of cryptic dimorphic fungi in the plant-associated order Ophiostomatales. With major differences between routes of transmission, Sporothrix infections are emerging as new threat in tropical and subtropical areas, particularly in form of outbreaks. The mechanisms underlying the pathogenesis and invasion of Sporothrix spp. are still poorly understood and many virulence factors remain unidentified. In this scenario, a global analysis of proteins expressed by clinical Sporothrix species combined with the identification of seroreactive proteins is overdue. Optimization of sample preparation and electrophoresis conditions are key steps toward reproducibility of gel-based proteomics assays. We provide the data generated using an efficient protocol of protein extraction for rapid and large-scale proteome analysis using two-dimensional gel electrophoresis. The protocol was established and optimized for pathogenic and non-pathogenic Sporothrix spp. including Sporothrix brasiliensis (CBS 132990), Sporothrix schenckii sensu stricto (CBS 132974), Sporothrix globosa (CBS 132922), and Sporothrix mexicana (CBS 120341). The data, supplied in this article, are related to the research article entitled "Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex" (Rodrigues et al., 2014 [1]).
Collapse
|
22
|
Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex. J Proteomics 2014; 115:8-22. [PMID: 25434489 DOI: 10.1016/j.jprot.2014.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/27/2014] [Accepted: 11/16/2014] [Indexed: 01/15/2023]
Abstract
UNLABELLED Sporotrichosis is a polymorphic disease that affects both humans and animals worldwide. The fungus gains entry into a warm-blooded host through minor trauma to the skin, typically by contaminated vegetation or by scratches and bites from a diseased cat. Cellular and humoral responses triggered upon pathogen introduction play important roles in the development and severity of the disease. We investigated molecules expressed during the host-parasite interplay that elicit the humoral response in human sporotrichosis. For antigenic profiling, Sporothrix yeast cell extracts were separated by two-dimensional (2D) gel electrophoresis and probed with pooled sera from individuals with fixed cutaneous and lymphocutaneous sporotrichosis. Thirty-five IgG-seroreactive spots were identified as eight specific proteins by MALDI-ToF/MS. Remarkable cross-reactivity among Sporothrix brasiliensis, Sporothrix schenckii, and Sporothrix globosa was noted and antibodies strongly reacted with the 70-kDa protein (gp70), irrespective of clinical manifestation. Gp70 was successfully identified in multiple spots as 3-carboxymuconate cyclase. In addition, 2D-DIGE characterization suggested that the major antigen of sporotrichosis undergoes post-translational modifications involving glycosylation and amino acid substitution, resulting in at least six isoforms and glycoforms that were present in the pathogenic species but absent in the ancestral non-virulent Sporothrix mexicana. Although a primary environmental function related to the benzoate degradation pathway of aromatic polymers has been attributed to orthologs of this molecule, our findings support the hypothesis that gp70 is important for pathogenesis and invasion in human sporotrichosis. We propose a diverse panel of new putative candidate molecules for diagnostic tests and vaccine development. BIOLOGICAL SIGNIFICANCE Outbreaks due to Sporothrix spp. have emerged over time, affecting thousands of patients worldwide. A sophisticated host-pathogen interplay drives the manifestation and severity of infection, involving immune responses elicited upon traumatic exposure of the skin barrier to the pathogen followed by immune evasion. Using an immunoproteomic approach we characterized proteins of potential significance in pathogenesis and invasion that trigger the humoral response during human sporotrichosis. We found gp70 to be a cross-immunogenic protein shared among pathogenic Sporothrix spp. but absent in the ancestral environmental S. mexicana, supporting the hypothesis that gp70 plays key roles in pathogenicity. For the first time, we demonstrate with 2D-DIGE that post-translational modifications putatively involve glycosylation and amino acid substitution, resulting in at least six isoforms and glycoforms, all of them IgG-reactive. These findings of a convergent humoral response highlight gp70 as an important target serological diagnosis and for vaccine development among phylogenetically related agents of sporotrichosis.
Collapse
|
23
|
Longo LV, da Cunha JP, Sobreira TJ, Puccia R. Proteome of cell wall-extracts from pathogenic Paracoccidioides brasiliensis: Comparison among morphological phases, isolates, and reported fungal extracellular vesicle proteins. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Lima PDS, Casaletti L, Bailão AM, de Vasconcelos ATR, Fernandes GDR, Soares CMDA. Transcriptional and proteomic responses to carbon starvation in Paracoccidioides. PLoS Negl Trop Dis 2014; 8:e2855. [PMID: 24811072 PMCID: PMC4014450 DOI: 10.1371/journal.pntd.0002855] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/31/2014] [Indexed: 12/16/2022] Open
Abstract
Background The genus Paracoccidioides comprises human thermal dimorphic fungi, which cause paracoccidioidomycosis (PCM), an important mycosis in Latin America. Adaptation to environmental conditions is key to fungal survival during human host infection. The adaptability of carbon metabolism is a vital fitness attribute during pathogenesis. Methodology/Principal Findings The fungal pathogen Paracoccidioides spp. is exposed to numerous adverse conditions, such as nutrient deprivation, in the human host. In this study, a comprehensive response of Paracoccidioides, Pb01, under carbon starvation was investigated using high-resolution transcriptomic (RNAseq) and proteomic (NanoUPLC-MSE) approaches. A total of 1,063 transcripts and 421 proteins were differentially regulated, providing a global view of metabolic reprogramming during carbon starvation. The main changes were those related to cells shifting to gluconeogenesis and ethanol production, supported by the degradation of amino acids and fatty acids and by the modulation of the glyoxylate and tricarboxylic cycles. This proposed carbon flow hypothesis was supported by gene and protein expression profiles assessed using qRT-PCR and western blot analysis, respectively, as well as using enzymatic, cell dry weight and fungus-macrophage interaction assays. The carbon source provides a survival advantage to Paracoccidioides inside macrophages. Conclusions/Significance For a complete understanding of the physiological processes in an organism, the integration of approaches addressing different levels of regulation is important. To the best of our knowledge, this report presents the first description of the responses of Paracoccidioides spp. to host-like conditions using large-scale expression approaches. The alternative metabolic pathways that could be adopted by the organism during carbon starvation can be important for a better understanding of the fungal adaptation to the host, because systems for detecting and responding to carbon sources play a major role in adaptation and persistence in the host niche. The species of the Paracoccidioides genus, a neglected human pathogen, represent the causative agents of paracoccidioidomycosis (PCM), one of the most frequent systemic mycoses in Latin America. Despite being phagocytosed, the fungus conidia differentiate into the parasitic yeast form that subverts the normally harsh intraphagosomal environment and survives and replicates into murine and human macrophages. It has been suggested that alternative carbon metabolism plays a role in the survival and virulence of Paracoccidioides spp. within host cells. We used large-scale transcriptome and proteome approaches to better characterize the responses of Paracoccidioides, Pb01, yeast parasitic cells, to carbon starvation. We aimed to identify important molecules used by the fungus to adapt to these hostile conditions. The shift to a starvation mode, including gluconeogenesis and ethanol increases, activation of fatty acids, and amino acid degradation are the strategies used by the pathogen to persist under this stress. Our study provides a detailed map of Paracoccidioides spp. responses under carbon starvation conditions and contributes to further investigations of the importance of alternative carbon adaptation during fungus pathogenesis.
Collapse
Affiliation(s)
- Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Luciana Casaletti
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
25
|
Neto BRDS, Carvalho PFZ, Bailão AM, Martins WS, de Almeida Soares CM, Pereira M. Transcriptional profile of Paracoccidioides spp. in response to itraconazole. BMC Genomics 2014; 15:254. [PMID: 24690401 PMCID: PMC3975141 DOI: 10.1186/1471-2164-15-254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/26/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Itraconazole is currently used to treat paracoccidioidomycosis. The mechanism of action of azoles has been elucidated in some fungi, although little is known regarding its mechanism of action in Paracoccidioides spp. The present work focused on identification of regulated transcripts using representational difference analysis of Paracoccidioides spp. yeast cells treated with itraconazole for 1 and 2 h. RESULTS Paracoccidioides Pb01 genes up-regulated by itraconazole included genes involved in cellular transport, metabolism/energy, transcription, cell rescue, defense and virulence. ERG11, ERG6, ERG3, ERG5 and ERG25 were up-regulated at multiple time points. In vivo infection experiments in mice corroborated the in vitro results. Ergosterol levels and distribution were evaluated in Paracoccidioides Pb18 yeast cells, and the results demonstrate that both factors were changed in the fungus treated with itraconazole. CONCLUSION To our knowledge, this is the first transcriptional analysis of Paracoccidioides spp. exposed to a triazole drug. Here acetyl seems to be intensively produced from different metabolic pathways to produce ergosterol by the action of ergosterol synthesis related enzymes, which were also affected in other fungi. Among the genes affected, we identified genes in common with other fungi, as well as genes unique to Paracoccidioides Pb01. Those genes could be considered target to new drugs. Voltage-gated Ca2+ alpha subunit (CAV), Tetracycline resistance protein (TETA) and Hemolisyn-iii channel protein (HLYiii) were found only here and a probably involvement with resistance to itraconazole could be investigated in the future. However our findings do not permit inference to current clinical practice.
Collapse
Affiliation(s)
- Benedito Rodrigues da Silva Neto
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, C.P. 131, 74001-970 Goiânia, GO, Brazil
| | - Patrícia Fernanda Zambuzzi Carvalho
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, C.P. 131, 74001-970 Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, C.P. 131, 74001-970 Goiânia, GO, Brazil
| | | | - Célia Maria de Almeida Soares
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, C.P. 131, 74001-970 Goiânia, GO, Brazil
| | - Maristela Pereira
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, C.P. 131, 74001-970 Goiânia, GO, Brazil
| |
Collapse
|
26
|
Parente AFA, de Rezende TCV, de Castro KP, Bailão AM, Parente JA, Borges CL, Silva LP, Soares CMDA. A proteomic view of the response of Paracoccidioides yeast cells to zinc deprivation. Fungal Biol 2013; 117:399-410. [DOI: 10.1016/j.funbio.2013.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/27/2022]
|
27
|
de Arruda Grossklaus D, Bailão AM, Vieira Rezende TC, Borges CL, de Oliveira MAP, Parente JA, de Almeida Soares CM. Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes Infect 2013; 15:347-64. [DOI: 10.1016/j.micinf.2012.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/28/2022]
|
28
|
da Silva JDF, de Oliveira HC, Marcos CM, da Silva RAM, da Costa TA, Calich VLG, Almeida AMF, Mendes-Giannini MJS. Paracoccidoides brasiliensis 30 kDa adhesin: identification as a 14-3-3 protein, cloning and subcellular localization in infection models. PLoS One 2013; 8:e62533. [PMID: 23638109 PMCID: PMC3640054 DOI: 10.1371/journal.pone.0062533] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/21/2013] [Indexed: 02/04/2023] Open
Abstract
Paracoccidoides brasiliensis adhesion to lung epithelial cells is considered an essential event for the establishment of infection and different proteins participate in this process. One of these proteins is a 30 kDa adhesin, pI 4.9 that was described as a laminin ligand in previous studies, and it was more highly expressed in more virulent P. brasiliensis isolates. This protein may contribute to the virulence of this important fungal pathogen. Using Edman degradation and mass spectrometry analysis, this 30 kDa adhesin was identified as a 14-3-3 protein. These proteins are a conserved group of small acidic proteins involved in a variety of processes in eukaryotic organisms. However, the exact function of these proteins in some processes remains unknown. Thus, the goal of the present study was to characterize the role of this protein during the interaction between the fungus and its host. To achieve this goal, we cloned, expressed the 14-3-3 protein in a heterologous system and determined its subcellular localization in in vitro and in vivo infection models. Immunocytochemical analysis revealed the ubiquitous distribution of this protein in the yeast form of P. brasiliensis, with some concentration in the cytoplasm. Additionally, this 14-3-3 protein was also present in P. brasiliensis cells at the sites of infection in C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells for 72 h (acute infections) and 30 days (chronic infection). An apparent increase in the levels of the 14-3-3 protein in the cell wall of the fungus was also noted during the interaction between P. brasiliensis and A549 cells, suggesting that this protein may be involved in host-parasite interactions, since inhibition assays with the protein and this antibody decreased P. brasiliensis adhesion to A549 epithelial cells. Our data may lead to a better understanding of P. brasiliensis interactions with host tissues and paracoccidioidomycosis pathogenesis.
Collapse
Affiliation(s)
- Julhiany de Fatima da Silva
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Haroldo César de Oliveira
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Caroline Maria Marcos
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Rosângela Aparecida Moraes da Silva
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Tania Alves da Costa
- Department of Immunology, Biomedical Institute, São Paulo University, São Paulo, Brazil
| | | | - Ana Marisa Fusco Almeida
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| |
Collapse
|
29
|
Sousa Lima P, Bailão EFLC, Silva MG, Castro NDS, Báo SN, Orlandi I, Vai M, Almeida Soares CM. Characterization of the Paracoccidioides beta-1,3-glucanosyltransferase family. FEMS Yeast Res 2012; 12:685-702. [DOI: 10.1111/j.1567-1364.2012.00819.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/29/2012] [Accepted: 06/06/2012] [Indexed: 11/24/2022] Open
Affiliation(s)
- Patrícia Sousa Lima
- Laboratório de Biologia Molecular; Instituto de Ciências Biológicas; Universidade Federal de Goiás; Goiás; Brazil
| | | | - Mirelle Garcia Silva
- Laboratório de Biologia Molecular; Instituto de Ciências Biológicas; Universidade Federal de Goiás; Goiás; Brazil
| | - Nadya da Silva Castro
- Laboratório de Biologia Molecular; Instituto de Ciências Biológicas; Universidade Federal de Goiás; Goiás; Brazil
| | - Sônia Nair Báo
- Laboratório de Microscopia Eletrônica; Universidade de Brasília; Brasília; Brazil
| | - Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze; Università degli Studi di Milano-Bicocca; Milan; Italy
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze; Università degli Studi di Milano-Bicocca; Milan; Italy
| | - Célia Maria Almeida Soares
- Laboratório de Biologia Molecular; Instituto de Ciências Biológicas; Universidade Federal de Goiás; Goiás; Brazil
| |
Collapse
|
30
|
Shi LN, Li FQ, Huang M, Lu JF, Kong XX, Wang SQ, Shao HF. Immunoproteomics based identification of thioredoxin reductase GliT and novel Aspergillus fumigatus antigens for serologic diagnosis of invasive aspergillosis. BMC Microbiol 2012; 12:11. [PMID: 22251604 PMCID: PMC3398318 DOI: 10.1186/1471-2180-12-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/18/2012] [Indexed: 01/14/2023] Open
Abstract
Background There has been a rising incidence of invasive aspergillosis (IA) in critically ill patients, even in the absence of an apparent predisposing immunodeficiency. The diagnosis of IA is difficult because clinical signs are not sensitive and specific, and serum galactomannan has relatively low sensitivity in this group of patients. Therefore, more prompt and accurate disease markers for early diagnosis are needed. To establish disease markers demands a thorough knowledge of fungal antigens which may be detected in the serum or other body fluids of patients. Herein we report novel immunodominant antigens identified from extracellular proteins of Aspergillus fumigatus. Results Extracellular proteins of A. fumigatus were separated by two-dimensional electrophoresis (2-DE) and probed with the sera from critically ill patients with proven IA. The immunoreactive protein spots were identified by MALDI-TOF mass spectrometry (MALDI-TOF -MS). Forty spots from 2DE gels were detected and 17 different proteins were identified as immunogenic in humans. Function annotation revealed that most of these proteins were metabolic enzymes involved in carbohydrate, fatty acid, amino acid, and energy metabolism. One of the proteins, thioredoxin reductase GliT (TR), which showed the best immunoactivity, was analyzed further for secretory signals, protein localization, and homology. The results indicated that TR is a secretory protein with a signal sequence exhibiting a high probability for secretion. Furthermore, TR did not match any human proteins, and had low homology with most other fungi. The recombinant TR was recognized by the sera of all proven IA patients with different underlying diseases in this study. Conclusions The immunoreactive proteins identified in this study may be helpful for the diagnosis of IA in critically ill patients. Our results indicate that TR and other immunodominant antigens have potential as biomarkers for the serologic diagnosis of invasive aspergillosis.
Collapse
Affiliation(s)
- Li-ning Shi
- Laboratory of Molecular Biology, Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Rezende TCV, Borges CL, Magalhães AD, de Sousa MV, Ricart CAO, Bailão AM, Soares CMA. A quantitative view of the morphological phases of Paracoccidioides brasiliensis using proteomics. J Proteomics 2011; 75:572-87. [PMID: 21920475 DOI: 10.1016/j.jprot.2011.08.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 11/16/2022]
Abstract
Paracoccidioides brasiliensis is a fungal pathogen with a broad distribution in Latin American countries. The mycelia-to-yeast morphological transition of P. brasiliensis is involved in the virulence of this pathogen, and this event is essential to the establishment of infection. Here, we report the first proteomic comparison between the mycelia, the mycelia-to-yeast transition and the yeast cells. Changes in the relative abundance of the components of the proteome during phase conversion of P. brasiliensis were analyzed by two-dimensional gel electrophoresis coupled to mass spectrometry. Using MALDI-TOF-MS, we identified 100 total proteins/isoforms. We show that 18, 30 and 33 proteins/isoforms in our map are overexpressed in the mycelia, the mycelia-to-yeast transition and in yeast cells, respectively. Nineteen proteins/isoforms did not present significant differences in the volume spots in the three analyzed conditions. The differential expression was confirmed for six different proteins by Western blot analysis. The quantitative differences observed by the proteomic analysis were correlated with the transcript levels, as determined by quantitative RT-PCR of the analyzed conditions, including conidial formation and the transition from conidia-to-yeast cells. The analysis of the functional categories to which these proteins belong provided an integrated view of the metabolic reorganization during the morphogenesis of P. brasiliensis.
Collapse
Affiliation(s)
- Tereza C V Rezende
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Parente AFA, Bailão AM, Borges CL, Parente JA, Magalhães AD, Ricart CAO, Soares CMA. Proteomic analysis reveals that iron availability alters the metabolic status of the pathogenic fungus Paracoccidioides brasiliensis. PLoS One 2011; 6:e22810. [PMID: 21829521 PMCID: PMC3145762 DOI: 10.1371/journal.pone.0022810] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/04/2011] [Indexed: 11/18/2022] Open
Abstract
Paracoccidioides brasiliensis is a thermodimorphic fungus and the causative agent of paracoccidioidomycosis (PCM). The ability of P. brasiliensis to uptake nutrients is fundamental for growth, but a reduction in the availability of iron and other nutrients is a host defense mechanism many pathogenic fungi must overcome. Thus, fungal mechanisms that scavenge iron from host may contribute to P. brasiliensis virulence. In order to better understand how P. brasiliensis adapts to iron starvation in the host we compared the two-dimensional (2D) gel protein profile of yeast cells during iron starvation to that of iron rich condition. Protein spots were selected for comparative analysis based on the protein staining intensity as determined by image analysis. A total of 1752 protein spots were selected for comparison, and a total of 274 out of the 1752 protein spots were determined to have changed significantly in abundance due to iron depletion. Ninety six of the 274 proteins were grouped into the following functional categories; energy, metabolism, cell rescue, virulence, cell cycle, protein synthesis, protein fate, transcription, cellular communication, and cell fate. A correlation between protein and transcript levels was also discovered using quantitative RT-PCR analysis from RNA obtained from P. brasiliensis under iron restricting conditions and from yeast cells isolated from infected mouse spleens. In addition, western blot analysis and enzyme activity assays validated the differential regulation of proteins identified by 2-D gel analysis. We observed an increase in glycolytic pathway protein regulation while tricarboxylic acid cycle, glyoxylate and methylcitrate cycles, and electron transport chain proteins decreased in abundance under iron limiting conditions. These data suggest a remodeling of P. brasiliensis metabolism by prioritizing iron independent pathways.
Collapse
Affiliation(s)
- Ana F. A. Parente
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre M. Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayton L. Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana A. Parente
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Adriana D. Magalhães
- Laboratório de Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Carlos A. O. Ricart
- Laboratório de Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Célia M. A. Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
33
|
Brito WDA, Rezende TCV, Parente AF, Ricart CAO, Sousa MVD, Báo SN, Soares CMDA. Identification, characterization and regulation studies of the aconitase of Paracoccidioides brasiliensis. Fungal Biol 2011; 115:697-707. [PMID: 21802049 DOI: 10.1016/j.funbio.2011.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/02/2011] [Accepted: 02/11/2011] [Indexed: 11/26/2022]
Abstract
A protein species preferentially expressed in yeast cells with a molecular mass of 80 kDa and isoeletric point (pI) of 7.79 was isolated from the proteome of Paracoccidioides brasiliensis and characterized as an aconitase (ACO) (E.C. 4.2.1.3). ACO is an enzyme that catalyzes the isomerization of citrate to isocitrate in both the Krebs cycle and the glyoxylate cycle. We report the cloning and characterization of the cDNA encoding the ACO of P. brasiliensis (PbACO). The cDNA showed a 2361 bp open reading frame (ORF) and encoded a predicted protein with 787 amino acids. Polyclonal antibodies against the purified recombinant PbACO was obtained in order to analyze the subcellular localization of the molecule in P. brasiliensis. The protein is present in the extracellular fluid, cell wall enriched fraction, mitochondria, cytosol and peroxisomes of yeast cells as demonstrated by western blot and immunocytochemistry analysis. The expression analysis of the Pbaco gene was performed by quantitative real-time RT-PCR and results demonstrated an increased expression in yeast cells compared to mycelia. Real-time RT-PCR assays was also used to evaluate the Pbaco expression when the fungus grows on media with acetate and ethanol as sole carbon sources and in different iron levels. The results demonstrated that Pbaco transcript is over expressed in acetate and ethanol as sole carbon sources and in high-iron conditions.
Collapse
Affiliation(s)
- Wesley de A Brito
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Parente JA, Salem-Izacc SM, Santana JM, Pereira M, Borges CL, Bailão AM, Soares CMA. A secreted serine protease of Paracoccidioides brasiliensis and its interactions with fungal proteins. BMC Microbiol 2010; 10:292. [PMID: 21080956 PMCID: PMC3000847 DOI: 10.1186/1471-2180-10-292] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paracoccidioides brasiliensis is a thermodimorphic fungus, the causative agent of paracoccidioidomycosis (PCM). Serine proteases are widely distributed and this class of peptidase has been related to pathogenesis and nitrogen starvation in pathogenic fungi. RESULTS A cDNA (Pbsp) encoding a secreted serine protease (PbSP), was isolated from a cDNA library constructed with RNAs of fungal yeast cells recovered from liver of infected mice. Recombinant PbSP was produced in Escherichia coli, and used to develop polyclonal antibodies that were able to detect a 66 kDa protein in the P. brasiliensis proteome. In vitro deglycosylation assays with endoglycosidase H demonstrated that PbSP is a N-glycosylated molecule. The Pbsp transcript and the protein were induced during nitrogen starvation. The Pbsp transcript was also induced in yeast cells infecting murine macrophages. Interactions of PbSP with P. brasiliensis proteins were evaluated by two-hybrid assay in the yeast Saccharomyces cerevisiae. PbSP interacts with a peptidyl prolyl cis-trans isomerase, calnexin, HSP70 and a cell wall protein PWP2. CONCLUSIONS A secreted subtilisin induced during nitrogen starvation was characterized indicating the possible role of this protein in the nitrogen acquisition. PbSP interactions with other P. brasiliensis proteins were reported. Proteins interacting with PbSP are related to folding process, protein trafficking and cytoskeleton reorganization.
Collapse
Affiliation(s)
- Juliana A Parente
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sílvia M Salem-Izacc
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Jaime M Santana
- Laboratório de Interação Parasito-Hospedeiro, Faculdade de Medicina, Universidade de Brasília, Brasília, DF
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayton L Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia MA Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
35
|
Immunoproteomic analysis of human serological antibody responses to vaccination with whole-cell pertussis vaccine (WCV). PLoS One 2010; 5:e13915. [PMID: 21170113 PMCID: PMC2976700 DOI: 10.1371/journal.pone.0013915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/18/2010] [Indexed: 11/29/2022] Open
Abstract
Background Pertussis (whooping cough) caused by Bordetella pertussis
(B.p), continues to be a serious public health threat.
Vaccination is the most economical and effective strategy for preventing and
controlling pertussis. However, few systematic investigations of actual
human immune responses to pertussis vaccines have been performed. Therefore,
we utilized a combination of two-dimensional electrophoresis (2-DE),
immunoblotting, and mass spectrometry to reveal the entire antigenic
proteome of whole-cell pertussis vaccine (WCV) targeted by the human immune
system as a first step toward evaluating the repertoire of human humoral
immune responses against WCV. Methodology/Principal Findings Immunoproteomic profiling of total membrane enriched proteins and
extracellular proteins of Chinese WCV strain 58003 identified a total of 30
immunoreactive proteins. Seven are known pertussis antigens including
Pertactin, Serum resistance protein, chaperonin GroEL and two OMP porins.
Sixteen have been documented to be immunogenic in other pathogens but not in
B.p, and the immunogenicity of the last seven proteins
was found for the first time. Furthermore, by comparison of the human and
murine immunoproteomes of B.p, with the exception of four
human immunoreactive proteins that were also reactive with mouse immune
sera, a unique group of antigens including more than 20 novel immunoreactive
proteins that uniquely reacted with human immune serum was confirmed. Conclusions/Significance This study is the first time that the repertoire of human serum antibody
responses against WCV was comprehensively investigated, and a small number
of previously unidentified antigens of WCV were also found by means of the
classic immunoproteomic strategy. Further research on these newly identified
predominant antigens of B.p exclusively against humans will
not only remarkably accelerate the development of diagnostic biomarkers and
subunit vaccines but also provide detailed insight into human immunity
mechanisms against WCV. In particular, this work highlights the
heterogeneity of the B.p immunoreactivity patterns of the
mouse model and the human host.
Collapse
|
36
|
Tacco BACDA, Parente JA, Barbosa MS, Báo SN, Gsóes TDS, Pereira M, Soares CMDA. Characterization of a secreted aspartyl protease of the fungal pathogen Paracoccidioides brasiliensis. Med Mycol 2010; 47:845-54. [PMID: 20028235 DOI: 10.3109/13693780802695512] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides brasiliensis is a thermally dimorphic fungus that causes paracoccidioidomycosis, a human systemic disease prevalent in Latin America. Proteases have been described as playing an important role in the host invasion process in many pathogenic microorganisms. Here we describe the identification and characterization of a secreted aspartyl protease (PbSAP), isolated from a cDNA library constructed with RNAs of mycelia transitioning to yeast cells. Recombinant PbSAP was produced in Escherichia coli, and the purified protein was used to develop a polyclonal antibody that was able to detect a 66 kDa protein in the P. brasiliensis proteome. PbSAP was detected in culture supernatants of P. brasiliensis and this data strongly suggest that it is a secreted molecule. The protein was located in the yeast cell wall, as determined by immunoelectron microscopy. In vitro deglycosylation assays with endoglycosidase H, and in vivo inhibition of the glycosylation by tunicamycin demonstrated N-glycosylation of the PbSAP molecule. Zymogram assays indicated the presence of aspartyl protease gelatinolytic activity in yeast cells and culture supernatant.
Collapse
|
37
|
Chagas RF, Bailão AM, Fernandes KF, Winters MS, Pereira M, Soares CMDA. Purification of Paracoccidioides brasiliensis catalase P: subsequent kinetic and stability studies. ACTA ACUST UNITED AC 2009; 147:345-51. [DOI: 10.1093/jb/mvp182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Pereira M, Bailão AM, Parente JA, Borges CL, Salem-Izacc SM, Soares CMDA. Preferential transcription of Paracoccidioides brasiliensis genes: host niche and time-dependent expression. Mem Inst Oswaldo Cruz 2009; 104:486-91. [PMID: 19547877 DOI: 10.1590/s0074-02762009000300015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 03/10/2009] [Indexed: 11/22/2022] Open
Abstract
Paracoccidioides brasiliensis causes infection through inhalation by the host of airborne propagules from the mycelium phase of the fungus. This fungus reaches the lungs, differentiates into the yeast form and is then disseminated to virtually all parts of the body. Here we review the identification of differentially-expressed genes in host-interaction conditions. These genes were identified by analyzing expressed sequence tags (ESTs) from P. brasiliensis cDNA libraries. The P. brasiliensis was recovered from infected mouse liver as well as from fungal yeast cells incubated in human blood and plasma, mimicking fungal dissemination to organs and tissues and sites of infection with inflammation, respectively. In addition, ESTs from a cDNA library of P. brasiliensis mycelium undergoing the transition to yeast were previously analyzed. Together, these studies reveal significant changes in the expression of a number of genes of potential importance in the host-fungus interaction. In addition, the unique and divergent representation of transcripts when the cDNA libraries are compared suggests differential gene expression in response to specific niches in the host. This analysis of gene expression patterns provides details about host-pathogen interactions and peculiarities of sites within the host.
Collapse
Affiliation(s)
- Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | | | | | | | | | | |
Collapse
|
39
|
Chagas RF, Bailão AM, Pereira M, Winters MS, Smullian AG, Deepe GS, de Almeida Soares CM. The catalases of Paracoccidioides brasiliensis are differentially regulated: protein activity and transcript analysis. Fungal Genet Biol 2008; 45:1470-8. [PMID: 18799136 DOI: 10.1016/j.fgb.2008.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 11/29/2022]
Abstract
Paracoccidioides brasiliensis is a fungal pathogen of humans. The P. brasiliensis response to oxidative stress is largely unexplored. We report the analysis of three catalases, PbCatA, PbCatP and PbCatC. The former are monofunctional catalases and the latter is a catalase-peroxidase. Differential expression of catalases as measured by activity and by quantitative analysis of transcripts was observed in the morphological conversion and in response to different stress conditions. PbCatA manifested higher activity in the mycelial phase, showed increased activity during transition from mycelium to yeast and during conditions of endogenous oxidative stress. Consistent with our previous studies, PbCatP manifested higher activity in yeast cells since it is putatively involved in the control of exogenous reactive oxygen species. P. brasiliensis displays an oxidative stress response following phagocytosis by macrophages, inducing the expression of catalase A and P transcripts. PbCatC displayed a relatively constant pattern of expression, being modestly induced in cells exposed to osmotic and heat stress.
Collapse
Affiliation(s)
- Ronney Fernandes Chagas
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Dantas AS, Andrade RV, de Carvalho MJ, Felipe MSS, Campos ÉG. Oxidative stress response in Paracoccidioides brasiliensis: assessing catalase and cytochrome c peroxidase. ACTA ACUST UNITED AC 2008; 112:747-56. [DOI: 10.1016/j.mycres.2007.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 11/16/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
|
41
|
Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. EUKARYOTIC CELL 2007; 7:58-67. [PMID: 18039940 DOI: 10.1128/ec.00370-07] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cryptococcus neoformans produces vesicles containing its major virulence factor, the capsular polysaccharide glucuronoxylomannan (GXM). These vesicles cross the cell wall to reach the extracellular space, where the polysaccharide is supposedly used for capsule growth or delivered into host tissues. In the present study, we characterized vesicle morphology and protein composition by a combination of techniques including electron microscopy, proteomics, enzymatic activity, and serological reactivity. Secretory vesicles in C. neoformans appear to be correlated with exosome-like compartments derived from multivesicular bodies. Extracellular vesicles manifested various sizes and morphologies, including electron-lucid membrane bodies and electron-dense vesicles. Seventy-six proteins were identified by proteomic analysis, including several related to virulence and protection against oxidative stress. Biochemical tests indicated laccase and urease activities in vesicles. In addition, different vesicle proteins were recognized by sera from patients with cryptococcosis. These results reveal an efficient and general mechanism of secretion of pathogenesis-related molecules in C. neoformans, suggesting that extracellular vesicles function as "virulence bags" that deliver a concentrated payload of fungal products to host effector cells and tissues.
Collapse
|
42
|
Pereira LA, Báo SN, Barbosa MS, da Silva JLM, Felipe MSS, de Santana JM, Mendes-Giannini MJS, de Almeida Soares CM. Analysis of the Paracoccidioides brasiliensis triosephosphate isomerase suggests the potential for adhesin function. FEMS Yeast Res 2007; 7:1381-8. [PMID: 17714474 DOI: 10.1111/j.1567-1364.2007.00292.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Paracoccidioides brasiliensis is an important fungal pathogen. The disease it causes, paracoccidioidomycosis (PCM), ranges from localized pulmonary infection to systemic processes that endanger the life of the patient. Paracoccidioides brasiliensis adhesion to host tissues contributes to its virulence, but we know relatively little about molecules and the molecular mechanisms governing fungal adhesion to mammalian cells. Triosephosphate isomerase (TPI: EC 5.3.1.1) of P. brasiliensis (PbTPI) is a fungal antigen characterized by microsequencing of peptides. The protein, which is predominantly expressed in the yeast parasitic phase, localizes at the cell wall and in the cytoplasmic compartment. TPI and the respective polyclonal antibody produced against this protein inhibited the interaction of P. brasiliensis to in vitro cultured epithelial cells. TPI binds preferentially to laminin, as determined by peptide inhibition assays. Collectively, these results suggest that TPI is required for interactions between P. brasiliensis and extracellular matrix molecules such as laminin and that this interaction may play an important role in the fungal adherence and invasion of host cells.
Collapse
Affiliation(s)
- Luiz Augusto Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Xander P, Vigna AF, Feitosa LDS, Pugliese L, Bailão AM, Soares CMDA, Mortara RA, Mariano M, Lopes JD. A surface 75-kDa protein with acid phosphatase activity recognized by monoclonal antibodies that inhibit Paracoccidioides brasiliensis growth. Microbes Infect 2007; 9:1484-92. [PMID: 17913543 DOI: 10.1016/j.micinf.2007.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 07/26/2007] [Accepted: 08/05/2007] [Indexed: 11/20/2022]
Abstract
Paracoccidioides brasiliensis is a thermo-dimorphic fungus responsible for paracoccidioidomycosis (PCM), a systemic granulomatous mycosis prevalent in Latin America. The fungus releases many antigens which may be transiently bound to its cell surface. Some of them may show enzymatic functions essential for maintaining many cell processes and survival of the microorganism at different conditions. In this study, we report the characterization of a secreted 75kDa protein from P. brasiliensis with phosphatase activity. Biologic function of the molecule was demonstrated using two specific mAbs produced and characterized as IgM and IgG isotypes. Confocal microscopy and flow cytometry analysis demonstrated that both mAbs recognized the protein on the fungus surface, mainly in its budding sites. In vitro experiments showed that fungal growth was inhibited by blocking the protein with mAbs. In addition, opsonized yeast cells with both mAbs facilitated phagocytosis by murine peritoneal macrophages. Passive immunization using mAbs before P. brasiliensis mice infection reduced colony-forming units (CFU) in the lungs as compared with controls. Histopathology showed smaller inflammation, absence of yeast cells and no granuloma formation.
Collapse
Affiliation(s)
- Patrícia Xander
- Disciplina de Imunologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, UNIFESP, Rua Botucatu 862, 04023-901 São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang C, Cao Y, Wang Z, Yin Y, Peng G, Li Z, Zhao H, Xia Y. Differentially-expressed glycoproteins in Locusta migratoria hemolymph infected with Metarhizium anisopliae. J Invertebr Pathol 2007; 96:230-6. [PMID: 17658547 DOI: 10.1016/j.jip.2007.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Glycoproteins play important roles in insect physiology. Infection with pathogen always results in the differential expression of some glycoproteins, which may be involved in host-pathogen interactions. In this report, differentially-expressed glycoproteins from the hemolymph of locusts infected with Metarhizium anisopliae were analyzed by two-dimensional electrophoresis (2-DE) and PDQuest software. The results showed that 13 spots were differentially expressed, of which nine spots were upregulated and four were downregulated. Using MS/MS with de novo sequencing and NCBI database searches, three upregulated proteins were identified as locust transferrin, apolipoprotein precursor, and hexameric storage protein 3. These proteins have been reported to be involved in the insect innate immune response to microbial challenge. Due to the limited available genome information and protein sequences of locusts, the possible functions of the other 10 differentially-expressed spots remain unknown.
Collapse
Affiliation(s)
- Chutao Wang
- Genetic Engineering Research Center, Chongqing University, Chongqing 400030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Most dimorphic fungal pathogens cause respiratory disease in mammals and must therefore possess virulence mechanisms to combat and overcome host pulmonary defenses. Over the past decade, advances in genetic tools have made it possible to investigate the basis of dimorphic fungal pathogenesis at the molecular level. Gene disruptions and RNA interference have now formally demonstrated the involvement of six virulence factors: CBP, alpha-(1,3)-glucan, BAD1, SOWgp, Mep1, and urease. Additional candidate virulence-associated genes have been identified on the premise that factors necessary for pathogenicity are associated specifically with the parasitic form. This principle continues to form the foundation for genomics-based analyses to further augment the list. Thus, the stage is set and the tools are in place for the next phase of medical mycology research: defining the virulence-associated factors underlying the success of dimorphic fungal pathogens.
Collapse
Affiliation(s)
- Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
46
|
Tarcha EJ, Basrur V, Hung CY, Gardner MJ, Cole GT. Multivalent recombinant protein vaccine against coccidioidomycosis. Infect Immun 2006; 74:5802-13. [PMID: 16988258 PMCID: PMC1594896 DOI: 10.1128/iai.00961-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/01/2006] [Accepted: 07/15/2006] [Indexed: 11/20/2022] Open
Abstract
Coccidioidomycosis is a human respiratory disease that is endemic to the southwestern United States and is caused by inhalation of the spores of a desert soilborne fungus. Efforts to develop a vaccine against this disease have focused on identification of T-cell-reactive antigens derived from the parasitic cell wall which can stimulate protective immunity against Coccidioides posadasii infection in mice. We previously described a productive immunoproteomic/bioinformatic approach to the discovery of vaccine candidates which makes use of the translated genome of C. posadasii and a computer-based method of scanning deduced sequences of seroreactive proteins for epitopes that are predicted to bind to human major histocompatibility (MHC) class II-restricted molecules. In this study we identified a set of putative cell wall proteins predicted to contain multiple, promiscuous MHC II binding epitopes. Three of these were expressed by Escherichia coli, combined in a vaccine, and tested for protective efficacy in C57BL/6 mice. Approximately 90% of the mice survived beyond 90 days after intranasal challenge, and the majority cleared the pathogen. We suggest that the multicomponent vaccine stimulates a broader range of T-cell clones than the single recombinant protein vaccines and thereby may be capable of inducing protection in an immunologically heterogeneous human population.
Collapse
Affiliation(s)
- Eric J Tarcha
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
47
|
Labbé G, Bezaire J, de Groot S, How C, Rasmusson T, Yaeck J, Jervis E, Dmitrienko GI, Guillemette JG. High level production of the Magnaporthe grisea fructose 1,6-bisphosphate aldolase enzyme in Escherichia coli using a small volume bench-top fermentor. Protein Expr Purif 2006; 51:110-9. [PMID: 16901716 DOI: 10.1016/j.pep.2006.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
The Class II fructose 1,6-bisphosphate aldolase from the Rice Blast causative agent Magnaporthe grisea was subcloned in the Escherichia coli vector pT7-7. The enzyme was overexpressed using fed-batch fermentation in a small bench-top reactor. A total of 275 g of cells and 1.3 g of highly purified enzyme with a specific activity of 70 U/mg were obtained from a 1.5L culture. The purified enzyme is a homodimer of 39.6 kDa subunits with a zinc ion at the active site. Kinetic characterization indicates that the enzyme has a K(m) of 51 microM, a k(cat) of 46 s(-1), and a pH optimum of 7.8 for fructose 1,6-bisphosphate cleavage. The fermentation system procedure reported exemplifies the potential of using a lab-scale bioreactor for the large scale production of recombinant enzymes.
Collapse
Affiliation(s)
- Geneviève Labbé
- Department of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, Ont., Canada N2L 3G1
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tarcha EJ, Basrur V, Hung CY, Gardner MJ, Cole GT. A recombinant aspartyl protease of Coccidioides posadasii induces protection against pulmonary coccidioidomycosis in mice. Infect Immun 2006; 74:516-27. [PMID: 16369008 PMCID: PMC1346669 DOI: 10.1128/iai.74.1.516-527.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coccidioidomycosis is a respiratory disease of humans caused by the desert soil-borne fungal pathogens Coccidioides spp. Recurrent epidemics of this mycosis in the southwestern United States have contributed significantly to escalated health care costs. Clinical and experimental studies indicate that prior symptomatic coccidioidomycosis induces immunity against subsequent infection, and activation of T cells is essential for containment of the pathogen and its clearance from host tissue. Development of a human vaccine against coccidioidomycosis has focused on recombinant T-cell-reactive antigens which elicit a durable protective immune response against pulmonary infection in mice. In this study we fractionated a protective multicomponent parasitic cell wall extract in an attempt to identify T-cell antigens. Immunoblots of electrophoretic separations of this extract identified patient seroreactive proteins which were subsequently excised from two-dimensional polyacrylamide gel electrophoresis gels, trypsin digested, and sequenced by tandem mass spectrometry. The full-length gene which encodes a dominant protein in the immunoblot was identified using established methods of bioinformatics. The gene was cloned and expressed, and the recombinant protein was shown to stimulate immune T cells in vitro. The deduced protein was predicted to contain epitopes that bind to human major histocompatibility complex class II molecules using a TEPITOPE-based algorithm. Synthetic peptides corresponding to the predicted T-cell epitopes induced gamma interferon production by immune T lymphocytes. The T-cell-reactive antigen, which is homologous to secreted fungal aspartyl proteases, protected mice against pulmonary infection with Coccidioides posadasii. We argue that this immunoproteomic/bioinformatic approach to the identification of candidate vaccines against coccidioidomycosis is both efficient and productive.
Collapse
Affiliation(s)
- Eric J Tarcha
- Department of Biology University of Texas at San Antonio, Margaret Batts Tobin Building, Rm. 1.308E, 6900 North Loop 1604 West, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
49
|
Barbosa MS, Báo SN, Andreotti PF, de Faria FP, Felipe MSS, dos Santos Feitosa L, Mendes-Giannini MJS, Soares CMDA. Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun 2006; 74:382-9. [PMID: 16368993 PMCID: PMC1346668 DOI: 10.1128/iai.74.1.382-389.2006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenic fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a pulmonary mycosis acquired by inhalation of fungal airborne propagules, which may disseminate to several organs and tissues, leading to a severe form of the disease. Adhesion to and invasion of host cells are essential steps involved in the infection and dissemination of pathogens. Furthermore, pathogens use their surface molecules to bind to host extracellular matrix components to establish infection. Here, we report the characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of P. brasiliensis as an adhesin, which can be related to fungus adhesion and invasion. The P. brasiliensis GAPDH was overexpressed in Escherichia coli, and polyclonal antibody against this protein was obtained. By immunoelectron microscopy and Western blot analysis, GAPDH was detected in the cytoplasm and the cell wall of the yeast phase of P. brasiliensis. The recombinant GAPDH was found to bind to fibronectin, laminin, and type I collagen in ligand far-Western blot assays. Of special note, the treatment of P. brasiliensis yeast cells with anti-GAPDH polyclonal antibody and the incubation of pneumocytes with the recombinant protein promoted inhibition of adherence and internalization of P. brasiliensis to those in vitro-cultured cells. These observations indicate that the cell wall-associated form of the GAPDH in P. brasiliensis could be involved in mediating binding of fungal cells to fibronectin, type I collagen, and laminin, thus contributing to the adhesion of the microorganism to host tissues and to the dissemination of infection.
Collapse
Affiliation(s)
- Mônica Santiago Barbosa
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiānia, Goiás, Brazil 74001-970
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Andrade RV, Da Silva SP, Torres FAG, Poças-Fonseca MJ, Silva-Pereira I, Maranhão AQ, Campos EG, Moraes LMP, Jesuíno RSA, Pereira M, Soares CMA, Walter MEMT, Carvalho MJA, Almeida NF, Brigido MM, Felipe MSS. Overview and perspectives on the transcriptome of Paracoccidioides brasiliensis. Rev Iberoam Micol 2005; 22:203-12. [PMID: 16499412 DOI: 10.1016/s1130-1406(05)70044-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Paracoccidioides brasiliensis is a dimorphic and thermo-regulated fungus which is the causative agent of paracoccidioidomycosis, an endemic disease widespread in Latin America that affects 10 million individuals. Pathogenicity is assumed to be a consequence of the dimorphic transition from mycelium to yeast cells during human infection. This review shows the results of the P. brasiliensis transcriptome project which generated 6,022 assembled groups from mycelium and yeast phases. Computer analysis using the tools of bioinformatics revealed several aspects from the transcriptome of this pathogen such as: general and differential metabolism in mycelium and yeast cells; cell cycle, DNA replication, repair and recombination; RNA biogenesis apparatus; translation and protein fate machineries; cell wall; hydrolytic enzymes; proteases; GPI-anchored proteins; molecular chaperones; insights into drug resistance and transporters; oxidative stress response and virulence. The present analysis has provided a more comprehensive view of some specific features considered relevant for the understanding of basic and applied knowledge of P. brasiliensis.
Collapse
Affiliation(s)
- Rosângela V Andrade
- Laboratorio de Biologia Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasilia, DF, 70910-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|