1
|
Kulkarni PS, Kawade A, Kohli S, Munshi R, Maliye C, Gogtay NJ, S RH, Singh K, Vengadakrishnan K, Panigrahi SK, Sahoo J, Bavdekar A, Garg BS, Raut A, Raj JP, Saxena U, Chaudhari VL, Patil R, Venkatarao E, Kumari N, Surendran J, Parulekar V, Gagnon L, Gensale T, Dharmadhikari A, Gairola S, Kale S, Pisal SS, Dhere RM, Mallya A, Poonawalla CS, Kapse D. Safety and immunogenicity of a pentavalent meningococcal conjugate vaccine versus a quadrivalent meningococcal conjugate vaccine in adults in India: an observer-blind, randomised, active-controlled, phase 2/3 study. THE LANCET. INFECTIOUS DISEASES 2025; 25:399-410. [PMID: 39521012 DOI: 10.1016/s1473-3099(24)00576-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Meningococcal disease remains an important public health problem globally. We assessed the non-inferiority and the lot-to-lot consistency of a pentavalent meningococcal ACYWX conjugate vaccine (NmCV-5; Serum Institute of India, Pune, India) versus a quadrivalent meningococcal ACWY conjugate vaccine (MenACWY-D) in healthy adults. METHODS In this observer-blind, randomised, active-controlled, phase 2/3 study, healthy adults aged 18-85 years were recruited from nine hospitals across seven cities in India. Participants were grouped by age (age 18-29, 30-60, and 61-85 years), and within each age group they were randomly assigned (3:1) to receive either NmCV-5 or MenACWY-D (Sanofi Pasteur). In the age 18-29 years group, participants were additionally randomly assigned (1:1:1:1) to either lot A, lot B, or lot C of NmCV-5 or MenACWY-D. Block randomisation was used (block sizes of 4, 8, and 12). Study participants and study personnel were masked to treatment assignment. Participants received either a 0·5 mL dose of NmCV-5, containing 5 μg each of conjugated A, C, W, Y, and X polysaccharides, or 0·5 mL MenACWY-D, containing 4 μg of each of conjugated A, C, W, and Y polysaccharides. Vaccinations were administered intramuscularly in the deltoid muscle. The primary outcomes were seroresponse (non-inferiority margin of -10%) and geometric mean titres (GMTs; non-inferiority margin of 0·5) in all participants, and lot-to-lot consistency of NmCV-5 (in participants aged 18-29 years; consistency was shown if the geometric mean ratio [GMR] 95% CIs were within the limit interval of 0·5 to 2). For non-inferiority, serogroup X immune response in the NmCV-5 group was compared with the lowest immune response among serogroups A, C, W, and Y in the MenACWY-D group. Immunogenicity was assessed with a serum bactericidal activity assay that used baby rabbit serum as the complement (rSBA) on days 1 and 29 in the modified per-protocol population (including all participants who were randomly assigned, received vaccine, had a post-vaccination rSBA measurement up to 121 days after vaccination, and no major protocol violations). Solicited events were collected for 7 days and serious adverse events were collected for 180 days, and assessed in the safety population (all participants who received vaccination). This study is registered with ClinicalTrials.gov, NCT04358731, and CTRI, CTRI/2019/12/022436, and is now complete. FINDINGS Between Dec 27, 2019, and Sept 19, 2020, 1712 individuals were screened, of whom 1640 were randomly assigned and received NmCV-5 (n=1233) or MenACWY-D (n=407; mean age 26·4 years [SD 12·2], 551 [33·6%] of 1640 were female, and 1089 [66·4%] were male). 1441 participants were aged 18-29 years (362 received lot A, 360 received lot B, and 361 received lot C of NmCV-5 and 357 received MenACWY-D, with one participant mis-randomised by age group and excluded from lot-to-lot consistency analysis). Non-inferiority of NmCV-5 against MenACWY-D was met in terms of seroresponse rates and GMT ratios for all five serogroups. The seroresponse rates were 84·3% (97·5% CI 81·7 to 86·7; serogroup A) or higher in the NmCV-5 group and 54·5% (48·5 to 60·3; serogroup A) or higher in the MenACWY-D group, with the difference in the seroresponse rate between vaccine groups ranging from 0·2 (97·5% CI -2·2 to 2·6) for serogroup W to 29·8 (24·4 to 35·2) for serogroup A. GMTs on day 29 were 7016·9 (97·5% CI 6475·7 to 7603·4; serogroup Y) or higher in the NmCV-5 group and 3646·8 (3188·2 to 4171·5; serogroup Y) or higher in the MenACWY-D group, with GMT ratios between vaccine groups for serogroups A, C, Y, and W ranging from 1·9 (97·5% CI 1·5-2·3) for serogroup W to 2·5 (2·2-2·8) for serogroup A. NmCV-5 induced robust immune responses against serogroup X. Lot-to-lot consistency of NmCV-5 was found for all five serogroups, with 95% CIs for the GMT ratio for each pair of lots being between 0·5 and 2: the lowest lower bound and the highest upper bound of the 95% CI for the GMR between NmCV-5 lot A and lot B were 0·6 and 1·4, between lot A and lot C were 0·7 and 1·6, and between lot B and lot C were 0·8 and 1·6, respectively, for any of the five serogroups. At least one solicited adverse event was reported by 527 (42·7%) of 1233 participants in the NmCV-5 group and 142 (34·9%) of 407 in the MenACWY-D group. No serious adverse events occurred that were determined to be causally related to vaccination. INTERPRETATION NmCV-5 was non-inferior to MenACWY-D in terms of seroresponse and GMTs, was safe, and demonstrated lot-to-lot consistency. NmCV-5 is prequalified by WHO and was rolled out in the African meningitis belt in April, 2024. FUNDING Serum Institute of India.
Collapse
Affiliation(s)
| | - Anand Kawade
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, India
| | - Sunil Kohli
- Hamdard Institute of Medical Sciences and Research, New Delhi, India
| | - Renuka Munshi
- Topiwala National Medical College and BYL Nair Hospital, Mumbai, India
| | - Chetna Maliye
- Mahatma Gandhi Institute of Medical Sciences Kasturba Hospital, Sewagram, Wardha, India
| | | | - Ravish H S
- Kempegowda Institute of Medical Sciences Hospital and Research Centre, Bangalore, India
| | | | - K Vengadakrishnan
- Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sandeep Kumar Panigrahi
- Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneshwar, India
| | - Jyotiranjan Sahoo
- Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneshwar, India
| | - Ashish Bavdekar
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, India
| | - B S Garg
- Mahatma Gandhi Institute of Medical Sciences Kasturba Hospital, Sewagram, Wardha, India
| | - Abhishek Raut
- Mahatma Gandhi Institute of Medical Sciences Kasturba Hospital, Sewagram, Wardha, India
| | - Jeffrey P Raj
- Seth G S Medical College and KEM Hospital, Mumbai, India
| | - Unnati Saxena
- Seth G S Medical College and KEM Hospital, Mumbai, India
| | | | - Rakesh Patil
- KEM Hospital Research Centre, Vadu Rural Health Program, Pune, India
| | - Epari Venkatarao
- Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneshwar, India
| | - Nitu Kumari
- Kempegowda Institute of Medical Sciences Hospital and Research Centre, Bangalore, India
| | - Jithin Surendran
- Kempegowda Institute of Medical Sciences Hospital and Research Centre, Bangalore, India
| | | | - Luc Gagnon
- Nexelis, a Q(2) Solutions Company, Laval, QC, Canada
| | - Tania Gensale
- Nexelis, a Q(2) Solutions Company, Laval, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Diallo F, Haidara FC, Tapia MD, Dominguez Islas CP, Alderson MR, Hausdorff WP, Martellet L, Hosken N, Kapse D, Kulkarni PS, Townsend-Payne K, Vanni F, Posavad CM, Sow SO, Kotloff KL, Chen WH. Safety and immunogenicity of a pentavalent meningococcal conjugate vaccine targeting serogroups A, C, W, Y, and X when co-administered with routine childhood vaccines at ages 9 months and 15 months in Mali: a single-centre, double-blind, randomised, controlled, phase 3, non-inferiority trial. Lancet 2025; 405:1069-1080. [PMID: 40086461 DOI: 10.1016/s0140-6736(25)00046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Invasive meningococcal disease is a devastating public health problem for the African meningitis belt. We assessed the safety and immunogenicity of a pentavalent meningococcal conjugate vaccine targeting serogroups A, C, Y, W, and X (NmCV-5) relative to a licensed, quadrivalent meningococcal conjugate vaccine (MenACWY-TT) when co-administered with routine childhood vaccines at ages 9 months and 15 months. METHODS In this single-centre, double-blind, randomised, controlled, phase 3, non-inferiority trial, children aged 9-11 months who had completed their local infant Expanded Program on Immunization (EPI) vaccines were recruited at the Centre pour le Développement des Vaccins in Bamako, Mali. Participants were randomly assigned (1:1·2) at their 9-month EPI visits to receive a meningococcal vaccine at either their 9-month or 15-month EPI vaccination visits. At each participant's designated EPI visit, they were randomly assigned a second time (2:1) to receive either NmCV-5 or MenACWY-TT. Study vaccines and designated EPI vaccines were prepared and administered by assigned unmasked study personnel. Parents or guardians, investigators, and all other trial staff were masked to meningococcal vaccine assignments. The meningococcal vaccines were co-administered with a measles and rubella vaccine (first dose) and a yellow fever vaccine at age 9 months or with a measles and rubella vaccine (second dose) at age 15 months. The primary endpoint, seroprotective response, was defined as a rabbit complement serum bactericidal antibody titre of 8 or higher, with the estimand, given as the difference in the proportions of participants for each of the five meningococcal serogroups who showed this response 28 days after vaccination, assessed in the per-protocol population. The prespecified non-inferiority margin was -10% for all five serogroups in both age groups. The non-inferiority of the NmCV-5 seroprotective response to serogroup X was evaluated in comparison with the lowest seroprotective response for MenACWY-TT among serogroups A, C, W, or Y. Safety was a secondary endpoint, assessed over 6 months in a modified intention-to-treat population that included all participants who received a randomly assigned meningococcal vaccine. This trial is registered with ClinicalTrials.gov, NCT05093829. FINDINGS Between March 24 and Aug 15, 2022, 1325 participants were enrolled and randomly assigned to receive a meningococcal vaccine at either age 9 months (n=602) or age 15 months (n=723). Meningococcal vaccines were administered to 600 of the 602 participants assigned to the 9-month vaccination group during that same period. Between Sept 27, 2022, and Feb 6, 2023, 600 participants received meningococcal vaccines at their 15-month visits. In both groups, 400 participants received NmCV-5 and 200 participants received MenACWY-TT. The per-protocol population assessed in the non-inferiority analysis included 564 participants vaccinated at age 9 months (373 who received NmCV-5 and 191 who received MenACWY-TT) and 549 participants vaccinated at age 15 months (367 who received NmCV-5 and 182 who received MenACWY-TT). Among the participants in the per-protocol population who received NmCV-5 at age 9 months, the difference in seroprotection prevalence for NmCV-5 relative to MenACWY-TT was 0·0% (95% CI -1·0 to 2·0) for serogroup A, -0·5% (-2·3 to 1·9) for serogroup C, -3·0% (-6·3 to 0·8) for serogroup W, and -3·0% (-5·4 to -0·4) for serogroup Y. For serogroup X, non-inferiority was assessed relative to seroprotection for serogroup W in participants who received MenACWY-TT, with a difference of 2·3% (95% CI 0·3 to 4·7). The difference in the prevalence of seroprotection among the participants who received NmCV-5 at age 15 months relative to participants who received MenACWY-TT at age 15 months was 0·8% (95% CI -0·6 to 3·7) for serogroup A, -0·8% (-3·3 to 2·5) for serogroup C, 0·3% (-1·8 to 3·5) for serogroup W, and 1·4% (-0·6 to 4·8) for serogroup Y. For serogroup X, non-inferiority was assessed in relation to seroprotection for serogroup Y in participants who received MenACWY-TT, with a difference of 1·9% (95% CI 0·0 to 4·4). NmCV-5 responses in both age groups were non-inferior to MenACWY-TT responses for all five serogroups. Six serious adverse events were recorded but none were deemed related to vaccination. INTERPRETATION When compared with a licensed, quadrivalent meningococcal conjugate vaccine, and given alongside other routine vaccines, a single dose of NmCV-5 was safe and elicited a non-inferior immune response in infants aged 9 months and young children aged 15 months. FUNDING US National Institutes of Health, UK Foreign, Commonwealth & Development Office, and Serum Institute of India.
Collapse
Affiliation(s)
| | | | - Milagritos D Tapia
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Clara P Dominguez Islas
- IDCRC Statistical and Data Science Unit, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mark R Alderson
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - William P Hausdorff
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA; Université Libre de Bruxelles, Brussels, Belgium
| | - Lionel Martellet
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Nancy Hosken
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | | | | | | | | | - Christine M Posavad
- IDCRC Laboratory Operations Unit, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Samba O Sow
- Centre pour le Développement des Vaccins-Mali, Bamako, Mali
| | - Karen L Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Taha S, Fantoni G, Hong E, Terrade A, Doucoure O, Deghmane AE, Taha MK. Characterization of Unusual Serogroups of Neisseria meningitidis. Microorganisms 2024; 12:2528. [PMID: 39770731 PMCID: PMC11676732 DOI: 10.3390/microorganisms12122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Most cases of invasive meningococcal disease (IMD) in Europe are caused by isolates of the Neisseria meningitidis serogroups B, C, W, and Y. We aimed to explore cases caused by other unusual serogroups. We retrospectively screened IMD cases in the databases of the National Reference Center for Meningococci and Haemophilus influnezae in France between 2014 and 2023. Age, sex, serogroups, and genetic lineage distributions were analyzed. We also measured complement deposition on the bacterial surface and tested coverage by vaccines against serogroup B. Cases due to isolates of serogroups other than B, C, W, and Y represented 1.6% of all 3610 IMD cases during the study period with 59 cases and a median age of 21.5 years of age. The corresponding isolates were non-groupable (26 cases), serogroup X (21 cases), serogroup E (11 cases), and one isolate belonged to serogroup Z. Only a low proportion (7.4%) belonged to the hyperinvasive genetic lineages. Isolates of serogroup E bound a significantly higher amount of complement on their surface and were mainly detected in patients with terminal complement pathway deficiencies. Isolates of these unusual serogroups were shown to be covered by vaccines licensed against meningococci B. Surveillance of these isolates needs to be enhanced.
Collapse
Affiliation(s)
- Samy Taha
- Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France; (G.F.); (E.H.); (A.T.); (O.D.); (A.-E.D.)
| | - Giulia Fantoni
- Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France; (G.F.); (E.H.); (A.T.); (O.D.); (A.-E.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Eva Hong
- Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France; (G.F.); (E.H.); (A.T.); (O.D.); (A.-E.D.)
| | - Aude Terrade
- Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France; (G.F.); (E.H.); (A.T.); (O.D.); (A.-E.D.)
| | - Oumar Doucoure
- Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France; (G.F.); (E.H.); (A.T.); (O.D.); (A.-E.D.)
| | - Ala-Eddine Deghmane
- Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France; (G.F.); (E.H.); (A.T.); (O.D.); (A.-E.D.)
| | - Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France; (G.F.); (E.H.); (A.T.); (O.D.); (A.-E.D.)
| |
Collapse
|
4
|
Borrow R, Campbell H, Caugant DA, Cherkaoui A, Claus H, Deghmane AE, Dinleyici EC, Harrison LH, Hausdorff WP, Bajanca-Lavado P, Levy C, Mattheus W, Mikula-Pratschke C, Mölling P, Sáfadi MA, Smith V, van Sorge NM, Stefanelli P, Taha MK, Toropainen M, Tzanakaki G, Vázquez J. Global Meningococcal Initiative: Insights on antibiotic resistance, control strategies and advocacy efforts in Western Europe. J Infect 2024; 89:106335. [PMID: 39489181 DOI: 10.1016/j.jinf.2024.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
In Western Europe, many countries have robust and well-established surveillance systems and case reporting mechanisms. IMD incidence across Western Europe is low with a predominance of meningococcal serogroup B (MenB). Case confirmation and antimicrobial susceptibility testing is often standardised in this region, with many countries also having robust vaccination programmes in place. Both MenB and MenACWY vaccines form part of National Immunisation Programmes (NIPs) in most European countries, with Sweden only offering vaccination in special circumstances. Despite these established programmes, there remains a critical need for advocacy efforts in affecting change in diagnosis, testing, and treatment. Recent campaigns, such as the World Meningitis Day digital toolkit, have helped raise awareness and draw attention to meningococcal disease. Awareness around antibiotic resistance has also led to the identification of antibiotic-resistant meningococcal strains, with an increase, albeit small, in these strains noted across the region. Countries such as Spain, Portugal, Germany, Switzerland, and France have either reported strains resistant to penicillin, ciprofloxacin and/or isolates with a reduced susceptibility to third-generation cephalosporins.
Collapse
Affiliation(s)
- Ray Borrow
- UK Health Security Agency, Meningococcal Reference Unit, Manchester, UK.
| | - Helen Campbell
- Immunisation Division, UK Health Security Agency, London, UK
| | | | - Abdessalam Cherkaoui
- National Reference Center on Meningococci, Laboratory of Bacteriology, Geneva University Hospitals, Geneva, Switzerland
| | - Heike Claus
- German National Reference Center for Meningococci and Haemophilus influenzae, Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ala-Eddine Deghmane
- Institut Pasteur, Invasive Bacterial Infections Unit and National Reference Centre for Meningococci, Paris, France
| | | | - Lee H Harrison
- Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, USA
| | - William P Hausdorff
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA and Université Libre de Bruxelles, Brussels, Belgium
| | - Paula Bajanca-Lavado
- National Reference Laboratory for Neisseria meningitidis, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Corinne Levy
- French Paediatric Infectious Disease Group (GPIP), Créteil, France
| | - Wesley Mattheus
- National Reference Centre for Neisseria meningitidis, Sciensano, Brussels, Belgium
| | - Claudia Mikula-Pratschke
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Paula Mölling
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | | | - Nina M van Sorge
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Centre location AMC, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infections Unit and National Reference Centre for Meningococci, Paris, France
| | - Maija Toropainen
- Finnish Institute for Health and Welfare, Department of Public Health, Helsinki, Finland
| | - Georgina Tzanakaki
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | | |
Collapse
|
5
|
Kim Y, Bae S, Yu KS, Lee S, Lee C, Kim J, Her H, Oh J. A randomized study to evaluate the safety and immunogenicity of a pentavalent meningococcal vaccine. NPJ Vaccines 2024; 9:140. [PMID: 39112515 PMCID: PMC11306796 DOI: 10.1038/s41541-024-00935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
A randomized, active-controlled, double-blind, first-in-human, phase 1 study was conducted in healthy Korean adults to evaluate the safety, tolerability, and immunogenicity of EuNmCV-5, a new pentavalent meningococcal vaccine targeting serogroups A, C, W, X, and Y. Sixty participants randomly received a single dose of either EuNmCV-5 or MenACWY-CRM, a quadrivalent vaccine containing serogroups A, C, W, and Y. Safety was assessed through monitoring anaphylactic reactions, adverse events for 28 days, and serious adverse events over 180 days. Immunogenicity was assessed via rabbit complement-dependent serum bactericidal antibody (rSBA) assay. EuNmCV-5 was safe, well-tolerated, and elicited a substantial antibody titer increase. The seroprotection rates exceeded 96.7%, and the seroconversion rates were over 85% for all the targeted serogroups. It showed higher seroconversion rates against serogroups A and C (p = 0.0016 and 0.0237, respectively) and elicited a substantial increase in GMT for all targeted serogroups compared to the MenACWY-CRM.ClinicalTrials.gov identifier: NCT05739292.
Collapse
Affiliation(s)
- Yoonjin Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Sungyeun Bae
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Chankyu Lee
- R&D Division, EuBiologics Co., Ltd, Seoul, Republic of Korea
| | - Jinil Kim
- R&D Division, EuBiologics Co., Ltd, Seoul, Republic of Korea
| | - Howard Her
- R&D Division, EuBiologics Co., Ltd, Seoul, Republic of Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
- Department of Pharmacology, Jeju National University College of Medicine, Jeju, Republic of Korea.
- Clinical Research Institute, Jeju National University Hospital, Jeju, Republic of Korea.
| |
Collapse
|
6
|
Soung J, Laquer V, Merola JF, Moore A, Elmaraghy H, Hu C, Piruzeli MLB, Pierce E, Garcia Gil E, Jarell AD. The Impact of Lebrikizumab on Vaccine-Induced Immune Responses: Results from a Phase 3 Study in Adult Patients with Moderate-to-Severe Atopic Dermatitis. Dermatol Ther (Heidelb) 2024; 14:2181-2193. [PMID: 39009804 PMCID: PMC11333777 DOI: 10.1007/s13555-024-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
INTRODUCTION Lebrikizumab, a high-affinity IgG4 monoclonal antibody that selectively inhibits interleukin-13 with high binding affinity and slow dissociation rate, prevents the formation of the interleukin-4Rα/interleukin-13Rα1 heterodimer receptor signaling complex. Here we report the impact of lebrikizumab on responses to two non-live vaccines in adult patients with moderate-to-severe atopic dermatitis (AD). METHODS ADopt-VA (NCT04626297) was a double-blind, placebo-controlled, parallel-group, 16-week, phase 3 randomized study to assess the impact of lebrikizumab treatment on non-live vaccine immune responses, and efficacy and safety of lebrikizumab compared with placebo. Eligible patients included adults from 18 to 55 years of age with moderate-to-severe chronic AD who were randomly assigned 1:1 to lebrikizumab 250 mg every 2 weeks or placebo and stratified according to disease severity. The primary endpoints were the development of a booster response to tetanus toxoid and a positive antibody response to meningococcal conjugate vaccine (MCV), 4 weeks after administration of the corresponding vaccine. RESULTS At week 16, 73.6% of patients in the lebrikizumab group (n = 78/106) achieved Tdap booster response compared with 73.4% of patients in the placebo group (n = 58/79). MCV vaccine response was observed in 86.9% of patients in the lebrikizumab group (n = 86/99) and 75.0% of patients in the placebo group (n = 60/80). At week 16, IGA 0,1 with ≥ 2-point improvement from baseline was achieved by 40.6% (n = 51/125) of patients treated with lebrikizumab and 18.9% (n = 23/122) of patients who received placebo (p < 0.001). There was a higher proportion of patients achieving EASI 75 at week 16 in the lebrikizumab-treated patients (58.0%, n = 72/125) compared with placebo (32.7%, n = 40/122, p < 0.001). CONCLUSIONS Treatment with lebrikizumab did not impact response to non-live vaccines Tdap and MCV in this study. Lebrikizumab treatment had a significant degree of efficacy compared to placebo across multiple endpoints. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT04626297.
Collapse
Affiliation(s)
- Jennifer Soung
- Southern California Dermatology, 1125 E 17th St., Santa Ana, CA, 92701, USA.
- Harbor University of California Los Angeles, Torrance, CA, USA.
| | - Vivian Laquer
- First OC Dermatology Research, Fountain Valley, CA, USA
| | - Joseph F Merola
- University of Texas Southwestern Medical Center, Austin, TX, USA
| | - Angela Moore
- Baylor University Medical Center, Dallas, TX, USA
- Arlington Research Center, Arlington, TX, USA
| | | | - Chaoran Hu
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
7
|
Bobde S, Sohn WY, Bekkat-Berkani R, Banzhoff A, Cavounidis A, Dinleyici EC, Rodriguez WC, Ninis N. The Diverse Spectrum of Invasive Meningococcal Disease in Pediatric and Adolescent Patients: Narrative Review of Cases and Case Series. Infect Dis Ther 2024; 13:251-271. [PMID: 38285269 PMCID: PMC10904702 DOI: 10.1007/s40121-023-00906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION Invasive meningococcal disease (IMD) is a potentially life-threatening disease caused by Neisseria meningitidis infection. We reviewed case reports of IMD from newborns, infants, children, and adolescents, and described the real-life clinical presentations, diagnoses, treatment paradigms, and clinical outcomes. METHODS PubMed and Embase were searched for IMD case reports on patients aged ≤ 19 years published from January 2011 to March 2023 (search terms "Neisseria meningitidis" or "invasive meningococcal disease", and "infant", "children", "paediatric", pediatric", or "adolescent"). RESULTS We identified 97 publications reporting 184 cases of IMD, including 25 cases with a fatal outcome. Most cases were in adolescents aged 13-19 years (34.2%), followed by children aged 1-5 years (27.6%), children aged 6-12 years (17.1%), infants aged 1-12 months (17.1%), and neonates (3.9%). The most common disease-causing serogroups were W (40.2%), B (31.7%), and C (10.4%). Serogroup W was the most common serogroup in adolescents (17.2%), and serogroup B was the most common in the other age groups, including children aged 1-5 years (11.5%). The most common clinical presentations were meningitis (46.6%) and sepsis (36.8%). CONCLUSIONS IMD continues to pose a threat to the health of children and adolescents. While this review was limited to case reports and is not reflective of global epidemiology, adolescents represented the largest group with IMD. Additionally, nearly half of the patients who died were adolescents, emphasizing the importance of monitoring and vaccination in this age group. Different infecting serogroups were predominant in different age groups, highlighting the usefulness of multivalent vaccines to provide the broadest possible protection against IMD. Overall, this review provides useful insights into real-life clinical presentations, treatment paradigms, diagnoses, and clinical outcomes to help clinicians diagnose, treat, and, ultimately, protect patients from this devastating disease.
Collapse
Affiliation(s)
| | - Woo-Yun Sohn
- GSK, 14200 Shady Grove Rd, Rockville, MD, 20850, USA
| | | | | | | | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Wilfrido Coronell Rodriguez
- Pediatric Infectious Diseases, University of Cartagena, Cartagena, Colombia
- Serena del Mar Hospital, Cartagena, Colombia
| | - Nelly Ninis
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
8
|
Yee WX, Barnes G, Lavender H, Tang CM. Meningococcal factor H-binding protein: implications for disease susceptibility, virulence, and vaccines. Trends Microbiol 2023; 31:805-815. [PMID: 36941192 PMCID: PMC10914675 DOI: 10.1016/j.tim.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Neisseria meningitidis is a human-adapted pathogen that causes meningitis and sepsis worldwide. N. meningitidis factor H-binding protein (fHbp) provides a mechanism for immune evasion by binding human complement factor H (CFH) to protect it from complement-mediated killing. Here, we discuss features of fHbp which enable it to engage human CFH (hCFH), and the regulation of fHbp expression. Studies of host susceptibility and bacterial genome-wide association studies (GWAS) highlight the importance of the interaction between fHbp and CFH and other complement factors, such as CFHR3, on the development of invasive meningococcal disease (IMD). Understanding the basis of fHbp:CFH interactions has also informed the design of next-generation vaccines as fHbp is a protective antigen. Structure-informed refinement of fHbp vaccines will help to combat the threat posed by the meningococcus, and accelerate the elimination of IMD.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Grace Barnes
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
9
|
Haidara FC, Umesi A, Sow SO, Ochoge M, Diallo F, Imam A, Traore Y, Affleck L, Doumbia MF, Daffeh B, Kodio M, Wariri O, Traoré A, Jallow E, Kampmann B, Kapse D, Kulkarni PS, Mallya A, Goel S, Sharma P, Sarma AD, Avalaskar N, LaForce FM, Alderson MR, Naficy A, Lamola S, Tang Y, Martellet L, Hosken N, Simeonidis E, Welsch JA, Tapia MD, Clarke E. Meningococcal ACWYX Conjugate Vaccine in 2-to-29-Year-Olds in Mali and Gambia. N Engl J Med 2023; 388:1942-1955. [PMID: 37224196 PMCID: PMC10627475 DOI: 10.1056/nejmoa2214924] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND An effective, affordable, multivalent meningococcal conjugate vaccine is needed to prevent epidemic meningitis in the African meningitis belt. Data on the safety and immunogenicity of NmCV-5, a pentavalent vaccine targeting the A, C, W, Y, and X serogroups, have been limited. METHODS We conducted a phase 3, noninferiority trial involving healthy 2-to-29-year-olds in Mali and Gambia. Participants were randomly assigned in a 2:1 ratio to receive a single intramuscular dose of NmCV-5 or the quadrivalent vaccine MenACWY-D. Immunogenicity was assessed at day 28. The noninferiority of NmCV-5 to MenACWY-D was assessed on the basis of the difference in the percentage of participants with a seroresponse (defined as prespecified changes in titer; margin, lower limit of the 96% confidence interval [CI] above -10 percentage points) or geometric mean titer (GMT) ratios (margin, lower limit of the 98.98% CI >0.5). Serogroup X responses in the NmCV-5 group were compared with the lowest response among the MenACWY-D serogroups. Safety was also assessed. RESULTS A total of 1800 participants received NmCV-5 or MenACWY-D. In the NmCV-5 group, the percentage of participants with a seroresponse ranged from 70.5% (95% CI, 67.8 to 73.2) for serogroup A to 98.5% (95% CI, 97.6 to 99.2) for serogroup W; the percentage with a serogroup X response was 97.2% (95% CI, 96.0 to 98.1). The overall difference between the two vaccines in seroresponse for the four shared serogroups ranged from 1.2 percentage points (96% CI, -0.3 to 3.1) for serogroup W to 20.5 percentage points (96% CI, 15.4 to 25.6) for serogroup A. The overall GMT ratios for the four shared serogroups ranged from 1.7 (98.98% CI, 1.5 to 1.9) for serogroup A to 2.8 (98.98% CI, 2.3 to 3.5) for serogroup C. The serogroup X component of the NmCV-5 vaccine generated seroresponses and GMTs that met the prespecified noninferiority criteria. The incidence of systemic adverse events was similar in the two groups (11.1% in the NmCV-5 group and 9.2% in the MenACWY-D group). CONCLUSIONS For all four serotypes in common with the MenACWY-D vaccine, the NmCV-5 vaccine elicited immune responses that were noninferior to those elicited by the MenACWY-D vaccine. NmCV-5 also elicited immune responses to serogroup X. No safety concerns were evident. (Funded by the U.K. Foreign, Commonwealth, and Development Office and others; ClinicalTrials.gov number, NCT03964012.).
Collapse
Affiliation(s)
- Fadima C Haidara
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Ama Umesi
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Samba O Sow
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Magnus Ochoge
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Fatoumata Diallo
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Abdulazeez Imam
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Youssouf Traore
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Lucy Affleck
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Moussa F Doumbia
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Bubacarr Daffeh
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Mamoudou Kodio
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Oghenebrume Wariri
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Awa Traoré
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Edrissa Jallow
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Beate Kampmann
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Dhananjay Kapse
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Prasad S Kulkarni
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Asha Mallya
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Sunil Goel
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Pankaj Sharma
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Annamraju D Sarma
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Nikhil Avalaskar
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - F Marc LaForce
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Mark R Alderson
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Abdi Naficy
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Steve Lamola
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Yuxiao Tang
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Lionel Martellet
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Nancy Hosken
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Evangelos Simeonidis
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Jo Anne Welsch
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Milagritos D Tapia
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| | - Ed Clarke
- From Centre pour le Développement des Vaccins du Mali, Bamako (F.C.H., S.O.S., F.D., Y. Traore, M.F.D., M.K., A.T., M.D.T.); Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia (A.U., M.O., A.I., L.A., B.D., O.W., E.J., B.K., E.C.); the Serum Institute of India, Pune (D.K., P.S.K., A.M., S.G., P.S., A.D.S., N.A., F.M.L.); the Center for Vaccine Innovation and Access, PATH (formerly known as the Program for Appropriate Technology in Health), Seattle (M.R.A., A.N., S.L., Y. Tang, L.M., N.H., E.S., J.A.W.); and the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.)
| |
Collapse
|
10
|
Dubey AP, Hazarika RD, Abitbol V, Kolhapure S, Agrawal S. Proceedings of the Expert Consensus Group meeting on meningococcal serogroup B disease burden and prevention in India. Hum Vaccin Immunother 2022; 18:2026712. [PMID: 35239455 PMCID: PMC8993054 DOI: 10.1080/21645515.2022.2026712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
Meningococcal disease is highly transmissible, life-threatening and leaves significant sequelae in survivors. Every year, India, which has a plethora of risk factors for meningococcal disease, reports around 3000 endemic cases. However, the overall disease burden and serogroup distribution are unknown, creating a setting of general disease negligence and unawareness. Vaccination with quadrivalent meningococcal conjugate vaccine A, C, W, and Y is only recommended for high-risk children, and there is no overall guidance for meningococcal serogroup B (MenB) vaccination. MenB vaccines, which recently have been licensed in many countries but not in India, have significantly aided the fight against meningococcal disease. However, these MenB vaccines are not available in India. An Expert Consensus Group meeting was held with leading meningococcal disease experts to better understand the current disease epidemiology, particularly serogroup B, the prevalence gaps, and feasible ways to bridge them. The proceedings are presented in this paper.
Collapse
Affiliation(s)
- Anand P. Dubey
- Pediatrics, ESI-PGIMSR & Model Hospital, New Delhi, India
| | - Rashna Dass Hazarika
- Pediatrics, Nemcare Superspeciality Hospital, Bhangagarh, Guwahati, and RIGPA Childrenʻs Clinic, Guwahati, India
| | | | | | | |
Collapse
|
11
|
Kwambana-Adams BA, Clark SA, Tay N, Agbla S, Chaguza C, Kagucia EW, Borrow R, Heyderman RS. Evaluation of Dried Blood and Cerebrospinal Fluid Filter Paper Spots for Storing and Transporting Clinical Material for the Molecular Diagnosis of Invasive Meningococcal Disease. Int J Mol Sci 2022; 23:ijms231911879. [PMID: 36233182 PMCID: PMC9569512 DOI: 10.3390/ijms231911879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
To improve the storage and transport of clinical specimens for the diagnosis of Neisseria meningitidis (Nm) infections in resource-limited settings, we have evaluated the performance of dried blood spot (DBS) and dried cerebrospinal fluid spot (DCS) assays. DBS and DCS were prepared on filter paper from liquid specimens previously tested for Nm in the United Kingdom. Nm was detected and genogrouped by real-time PCR performed on crude genomic DNA extracted from the DBS (n = 226) and DCS (n = 226) specimens. Targeted whole-genome sequencing was performed on a subset of specimens, DBS (n = 4) and DCS (n = 6). The overall agreement between the analysis of liquid and dried specimens was (94.2%; 95% CI 90.8−96.7) for blood and (96.4%; 95% CI 93.5−98.0) for cerebrospinal fluid. Relative to liquid specimens as the reference, the DBS and DCS assays had sensitivities of (89.1%; 95% CI 82.7−93.8) and (94.2%; 95% CI 88.9−97.5), respectively, and both assays had specificities above 98%. A genogroup was identified by dried specimen analysis for 81.9% of the confirmed meningococcal infections. Near full-length Nm genome sequences (>86%) were obtained for all ten specimens tested which allowed determination of the sequence type, clonal complex, presence of antimicrobial resistance and other meningococcal genotyping. Dried blood and CSF filter spot assays offer a practical alternative to liquid specimens for the molecular and genomic characterisation of invasive meningococcal diseases in low-resource settings.
Collapse
Affiliation(s)
- Brenda A. Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Malawi-Liverpool-Wellcome Clinical Research Programme (MLW), Blantyre P.O. Box 30096, Malawi
- Correspondence: (B.A.K.-A.); (S.A.C.)
| | - Stephen A. Clark
- Meningococcal Reference Unit, United Kingdom Health Security Agency (UKHSA), Manchester M13 9WL, UK
- Correspondence: (B.A.K.-A.); (S.A.C.)
| | - Nicole Tay
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Schadrac Agbla
- Department of Health Data Science, University of Liverpool, Liverpool L69 3GF, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrispin Chaguza
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Eunice W. Kagucia
- Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi P.O. Box 230-8010, Kenya
| | - Ray Borrow
- Meningococcal Reference Unit, United Kingdom Health Security Agency (UKHSA), Manchester M13 9WL, UK
| | - Robert S. Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Katz S, Townsend-Payne K, Louth J, Lee-Jones L, Trotter C, Dan Dano I, Borrow R. Validation and use of a serum bactericidal antibody assay for Neisseria meningitidis serogroup X in a seroprevalence study in Niger, West Africa. Vaccine 2022; 40:6042-6047. [PMID: 36089429 DOI: 10.1016/j.vaccine.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Invasive meningococcal disease (IMD) affects approximately 1.2 million people worldwide annually. Prevention of IMD is mostly provided through vaccination; however, no licensed vaccine is currently available to protect against meningococcal serogroup X associated infection. Limited data are available on the natural immunity to Neisseria meningitidis serogroup X within the African sub-Saharan meningitis belt. The objective of the study was to provide an overview of natural immunity to serogroup X within a community in the African meningitis belt prior to the introduction of a pentavalent conjugate vaccine (NmCV-5). Prior to its introduction, a validated assay to assess vaccine efficacy was also required. This study therefore incorporated two objectives: a seroprevalence study to assess natural immunity in serum samples (n = 377) collected from Niger, West Africa in 2012, and the validation of a serogroup X serum bactericidal antibody (SBA) assay. Seroprevalence data obtained found that natural immunity to N. meningitidis serogroup X were present in 52.3% of study participants. The highest putative protective titres (≥8) to serogroup X were seen in age group 5-14 years-old (73.9%) and lowest in ages < 1 year old (0%). The SBA assay was successfully validated for selectivity/specificity, precision/reproducibility, linearity, and stability. This study demonstrated the suitability of the serogroup X SBA assay in clinical trials for future meningococcal conjugate vaccines containing serogroup X polysaccharides.
Collapse
Affiliation(s)
- Sara Katz
- Vaccine Evaluation Unit, UK Health Security Agency, UK
| | | | | | | | | | | | - Ray Borrow
- Vaccine Evaluation Unit, UK Health Security Agency, UK
| | | |
Collapse
|
13
|
Cross reacting material (CRM197) as a carrier protein for carbohydrate conjugate vaccines targeted at bacterial and fungal pathogens. Int J Biol Macromol 2022; 218:775-798. [PMID: 35872318 DOI: 10.1016/j.ijbiomac.2022.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
This paper gives an overview of conjugate glycovaccines which contain recombinant diphtheria toxoid CRM197 as a carrier protein. A special focus is given to synthetic methods used for preparation of neoglycoconjugates of CRM197 with oligosaccharide epitopes of cell surface carbohydrates of pathogenic bacteria and fungi. Syntheses of commercial vaccines and laboratory specimen on the basis of CRM197 are outlined briefly.
Collapse
|
14
|
Krauss SR, Barbateskovic M, Klingenberg SL, Djurisic S, Petersen SB, Kenfelt M, Kong DZ, Jakobsen JC, Gluud C. Aluminium adjuvants versus placebo or no intervention in vaccine randomised clinical trials: a systematic review with meta-analysis and Trial Sequential Analysis. BMJ Open 2022; 12:e058795. [PMID: 35738649 PMCID: PMC9226993 DOI: 10.1136/bmjopen-2021-058795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/19/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES To assess the benefits and harms of aluminium adjuvants versus placebo or no intervention in randomised clinical trials in relation to human vaccine development. DESIGN Systematic review with meta-analysis and trial sequential analysis assessing the certainty of evidence with Grading of Recommendations Assessment, Development and Evaluation (GRADE). DATA SOURCES We searched CENTRAL, MEDLINE, Embase, LILACS, BIOSIS, Science Citation Index Expanded and Conference Proceedings Citation Index-Science until 29 June 2021, and Chinese databases until September 2021. ELIGIBILITY CRITERIA Randomised clinical trials irrespective of type, status and language of publication, with trial participants of any sex, age, ethnicity, diagnosis, comorbidity and country of residence. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted data and assessed risk of bias with Cochrane's RoB tool 1. Dichotomous data were analysed as risk ratios (RRs) and continuous data as mean differences. We explored both fixed-effect and random-effects models, with 95% CI. Heterogeneity was quantified with I2 statistic. We GRADE assessed the certainty of the evidence. RESULTS We included 102 randomised clinical trials (26 457 participants). Aluminium adjuvants versus placebo or no intervention may have no effect on serious adverse events (RR 1.18, 95% CI 0.97 to 1.43; very low certainty) and on all-cause mortality (RR 1.02, 95% CI 0.74 to 1.41; very low certainty). No trial reported on quality of life. Aluminium adjuvants versus placebo or no intervention may increase adverse events (RR 1.13, 95% CI 1.07 to 1.20; very low certainty). We found no or little evidence of a difference between aluminium adjuvants versus placebo or no intervention when assessing serology with geometric mean titres or concentrations or participants' seroprotection. CONCLUSIONS Based on evidence at very low certainty, we were unable to identify benefits of aluminium adjuvants, which may be associated with adverse events considered non-serious.
Collapse
Affiliation(s)
- Sara Russo Krauss
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marija Barbateskovic
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Klingenberg
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Snezana Djurisic
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sesilje Bondo Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - De Zhao Kong
- The Evidence-Based Medicine Research Center of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Department of Evidence-based Chinese Medicine Research Centre, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Janus C Jakobsen
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Christian Gluud
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Badur S, Khalaf M, Öztürk S, Al-Raddadi R, Amir A, Farahat F, Shibl A. Meningococcal Disease and Immunization Activities in Hajj and Umrah Pilgrimage: a review. Infect Dis Ther 2022; 11:1343-1369. [PMID: 35585384 PMCID: PMC9334481 DOI: 10.1007/s40121-022-00620-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Invasive meningococcal disease (IMD) outbreaks associated with Hajj and Umrah pilgrimage events in the Kingdom of Saudi Arabia (KSA) are well recognized. Past outbreaks have been associated with substantial intercontinental spread of specific Neisseria meningitidis serogroups. The emergence of meningococcal serogroup W (MenW) was a global concern following the 2000/2001 Hajj outbreaks. Broader compulsory meningococcal serogroups A, C, W and Y (MenACWY) immunization strategies for pilgrims were introduced in response to these events and led to substantial declines in IMD cases associated with these mass gatherings. However, there remains potential for future outbreaks either within KSA during the Hajj or in local populations via pilgrim meningococcal transmission on their return. While the annual Hajj involves pilgrims from over 185 countries, two-thirds of these arrive from 13 countries, chiefly from across South-East Asia, the Middle East and North African (MENA) regions; for which we review the relevant epidemiology of IMD and meningococcal carriage. While disease surveillance is limited and data are often lacking, MenB is an important serogroup associated with IMD and carriage in a number of countries. Available literature suggests that most pilgrims receive polysaccharide MenACWY vaccines (which do not impact carriage and onward transmission) and incomplete compliance with visa/entry immunization regulations is reported. Existing preventative approaches for visiting pilgrims require continued oversight. More complete compliance and switching to the conjugated MenACWY vaccine can provide more robust and broader protection for pilgrims. Additional immunization options could also be considered.
Collapse
Affiliation(s)
- Selim Badur
- EM, Vaccines Scientific Affairs and Public Health, GSK, Büyükdere Caddesi No:173, 1, Levent Plaza B Blok, 34394 Istanbul, Turkey
| | - Mansour Khalaf
- Medical & Clinical Emerging Markets, GSK, Istanbul, Turkey
| | | | - Rajaa Al-Raddadi
- Department of Community Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf Amir
- Department of Medicine, International Medical Center, Jeddah, Saudi Arabia
| | - Fayssal Farahat
- Infection Prevention and Control Program, King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Atef Shibl
- College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Findlow J, Borrow R, Stephens DS, Liberator P, Anderson AS, Balmer P, Jodar L. Correlates of protection for meningococcal surface protein vaccines; current approaches for the determination of breadth of coverage. Expert Rev Vaccines 2022; 21:753-769. [PMID: 35469524 DOI: 10.1080/14760584.2022.2064850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The two currently licensed surface protein non capsular meningococcal serogroup B (MenB) vaccines both have the purpose of providing broad coverage against diverse MenB strains. However, the different antigen compositions and approaches used to assess breadth of coverage currently make direct comparisons complex. AREAS COVERED In the second of two companion papers, we comprehensively review the serology and factors influencing breadth of coverage assessments for two currently licensed MenB vaccines. EXPERT OPINION Surface protein MenB vaccines were developed using different approaches, resulting in unique formulations and thus their breadth of coverage. The surface proteins used as vaccine antigens can vary among meningococcal strains due to gene presence/absence, sequence diversity and differences in protein expression. Assessment of the breadth of coverage provided by vaccines is influenced by the ability to induce cross-reactive functional immune responses to sequence diverse protein variants; the characteristics of the circulating invasive strains from specific geographic locations; methodological differences in the immunogenicity assays; differences in human immune responses between individuals; and the maintenance of protective antibody levels over time. Understanding the proportion of meningococcal strains which are covered by the two licensed vaccines is important in understanding protection from disease and public health use.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - David S Stephens
- Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | | | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
17
|
Shende N, Karale A, Marne K, Deshpande H, Belapurkar H, Mallya AD, Dhere RM. Quantitation of endotoxin by gas chromatography-mass spectrometry in Neisseria meningitidis serogroups A, C, W, Y and X during polysaccharide purification used in conjugate vaccine. J Pharm Biomed Anal 2021; 209:114536. [PMID: 34953414 DOI: 10.1016/j.jpba.2021.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Bacterial lipopolysaccharide (LPS) responsible for endotoxin effect induces inflammatory reactions. The endotoxins are difficult to separate from the gram-negative polysaccharide (PS) during polysaccharide purification. The most common method to quantify LPS is the limulus amebocyte lysate (LAL) test which interferes with the agents used during PS purification. The gas chromatography-mass spectrometry (GC-MS) provides a suitable alternative by estimating lipid-A chain anchored 3-hydroxy fatty acid methyl ester (FAME) to estimate LPS however, there are no reports of its application in natural polysaccharides used for vaccine preparation. The transesterification of LPS and meningococcal PS yielded primary target 3-O-acetylated myristic acid which was detected by GC-MS and provided quantitative estimation of endotoxin. The GC-MS method was found in agreement with the LAL values showing lower endotoxin content< 10Eu/µg in meningococcal C and Y serogroup polysaccharides in comparison to higher endotoxin 177-523 Eu/µg in meningococcal A, W and X serogroups. The high endotoxin content in purified polysaccharide was attributed to it being detected in its intermediate stage by GC-MS unlike the LAL test. Thus GC-MS serves as a valuable method for endotoxin monitoring and quantitation in gram-negative meningococcal intermediate and purified PS during vaccine preparation.
Collapse
Affiliation(s)
- Niraj Shende
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Abhijeet Karale
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Kishor Marne
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Hrishikesh Deshpande
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Hrushikesh Belapurkar
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| | - Asha D Mallya
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India.
| | - Rajeev M Dhere
- Research and Development Department, Serum Institute of India Pvt. Ltd, Hadapsar, Pune, Maharashtra 411028, India
| |
Collapse
|
18
|
Soumahoro L, Abitbol V, Vicic N, Bekkat-Berkani R, Safadi MAP. Meningococcal Disease Outbreaks: A Moving Target and a Case for Routine Preventative Vaccination. Infect Dis Ther 2021; 10:1949-1988. [PMID: 34379309 PMCID: PMC8572905 DOI: 10.1007/s40121-021-00499-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 12/04/2022] Open
Abstract
Outbreaks of invasive meningococcal disease (IMD) are unpredictable, can be sudden and have devastating consequences. We conducted a non-systematic review of the literature in PubMed (1997-2020) to assess outbreak response strategies and the impact of vaccine interventions. Since 1997, IMD outbreaks due to serogroups A, B, C, W, Y and X have occurred globally. Reactive emergency mass vaccination campaigns have encompassed single institutions (schools, universities) through to whole sections of the population at regional/national levels (e.g. serogroup B outbreaks in Saguenay-Lac-Saint-Jean region, Canada and New Zealand). Emergency vaccination responses to IMD outbreaks consistently incurred substantial costs (expenditure on vaccine supplies, personnel costs and interruption of other programmes). Impediments included the limited pace of transmission of information to parents/communities/healthcare workers; issues around collection of informed consents; poor vaccine uptake by older adolescents/young adults, often a target age group; issues of reimbursement, particularly in the USA; and difficulties in swift supply of large quantities of vaccines. For serogroup B outbreaks, the need for two doses was a significant issue that contributed substantially to costs, delayed onset of protection and non-compliance with dose 2. Real-world descriptions of outbreak control strategies and the associated challenges systematically show that reactive outbreak management is administratively, logistically and financially costly, and that its impact can be difficult to measure. In view of the unpredictability, fast pace and potential lethality of outbreak-associated IMD, prevention through routine vaccination appears the most effective mitigation tool. Highly effective vaccines covering five of six disease-causing serogroups are available. Preparedness through routine vaccination programmes will enhance the speed and effectiveness of outbreak responses, should they be needed (ready access to vaccines and need for a single booster dose rather than a primary series).
Collapse
Affiliation(s)
| | | | | | | | - Marco A P Safadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
19
|
Alderson MR, Arkwright PD, Bai X, Black S, Borrow R, Caugant DA, Dinleyici EC, Harrison LH, Lucidarme J, McNamara LA, Meiring S, Sáfadi MAP, Shao Z, Stephens DS, Taha MK, Vazquez J, Zhu B, Collaborators G. Surveillance and control of meningococcal disease in the COVID-19 era: A Global Meningococcal Initiative review. J Infect 2021; 84:289-296. [PMID: 34838594 PMCID: PMC8611823 DOI: 10.1016/j.jinf.2021.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022]
Abstract
This review article incorporates information from the 4th Global Meningococcal Initiative summit meeting. Since the introduction of stringent COVID-19 infection control and lockdown measures globally in 2020, there has been an impact on IMD prevalence, surveillance, and vaccination compliance. Incidence rates and associated mortality fell across various regions during 2020. A reduction in vaccine uptake during 2020 remains a concern globally. In addition, several Neisseria meningitidis clonal complexes, particularly CC4821 and CC11, continue to exhibit resistance to antibiotics, with resistance to ciprofloxacin or beta-lactams mainly linked to modifications of gyrA or penA alleles, respectively. Beta-lactamase acquisition was also reported through horizontal gene transfer (blaROB-1) involving other bacterial species. Despite the challenges over the past year, progress has also been made on meningococcal vaccine development, with several pentavalent (serogroups ABCWY and ACWYX) vaccines currently being studied in late-stage clinical trial programmes.
Collapse
Affiliation(s)
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
| | - Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Steve Black
- Center for Global Health, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ener Cagri Dinleyici
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Lee H Harrison
- Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Lucy A McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, CDC, USA
| | - Susan Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marco A P Sáfadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - David S Stephens
- Robert W Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Muhamed-Kheir Taha
- Institut Pasteur, National Reference Centre for Meningococci and Haemophilus influenzae, Paris, France
| | - Julio Vazquez
- National Centre of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Bingqing Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Gmi Collaborators
- GMI Collaborators: Sotharith Bory, Suzana Bukovski, Josefina Carlos, Chien-Shun Chiou, Davor Culic, Trang Dai, Snezana Delic, Medeia Eloshvili, Tímea Erdos, Jelena Galajeva, Prakash Ghimire, Linda Glennie, Setyo Handryastuti, Jung Yeon Heo, Amy Jennison, Hajime Kamiya, Pavla Křížová,Tonnii Sia Loong Loong, Helen Marshall, Konstantin Mironov, Zuridin Nurmatov, Nina Dwi Putri, Senjuti Saha, James Sim, Anna Skoczyńska, Vinny Smith, Usa Thisyakorn, Thanh Phan Van, Lyazzat Yeraliyeva, Saber Yezli
| |
Collapse
|
20
|
Pietri GP, Tontini M, Brogioni B, Oldrini D, Robakiewicz S, Henriques P, Calloni I, Abramova V, Santini L, Malić S, Miklić K, Lisnic B, Bertuzzi S, Unione L, Balducci E, de Ruyck J, Romano MR, Jimenez-Barbero J, Bouckaert J, Jonjic S, Rovis TL, Adamo R. Elucidating the Structural and Minimal Protective Epitope of the Serogroup X Meningococcal Capsular Polysaccharide. Front Mol Biosci 2021; 8:745360. [PMID: 34722634 PMCID: PMC8551719 DOI: 10.3389/fmolb.2021.745360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the considerable progress toward the eradication of meningococcal disease with the introduction of glycoconjugate vaccines, previously unremarkable serogroup X has emerged in recent years, recording several outbreaks throughout the African continent. Different serogroup X polysaccharide-based vaccines have been tested in preclinical trials, establishing the principles for further improvement. To elucidate the antigenic determinants of the MenX capsular polysaccharide, we generated a monoclonal antibody, and its bactericidal nature was confirmed using the rabbit serum bactericidal assay. The antibody was tested by the inhibition enzyme-linked immunosorbent assay and surface plasmon resonance against a set of oligosaccharide fragments of different lengths. The epitope was shown to be contained within five to six α-(1–4) phosphodiester mannosamine repeating units. The molecular interactions between the protective monoclonal antibody and the MenX capsular polysaccharide fragment were further detailed at the atomic level by saturation transfer difference nuclear magnetic resonance (NMR) spectroscopy. The NMR results were used for validation of the in silico docking analysis between the X-ray crystal structure of the antibody (Fab fragment) and the modeled hexamer oligosaccharide. The antibody recognizes the MenX fragment by binding all six repeating units of the oligosaccharide via hydrogen bonding, salt bridges, and hydrophobic interactions. In vivo studies demonstrated that conjugates containing five to six repeating units can produce high functional antibody levels. These results provide an insight into the molecular basis of MenX vaccine-induced protection and highlight the requirements for the epitope-based vaccine design.
Collapse
Affiliation(s)
- Gian Pietro Pietri
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | | - Stefania Robakiewicz
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Ilaria Calloni
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Vera Abramova
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Suzana Malić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karmela Miklić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sara Bertuzzi
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | - Luca Unione
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain
| | | | - Jérôme de Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | | | - Jesus Jimenez-Barbero
- Chemical Glycobiology Lab CIC BioGUNE Technology Park, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, University of the Basque Country, Universidad Del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Villeneuve D'Ascq, France
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
21
|
Knuf M, Tenenbaum T. Meningokokkenimpfstoffe. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kizil MC, Kilic O, Ceyhan M, Iseri Nepesov M, Karbuz A, Kurugol Z, Hacimustafaoglu M, Celebi S, Dinleyici M, Carman KB, Bayhan C, Balliel Y, Sutcu M, Kuyucu N, Kondolot M, Kara SS, Ocal Demir S, Cay U, Gayretli Aydin ZG, Kaya M, Dinleyici EC. Nasopharyngeal Meningococcal Carriage among Children and Adolescents in Turkey in 2018: An Unexpected High Serogroup X Carriage. CHILDREN-BASEL 2021; 8:children8100871. [PMID: 34682136 PMCID: PMC8534370 DOI: 10.3390/children8100871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/03/2022]
Abstract
Meningococcal carriage studies and transmission modeling can predict IMD epidemiology and used to define invasive meningococcal disease (IMD) control strategies. In this multicenter study, we aimed to evaluate the prevalence of nasopharyngeal Neisseria meningitidis (Nm) carriage, serogroup distribution, and related risk factors in Turkey. Nasopharyngeal samples were collected from a total of 1267 children and adolescents and were tested with rt-PCR. Nm carriage was detected in 96 participants (7.5%, 95% CI 6.1–9.0), with the peak age at 13 years (12.5%). Regarding age groups, Nm carriage rate was 7% in the 0–5 age group, was 6.9%in the 6–10 age group, was 7.9% in the 11–14 age group, and was 9.3% in the 15–18 age group. There was no statistically significant difference between the groups (p > 0.05). The serogroup distribution was as follows: 25% MenX, 9.4% MenA, 9.4% MenB, 2.1% MenC, 3.1% MenW, 2.1% for MenY, and 48.9% for non-groupable. The Nm carriage rate was higher in children with previous upper respiratory tract infections and with a high number of household members, whereas it was lower in children with antibiotic use in the last month (p < 0.05 for all). In this study, MenX is the predominant carriage strain. The geographical distribution of Nm strains varies, but serogroup distribution in the same country might change in a matter of years. Adequate surveillance and/or a proper carriage study is paramount for accurate/dynamic serogroup distribution and the impact of the proposed vaccination.
Collapse
Affiliation(s)
- Mahmut Can Kizil
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (M.C.K.); (O.K.); (M.I.N.)
| | - Omer Kilic
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (M.C.K.); (O.K.); (M.I.N.)
| | - Mehmet Ceyhan
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey;
| | - Merve Iseri Nepesov
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; (M.C.K.); (O.K.); (M.I.N.)
| | - Adem Karbuz
- Tascioglu City Hospital Division of Pediatric Infectious Diseases, Istanbul 34000, Turkey;
| | - Zafer Kurugol
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Ege University, Izmir 35000, Turkey;
| | - Mustafa Hacimustafaoglu
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Uludag University, Bursa 16059, Turkey; (M.H.); (S.C.)
| | - Solmaz Celebi
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Uludag University, Bursa 16059, Turkey; (M.H.); (S.C.)
| | - Meltem Dinleyici
- Division of Social Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Kursat Bora Carman
- Division of Pediatric Neurology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Turkey;
| | - Cihangul Bayhan
- Division of Pediatric Infectious Diseases, Gulhane Training and Research Hospital, Ankara 06300, Turkey;
| | - Yasemin Balliel
- Antalya Muratpaşa Çaybaşı No:1 Family Health Center, Antalya 07000, Turkey;
| | - Murat Sutcu
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey;
| | - Necdet Kuyucu
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Mersin University, Mersin 33343, Turkey;
| | - Meda Kondolot
- Division of Social Pediatrics, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey;
| | - Soner Sertan Kara
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey;
| | - Sevliya Ocal Demir
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Istanbul Medeniyet University, Istanbul 34000, Turkey;
| | - Ummuhan Cay
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Zeynep Gokce Gayretli Aydin
- Division of Pediatric Infectious Diseases, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey;
| | | | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Ener Cagri Dinleyici, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Correspondence:
| |
Collapse
|
23
|
Kwambana-Adams BA, Cohen AL, Hampton L, Nhantumbo AA, Heyderman RS, Antonio M, Bita A, Mwenda JM. Toward Establishing Integrated, Comprehensive, and Sustainable Meningitis Surveillance in Africa to Better Inform Vaccination Strategies. J Infect Dis 2021; 224:S299-S306. [PMID: 34469559 PMCID: PMC8409533 DOI: 10.1093/infdis/jiab268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Large populations across sub-Saharan Africa remain at risk of devastating acute bacterial meningitis epidemics and endemic disease. Meningitis surveillance is a cornerstone of disease control, essential for describing temporal changes in disease epidemiology, the rapid detection of outbreaks, guiding vaccine introduction and monitoring vaccine impact. However, meningitis surveillance in most African countries is weak, undermined by parallel surveillance systems with little to no synergy and limited laboratory capacity. African countries need to implement comprehensive meningitis surveillance systems to adapt to the rapidly changing disease trends and vaccine landscapes. The World Health Organization and partners have developed a new investment case to restructure vaccine-preventable disease surveillance. With this new structure, countries will establish comprehensive and sustainable meningitis surveillance systems integrated with greater harmonization between population-based and sentinel surveillance systems. There will also be stronger linkage with existing surveillance systems for vaccine-preventable diseases, such as polio, measles, yellow fever, and rotavirus, as well as with other epidemic-prone diseases to leverage their infrastructure, transport systems, equipment, human resources and funding. The implementation of these concepts is currently being piloted in a few countries in sub-Saharan Africa with support from the World Health Organization and other partners. African countries need to take urgent action to improve synergies and coordination between different surveillance systems to set joint priorities that will inform action to control devastating acute bacterial meningitis effectively.
Collapse
Affiliation(s)
- Brenda Anna Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
- World Health Organization Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
| | - Adam L Cohen
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lee Hampton
- Gavi, The Vaccine Alliance, Global Health Campus, Geneva, Switzerland
| | - Aquino Albino Nhantumbo
- Laboratório Nacional de Referência de Microbiologia, Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Martin Antonio
- World Health Organization Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
- Centre for Epidemic Preparedness and Response, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andre Bita
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Jason Mathiu Mwenda
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| |
Collapse
|
24
|
Silva AMODAD, Santos RCS, Araujo MGS, Silva LHL, Santos DFD. Intramuscular injection safety without aspiration in the ventro-gluteal region during vaccination: randomized clinical trial. Rev Bras Enferm 2021; 75:e20201119. [PMID: 34431926 DOI: 10.1590/0034-7167-2020-1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES to compare adverse events after administrating hepatitis A vaccine intramuscularly in the ventro-gluteal region between techniques with and without aspiration. METHODS randomized double-blind clinical trial, using hepatitis A vaccine (inactivated) in the ventro-gluteal region, with a sample of 74 participants in the intervention group, vaccinated with the slow injection technique without aspiration, and 74 participants in the control group undergoing slow injection with aspiration. Daily assessment of participants was carried out in the 72 hours after vaccination, in order to ascertain local, systemic adverse events, local and contralateral temperatures. RESULTS the occurrence of local and systemic adverse events was homogeneous between the groups in the three days after vaccination (p>0.05). There was no influence of sex, race, pre-existing disease and use of medication. CONCLUSIONS the intramuscular vaccination technique without aspiration in the ventro-gluteal region is safe for adverse events following immunization compared to the conventional technique with aspiration.
Collapse
|
25
|
Bolgiano B, Moran E, Beresford NJ, Gao F, Care R, Desai T, Nordgren IK, Rudd TR, Feavers IM, Bore P, Patni S, Gavade V, Mallya A, Kale S, Sharma P, Goel SK, Gairola S, Hattarki S, Avalaskar N, Sarma AD, LaForce M, Ravenscroft N, Khandke L, Alderson MR, Dhere RM, Pisal SS. Evaluation of Critical Quality Attributes of a Pentavalent (A, C, Y, W, X) Meningococcal Conjugate Vaccine for Global Use. Pathogens 2021; 10:928. [PMID: 34451392 PMCID: PMC8400332 DOI: 10.3390/pathogens10080928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Towards achieving the goal of eliminating epidemic outbreaks of meningococcal disease in the African meningitis belt, a pentavalent glycoconjugate vaccine (NmCV-5) has been developed to protect against Neisseria meningitidis serogroups A, C, Y, W and X. MenA and X polysaccharides are conjugated to tetanus toxoid (TT) while MenC, Y and W polysaccharides are conjugated to recombinant cross reactive material 197 (rCRM197), a non-toxic genetic variant of diphtheria toxin. This study describes quality control testing performed by the manufacturer, Serum Institute of India Private Limited (SIIPL), and the independent control laboratory of the U.K. (NIBSC) on seven clinical lots of the vaccine to ensure its potency, purity, safety and consistency of its manufacturing. In addition to monitoring upstream-manufactured components, samples of drug substance, final drug product and stability samples were evaluated. This paper focuses on the comparison of the vaccine's critical quality attributes and reviews key indicators of its stability and immunogenicity. Comparable results were obtained by the two laboratories demonstrating sufficient levels of polysaccharide O-acetylation, consistency in size of the bulk conjugate molecules, integrity of the conjugated saccharides in the drug substance and drug product, and acceptable endotoxin content in the final drug product. The freeze-dried vaccine in 5-dose vials was stable based on molecular sizing and free saccharide assays. Lot-to-lot manufacturing consistency was also demonstrated in preclinical studies for polysaccharide-specific IgG and complement-dependent serum bactericidal activity for each serogroup. This study demonstrates the high quality and stability of NmCV-5, which is now undergoing Phase 3 clinical trials in Africa and India.
Collapse
Affiliation(s)
- Barbara Bolgiano
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Eilís Moran
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Nicola J. Beresford
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Fang Gao
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Rory Care
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Trusha Desai
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Ida Karin Nordgren
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Timothy R. Rudd
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Ian M. Feavers
- National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK; (E.M.); (N.J.B.); (F.G.); (R.C.); (T.D.); (I.K.N.); (T.R.R.); (I.M.F.)
| | - Prashant Bore
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sushil Patni
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Vinay Gavade
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Asha Mallya
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sameer Kale
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Pankaj Sharma
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sunil K. Goel
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sunil Gairola
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Suhas Hattarki
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Nikhil Avalaskar
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Annamraju D. Sarma
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Marc LaForce
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa;
| | - Lakshmi Khandke
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (L.K.); (M.R.A.)
| | - Mark R. Alderson
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (L.K.); (M.R.A.)
| | - Rajeev M. Dhere
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| | - Sambhaji S. Pisal
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune 411028, India; (P.B.); (S.P.); (V.G.); (A.M.); (S.K.); (P.S.); (S.K.G.); (S.G.); (S.H.); (N.A.); (A.D.S.); (M.L.); (R.M.D.); (S.S.P.)
| |
Collapse
|
26
|
Knowledge, beliefs and practices regarding prevention of bacterial meningitis in Burkina Faso, 5 years after MenAfriVac mass campaigns. PLoS One 2021; 16:e0253263. [PMID: 34260604 PMCID: PMC8279338 DOI: 10.1371/journal.pone.0253263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background To adapt communications concerning vaccine prevention, we studied knowledge, beliefs and practices around meningitis risk and prevention in a young adult population in Burkina Faso in 2016, 5 years after the MenAfriVac® mass campaign and one year before the vaccine’s inclusion in the infant immunization schedule. Methods In a representative sample of the population aged 15 to 33 years (N = 220) in Bobo-Dioulasso, Burkina Faso, study nurses administered a standardized paper questionnaire consisting of predominantly open questions, collecting information on meningitis risk factors and prevention, and on exposure to dry air and kitchen fire smoke. We identified themes and analyzed their frequency. We created a meningitis knowledge score (range 0 to 4) based on pre-defined best responses and analyzed the determinants of knowledge score levels ≥2 (basic score) and ≥3 (high score) using multivariate logistic regression. Results Biomedically supported facts and good practices were known by the majority of participants (eg vaccine prevention, 84.5%). Younger women aged 15–20 years had a higher frequency of low scores <2 (17.0%) compared to older women aged 21–33 years (6.3%) and men of both age groups (3.8%). Junior secondary School attendance explained the differences between the two groups of women, the gender gap for the older, but not the young women, and explained score differences among young women. Local understandings and practices for risk and prevention were commonly reported and used (risk from unripe mango consumption and prevention through nasal application of shea nut butter). Discussion This study shows a gender gap in knowledge of meningitis risk and prevention, largely due to education-level inequalities. Women below 21 years had particularly low levels of knowledge and may need interventions outside schools and perinatal care. Our study suggests a strong adherence to local understandings of and practices around meningitis risk and prevention, which should be taken into account by vaccination promotion.
Collapse
|
27
|
Tapia MD, Sow SO, Naficy A, Diallo F, Haidara FC, Chaudhari A, Martellet L, Traore A, Townsend-Payne K, Borrow R, Hosken N, Smolenov I, Pisal SS, LaForce FM, Dhere RM, Kapse D, Tang Y, Alderson MR, Kulkarni PS. Meningococcal Serogroup ACWYX Conjugate Vaccine in Malian Toddlers. N Engl J Med 2021; 384:2115-2123. [PMID: 34077644 DOI: 10.1056/nejmoa2013615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neisseria meningitidis serogroups A, B, C, W, X, and Y cause outbreaks of meningococcal disease. Quadrivalent conjugate vaccines targeting the A, C, W, and Y serogroups are available. A pentavalent vaccine that also includes serogroup X (NmCV-5) is under development. METHODS We conducted a phase 2, observer-blinded, randomized, controlled trial involving Malian children 12 to 16 months of age. Participants were assigned in a 2:2:1 ratio to receive nonadjuvanted NmCV-5, alum-adjuvanted NmCV-5, or the quadrivalent vaccine MenACWY-D, administered intramuscularly in two doses 12 weeks apart. Participants were followed for safety for 169 days. Immunogenicity was assessed with an assay for serum bactericidal antibody (SBA) with rabbit complement on days 0, 28, 84, and 112. RESULTS A total of 376 participants underwent randomization, with 150 assigned to each NmCV-5 group and 76 to the MenACWY-D group; 362 participants received both doses of vaccine. A total of 1% of the participants in the nonadjuvanted NmCV-5 group, 1% of those in the adjuvanted NmCV-5 group, and 4% of those in the MenACWY-D group reported local solicited adverse events; 6%, 5%, and 7% of the participants, respectively, reported systemic solicited adverse events. An SBA titer of at least 128 was seen in 91 to 100% (for all five serotypes) of the participants in the NmCV-5 groups and in 36 to 99% (excluding serogroup X) of those in the MenACWY-D group at day 84 (before the second dose); the same threshold was met in 99 to 100% (for all five serotypes) of the participants in the NmCV-5 groups and in 92 to 100% (excluding serogroup X) of those in the MenACWY-D group at day 112. Immune responses to the nonadjuvanted and adjuvanted NmCV-5 formulations were similar. CONCLUSIONS No safety concerns were identified with two doses of NmCV-5. A single dose of NmCV-5 elicited immune responses that were similar to those observed with two doses of MenACWY-D. Adjuvanted NmCV-5 provided no discernible benefit over nonadjuvanted NmCV-5. (Funded by the U.K. Foreign, Commonwealth, and Development Office; ClinicalTrials.gov number, NCT03295318.).
Collapse
Affiliation(s)
- Milagritos D Tapia
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Samba O Sow
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Abdi Naficy
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Fatoumata Diallo
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Fadima C Haidara
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Amol Chaudhari
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Lionel Martellet
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Awa Traore
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Kelly Townsend-Payne
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Ray Borrow
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Nancy Hosken
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Igor Smolenov
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Sambhaji S Pisal
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - F Marc LaForce
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Rajeev M Dhere
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Dhananjay Kapse
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Yuxiao Tang
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Mark R Alderson
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| | - Prasad S Kulkarni
- From Centre pour le Développement des Vaccins du Mali, Bamako (M.D.T., S.O.S., F.D., F.C.H., A.T.); the Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore (M.D.T.); PATH, Seattle (A.N., L.M., N.H., I.S., Y.T., M.R.A.); the Serum Institute of India, Pune (A.C., S.S.P., F.M.L., R.M.D., D.K., P.S.K.); and the Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom (K.T.-P., R.B.)
| |
Collapse
|
28
|
Kaboré L, Galetto-Lacour A, Sidibé AR, Gervaix A. Pneumococcal vaccine implementation in the African meningitis belt countries: the emerging need for alternative strategies. Expert Rev Vaccines 2021; 20:679-689. [PMID: 33857394 DOI: 10.1080/14760584.2021.1917391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Besides meningococcal disease, the African meningitis belt (AMB) region is also affected by pneumococcal disease. Most AMB countries have introduced pneumococcal conjugate vaccines (PCV) following a schedule of three primary doses without a booster or a catch-up campaign. PCV is expected to help control pneumococcal disease through both direct and indirect effects. Whether and how fast this will be achieved greatly depends on implementation strategies. Pre-PCV data from the AMB indicate high carriage rates of the pneumococcus, not only in infants but also in older children, and a risk of disease and death that spans lifetime. Post-PCV data highlight the protection of vaccinated children, but pneumococcal transmission remains important, resulting in a lack of indirect protection for unvaccinated persons.Areas covered: A non-systematic literature review focused on AMB countries. Relevant search terms were used in PubMed, and selected studies before and after PCV introduction were summarized narratively to appraise the suitability of current PCV programmatic strategies.Expert opinion: The current implementation strategy of PCV in the AMB appears suboptimal regarding the generation of indirect protection. We propose and discuss alternative programmatic strategies, including the implementation of broader age group mass campaigns, to accelerate disease control in this high transmission setting.
Collapse
Affiliation(s)
- Lassané Kaboré
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Annick R Sidibé
- Department of Prevention by Immunizations, Ministry of Health, Ouagadougou, Burkina Faso
| | - Alain Gervaix
- Department of Paediatrics, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Tzeng YL, Stephens DS. A Narrative Review of the W, X, Y, E, and NG of Meningococcal Disease: Emerging Capsular Groups, Pathotypes, and Global Control. Microorganisms 2021; 9:microorganisms9030519. [PMID: 33802567 PMCID: PMC7999845 DOI: 10.3390/microorganisms9030519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neisseria meningitidis, carried in the human nasopharynx asymptomatically by ~10% of the population, remains a leading cause of meningitis and rapidly fatal sepsis, usually in otherwise healthy individuals. The epidemiology of invasive meningococcal disease (IMD) varies substantially by geography and over time and is now influenced by meningococcal vaccines and in 2020–2021 by COVID-19 pandemic containment measures. While 12 capsular groups, defined by capsular polysaccharide structures, can be expressed by N. meningitidis, groups A, B, and C historically caused most IMD. However, the use of mono-, bi-, and quadrivalent-polysaccharide-conjugate vaccines, the introduction of protein-based vaccines for group B, natural disease fluctuations, new drugs (e.g., eculizumab) that increase meningococcal susceptibility, changing transmission dynamics and meningococcal evolution are impacting the incidence of the capsular groups causing IMD. While the ability to spread and cause illness vary considerably, capsular groups W, X, and Y now cause significant IMD. In addition, group E and nongroupable meningococci have appeared as a cause of invasive disease, and a nongroupable N. meningitidis pathotype of the hypervirulent clonal complex 11 is causing sexually transmitted urethritis cases and outbreaks. Carriage and IMD of the previously “minor” N. meningitidis are reviewed and the need for polyvalent meningococcal vaccines emphasized.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +404-727-8357
| |
Collapse
|
30
|
Diallo K, Feteh VF, Ibe L, Antonio M, Caugant DA, du Plessis M, Deghmane AE, Feavers IM, Fernandez K, Fox LM, Rodrigues CMC, Ronveaux O, Taha MK, Wang X, Brueggemann AB, Maiden MCJ, Harrison OB. Molecular diagnostic assays for the detection of common bacterial meningitis pathogens: A narrative review. EBioMedicine 2021; 65:103274. [PMID: 33721818 PMCID: PMC7957090 DOI: 10.1016/j.ebiom.2021.103274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Bacterial meningitis is a major global cause of morbidity and mortality. Rapid identification of the aetiological agent of meningitis is essential for clinical and public health management and disease prevention given the wide range of pathogens that cause the clinical syndrome and the availability of vaccines that protect against some, but not all, of these. Since microbiological culture is complex, slow, and often impacted by prior antimicrobial treatment of the patient, molecular diagnostic assays have been developed for bacterial detection. Distinguishing between meningitis caused by Neisseria meningitidis (meningococcus), Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and Streptococcus agalactiae and identifying their polysaccharide capsules is especially important. Here, we review methods used in the identification of these bacteria, providing an up-to-date account of available assays, allowing clinicians and diagnostic laboratories to make informed decisions about which assays to use.
Collapse
Affiliation(s)
- Kanny Diallo
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Cote d'Ivoire
| | - Vitalis F Feteh
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Lilian Ibe
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Martin Antonio
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, Gambia; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Dominique A Caugant
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo N-0213, Norway
| | - Mignon du Plessis
- A division of the National Health Laboratory Service (NHLS), National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
| | | | - Ian M Feavers
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom
| | | | - LeAnne M Fox
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Division of Bacterial Diseases, Meningitis and Vaccine Preventable Diseases Branch, United States
| | - Charlene M C Rodrigues
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom; Department of Paediatric Infectious Diseases, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | | | | | - Xin Wang
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Division of Bacterial Diseases, Meningitis and Vaccine Preventable Diseases Branch, United States
| | - Angela B Brueggemann
- Nuffield Department of Population Health, Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom
| | - Odile B Harrison
- Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3SY, United Kingdom.
| |
Collapse
|
31
|
Alasmari A, Houghton J, Greenwood B, Heymann D, Edwards P, Larson H, Assiri A, Ben-Rached F, Pain A, Behrens R, Bustinduy A. Meningococcal carriage among Hajj pilgrims, risk factors for carriage and records of vaccination: a study of pilgrims to Mecca. Trop Med Int Health 2021; 26:453-461. [PMID: 33415766 PMCID: PMC8049039 DOI: 10.1111/tmi.13546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective The Saudi government requires that all pilgrims receive a quadrivalent meningococcal vaccine at least 10 days before the Hajj. We conducted a study to determine the uptake of meningococcal vaccine and antibiotic use. We also investigated risk factors of meningococcal carriage and carriage of Neisseria meningitidis pathogenic serogroups A, C, W and Y. Methods A cross‐sectional oropharyngeal carriage survey was conducted in 2973 Hajj pilgrims in September 2017. A real‐time polymerase chain reaction (rt‐PCR) assay was used to identify N. meningitidis from the oropharyngeal swabs. A questionnaire investigated potential risk factors for carriage of N. meningitidis. Results Two thousand two hundred forty nine oropharyngeal swabs were obtained. The overall prevalence of carriage of N. meningitidis was 4.6% (95% CI: 3.4%–6%). Carriage of pathogenic serogroups was not associated significantly with any of the meningococcal risk factors evaluated. 77% of pilgrims were vaccinated but 22.58 % said they were carrying unofficial vaccination cards. Conclusion Carriage of serogroups A, C, W and Y was not significantly associated with any of the risk factors investigated. Almost a quarter of pilgrims were unlikely to have been vaccinated, highlighting a need to strengthen compliance with the current policy of vaccination to prevent meningococcal disease outbreaks during and after the Hajj.
Collapse
Affiliation(s)
- Abrar Alasmari
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Joanna Houghton
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Brian Greenwood
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - David Heymann
- Chatham House Centre on Global Health Security, London, UK.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Phil Edwards
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Heidi Larson
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.,Department of Global Health, Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | | | - Fathia Ben-Rached
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Saudi Arabia
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Saudi Arabia.,Global Institution for Collaborative Research and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ron Behrens
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Amaya Bustinduy
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
32
|
Rius N, Lung M, Fernández-San José C, Iglesias T, Esperalba J, Moraga-Llop FA, Soler-Palacín P. Serogroup C invasive meningococcal disease in the post-vaccine era and vaccine failures. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.anpede.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
33
|
Mbaeyi S, Sampo E, Dinanibè K, Yaméogo I, Congo-Ouédraogo M, Tamboura M, Sawadogo G, Ouattara K, Sanou M, Kiemtoré T, Dioma G, Sanon B, Somlaré H, Kyetega A, Ba AK, Aké F, Tarbangdo F, Aboua FA, Donnou Y, Kamaté I, Patel JC, Schmink S, Spiller MW, Topaz N, Novak R, Wang X, Bicaba B, Sangaré L, Ouédraogo-Traoré R, Kristiansen PA. Meningococcal carriage 7 years after introduction of a serogroup A meningococcal conjugate vaccine in Burkina Faso: results from four cross-sectional carriage surveys. THE LANCET. INFECTIOUS DISEASES 2020; 20:1418-1425. [PMID: 32653071 PMCID: PMC7689286 DOI: 10.1016/s1473-3099(20)30239-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/05/2020] [Accepted: 03/12/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND In the first 2 years after a nationwide mass vaccination campaign of 1-29-year-olds with a meningococcal serogroup A conjugate vaccine (MenAfriVac) in Burkina Faso, carriage and disease due to serogroup A Neisseria meningitidis were nearly eliminated. We aimed to assess the long-term effect of MenAfriVac vaccination on meningococcal carriage and herd immunity. METHODS We did four cross-sectional studies of meningococcal carriage in people aged 9 months to 36 years in two districts of Burkina Faso between May 2, 2016, and Nov 6, 2017. Demographic information and oropharyngeal swabs were collected. Meningococcal isolates were characterised using whole-genome sequencing. FINDINGS Of 14 295 eligible people, 13 758 consented and had specimens collected and laboratory results available, 1035 of whom were meningococcal carriers. Accounting for the complex survey design, prevalence of meningococcal carriage was 7·60% (95% CI 5·67-9·52), including 6·98% (4·86-9·11) non-groupable, 0·48% (0·01-0·95) serogroup W, 0·10% (0·01-0·18) serogroup C, 0·03% (0·00-0·80) serogroup E, and 0% serogroup A. Prevalence ranged from 5·44% (95% CI 4·18-6·69) to 9·14% (6·01-12·27) by district, from 4·67% (2·71-6·64) to 11·17% (6·75-15·59) by round, and from 3·39% (0·00-8·30) to 10·43% (8·08-12·79) by age group. By clonal complex, 822 (88%) of 934 non-groupable isolates were CC192, all 83 (100%) serogroup W isolates were CC11, and nine (69%) of 13 serogroup C isolates were CC10217. INTERPRETATION Our results show the continued effect of MenAfriVac on serogroup A meningococcal carriage, for at least 7 years, among vaccinated and unvaccinated cohorts. Carriage prevalence of epidemic-prone serogroup C CC10217 and serogroup W CC11 was low. Continued monitoring of N meningitidis carriage will be crucial to further assess the effect of MenAfriVac and inform the vaccination strategy for future multivalent meningococcal vaccines. FUNDING Bill & Melinda Gates Foundation and Gavi, the Vaccine Alliance.
Collapse
Affiliation(s)
- Sarah Mbaeyi
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | - Kambiré Dinanibè
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Issaka Yaméogo
- Direction de la Protection de la Santé de la Population, Burkina Faso Ministry of Health, Ouagadougou, Burkina Faso
| | | | - Mamadou Tamboura
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Guetawendé Sawadogo
- Direction de la Protection de la Santé de la Population, Burkina Faso Ministry of Health, Ouagadougou, Burkina Faso
| | - Kalifa Ouattara
- Centre Hospitalier Universitaire de Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Mahamadou Sanou
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Tanga Kiemtoré
- Direction de la Protection de la Santé de la Population, Burkina Faso Ministry of Health, Ouagadougou, Burkina Faso
| | - Gerard Dioma
- Centre Hospitalier Universitaire de Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Barnabé Sanon
- Centre Hospitalier Régional de Kaya, Kaya, Burkina Faso
| | - Hermann Somlaré
- Centre Hospitalier Universitaire de Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | - Augustin Kyetega
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - Absatou Ky Ba
- Centre Hospitalier Universitaire du Bogodogo, Ouagadougou, Burkina Faso
| | - Flavien Aké
- Davycas International, Gounghin Petit-Paris, Ouagadougou, Burkina Faso
| | - Félix Tarbangdo
- Davycas International, Gounghin Petit-Paris, Ouagadougou, Burkina Faso
| | | | - Yvette Donnou
- Davycas International, Gounghin Petit-Paris, Ouagadougou, Burkina Faso
| | - Idrissa Kamaté
- World Health Organization, Intercountry Support Team, Ouagadougou, Burkina Faso
| | - Jaymin C Patel
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Susanna Schmink
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael W Spiller
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nadav Topaz
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ryan Novak
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xin Wang
- National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brice Bicaba
- Direction de la Protection de la Santé de la Population, Burkina Faso Ministry of Health, Ouagadougou, Burkina Faso
| | - Lassana Sangaré
- Centre Hospitalier Universitaire de Yalgado Ouédraogo, Ouagadougou, Burkina Faso
| | | | | |
Collapse
|
34
|
Enfermedad meningocócica invasiva por serogrupo C en la era posvacunal y fallos vacunales. An Pediatr (Barc) 2020; 93:396-402. [DOI: 10.1016/j.anpedi.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/18/2020] [Accepted: 02/12/2020] [Indexed: 10/23/2022] Open
|
35
|
Vaccines against Meningococcal Diseases. Microorganisms 2020; 8:microorganisms8101521. [PMID: 33022961 PMCID: PMC7601370 DOI: 10.3390/microorganisms8101521] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/12/2023] Open
Abstract
Neisseria meningitidis is the main cause of meningitis and sepsis, potentially life-threatening conditions. Thanks to advancements in vaccine development, vaccines are now available for five out of six meningococcal disease-causing serogroups (A, B, C, W, and Y). Vaccination programs with monovalent meningococcal serogroup C (MenC) conjugate vaccines in Europe have successfully decreased MenC disease and carriage. The use of a monovalent MenA conjugate vaccine in the African meningitis belt has led to a near elimination of MenA disease. Due to the emergence of non-vaccine serogroups, recommendations have gradually shifted, in many countries, from monovalent conjugate vaccines to quadrivalent MenACWY conjugate vaccines to provide broader protection. Recent real-world effectiveness of broad-coverage, protein-based MenB vaccines has been reassuring. Vaccines are also used to control meningococcal outbreaks. Despite major improvements, meningococcal disease remains a global public health concern. Further research into changing epidemiology is needed. Ongoing efforts are being made to develop next-generation, pentavalent vaccines including a MenACWYX conjugate vaccine and a MenACWY conjugate vaccine combined with MenB, which are expected to contribute to the global control of meningitis.
Collapse
|
36
|
Mbaeyi SA, Bozio CH, Duffy J, Rubin LG, Hariri S, Stephens DS, MacNeil JR. Meningococcal Vaccination: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020. MMWR Recomm Rep 2020; 69:1-41. [PMID: 33417592 PMCID: PMC7527029 DOI: 10.15585/mmwr.rr6909a1] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This report compiles and summarizes all recommendations from CDC's Advisory Committee on Immunization Practices (ACIP) for use of meningococcal vaccines in the United States. As a comprehensive summary and update of previously published recommendations, it replaces all previously published reports and policy notes. This report also contains new recommendations for administration of booster doses of serogroup B meningococcal (MenB) vaccine for persons at increased risk for serogroup B meningococcal disease. These guidelines will be updated as needed on the basis of availability of new data or licensure of new meningococcal vaccines. ACIP recommends routine vaccination with a quadrivalent meningococcal conjugate vaccine (MenACWY) for adolescents aged 11 or 12 years, with a booster dose at age 16 years. ACIP also recommends routine vaccination with MenACWY for persons aged ≥2 months at increased risk for meningococcal disease caused by serogroups A, C, W, or Y, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor (e.g., eculizumab [Soliris] or ravulizumab [Ultomiris]); persons who have anatomic or functional asplenia; persons with human immunodeficiency virus infection; microbiologists routinely exposed to isolates of Neisseria meningitidis; persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroups A, C, W, or Y; persons who travel to or live in areas in which meningococcal disease is hyperendemic or epidemic; unvaccinated or incompletely vaccinated first-year college students living in residence halls; and military recruits. ACIP recommends MenACWY booster doses for previously vaccinated persons who become or remain at increased risk.In addition, ACIP recommends routine use of MenB vaccine series among persons aged ≥10 years who are at increased risk for serogroup B meningococcal disease, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor; persons who have anatomic or functional asplenia; microbiologists who are routinely exposed to isolates of N. meningitidis; and persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroup B. ACIP recommends MenB booster doses for previously vaccinated persons who become or remain at increased risk. In addition, ACIP recommends a MenB series for adolescents and young adults aged 16-23 years on the basis of shared clinical decision-making to provide short-term protection against disease caused by most strains of serogroup B N. meningitidis.
Collapse
|
37
|
Obaro S. Has meningococcal serogroup A disease been eradicated? THE LANCET. INFECTIOUS DISEASES 2020; 20:1354-1355. [PMID: 32653072 DOI: 10.1016/s1473-3099(20)30436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/13/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen Obaro
- Division of Pediatric Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
38
|
Parikh SR, Campbell H, Bettinger JA, Harrison LH, Marshall HS, Martinon-Torres F, Safadi MA, Shao Z, Zhu B, von Gottberg A, Borrow R, Ramsay ME, Ladhani SN. The everchanging epidemiology of meningococcal disease worldwide and the potential for prevention through vaccination. J Infect 2020; 81:483-498. [PMID: 32504737 DOI: 10.1016/j.jinf.2020.05.079] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis and septicaemia worldwide and is associated with high case fatality rates and serious life-long complications among survivors. Twelve serogroups are recognised, of which six (A, B, C, W, X and Y) are responsible for nearly all cases of invasive meningococcal disease (IMD). The incidence of IMD and responsible serogroups vary widely both geographically and over time. For the first time, effective vaccines against all these serogroups are available or nearing licensure. Over the past two decades, IMD incidence has been declining across most parts of the world through a combination of successful meningococcal immunisation programmes and secular trends. The introduction of meningococcal C conjugate vaccines in the early 2000s was associated with rapid declines in meningococcal C disease, whilst implementation of a meningococcal A conjugate vaccine across the African meningitis belt led to near-elimination of meningococcal A disease. Consequently, other serogroups have become more important causes of IMD. In particular, the emergence of a hypervirulent meningococcal group W clone has led many countries to shift from monovalent meningococcal C to quadrivalent ACWY conjugate vaccines in their national immunisation programmes. Additionally, the recent licensure of two protein-based, broad-spectrum meningococcal B vaccines finally provides protection against the most common group responsible for childhood IMD across Europe and Australia. This review describes global IMD epidemiology across each continent and trends over time, the serogroups responsible for IMD, the impact of meningococcal immunisation programmes and future needs to eliminate this devastating disease.
Collapse
Affiliation(s)
- Sydel R Parikh
- Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London, UK
| | - Helen Campbell
- Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London, UK
| | - Julie A Bettinger
- Vaccine Evaluation Center, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Helen S Marshall
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide and Women's and Children's Health Network, Adelaide, South Australia
| | - Federico Martinon-Torres
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Hospital Clínico Universitario and Universidad de Santiago de Compostela (USC), Galicia, Spain
| | - Marco Aurelio Safadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bingqing Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Mary E Ramsay
- Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London, UK
| | - Shamez N Ladhani
- Immunisation and Countermeasures Division, Public Health England, 61 Colindale Avenue, London, UK; Paediatric Infectious Diseases Research Group (PIDRG), St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
39
|
Moriconi A, Onnis V, Aggravi M, Parlati C, Bufali S, Cianetti S, Egan W, Khan A, Fragapane E, Meppen M, Paludi M, Berti F. A new strategy for preparing a tailored meningococcal ACWY conjugate vaccine for clinical testing. Vaccine 2020; 38:3930-3933. [PMID: 32299720 DOI: 10.1016/j.vaccine.2020.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/13/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Amin Khan
- Technical R&D, GSK Vaccines, Siena, Italy
| | | | | | | | | |
Collapse
|
40
|
Sherman AC, Stephens DS. Serogroup A meningococcal conjugate vaccines: building sustainable and equitable vaccine strategies. Expert Rev Vaccines 2020; 19:455-463. [PMID: 32321332 DOI: 10.1080/14760584.2020.1760097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION For well over 100 years, meningococcal disease due to serogroup A Neisseria meningitidis (MenA) has caused severe epidemics globally, especially in the meningitis belt of sub-Saharan Africa. AREAS COVERED The article reviews the background and identification of MenA, the global and molecular epidemiology of MenA, and the outbreaks of MenA in the African meningitis belt. The implementation (2010) of an equitable MenA polysaccharide-protein conjugate vaccine (PsA-TT, MenAfriVac) and the strategy to control MenA in sub-Saharan Africa is described. The development of a novel multi-serogroup meningococcal conjugate vaccine (NmCV-5) that includes serogroup A is highlighted. The PubMed database (1996-2019) was searched for studies relating to MenA outbreaks, vaccine, and immunization strategies; and the Neisseria PubMLST database of 1755 MenA isolates (1915-2019) was reviewed. EXPERT OPINION Using strategies from the successful MenAfriVac campaign, expanded collaborative partnerships were built to develop a novel, low-cost multivalent component meningococcal vaccine that includes MenA. This vaccine promises greater sustainability and is directed toward global control of meningococcal disease in the African meningitidis belt and beyond. The new WHO global roadmap addresses the continuing problem of bacterial meningitis, including meningococcal vaccine prevention, and provides a framework for further reducing the devastation of MenA.
Collapse
Affiliation(s)
- Amy C Sherman
- Department of Medicine, Emory University School of Medicine , Atlanta, Georgia, USA
| | - David S Stephens
- Division of Infectious Diseases, Department of Medicine Emory University School of Medicine , Atlanta, Georgia, USA
| |
Collapse
|
41
|
Brynildsrud OB, Eldholm V, Rakhimova A, Kristiansen PA, Caugant DA. Gauging the epidemic potential of a widely circulating non-invasive meningococcal strain in Africa. Microb Genom 2020; 5. [PMID: 31454306 PMCID: PMC6755499 DOI: 10.1099/mgen.0.000290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neisseria meningitidis colonizes the human oropharynx and transmits mainly via asymptomatic carriage. Actual outbreaks of meningococcal meningitis are comparatively rare and occur when susceptible populations are exposed to hypervirulent clones, genetically distinct from the main carriage isolates. However, carriage isolates can evolve into pathogens through a limited number of recombination events. The present study examines the potential for the sequence type (ST)-192, by far the dominant clone recovered in recent meningococcal carriage studies in sub-Saharan Africa, to evolve into a pathogen. We used whole-genome sequencing on a collection of 478 meningococcal isolates sampled from 1- to 29- year-old healthy individuals in Arba Minch, southern Ethiopia in 2014. The ST-192 clone was identified in nearly 60 % of the carriers. Using complementary short- and long-read techniques for whole-genome sequencing, we were able to completely resolve genomes and thereby identify genomic differences between the ST-192 carriage strain and known pathogenic clones with the highest possible resolution. We conclude that it is possible, but unlikely, that ST-192 could evolve into a significant pathogen, thus, becoming the major invasive meningococcus clone in the meningitis belt of Africa following upcoming mass vaccination with a polyvalent conjugate vaccine that targets the A, C, W, Y and X capsules.
Collapse
Affiliation(s)
- Ola Brønstad Brynildsrud
- Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway.,Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Vegard Eldholm
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Adelina Rakhimova
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,WHO Collaborating Centre for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Martinón-Torres F, Serra L, Safadi MAP. Protecting the most vulnerable age group: a review of MenACWY-TT immunogenicity and safety in infants. Expert Rev Vaccines 2020; 19:313-325. [PMID: 32250710 DOI: 10.1080/14760584.2020.1745070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Neisseria meningitidis causes invasive meningococcal disease (IMD), with the highest incidence observed in infants and young children. Meningococcal serogroups A, B, C, W, X, and Y account for almost all IMD cases worldwide. Available meningococcal vaccines targeting serogroups A, C, W, and Y (MenACWY) include those conjugated to diphtheria toxoid (MenACWY-D), diphtheria protein cross-reactive material 197 (MenACWY-CRM197), and tetanus toxoid (MenACWY-TT). MenACWY-TT is indicated for use starting at 6 weeks of age. AREAS COVERED This review discusses data from the four primary studies assessing MenACWY-TT safety and immunogenicity in infants, which evaluated a variety of dosing schedules, short-term and long-term outcomes, and impact of coadministration on the immunogenicity of routine childhood vaccines. Remaining gaps in the field are addressed. EXPERT OPINION Robust data support the use of MenACWY-TT in infants starting as early as 6 weeks of age. MenACWY-TT was safe and well tolerated in infants, was immunogenic after priming and booster, and demonstrated persistent immunogenicity. Lower persistence for serogroup A relative to other serogroups based on serum bactericidal assays (SBAs) using human complement appears to be a class effect of MenACWY conjugate vaccines. Correlates of protection other than SBA are being explored, including immunologic responses associated with different carrier proteins.
Collapse
Affiliation(s)
- Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela , Santiago de Compostela, Spain.,Genetics, Vaccines and Pediatrics Research Group, University of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela , Santiago de Compostela, Spain
| | - Lidia Serra
- Pfizer Vaccine Medical Development, Scientific & Clinical Affairs , Collegeville, PA, USA
| | - Marco Aurelio P Safadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences , São Paulo, Brazil
| |
Collapse
|
43
|
Culture-Confirmed Invasive Meningococcal Disease in Canada, 2010 to 2014: Characterization of Serogroup B Neisseria meningitidis Strains and Their Predicted Coverage by the 4CMenB Vaccine. mSphere 2020; 5:5/2/e00883-19. [PMID: 32132156 PMCID: PMC7056808 DOI: 10.1128/msphere.00883-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Laboratory surveillance of invasive meningococcal disease (IMD) is important to our understanding of the evolving nature of the Neisseria meningitidis strain types causing the disease and the potential coverage of disease strains by the newly developed vaccines. This study examined the molecular epidemiology of culture-confirmed IMD cases in Canada by examining the strain types and the potential coverage of a newly licensed 4CMenB vaccine on Canadian serogroup B N. meningitidis strains. The strain types identified in different parts of Canada appeared to be unique as well as their predicted coverage by the 4CMenB vaccine. These data were compared to data obtained from previous studies done in Canada and elsewhere globally. For effective control of IMD, laboratory surveillance of this type was found to be essential and useful to understand the dynamic nature of this disease. The molecular epidemiology of culture-confirmed invasive meningococcal disease (IMD) in Canada from 2010 to 2014 was studied with an emphasis on serogroup B Neisseria meningitidis (MenB) isolates, including their predicted coverage by the 4CMenB vaccine. The mean annual incidence rates of culture confirmed IMD varied from 0.19/100,000 in Ontario to 0.50/100,000 in New Brunswick and 0.59/100,000 in Quebec. In both Quebec and Atlantic region, MenB was significantly more common than other serogroups, while in other provinces, both MenB and serogroup Y (MenY) were almost equally common. The majority of MenB cases (67.0%) were in those aged ≤24 years, while most MenC (75.0%) and MenY (69.6%) cases were in adults more than 24 years old. The 349 MenB isolates were grouped into 103 sequence types (STs), 90 of which belonged to 13 clonal complexes (CCs). A large number of 4CMenB antigen genes were found among the Canadian MenB, which is predicted to encode 50 factor H binding protein (fHbp) types, 40 NHBA types, and 55 PorA genotypes. Provinces and regions were found to have their own unique MenB STs. A meningococcal antigen typing system assay predicted an overall MenB coverage by 4CMenB to be 73.6%, with higher coverage predicted for the two most common STs: 100% for ST154 and 95.9% for ST269, leading to higher coverage in both the Atlantic region and Quebec. Higher coverage (81.4%) was also found for MenB recovered from persons aged 15 to 24 years, followed by strains from infants and children ≤4 years old (75.2%) and those aged 5 to 14 years (75.0%). IMPORTANCE Laboratory surveillance of invasive meningococcal disease (IMD) is important to our understanding of the evolving nature of the Neisseria meningitidis strain types causing the disease and the potential coverage of disease strains by the newly developed vaccines. This study examined the molecular epidemiology of culture-confirmed IMD cases in Canada by examining the strain types and the potential coverage of a newly licensed 4CMenB vaccine on Canadian serogroup B N. meningitidis strains. The strain types identified in different parts of Canada appeared to be unique as well as their predicted coverage by the 4CMenB vaccine. These data were compared to data obtained from previous studies done in Canada and elsewhere globally. For effective control of IMD, laboratory surveillance of this type was found to be essential and useful to understand the dynamic nature of this disease.
Collapse
|
44
|
Christensen H, Al-Janabi H, Levy P, Postma MJ, Bloom DE, Landa P, Damm O, Salisbury DM, Diez-Domingo J, Towse AK, Lorgelly PK, Shah KK, Hernandez-Villafuerte K, Smith V, Glennie L, Wright C, York L, Farkouh R. Economic evaluation of meningococcal vaccines: considerations for the future. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2020; 21:297-309. [PMID: 31754924 PMCID: PMC7072054 DOI: 10.1007/s10198-019-01129-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/24/2019] [Indexed: 05/21/2023]
Abstract
In 2018, a panel of health economics and meningococcal disease experts convened to review methodologies, frameworks, and decision-making processes for economic evaluations of vaccines, with a focus on evaluation of vaccines targeting invasive meningococcal disease (IMD). The panel discussed vaccine evaluation methods across countries; IMD prevention benefits that are well quantified using current methods, not well quantified, or missing in current cost-effectiveness methodologies; and development of recommendations for future evaluation methods. Consensus was reached on a number of points and further consideration was deemed necessary for some topics. Experts agreed that the unpredictability of IMD complicates an accurate evaluation of meningococcal vaccine benefits and that vaccine cost-effectiveness evaluations should encompass indirect benefits, both for meningococcal vaccines and vaccines in general. In addition, the panel agreed that transparency in the vaccine decision-making process is beneficial and should be implemented when possible. Further discussion is required to ascertain: how enhancing consistency of frameworks for evaluating outcomes of vaccine introduction can be improved; reviews of existing tools used to capture quality of life; how indirect costs are considered within models; and whether and how the weighting of quality-adjusted life-years (QALY), application of QALY adjustment factors, or use of altered cost-effectiveness thresholds should be used in the economic evaluation of vaccines.
Collapse
Affiliation(s)
- Hannah Christensen
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.
| | - Hareth Al-Janabi
- Health Economics Unit, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pierre Levy
- Université Paris-Dauphine, PSL Research University, LEDa [LEGOS], 75775, Paris, France
| | - Maarten J Postma
- Department of Pharmacy, University Medical Center/University of Groningen, 9712 CP, Groningen, The Netherlands
- Department of Health Sciences, University Medical Center/University of Groningen, 9712 CP, Groningen, The Netherlands
- Department of Economics, Econometrics and Finance, University Medical Center/University of Groningen, 9712 CP, Groningen, The Netherlands
| | - David E Bloom
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, MA, 02115, USA
| | - Paolo Landa
- Institute of Health Research, Medical School, University of Exeter, Exeter, EX1 2LU, UK
| | - Oliver Damm
- School of Public Health, Bielefeld University, 33615, Bielefeld, Germany
| | - David M Salisbury
- Centre on Global Health Security, Royal Institute of International Affairs, London, SW1Y 4LE, UK
| | | | | | | | | | | | - Vinny Smith
- Meningitis Research Foundation, Newminster House, 27-29 Baldwin Street, Bristol, BS1 1LT, UK.
| | - Linda Glennie
- Meningitis Research Foundation, Newminster House, 27-29 Baldwin Street, Bristol, BS1 1LT, UK
| | - Claire Wright
- Meningitis Research Foundation, Newminster House, 27-29 Baldwin Street, Bristol, BS1 1LT, UK
| | - Laura York
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, 19426, USA
| | | |
Collapse
|
45
|
|
46
|
Muttalif AR, Presa JV, Haridy H, Gamil A, Serra LC, Cané A. Incidence and Prevention of Invasive Meningococcal Disease in Global Mass Gathering Events. Infect Dis Ther 2019; 8:569-579. [PMID: 31471813 PMCID: PMC6856249 DOI: 10.1007/s40121-019-00262-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Mass gathering events involve close contact among large numbers of people in a specific location at the same time, an environment conducive to transmission of respiratory tract illnesses including invasive meningococcal disease (IMD). This report describes IMD incidence at mass gatherings over the past 10 years and discusses strategies to prevent IMD at such events. METHODS A PubMed search was conducted in December 2018 using a search string intended to identify articles describing IMD at mass gatherings, including religious pilgrimages, sports events, jamborees, and refugee camps. The search was limited to articles in English published from 2008 to 2018. Articles were included if they described IMD incidence at a mass gathering event. RESULTS A total of 127 articles were retrieved, of which 7 reported on IMD incidence at mass gatherings in the past 10 years. Specifically, in Saudi Arabia between 2002 and 2011, IMD occurred in 16 Hajj pilgrims and 1 Umrah pilgrim; serotypes involved were not reported. At a youth sports festival in Spain in 2008, 1 case of serogroup B IMD was reported among 1500 attendees. At the 2015 World Scout Jamboree in Japan, an outbreak of serogroup W IMD was identified in five scouts and one parent. At a refugee camp in Turkey, one case of serogroup B IMD was reported in a Syrian girl; four cases of serogroup X IMD occurred in an Italian refugee camp among refugees from Africa and Bangladesh. In 2017, a funeral in Liberia resulted in 13 identified cases of serogroup C IMD. Requiring meningococcal vaccination for mass gathering attendees and vaccinating refugees might have prevented these IMD cases. CONCLUSIONS Mass gathering events increase IMD risk among attendees and their close contacts. Vaccines preventing IMD caused by serogroups ACWY and B are available and should be recommended for mass gathering attendees. FUNDING Pfizer.
Collapse
Affiliation(s)
| | - Jessica V Presa
- Pfizer Vaccines, Pfizer Inc, 500 Arcola Road, Collegeville, PA, 19426, USA.
| | - Hammam Haridy
- Pfizer Vaccines, Pfizer Inc, Pfizer Building 6, Dubai Media City, Dubai, United Arab Emirates
| | - Amgad Gamil
- Pfizer Vaccines, Pfizer Inc, Pfizer Building 6, Dubai Media City, Dubai, United Arab Emirates
| | - Lidia C Serra
- Pfizer Vaccines, Pfizer Inc, 500 Arcola Road, Collegeville, PA, 19426, USA
| | - Alejandro Cané
- Pfizer Biopharmaceuticals Group, Complejo Thames Office Park, Colectora Panamericana 1804, 1 Piso Sector "B" Lado Sur, CP 1607EEV, Villa Adelina, Pcia Buenos Aires, Argentina
| |
Collapse
|
47
|
Caugant DA, Brynildsrud OB. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol 2019; 18:84-96. [PMID: 31705134 DOI: 10.1038/s41579-019-0282-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
Abstract
Meningococcal disease remains an important cause of morbidity and death worldwide despite the development and increasing implementation of effective vaccines. Elimination of the disease is hampered by the enormous diversity and antigenic variability of the causative agent, Neisseria meningitidis, one of the most variable bacteria in nature. These features are attained mainly through high rates of horizontal gene transfer and alteration of protein expression through phase variation. The recent availability of whole-genome sequencing (WGS) of large-scale collections of N. meningitidis isolates from various origins, databases to facilitate storage and sharing of WGS data and the concomitant development of effective bioinformatics tools have led to a much more thorough understanding of the diversity of the species, its evolution and population structure and how virulent traits may emerge. Implementation of WGS is already contributing to enhanced epidemiological surveillance and is essential to ascertain the impact of vaccination strategies. This Review summarizes the recent advances provided by WGS studies in our understanding of the biology of N. meningitidis and the epidemiology of meningococcal disease.
Collapse
Affiliation(s)
- Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ola B Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway
| |
Collapse
|
48
|
Bai X, Borrow R, Bukovski S, Caugant DA, Culic D, Delic S, Dinleyici EC, Eloshvili M, Erdősi T, Galajeva J, Křížová P, Lucidarme J, Mironov K, Nurmatov Z, Pana M, Rahimov E, Savrasova L, Skoczyńska A, Smith V, Taha MK, Titov L, Vázquez J, Yeraliyeva L. Prevention and control of meningococcal disease: Updates from the Global Meningococcal Initiative in Eastern Europe. J Infect 2019; 79:528-541. [PMID: 31682877 DOI: 10.1016/j.jinf.2019.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022]
Abstract
The Global Meningococcal Initiative (GMI) aims to prevent invasive meningococcal disease (IMD) worldwide through education, research and cooperation. In March 2019, a GMI meeting was held with a multidisciplinary group of experts and representatives from countries within Eastern Europe. Across the countries represented, IMD surveillance is largely in place, with incidence declining in recent decades and now generally at <1 case per 100,000 persons per year. Predominating serogroups are B and C, followed by A, and cases attributable to serogroups W, X and Y are emerging. Available vaccines differ between countries, are generally not included in immunization programs and provided to high-risk groups only. Available vaccines include both conjugate and polysaccharide vaccines; however, current data and GMI recommendations advocate the use of conjugate vaccines, where possible, due to the ability to interrupt the acquisition of carriage. Ongoing carriage studies are expected to inform vaccine effectiveness and immunization schedules. Additionally, IMD prevention and control should be guided by monitoring outbreak progression and the emergence and international spread of strains and antibiotic resistance through use of genomic analyses and implementation of World Health Organization initiatives. Protection of high-risk groups (such as those with complement deficiencies, laboratory workers, migrants and refugees) is recommended.
Collapse
Affiliation(s)
- Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester M13 9WZ, UK.
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester M13 9WZ, UK.
| | - Suzana Bukovski
- University Hospital for Infectious Diseases, Zagreb, Croatia.
| | | | - Davor Culic
- Institute for Public Health, Sombor, Serbia.
| | | | | | - Medeia Eloshvili
- National Center for Disease Control & Public Health, Tbilisi, Georgia.
| | - Tímea Erdősi
- National Public Health Center, Budapest, Hungary.
| | | | - Pavla Křížová
- National Institute of Public Health, Prague, Czechia.
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester M13 9WZ, UK.
| | | | - Zuridin Nurmatov
- Scientific and Production Association "Preventive Medicine", Bishkek, Kyrgyzstan.
| | - Marina Pana
- Cantacuzino National Medico Military Institute for Research Development, Bucharest, Romania
| | | | - Larisa Savrasova
- The Centre for Disease Prevention and Control of Latvia, Riga, Latvia.
| | - Anna Skoczyńska
- National Reference Centre for Bacterial Meningitis, National Medicines Institute, Warsaw, Poland.
| | - Vinny Smith
- Meningitis Research Foundation, Bristol, UK.
| | - Muhamed-Kheir Taha
- National Reference Centre for Meningococci, Institute Pasteur, Paris, France.
| | - Leonid Titov
- Republican Research & Practical Center for Epidemiology & Microbiology, Minsk, Belarus.
| | | | | |
Collapse
|
49
|
Novak RT, Ronveaux O, Bita AF, Aké HF, Lessa FC, Wang X, Bwaka AM, Fox LM. Future Directions for Meningitis Surveillance and Vaccine Evaluation in the Meningitis Belt of Sub-Saharan Africa. J Infect Dis 2019; 220:S279-S285. [PMID: 31671452 PMCID: PMC6822967 DOI: 10.1093/infdis/jiz421] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In sub-Saharan Africa, bacterial meningitis remains a significant public health problem, especially in the countries of the meningitis belt, where Neisseria meningitidis serogroup A historically caused large-scale epidemics. In 2014, MenAfriNet was established as a consortium of partners supporting strategic implementation of case-based meningitis surveillance to monitor meningitis epidemiology and impact of meningococcal serogroup A conjugate vaccine (MACV). MenAfriNet improved data quality through use of standardized tools, procedures, and laboratory diagnostics. MenAfriNet surveillance and study data provided evidence of ongoing MACV impact, characterized the burden of non-serogroup A meningococcal disease (including the emergence of a new epidemic clone of serogroup C), and documented the impact of pneumococcal conjugate vaccine. New vaccines and schedules have been proposed for future implementation to address the remaining burden of meningitis. To support the goals of "Defeating Meningitis by 2030," MenAfriNet will continue to strengthen surveillance and support research and modeling to monitor the impact of these programs on meningitis burden in sub-Saharan Africa.
Collapse
Affiliation(s)
- Ryan T Novak
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - André F Bita
- WHO Regional Office for Africa, Brazzaville, Congo
| | | | - Fernanda C Lessa
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xin Wang
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ado M Bwaka
- WHO Inter-Country Support Team West Africa, Ouagadougou, Burkina Faso
| | - LeAnne M Fox
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
50
|
Alderson MR, LaForce FM, Sobanjo-ter Meulen A, Hwang A, Preziosi MP, Klugman KP. Eliminating Meningococcal Epidemics From the African Meningitis Belt: The Case for Advanced Prevention and Control Using Next-Generation Meningococcal Conjugate Vaccines. J Infect Dis 2019; 220:S274-S278. [PMID: 31671447 PMCID: PMC6822963 DOI: 10.1093/infdis/jiz297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The introduction and rollout of a meningococcal serogroup A conjugate vaccine, MenAfriVac, in the African meningitis belt has eliminated serogroup A meningococcal infections for >300 million Africans. However, serogroup C, W, and X meningococci continue to circulate and have been responsible for focal epidemics in meningitis belt countries. Affordable multivalent meningococcal conjugate vaccines are being developed to prevent these non-A epidemics. This article describes the current epidemiologic situation and status of vaccine development and highlights questions to be addressed to most efficiently use these new vaccines.
Collapse
Affiliation(s)
| | | | | | - Angela Hwang
- Technical Services, Serum Institute of India Pvt Ltd, Pune, India
| | - Marie-Pierre Preziosi
- Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | | |
Collapse
|