1
|
Gedvilaite G, Pileckaite E, Ramanauskas I, Kriauciuniene L, Balnyte R, Liutkeviciene R. Investigating the Potential Influence of TAS2R16 Genetic Variants and Protein Levels on Multiple Sclerosis Development. J Pers Med 2024; 14:402. [PMID: 38673029 PMCID: PMC11051568 DOI: 10.3390/jpm14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The study aimed to investigate the association between the TAS2R16 gene (rs860170, rs978739, rs1357949), TAS2R16 serum levels, and multiple sclerosis (MS). A total of 265 healthy control subjects and 218 MS patients were included in the study. Single nucleotide polymorphisms (SNPs) were tested by real-time polymerase chain reaction (RT-PCR). The serum concentration of TAS2R16 was measured using the ELISA method. Analyses revealed that the TAS2R16 rs860170 TT genotype was statistically significantly less frequent in the MS group than in the control group (p = 0.041), and the CC genotype was statistically significantly more frequent in the MS group than in the control group (p < 0.001). In the most robust (codominant) model, the CC genotype was found to increase the odds of MS by ~27-fold (p = 0.002), and each C allele increased the odds of MS by 1.8-fold (p < 0.001). Haplotype analysis of the rs860170, rs978739, and rs1357949 polymorphisms showed that the C-C-A haplotype was associated with a ~12-fold increased odds of MS occurrence (p = 0.02). Serum TAS2R16 levels were elevated in the MS group compared to control subjects (p = 0.014). Conclusions: The rs860170, rs978739, and rs1357949 polymorphisms demonstrated that the C-C-A haplotype and elevated TAS2R16 serum levels can promote the development of MS. These preliminary findings underscore the importance of specific genetic variants, such as rs860170, rs978739, and rs1357949, in MS risk. Additionally, elevated TAS2R16 serum levels in MS patients suggest a potential role in MS pathogenesis. These findings provide insights into the genetic and molecular mechanisms underlying MS and pave the way for personalized diagnostic and therapeutic strategies. Integrating genetic and serum biomarker data in MS research offers promising avenues for improving clinical outcomes and advancing precision medicine approaches in the future.
Collapse
Affiliation(s)
- Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (G.G.); (L.K.); (R.L.)
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Enrika Pileckaite
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (G.G.); (L.K.); (R.L.)
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Ignas Ramanauskas
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (G.G.); (L.K.); (R.L.)
| | - Renata Balnyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (G.G.); (L.K.); (R.L.)
| |
Collapse
|
2
|
Duarte LF, Gatica S, Castillo A, Kalergis AM, Bueno SM, Riedel CA, González PA. Is there a role for herpes simplex virus type 1 in multiple sclerosis? Microbes Infect 2022; 25:105084. [PMID: 36586461 DOI: 10.1016/j.micinf.2022.105084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Numerous studies relate the onset and severity of multiple sclerosis (MS) with viral infections. Herpes simplex virus type 1 (HSV-1), which is neurotropic and highly prevalent in the brain of healthy individuals, has been proposed to relate to MS. Here, we review and discuss the reported connections between HSV-1 and MS.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Sebastian Gatica
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Almendra Castillo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
3
|
Hassani A, Khan G. What do animal models tell us about the role of EBV in the pathogenesis of multiple sclerosis? Front Immunol 2022; 13:1036155. [PMID: 36466898 PMCID: PMC9712437 DOI: 10.3389/fimmu.2022.1036155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/02/2022] [Indexed: 02/20/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS), marked primarily by demyelination, inflammation, and neurodegeneration. While the prevalence and incidence rates of MS are on the rise, the etiology of the disease remains enigmatic. Nevertheless, it is widely acknowledged that MS develops in persons who are both genetically predisposed and exposed to a certain set of environmental factors. One of the most plausible environmental culprits is Epstein-Barr virus (EBV), a common herpesvirus asymptomatically carried by more than 90% of the adult population. How EBV induces MS pathogenesis remains unknown. A comprehensive understanding of the biology of EBV infection and how it contributes to dysfunction of the immune system and CNS, requires an appreciation of the viral dynamics within the host. Here, we aim to outline the different animal models, including nonhuman primates (NHP), rodents, and rabbits, that have been used to elucidate the link between EBV and MS. This review particularly focuses on how the disruption in virus-immune interaction plays a role in viral pathogenesis and promotes neuroinflammation. We also summarize the effects of virus titers, age of animals, and route of inoculation on the neuroinvasiveness and neuropathogenic potential of the virus. Reviewing the rich data generated from these animal models could provide directions for future studies aimed to understand the mechanism(s) by which EBV induces MS pathology and insights for the development of prophylactic and therapeutic interventions that could ameliorate the disease.
Collapse
Affiliation(s)
- Asma Hassani
- Dept of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Jeon MY, Seok JM, Fujihara K, Kim BJ. Autoantibodies in central nervous system and neuromuscular autoimmune disorders: A narrative review. PRECISION AND FUTURE MEDICINE 2022. [DOI: 10.23838/pfm.2021.00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The discovery of novel autoantibodies in neurological disorders contributes to a better understanding of its pathogenesis, improves the accuracy of diagnosis, and leads to new treatment strategies. Advances in techniques for the screening and detection of autoantibodies have enabled the discovery of new antibodies in the central nervous system (CNS) and neuromuscular diseases. Cell-based assays using live or fixed cells overexpressing target antigens are widely used for autoantibody-based diagnosis in clinical practice. Common pathogenic autoantibodies are unknown in most patients with multiple sclerosis (MS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Novel pathogenic autoantibodies to aquaporin-4 and myelin oligodendrocyte glycoprotein (MOG) have been identified in neuromyelitis optica spectrum disorder and MOG antibody-associated disease, respectively. These diseases have clinical similarities to MS, but with the discovery of pathogenic autoantibodies, they are now recognized as distinct disease entities. Antibodies to paranodal membrane proteins such as neurofascin-155, contactin‑1, contactin‑associated protein‑1 in CIDP and muscle-specific kinase and low-density lipoprotein receptor–related protein 4 in myasthenia gravis were added to the profiles of autoantibodies in neurological disorders. Despite the relatively low frequency of seropositivity, autoantibody detection is currently essential for the clinical diagnosis of CNS and neuromuscular autoimmune disorders, and differential approaches to seropositive patients will contribute to more personalized medicine. We reviewed recent discoveries of autoantibodies and their clinical implications in CNS and neuromuscular disorders.
Collapse
|
5
|
Yao P, Millwood I, Kartsonaki C, Mentzer AJ, Allen N, Jeske R, Butt J, Guo Y, Chen Y, Walters R, Lv J, Yu C, Plummer M, de Martel C, Clifford G, Li LM, Waterboer T, Yang L, Chen Z. Sero-prevalence of 19 infectious pathogens and associated factors among middle-aged and elderly Chinese adults: a cross-sectional study. BMJ Open 2022; 12:e058353. [PMID: 35534062 PMCID: PMC9086621 DOI: 10.1136/bmjopen-2021-058353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES To systematically assess the sero-prevalence and associated factors of major infectious pathogens in China, where there are high incidence rates of certain infection-related cancers. DESIGN Cross-sectional study. SETTING 10 (5 urban, 5 rural) geographically diverse areas in China. PARTICIPANTS A subcohort of 2000 participants from the China Kadoorie Biobank. PRIMARY MEASURES Sero-prevalence of 19 pathogens using a custom-designed multiplex serology panel and associated factors. RESULTS Of the 19 pathogens investigated, the mean number of sero-positive pathogens was 9.4 (SD 1.7), with 24.4% of participants being sero-positive for >10 pathogens. For individual pathogens, the sero-prevalence varied, being for example, 0.05% for HIV, 6.4% for human papillomavirus (HPV)-16, 53.5% for Helicobacter pylori (H. pylori) and 99.8% for Epstein-Barr virus . The sero-prevalence of human herpesviruses (HHV)-6, HHV-7 and HPV-16 was higher in women than men. Several pathogens showed a decreasing trend in sero-prevalence by birth cohort, including hepatitis B virus (HBV) (51.6% vs 38.7% in those born <1940 vs >1970), HPV-16 (11.4% vs 5.4%), HHV-2 (15.1% vs 8.1%), Chlamydia trachomatis (65.6% vs 28.8%) and Toxoplasma gondii (22.0% vs 9.0%). Across the 10 study areas, sero-prevalence varied twofold to fourfold for HBV (22.5% to 60.7%), HPV-16 (3.4% to 10.9%), H. pylori (16.2% to 71.1%) and C. trachomatis (32.5% to 66.5%). Participants with chronic liver diseases had >7-fold higher sero-positivity for HBV (OR=7.51; 95% CI 2.55 to 22.13). CONCLUSIONS Among Chinese adults, previous and current infections with certain pathogens were common and varied by area, sex and birth cohort. These infections may contribute to the burden of certain cancers and other non-communicable chronic diseases.
Collapse
Affiliation(s)
- Pang Yao
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Naomi Allen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rima Jeske
- Infections and Cancer Epidemiology Division, German Cancer Research Center, Heidelberg, Germany
| | - Julia Butt
- Infections and Cancer Epidemiology Division, German Cancer Research Center, Heidelberg, Germany
| | - Yu Guo
- Fuwai Hospital Chinese Academy of Medical Sciences, National Center for Cardiovascular Diseases, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robin Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Martyn Plummer
- Department of Statistics, University of Warwick, Coventry, UK
| | - Catherine de Martel
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Gary Clifford
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Li-Ming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| | - Tim Waterboer
- Infections and Cancer Epidemiology Division, German Cancer Research Center, Heidelberg, Germany
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Krämer J, Wiendl H. What Have Failed, Interrupted, and Withdrawn Antibody Therapies in Multiple Sclerosis Taught Us? Neurotherapeutics 2022; 19:785-807. [PMID: 35794296 PMCID: PMC9294122 DOI: 10.1007/s13311-022-01246-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
In the past two decades, monoclonal antibodies (mAbs) have revolutionized the treatment of multiple sclerosis (MS). However, a remarkable number of mAbs failed due to negative study results were withdrawn because of unexpected serious adverse events (SAEs) or due to studies being halted for other reasons. While trials with positive outcomes are usually published in prestigious journals, negative trials are merely published as abstracts or not at all. This review summarizes MS mAbs that have either failed in phase II-III trials, have been interrupted for various reasons, or withdrawn from the market since 2015. The main conclusions that can be drawn from these 'negative' experiences are as follows. mAbs that have been proven to be safe in other autoimmune conditions, will not have the same safety profile in MS due to immunopathogenetic differences in these diseases (e.g., daclizumab). Identification of SAEs in clinical trials is difficult highlighting the importance of phase IV studies. Memory B cells are central players in MS immunopathogenesis (e.g., tabalumab). The pathophysiological mechanisms of disease progression are independent of leukocyte 'outside-in' traffic which drives relapses in MS. Therefore, therapies for progressive MS must be able to sufficiently cross the blood-brain barrier. Sufficiently long trial duration and multicomponent outcome measures are important for clinical studies in progressive MS. The success of trials on remyelination-promoting therapies mainly depends on the sufficient high dose of mAb, the optimal readout for 'proof of concept', time of treatment initiation, and appropriate selection of patients. Failed strategies are highly important to better understand assumed immunopathophysiological mechanisms and optimizing future trial designs.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany
| |
Collapse
|
7
|
Giovannoni G, Hawkes CH, Lechner-Scott J, Levy M, Yeh EA, Gold J. Is EBV the cause of multiple sclerosis? Mult Scler Relat Disord 2022; 58:103636. [PMID: 35114510 DOI: 10.1016/j.msard.2022.103636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Christopher H Hawkes
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeannette Lechner-Scott
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Levy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E Ann Yeh
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julian Gold
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; The Albion Centre, The University of Sydney School of Medicine, Sydney, NSW, Australia
| |
Collapse
|
8
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Rolfes L, Pawlitzki M, Pfeuffer S, Huntemann N, Wiendl H, Ruck T, Meuth SG. Failed, Interrupted, or Inconclusive Trials on Immunomodulatory Treatment Strategies in Multiple Sclerosis: Update 2015-2020. BioDrugs 2021; 34:587-610. [PMID: 32785877 PMCID: PMC7519896 DOI: 10.1007/s40259-020-00435-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, multiple sclerosis (MS) treatment has experienced vast changes resulting from major advances in disease-modifying therapies (DMT). Looking at the overall number of studies, investigations with therapeutic advantages and encouraging results are exceeded by studies of promising compounds that failed due to either negative or inconclusive results or have been interrupted for other reasons. Importantly, these failed clinical trials are informative experiments that can help us to understand the pathophysiological mechanisms underlying MS. In several trials, concepts taken from experimental models were not translatable to humans, although they did not lack a well-considered pathophysiological rationale. The lessons learned from these discrepancies may benefit future studies and reduce the risks for patients. This review summarizes trials on MS since 2015 that have either failed or have been interrupted for various reasons. We identify potential causes of failure or inconclusiveness, looking at the path from basic animal experiments to clinical trials, and discuss the implications for our current view on MS pathogenesis, clinical practice, and future study designs. We focus on anti-inflammatory treatment strategies, without including studies on already approved and effective DMT. Clinical trials addressing neuroprotective and alternative treatment strategies are presented in a separate article.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Marc Pawlitzki
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Steffen Pfeuffer
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Niklas Huntemann
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tobias Ruck
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology With Institute of Translational Neurology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| |
Collapse
|
10
|
Lemke D, Klement RJ, Schweiger F, Schweiger B, Spitz J. Vitamin D Resistance as a Possible Cause of Autoimmune Diseases: A Hypothesis Confirmed by a Therapeutic High-Dose Vitamin D Protocol. Front Immunol 2021; 12:655739. [PMID: 33897704 PMCID: PMC8058406 DOI: 10.3389/fimmu.2021.655739] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 01/02/2023] Open
Abstract
Vitamin D3 (cholecalciferol) is a secosteroid and prohormone which is metabolized in various tissues to the biologically most active vitamin D hormone 1,25(OH)2D3 (calcitriol). 1,25(OH)2D3 has multiple pleiotropic effects, particularly within the immune system, and is increasingly utilized not only within prophylaxis, but also within therapy of various diseases. In this context, the latest research has revealed clinical benefits of high dose vitamin D3 therapy in autoimmune diseases. The necessity of high doses of vitamin D3 for treatment success can be explained by the concept of an acquired form of vitamin D resistance. Its etiology is based on the one hand on polymorphisms within genes affecting the vitamin D system, causing susceptibility towards developing low vitamin D responsiveness and autoimmune diseases; on the other hand it is based on a blockade of vitamin D receptor signaling, e.g. through pathogen infections. In this paper, we review observational and mechanistic evidence for the acquired vitamin D resistance hypothesis. We particularly focus on its clinical confirmation from our experience of treating multiple sclerosis patients with the so-called Coimbra protocol, in which daily doses up to 1000 I.U. vitamin D3 per kg body weight can be administered safely. Parathyroid hormone levels in serum thereby provide the key information for finding the right dose. We argue that acquired vitamin D resistance provides a plausible pathomechanism for the development of autoimmune diseases, which could be treated using high-dose vitamin D3 therapy.
Collapse
Affiliation(s)
- Dirk Lemke
- Praxis Dr. Beatrix Schweiger, Bensheim, Germany
| | - Rainer Johannes Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| | | | | | - Jörg Spitz
- Akademie für menschliche Medizin und evolutionäre Gesundheit, Schlangenbad, Germany
| |
Collapse
|
11
|
Mazzoni E, Bononi I, Pietrobon S, Torreggiani E, Rossini M, Pugliatti M, Casetta I, Castellazzi M, Granieri E, Guerra G, Martini F, Tognon M. Specific antibodies reacting to JC polyomavirus capsid protein mimotopes in sera from multiple sclerosis and other neurological diseases-affected patients. J Cell Physiol 2020; 235:5847-5855. [PMID: 32012272 DOI: 10.1002/jcp.29533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/09/2020] [Indexed: 11/07/2022]
Abstract
Published data support the hypothesis that viruses could be trigger agents of multiple sclerosis onset. This link is based on evidence of early exposure to viral agents in patients affected by this neurologic disease. JC (JC polyomavirus [JCPyV]), BK (BKPyV), and simian virus 40 (SV40) neurotropic polyomavirus footprints have been detected in brain tissue specimens and samples from patients affected by different neurological diseases. In this investigation, serum samples from patients affected by multiple sclerosis and other inflammatory and noninflammatory neurologic diseases, as well as healthy subjects representing the control, were investigated for immunoglobulin G (IgG) antibodies against JCPyV. To this end, an immunologic approach was employed, which consists of employing indirect enzyme-linked immunosorbent assay testing with synthetic peptides mimicking viral capsid protein 1 antigens. A significantly lower prevalence of IgG antibodies against JCPyV VP1 epitopes, with a low titer, was detected in serum samples from patients with multiple sclerosis (MS) and other neurologic diseases than in healthy subjects. Our study indicates that the prevalence of JCPyV antibodies from patients with multiple sclerosis is 50% lower than in healthy subjects, suggesting specific immune impairments. These results indicate that patients affected by neurological diseases, including MS, respond poorly to JCPyV VP1 antigens, suggesting specific immunologic dysfunctions.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Silvia Pietrobon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Torreggiani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Marika Rossini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Maura Pugliatti
- Department of Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Casetta
- Department of Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Massimiliano Castellazzi
- Department of Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Enrico Granieri
- Department of Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni Guerra
- Clinical Laboratory Analysis, University Hospital of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Cheok YY, Lee CYQ, Cheong HC, Looi CY, Wong WF. Chronic Inflammatory Diseases at Secondary Sites Ensuing Urogenital or Pulmonary Chlamydia Infections. Microorganisms 2020; 8:microorganisms8010127. [PMID: 31963395 PMCID: PMC7022716 DOI: 10.3390/microorganisms8010127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chlamydia trachomatis and C. pneumoniae are members of the Chlamydiaceae family of obligate intracellular bacteria. The former causes diseases predominantly at the mucosal epithelial layer of the urogenital or eye, leading to pelvic inflammatory diseases or blindness; while the latter is a major causative agent for pulmonary infection. On top of these well-described diseases at the respective primary infection sites, Chlamydia are notoriously known to migrate and cause pathologies at remote sites of a host. One such example is the sexually acquired reactive arthritis that often occurs at few weeks after genital C. trachomatis infection. C. pneumoniae, on the other hand, has been implicated in an extensive list of chronic inflammatory diseases which include atherosclerosis, multiple sclerosis, Alzheimer’s disease, asthma, and primary biliary cirrhosis. This review summarizes the Chlamydia infection associated diseases at the secondary sites of infection, and describes the potential mechanisms involved in the disease migration and pathogenesis.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.)
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.)
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.)
- Correspondence: ; Tel.: +603-7967-6672
| |
Collapse
|
13
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 695] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
14
|
Khalili N, Khalili N, Nickhah A, Khalili B. Seroprevalence of anti- Toxocara antibody among multiple sclerosis patients: a case-control study. J Parasit Dis 2019; 44:145-150. [PMID: 32174718 DOI: 10.1007/s12639-019-01174-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
Although previous studies have shown an association between parasitic infections and multiple sclerosis, the possible role of Toxocara infection on the etiology of multiple sclerosis has been overlooked. The present study aimed to investigate the seroprevalence of anti-Toxocara IgG antibodies among patients with multiple sclerosis compared to healthy controls. Seventy patients with prior diagnosis of multiple sclerosis were selected as cases and 70 healthy matched individuals as controls. The presence of serum anti-Toxocara IgG antibody was investigated by ELISA technique. The Chi square test was used to test statistically significant differences for parametric data. A total of 140 serum samples were collected and analyzed. In the case and control groups, 20 (28.6%) and 8 (11.4%) participants had positive serum anti-Toxocara IgG antibodies, respectively, indicating a statistically significant difference (OR 3.1; 95% CI 1.26-7.63; p value = 0.02). The seroprevalence rate was also higher among individuals with a history of contact with dogs (OR 2.7; 95% CI 1.17-6.37; p value = 0.03).The results declare that a protective role of Toxocara canis against the development of multiple sclerosis is unlikely.
Collapse
Affiliation(s)
- Nastaran Khalili
- 1School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khalili
- 1School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Nickhah
- 2School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Bahman Khalili
- 3Department of Parasitology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
15
|
Tiwari S, Lapierre J, Ojha CR, Martins K, Parira T, Dutta RK, Caobi A, Garbinski L, Ceyhan Y, Esteban-Lopez M, El-Hage N. Signaling pathways and therapeutic perspectives related to environmental factors associated with multiple sclerosis. J Neurosci Res 2018; 96:1831-1846. [PMID: 30204260 PMCID: PMC7167107 DOI: 10.1002/jnr.24322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of unknown etiology. Both genetic-susceptibility and environment exposures, including vitamin D deficiency, Epstein-Barr viral and Herpesvirus (HHV-6) infections are strongly implicated in the activation of T cells and MS-pathogenesis. Despite precise knowledge of how these factors could be operating alone or in combination to facilitate and aggravate the disease progression, it is clear that prolonged induction of inflammatory molecules and recruitment of other immune cells by the activated T cells results in demyelination and axonal damage. It is imperative to understand the risk factors associated with MS progression and how these factors contribute to disease pathology. Understanding of the underlying mechanisms of what factors triggers activation of T cells to attack myelin antigen are important to strategize therapeutics and therapies against MS. Current review provides a detailed literature to understand the role of both pathogenic and non-pathogenic factors on the impact of MS.
Collapse
Affiliation(s)
- Sneham Tiwari
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Jessica Lapierre
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Chet Raj Ojha
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Kyle Martins
- Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Tiyash Parira
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Rajib Kumar Dutta
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Allen Caobi
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Luis Garbinski
- Cell Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Yasemin Ceyhan
- Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Maria Esteban-Lopez
- Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Nazira El-Hage
- Departments of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
16
|
Mangale V, McIntyre LL, Walsh CM, Loring JF, Lane TE. Promoting remyelination through cell transplantation therapies in a model of viral-induced neurodegenerative disease. Dev Dyn 2018; 248:43-52. [PMID: 30067309 DOI: 10.1002/dvdy.24658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Several United States Food and Drug Administration-approved therapies exist that impede activated lymphocytes from entering the CNS thereby limiting new lesion formation in patients with relapse-remitting forms of MS. However, a significant challenge within the field of MS research is to develop effective and sustained therapies that allow for axonal protection and remyelination. In recent years, there has been increasing evidence that some kinds of stem cells and their derivatives seem to be able to mute neuroinflammation as well as promote remyelination and axonal integrity. Intracranial infection of mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in immune-mediated demyelination and axonopathy, making this an excellent model to interrogate the therapeutic potential of stem cell derivatives in evoking remyelination. This review provides a succinct overview of our recent findings using intraspinal injection of mouse CNS neural progenitor cells and human neural precursors into JHMV-infected mice. JHMV-infected mice receiving these cells display extensive remyelination associated with axonal sparing. In addition, we discuss possible mechanisms associated with sustained clinical recovery. Developmental Dynamics 248:43-52, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vrushali Mangale
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laura L McIntyre
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Center, University of California, Irvine, California
| | - Craig M Walsh
- Department of Molecular Biology & Biochemistry, Sue & Bill Gross Stem Cell Center, University of California, Irvine, California
| | - Jeanne F Loring
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Immunology, Inflammation, and Infectious Disease Initiative, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Hossain MJ, Morandi E, Tanasescu R, Frakich N, Caldano M, Onion D, Faraj TA, Erridge C, Gran B. The Soluble Form of Toll-Like Receptor 2 Is Elevated in Serum of Multiple Sclerosis Patients: A Novel Potential Disease Biomarker. Front Immunol 2018; 9:457. [PMID: 29593720 PMCID: PMC5861194 DOI: 10.3389/fimmu.2018.00457] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/20/2018] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory demyelinating disease of the central nervous system. It was previously shown that toll-like receptor (TLR)-2 signaling plays a key role in the murine experimental autoimmune encephalomyelitis (EAE) model of MS, and that TLR2-stimulation of regulatory T cells (Tregs) promotes their conversion to T helper 17 (Th17) cells. Here, we sought potential sources of TLR2 stimulation and evidence of TLR2 activity in MS patient clinical samples. Soluble TLR2 (sTLR2) was found to be significantly elevated in sera of MS patients (n = 21), in both relapse and remission, compared to healthy controls (HC) (n = 24). This was not associated with the acute phase reaction (APR) as measured by serum C-reactive protein (CRP) level, which was similarly increased in MS patients compared to controls. An independent validation cohort from a different ethnic background showed a similar upward trend in mean sTLR2 values in relapsing-remitting MS (RRMS) patients, and significant differences in sTLR2 values between patients and HC were preserved when the data from the two cohorts were pooled together (n = 41 RRMS and 44 HC, P = 0.0006). TLR2-stimulants, measured using a human embryonic kidney (HEK)-293 cells transfectant reporter assay, were significantly higher in urine of MS patients than HC. A screen of several common urinary tract infections (UTI)-related organisms showed strong induction of TLR2-signaling in the same assay. Taken together, these results indicate that two different markers of TLR2-activity—urinary TLR2-stimulants and serum sTLR2 levels—are significantly elevated in MS patients compared to HC.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Queen's Medical Centre, Nottingham, United Kingdom
| | - Elena Morandi
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Queen's Medical Centre, Nottingham, United Kingdom
| | - Radu Tanasescu
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Queen's Medical Centre, Nottingham, United Kingdom.,Department of Neurology, Neurosurgery and Psychiatry, University of Medicine and Pharmacy Carol Davila, Colentina Hospital, Bucharest, Romania
| | - Nanci Frakich
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Queen's Medical Centre, Nottingham, United Kingdom
| | - Marzia Caldano
- Neurologia - Centro Riferimento Regionale Sclerosi Multipla (CReSM), Neuroscience Institute Cavalieri Ottolenghi (NICO), San Luigi University Hospital, Orbassano, Turin, Italy
| | - David Onion
- School of Life Sciences, University of Nottingham Flow Cytometry Facility, University of Nottingham, Nottingham, United Kingdom
| | - Tola A Faraj
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom
| | - Clett Erridge
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences Wing, Glenfield General Hospital, Leicester, United Kingdom.,Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham School of Medicine, Queen's Medical Centre, Nottingham, United Kingdom.,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
18
|
Veroni C, Serafini B, Rosicarelli B, Fagnani C, Aloisi F. Transcriptional profile and Epstein-Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J Neuroinflammation 2018; 15:18. [PMID: 29338732 PMCID: PMC5771146 DOI: 10.1186/s12974-017-1049-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Background It is debated whether multiple sclerosis (MS) might result from an immunopathological response toward an active Epstein-Barr virus (EBV) infection brought into the central nervous system (CNS) by immigrating B cells. Based on this model, a relationship should exist between the local immune milieu and EBV infection status in the MS brain. To test this hypothesis, we analyzed expression of viral and cellular genes in brain-infiltrating immune cells. Methods Twenty-three postmortem snap-frozen brain tissue blocks from 11 patients with progressive MS were selected based on good RNA quality and prominent immune cell infiltration. White matter perivascular and intrameningeal immune infiltrates, including B cell follicle-like structures, were isolated from brain sections using laser capture microdissection. Enhanced PCR-based methods were used to investigate expression of 75 immune-related genes and 6 EBV genes associated with latent and lytic infection. Data were analyzed using univariate and multivariate statistical methods. Results Genes related to T cell activation, cytotoxic cell-mediated (or type 1) immunity, B cell growth and differentiation, pathogen recognition, myeloid cell function, type I interferon pathway activation, and leukocyte recruitment were found expressed at different levels in most or all MS brain immune infiltrates. EBV genes were detected in brain samples from 9 of 11 MS patients with expression patterns suggestive of in situ activation of latent infection and, less frequently, entry into the lytic cycle. Comparison of data obtained in meningeal and white matter infiltrates revealed higher expression of genes related to interferonγ production, B cell differentiation, cell proliferation, lipid antigen presentation, and T cell and myeloid cell recruitment, as well as more widespread EBV infection in the meningeal samples. Multivariate analysis grouped genes expressed in meningeal and white matter immune infiltrates into artificial factors that were characterized primarily by genes involved in type 1 immunity effector mechanisms and type I interferon pathway activation. Conclusion These results confirm profound in situ EBV deregulation and suggest orchestration of local antiviral function in the MS brain, lending support to a model of MS pathogenesis that involves EBV as possible antigenic stimulus of the persistent immune response in the central nervous system. Electronic supplementary material The online version of this article (10.1186/s12974-017-1049-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Barbara Serafini
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Barbara Rosicarelli
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Corrado Fagnani
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
19
|
Podbielska M, O'Keeffe J, Hogan EL. Autoimmunity in multiple sclerosis: role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J Neurol Sci 2017; 385:198-214. [PMID: 29406905 DOI: 10.1016/j.jns.2017.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is classified as being an autoimmune response in the genetically susceptible individual to a persistent but unidentified antigen(s). Both the adaptive and the innate immune systems are likely to contribute significantly to MS pathogenesis. This review summarizes current understanding of the characteristics of MS autoimmunity in the initiation and progression of the disease. In particular we find it timely to classify the autoimmune responses by focusing on the immunogenic features of myelin-derived lipids in MS including molecular mimicry; on alterations of bioactive sphingolipids mediators in MS; and on functional roles for regulatory effector cells, including innate lymphocyte populations, like the invariant NKT (iNKT) cells which bridge adaptive and innate immune systems. Recent progress in identifying the nature of sphingolipids recognition for iNKT cells in immunity and the functional consequences of the lipid-CD1d interaction opens new avenues of access to the pathogenesis of demyelination in MS as well as design of lipid antigen-specific therapeutics.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA; Laboratory of Signal Transduction Molecules, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Joan O'Keeffe
- Department of Biopharmaceutical & Medical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
20
|
Arru G, Sechi E, Mariotto S, Farinazzo A, Mancinelli C, Alberti D, Ferrari S, Gajofatto A, Capra R, Monaco S, Deiana GA, Caggiu E, Mameli G, Sechi LA, Sechi GP. Antibody response against HERV-W env surface peptides differentiates multiple sclerosis and neuromyelitis optica spectrum disorder. Mult Scler J Exp Transl Clin 2017; 3:2055217317742425. [PMID: 29204291 PMCID: PMC5703109 DOI: 10.1177/2055217317742425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/21/2017] [Indexed: 11/16/2022] Open
Abstract
Background A specific humoral immune response against HERV-W envelope surface (env-su) glycoprotein antigens has been reported in serum of patients with multiple sclerosis (MS). However, it has not been evaluated to date in patients with neuromyelitis optica spectrum disorder (NMOSD). Objective The objective of this paper is to investigate whether antibody (Ab) response against HERV-W env-su antigenic peptides differs between NMOSD and MS. Methods Serum samples were collected from 36 patients with NMOSD, 36 patients with MS and 36 healthy control individuals (HCs). An indirect ELISA was set up to detect specific Abs against HERV-W env-su peptides. Results Our data showed that two antigenic peptides, particularly HERV-Wenv93–108 and HERV-Wenv248–262, were statistically significantly present only in serum of MS compared to NMOSD and HCs. Thus, the specific humoral immune response against HERV-W env-su glycoprotein antigens found in MS is widely missing in NMOSD. Conclusion Increased circulating serum levels of these HERV-W Abs may be suitable as additional biomarkers to better differentiate MS from NMOSD.
Collapse
Affiliation(s)
- Giannina Arru
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Elia Sechi
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Alessia Farinazzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Chiara Mancinelli
- Multiple Sclerosis Centre, Spedali Civili of Brescia, Montichiari, Italy
| | - Daniela Alberti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Sergio Ferrari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Alberto Gajofatto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Ruggero Capra
- Multiple Sclerosis Centre, Spedali Civili of Brescia, Montichiari, Italy
| | - Salvatore Monaco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Giovanni A Deiana
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Elisa Caggiu
- Department of Biomedical Sciences, University of Sassari, Italy
| | - Giuseppe Mameli
- Department of Biomedical Sciences, University of Sassari, Italy
| | | | - Gian Pietro Sechi
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| |
Collapse
|
21
|
Christensen T. Human endogenous retroviruses in the aetiology of MS. Acta Neurol Scand 2017; 136 Suppl 201:18-21. [PMID: 29068488 DOI: 10.1111/ane.12836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
Several lines of investigation have provided strong indications for an association between the immune-mediated, neurologic disease multiple sclerosis (MS) and human endogenous retroviruses (HERVs). Whether the relationship is causal is yet to be established. Endogenous retroviruses are pathogenic-in other species than the human. Several aspects of the activation and involvement of specific HERV families (HERV-H/F and HERV-W/MSRV) have been documented, both for cells in the periphery and in the central nervous system. Specific HERV-encoded genes and certain gene products (envelope proteins, Envs) appear strongly associated with the disease and have pathogenic potential. Most HERV sequences are non-functional, whereas some HERV loci have coding potential but remain quiescent in non-pathological conditions, so the importance of regulatory pathways and epigenetics involved in regulating HERV activation, de-repression, and also involvement of retroviral restriction factors, is emerging. Disease intervention by means of antiretrovirals has potential as a novel therapeutic strategy in MS treatment; this is compounded by the apparently reduced risk of MS in HIV infection as a consequence of therapy. Extensive studies of HERVs, their role in neurologic diseases, and their potential as therapeutic targets are needed.
Collapse
Affiliation(s)
- T. Christensen
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
22
|
Saroukolaei SA, Ghabaee M, Shokri H, Badiei A, Ghourchian S. The role of Candida albicans in the severity of multiple sclerosis. Mycoses 2017; 59:697-704. [PMID: 27061227 DOI: 10.1111/myc.12489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to compare the specific activity of proteinase A in Candida albicans (C. albicans) between multiple sclerosis (MS) patients and controls. A total of 135 and 100 C. albicans strains were isolated from superficial surfaces of MS patients and healthy controls. Analytical models (regression and neural network) were applied to predict the severity of MS considering specific enzyme activity (SEA) and other factors which affect the expanded disability status scale (EDSS). The SEA of C. albicans in MS patients (3466.95 ± 277.25 μmol min-1 mg-1 ) was significantly more than that of healthy controls (1108.98 ± 294.51 μmol min-1 mg-1 ) that was confirmed by regression model (P < 0.001). The SEA had a positive correlation with the severity of MS (P < 0.001, r = 0.65). Analytical models showed that SEA played the most important role (among all included factors that affect on EDSS) in the severity of MS. The SEA of C. albicans in MS patients was significantly more than the healthy controls. The results suggest that the level of SEA of proteinase A and probably the capacity of C. albicans isolates to invade the host tissue is associated with the severity of MS.
Collapse
Affiliation(s)
- Shahla Amri Saroukolaei
- Neurology Department, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Ghabaee
- Neurology Department, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hojjatollah Shokri
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Alireza Badiei
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Shadi Ghourchian
- Medical Internship, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Jovel J, O'keefe S, Patterson J, Bording-Jorgensen M, Wang W, Mason AL, Warren KG, Wong GKS. Cerebrospinal Fluid in a Small Cohort of Patients with Multiple Sclerosis Was Generally Free of Microbial DNA. Front Cell Infect Microbiol 2017; 6:198. [PMID: 28111617 PMCID: PMC5216046 DOI: 10.3389/fcimb.2016.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/13/2016] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) is a common cause of non-traumatic neurologic disability with high incidence in many developed countries. Although the etiology of the disease remains elusive, it is thought to entail genetic and environmental causes, and microbial pathogens have also been envisioned as contributors to the phenotype. We conducted a metagenomic survey in cerebrospinal fluid (CSF) from 28 MS patients and 15 patients suffering other type of neurological conditions. We detected bacterial reads in eight out of the 15 non-MS patients and in a single MS patient, at an abundance >1% of total classified reads. Two patients were of special interest: one non-MS patient harbored ~73% bacterial reads, while an MS patient had ~83% bacterial reads. In the former case, Veillonella parvula, a bacterium occasionally found associated with meningitis was the predominant species, whilst Kocuria flava, apparently an environmental bacterium, predominated in the latter case. Thirty-four out of 43 samples contained <1% bacterial reads, which we regard as cross- or environmental contamination. A few viral reads corresponding to Epstein-Barr virus, cytomegalovirus, and parvovirus were also identified. Our results suggest that CSF of MS patients is often (but not always) free of microbial DNA.
Collapse
Affiliation(s)
- Juan Jovel
- Department of Medicine, University of Alberta Edmonton, AB, Canada
| | - Sandra O'keefe
- Department of Medicine, University of Alberta Edmonton, AB, Canada
| | - Jordan Patterson
- Department of Medicine, University of Alberta Edmonton, AB, Canada
| | | | - Weiwei Wang
- Department of Medicine, University of Alberta Edmonton, AB, Canada
| | - Andrew L Mason
- Department of Medicine, University of Alberta Edmonton, AB, Canada
| | - Kenneth G Warren
- Department of Medicine, University of Alberta Edmonton, AB, Canada
| | - Gane Ka-Shu Wong
- Department of Medicine, University of AlbertaEdmonton, AB, Canada; Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada; Beijing Genomics Institute-Shenzhen, Beishan Industrial ZoneShenzhen, China
| |
Collapse
|
24
|
Abstract
AbstractFrom the earliest pathological studies the perivenular localization of the demyelination in multiple sclerosis (MS) has been observed. It has recently been suggested that obstructions to venous flow or inadequate venous valves in the great veins in the neck, thorax and abdomen can cause damaging backflow into the cerebral and spinal cord circulations. Paolo Zamboni and colleagues have demonstrated abnormal venous circulation in some multiple sclerosis patients using non-invasive sonography and invasive venography. Furthermore, they have obtained apparent clinical improvement or stabilization by endovascular ballooning of points of obstruction in the great veins in some, at least temporarily. If non-invasive observations by others validate their initial observations of a significantly increased prevalence of venous obstructions in MS then trials of angioplasty/stenting would be justified in selected cases in view of the biological plausibility of the concept.
Collapse
|
25
|
Why do you have to be lucky to get the MS treatment you deserve? Mult Scler Relat Disord 2016; 8:A3-4. [DOI: 10.1016/j.msard.2016.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022]
|
26
|
Li F, Karlsson H. Expression and regulation of human endogenous retrovirus W elements. APMIS 2016; 124:52-66. [PMID: 26818262 DOI: 10.1111/apm.12478] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 10/12/2015] [Indexed: 01/06/2023]
Abstract
Human endogenous retroviruses (HERV) comprise 8% of the human genome and can be classified into at least 31 families. A typical HERV provirus consists of internal gag, pol and env genes, flanked by two long terminal repeats (LTRs). No single provirus is capable of engendering infectious particles. HERV are by nature repetitive and have with few notable exceptions lost their protein-coding capacity. Therefore, HERV have consistently been excluded from array-based expression studies and hence little is known of their expression, regulation, and potential functional significance. An increasing number of studies have, however, observed expression of the W family of HERV in various human tissues and cells, predominantly in placenta. HERV-W LTRs act as promoters in directing transcription of HERV-W members, contribute to their tissue-specific and highly diversified expression pattern. Furthermore, leaky transcription originating from adjacent genes plays a role in the transcription initiation of HERV-W psudoelements. It has been reported that HERV-W elements, including ERVWE1 (the so far only known HERV-W locus harboring a gene (env) functionally adopted by the human host to critically participate in placenta biogenesis), can become transactivated in a range of human non-placental cell-lines during exogenous virus infections. Aberrant expression of HERV-W has been associated with human diseases, such as cancer, multiple sclerosis, and schizophrenia. Based on published reports, transcriptional activities of HERV-W appear to be influenced by several mechanisms; binding of transcription factors to LTR promoters and enhancers outside of LTRs, genetic variation and alteration in DNA methylation and histone modification. Emerging mechanistic studies support the notion that HERV-W represents a potential marker or mediator of environmental exposures (e.g., virus infection) in the development of chronic complex diseases.
Collapse
Affiliation(s)
- Fang Li
- Department of Basic Medical Science, Changsha Medical University, Changsha, China.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Abstract
The presentation of acute-onset hemiparesis in a teenager can be challenging and offers a wide differential diagnosis. We discuss the approach to the patient (which should begin with thorough history taking and physical examination) and advanced imaging as directed by the patient's signs and symptoms. We report the case of an otherwise well 17-year-old girl who presented to the pediatric emergency department with a 2-day history of left-sided weakness and difficulty ambulating. Her eventual diagnosis of Balo concentric sclerosis, a rare form of multiple sclerosis, is discussed.
Collapse
|
28
|
Amri Saroukolaei S, Ghabaee M, Shokri H, Khosravi A, Badiei A. Evaluation of APR1 Gene Expression in Candida albicans Strains Isolated From Patients With Multiple Sclerosis. Jundishapur J Microbiol 2016; 9:e33292. [PMID: 27540458 PMCID: PMC4976647 DOI: 10.5812/jjm.33292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/23/2016] [Accepted: 02/12/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Intracellular aspartic proteinase A enzyme is expressed by the APR1 gene and is one of the important factors in the development of systemic candidiasis caused by Candida albicans. OBJECTIVES The aim of this study was to evaluate the expression of the APR1 gene in C. albicans isolates obtained from patients with multiple sclerosis (MS) and from controls. PATIENTS AND METHODS The samples were obtained from 135 MS patients with candidiasis and 100 matched controls of healthy individuals during 2010 - 2011. The clinical and control isolates of C. albicans obtained from individuals were cultured onto sabouraud dextrose agar (SDA). The evaluation of APR1 gene expression was performed using the reverse transcriptase-polymerase chain reaction (RT-PCR) method. RESULTS There was a statistically significant difference in APR1 gene expression of C. albicans strains between MS patients (mean ± SD: 0.5208 ± 0.11518) and the control group (mean ± SD: 0.7603 ± 0.11405) (P = 0.000). Significant correlations were found between the APR1 gene expression of C. albicans strains from MS patients with regard to age and the expanded disability status scale (EDSS) (P = 0.000). The mean values of EDSS were 1.6074 ± 0.1081 after antifungal treatment and 2.2519 ± 0.1323 before antifungal treatment (P = 0.000). No significant correlation was observed between the APR1 gene expression with regard to sex and MS subtypes. CONCLUSIONS The results suggested that APR1 gene expression in C. albicans strains isolated from MS patients may be an important factor for invasive C. albicans strains in the progression of MS disease.
Collapse
Affiliation(s)
- Shahla Amri Saroukolaei
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Mojdeh Ghabaee
- Neurology Department, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Hojjatollah Shokri
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, IR Iran
- Corresponding author: Hojjatollah Shokri, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, IR Iran. Tel/Fax: +98-1144271054, Amol, E-mail:
| | - Alireza Khosravi
- Mycology Research Centre, Faculty of Veterinary Medicine, University of Tehran, Tehran, IR Iran
| | - Alireza Badiei
- Department of Pathology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
29
|
Christensen T. Human endogenous retroviruses in neurologic disease. APMIS 2016; 124:116-26. [DOI: 10.1111/apm.12486] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
|
30
|
|
31
|
Arru G, Caggiu E, Leoni S, Mameli G, Pugliatti M, Sechi GP, Sechi LA. Natalizumab modulates the humoral response against HERV-Wenv73–88 in a follow-up study of Multiple Sclerosis patients. J Neurol Sci 2015; 357:106-8. [DOI: 10.1016/j.jns.2015.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 12/26/2022]
|
32
|
Stascheit F, Paul F, Harms L, Rosche B. Toxoplasma gondii seropositivity is negatively associated with multiple sclerosis. J Neuroimmunol 2015. [DOI: 10.1016/j.jneuroim.2015.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
34
|
Marta M, Santos E, Coutinho E, Silva AM, Correia J, Vasconcelos C, Giovannoni G. The role of infections in Behçet disease and neuro-Behçet syndrome. Autoimmun Rev 2015; 14:609-15. [DOI: 10.1016/j.autrev.2015.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/25/2015] [Indexed: 11/26/2022]
|
35
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
36
|
Acute disseminated encephalomyelitis progressing to multiple sclerosis: are infectious triggers involved? Immunol Res 2015; 60:16-22. [PMID: 24668297 PMCID: PMC7091333 DOI: 10.1007/s12026-014-8499-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS) are demyelinating disorders affecting the central nervous system. An autoimmune aetiology has been proposed for both. ADEM principally affects adolescents following acute infection by a variety of pathogens and has also been reported to occur following vaccination. ADEM typically resolves following medical treatment, whereas MS follows a more relapsing and remitting course. The pathogenesis of MS remains unclear, but it is thought that a combination of infectious and non-infectious environmental factors and host genetics act synergistically to cause disease. A variety of viruses, including Epstein Barr virus, cytomegalovirus, herpes simplex virus and varicella zoster virus, have been implicated as possible infectious triggers. The similar clinical and pathological presentation of ADEM and MS presents a diagnostic challenge for distinguishing ADEM from a first episode of MS. Some cases of ADEM progress to MS for reasons that are not currently clear. This review examines the evidence for infectious agents as triggers for ADEM progressing to MS and suggests potential methods that may facilitate identification of infectious agents that may be responsible for the pathogenesis of ADEM to MS.
Collapse
|
37
|
Ben-Selma W, Ben-Fredj N, Chebel S, Frih-Ayed M, Aouni M, Boukadida J. Age- and gender-specific effects on VDR gene polymorphisms and risk of the development of multiple sclerosis in Tunisians: a preliminary study. Int J Immunogenet 2015; 42:174-81. [PMID: 25892553 DOI: 10.1111/iji.12197] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/16/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
The vitamin D receptor (VDR) polymorphisms have been reported to be associated with multiple sclerosis (MS); however, evidence remains conflicting. In this report, we investigated the association between two single nucleotide polymorphisms (SNPs) TaqI and ApaI of VDR gene and risk development of MS. TaqI and ApaI SNPs were detected by PCR-RFLP from the DNA of 60 Tunisian patients with MS and 114 healthy controls. Our results show a significant difference of the allelic frequency distribution between the case and control groups for TaqI SNP (P = 0.01), but genotype frequencies were not significantly different (P = 0.07 and 0.23). When adjusting frequency distribution of different alleles and genotypes by age, we found that the difference between the T allele frequencies of this SNP in the group of patients age [15-24] in comparison with the control group of the same age group was statistically significant (P = 0.026). Moreover, frequency of the T allele was significantly higher in male patients compared with controls of the same sex (P = 0.017). However, neither the genotype nor the allele frequency distribution was significantly different between the MS and control populations for the ApaI SNP. Our preliminary results indicate that VDR gene polymorphism could be associated with susceptibility to MS. The role of VDR gene polymorphism should be further studied in other large populations, and the distribution of other polymorphism, such as FokI and BsmI, should be also analysed to confirm another susceptibility polymorphisms gene for MS and to obtain more adequate strategies for treatment of MS.
Collapse
Affiliation(s)
- W Ben-Selma
- Laboratory of Microbiology and Immunology, UR12SP34, Farhat Hached University Hospital, Sousse, Tunisia
| | - N Ben-Fredj
- Laboratory of Transmissible Diseases and Biological Active substances, LR99-ES27, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - S Chebel
- Department of Neurology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - M Frih-Ayed
- Department of Neurology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - M Aouni
- Laboratory of Transmissible Diseases and Biological Active substances, LR99-ES27, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - J Boukadida
- Laboratory of Microbiology and Immunology, UR12SP34, Farhat Hached University Hospital, Sousse, Tunisia
| |
Collapse
|
38
|
Environmental factors in multiple sclerosis. Presse Med 2015; 44:e113-20. [PMID: 25744944 DOI: 10.1016/j.lpm.2015.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 12/29/2022] Open
Abstract
Although multiple sclerosis (MS) is recognized as a disorder involving the immune system, the interplay of environmental factors and individual genetic susceptibility seems to influence MS onset and clinical expression, as well as therapeutic responsiveness. Multiple human epidemiological and animal model studies have evaluated the effect of different environmental factors, such as viral infections, vitamin intake, sun exposure, or still dietary and life habits on MS prevalence. Previous Epstein-Barr virus infection, especially if this infection occurs in late childhood, and lack of vitamin D (VitD) currently appear to be the most robust environmental factors for the risk of MS, at least from an epidemiological standpoint. Ultraviolet radiation (UVR) activates VitD production but there are also some elements supporting the fact that insufficient UVR exposure during childhood may represent a VitD-independent risk factor of MS development, as well as negative effect on the clinical and radiological course of MS. Recently, there has been a growing interest in the gut-brain axis, a bidirectional neuro-hormonal communication system between the intestinal microbiota and the central nervous system (CNS). Indeed, components of the intestinal microbiota may be pro-inflammatory, promote the migration of immune cells into the CNS, and thus be a key parameter for the development of autoimmune disorders such as MS. Interestingly most environmental factors seem to play a role during childhood. Thus, if childhood is the most fragile period to develop MS later in life, preventive measures should be applied early in life. For example, adopting a diet enriched in VitD, playing outdoor and avoiding passive smoking would be extremely simple measures of primary prevention for public health strategies. However, these hypotheses need to be confirmed by prospective evaluations, which are obviously difficult to conduct. In addition, it remains to be determined whether and how VitD supplementation in adult life would be useful in alleviating the course of MS, once this disease has already started. A better knowledge of the influence of various environmental stimuli on MS risk and course would certainly allow the development of add-on therapies or measures in parallel to the immunotherapies currently used in MS.
Collapse
|
39
|
Mazzoni E, Pietrobon S, Masini I, Rotondo JC, Gentile M, Fainardi E, Casetta I, Castellazzi M, Granieri E, Caniati ML, Tola MR, Guerra G, Martini F, Tognon M. Significant low prevalence of antibodies reacting with simian virus 40 mimotopes in serum samples from patients affected by inflammatory neurologic diseases, including multiple sclerosis. PLoS One 2014; 9:e110923. [PMID: 25365364 PMCID: PMC4218715 DOI: 10.1371/journal.pone.0110923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/23/2014] [Indexed: 01/07/2023] Open
Abstract
Many investigations were carried out on the association between viruses and multiple sclerosis (MS). Indeed, early studies reported the detections of neurotropic virus footprints in the CNS of patients with MS. In this study, sera from patients affected by MS, other inflammatory (OIND) and non-inflammatory neurologic diseases (NIND) were analyzed for antibodies against the polyomavirus, Simian Virus 40 (SV40). An indirect enzyme-linked immunosorbent assay (ELISA), with two synthetic peptides, which mimic SV40 antigens, was employed to detect specific antibodies in sera from patients affected by MS, OIND, NIND and healthy subjects (HS). Immunologic data indicate that in sera from MS patients antibodies against SV40 mimotopes are detectable with a low prevalence, 6%, whereas in HS of the same mean age, 40 yrs, the prevalence was 22%. The difference is statistically significant (P = 0.001). Significant is also the difference between MS vs. NIND patients (6% vs. 17%; P = 0.0254), whereas no significant difference was detected between MS vs OIND (6% vs 10%; P>0.05). The prevalence of SV40 antibodies in MS patients is 70% lower than that revealed in HS.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Silvia Pietrobon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Irene Masini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mauro Gentile
- Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Enrico Fainardi
- Unit of Neuroradiology, University Hospital of Ferrara, Ferrara, Italy
| | - Ilaria Casetta
- Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Massimiliano Castellazzi
- Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Enrico Granieri
- Biomedical Sciences and Specialized Surgeries, Section of Neurology, School of Medicine, University of Ferrara, Ferrara, Italy
| | | | | | - Giovanni Guerra
- Clinical Laboratory Analysis, University Hospital of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
40
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
41
|
Adhikari R, Thapa S. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 807:75-96. [PMID: 24619619 PMCID: PMC7121612 DOI: 10.1007/978-81-322-1777-0_6] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans, viral infections of the respiratory tract are a leading cause of morbidity and mortality worldwide. Several recognized respiratory viral agents have a neuroinvasive capacity since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Among the various respiratory viruses, coronaviruses are important pathogens of humans and animals. Human Coronaviruses (HCoV) usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly, and immune-compromised individuals, they can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, respiratory distress syndrome, or even severe acute respiratory syndrome (SARS). The respiratory involvement of HCoV has been clearly established since the 1960s. In addition, for almost three decades now, the scientific literature has also demonstrated that HCoV are neuroinvasive and neurotropic and could induce an overactivation of the immune system, in part by participating in the activation of autoreactive immune cells that could be associated with autoimmunity in susceptible individuals. Furthermore, it was shown that in the murine CNS, neurons are the main target of infection, which causes these essential cells to undergo degeneration and eventually die by some form of programmed cell death after virus infection. Moreover, it appears that the viral surface glycoprotein (S) represents an important factor in the neurodegenerative process. Given all these properties, it has been suggested that these recognized human respiratory pathogens could be associated with the triggering or the exacerbation of neurological diseases for which the etiology remains unknown or poorly understood.
Collapse
Affiliation(s)
| | - Santosh Thapa
- Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
42
|
Oreja-Guevara C, Wiendl H, Kieseier BC, Airas L. Specific aspects of modern life for people with multiple sclerosis: considerations for the practitioner. Ther Adv Neurol Disord 2014; 7:137-49. [PMID: 24587828 DOI: 10.1177/1756285613501575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, debilitating, neurodegenerative disease that has a high impact on patients' quality of life. Individuals are often diagnosed in early adulthood and are faced with the difficulty of managing their lifestyle within the context of this chronic illness. Here we review factors that influence the disease course and the challenges that might be encountered when managing patients with MS. The majority of diagnosed patients are women of childbearing age, making pregnancy-related issues a key concern. MS typically stabilizes during pregnancy and evidence suggests that the disease has no impact on the risk of complications or outcomes. However, the effect of disease-modifying therapies on outcomes is less clear, and discontinuation of treatment prior to pregnancy or when breastfeeding is recommended. Awareness of genetic risk factors is important for patients planning a family, as several genes increase the risk of MS. Further aspects that require consideration include infections, vaccinations, environmental factors, surgery and the emergence of osteoporosis. Vaccinations are generally not a risk factor for MS and may be beneficial in terms of protection against infection and reducing the number of relapses. Environmental factors such as vitamin D deficiency, low exposure to sunlight, smoking and Epstein-Barr virus infection can all negatively influence the disease course. Furthermore, osteoporosis is generally higher in patients with MS than the general population, and the risk is increased by the environmental and genetic factors associated with the disease; bone mineral density should be assessed and smoking cessation and correction of serum vitamin D levels are recommended. Finally, as patients with MS are typically young, they are at low risk of surgery-related complications, although they should be carefully monitored postoperatively. Awareness of, and planning around, these factors may minimize the impact of the disease on patients' lifestyle.
Collapse
Affiliation(s)
- Celia Oreja-Guevara
- Department of Neurology, University Hospital San Carlos, IdISCC, Madrid, Spain
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | - Bernd C Kieseier
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Laura Airas
- Department of Neurology, University of Turku, Turku, Finland
| | | |
Collapse
|
43
|
Transcriptional derepression of the ERVWE1 locus following influenza A virus infection. J Virol 2014; 88:4328-37. [PMID: 24478419 DOI: 10.1128/jvi.03628-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Syncytin-1, a fusogenic protein encoded by a human endogenous retrovirus of the W family (HERV-W) element (ERVWE1), is expressed in the syncytiotrophoblast layer of the placenta. This locus is transcriptionally repressed in adult tissues through promoter CpG methylation and suppressive histone modifications. Whereas syncytin-1 appears to be crucial for the development and functioning of the human placenta, its ectopic expression has been associated with pathological conditions, such as multiple sclerosis and schizophrenia. We previously reported on the transactivation of HERV-W elements, including ERVWE1, during influenza A/WSN/33 virus infection in a range of human cell lines. Here we report the results of quantitative PCR analyses of transcripts encoding syncytin-1 in both cell lines and primary fibroblast cells. We observed that spliced ERVWE1 transcripts and those encoding the transcription factor glial cells missing 1 (GCM1), acting as an enhancer element upstream of ERVWE1, are prominently upregulated in response to influenza A/WSN/33 virus infection in nonplacental cells. Knockdown of GCM1 by small interfering RNA followed by infection suppressed the transactivation of ERVWE1. While the infection had no influence on CpG methylation in the ERVWE1 promoter, chromatin immunoprecipitation assays detected decreased H3K9 trimethylation (H3K9me3) and histone methyltransferase SETDB1 levels along with influenza virus proteins associated with ERVWE1 and other HERV-W loci in infected CCF-STTG1 cells. The present findings suggest that an exogenous influenza virus infection can transactivate ERVWE1 by increasing transcription of GCM1 and reducing H3K9me3 in this region and in other regions harboring HERV-W elements. IMPORTANCE Syncytin-1, a protein encoded by the env gene in the HERV-W locus ERVWE1, appears to be crucial for the development and functioning of the human placenta and is transcriptionally repressed in nonplacental tissues. Nevertheless, its ectopic expression has been associated with pathological conditions, such as multiple sclerosis and schizophrenia. In the present paper, we report findings suggesting that an exogenous influenza A virus infection can transactivate ERVWE1 by increasing the transcription of GCM1 and reducing the repressive histone mark H3K9me3 in this region and in other regions harboring HERV-W elements. These observations have implications of potential relevance for viral pathogenesis and for conditions associated with the aberrant transcription of HERV-W loci.
Collapse
|
44
|
Abstract
We recently introduced the concept of the infectome as a means of studying all infectious factors which contribute to the development of autoimmune disease. It forms the infectious part of the exposome, which collates all environmental factors contributing to the development of disease and studies the sum total of burden which leads to the loss of adaptive mechanisms in the body. These studies complement genome-wide association studies, which establish the genetic predisposition to disease. The infectome is a component which spans the whole life and may begin at the earliest stages right up to the time when the first symptoms manifest, and may thus contribute to the understanding of the pathogenesis of autoimmunity at the prodromal/asymptomatic stages. We provide practical examples and research tools as to how we can investigate disease-specific infectomes, using laboratory approaches employed from projects studying the “immunome” and “microbiome”. It is envisioned that an understanding of the infectome and the environmental factors that affect it will allow for earlier patient-specific intervention by clinicians, through the possible treatment of infectious agents as well as other compounding factors, and hence slowing or preventing disease development.
Collapse
|
45
|
Pakpoor J, Giovannoni G, Ramagopalan SV. Epstein-Barr virus and multiple sclerosis: association or causation? Expert Rev Neurother 2013; 13:287-97. [PMID: 23448218 DOI: 10.1586/ern.13.6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial disease in which both genetic and environmental factors and their interactions underlie causation. The current evidence base supports a strong association between Epstein-Barr virus (EBV) and MS, but potential causality remains strongly debated. It is not possible to exclude the possibility that an abnormal response to EBV infection is a consequence, rather than a cause, of the underlying pathophysiology of MS, or indeed that the association may be a reflection of a similar underlying disease mechanism. Substantial experimental progress is necessary to achieve consistency of molecular findings to complement the strong epidemiological association between EBV and MS, which cannot alone show causation. Collectively, the strength of the association between EBV and MS warrants careful development and trial of anti-EBV drugs to observe any effect on MS disease course.
Collapse
Affiliation(s)
- Julia Pakpoor
- Department of Physiology, Anatomy and Genetics and Medical Research Council Functional Genomics Unit, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
46
|
Stys PK. Pathoetiology of multiple sclerosis: are we barking up the wrong tree? F1000PRIME REPORTS 2013; 5:20. [PMID: 23755367 PMCID: PMC3673225 DOI: 10.12703/p5-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite a century of intensive investigation, the underlying cause of multiple sclerosis has eluded us. It is clear that there exists a prominent progressive degenerative phenotype together with an important autoimmune inflammatory component, and careful histopathological examination always shows, to a greater or lesser degree, concomitant degeneration/demyelination and adaptive T cell-dependent immune responses. Given this picture, it is difficult, if not impossible, to definitively say whether degeneration or autoimmunity is the initiator of the disease. In this review, I put forward the evidence for and against both models and speculate that, in contrast to the accepted view, it is equally likely that multiple sclerosis may be a degenerative disease that secondarily elicits an autoimmune response, and suggest how this might influence therapeutic approaches.
Collapse
|
47
|
Sheu JJ, Lin HC. Association between multiple sclerosis and chronic periodontitis: a population-based pilot study. Eur J Neurol 2013; 20:1053-9. [PMID: 23398363 DOI: 10.1111/ene.12103] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/07/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The pathogenesis of multiple sclerosis (MS) is still not fully understood, but multiple infections are known to be crucial in the development of the disease. Periodontitis caused by periodontopathic polymicrobial infections is among the most common chronic infectious disorders. This case-control study aimed to investigate the association between chronic periodontitis (CP) and MS using a population-based dataset in Taiwan. METHODS This study included 316 cases who had a diagnosis of MS and 1580 randomly selected controls. We performed conditional logistic regressions to investigate the association between MS and having been previously diagnosed with CP. RESULTS The results reveal that the prevalence of earlier CP was 25.6% and 15.4% for cases and controls, respectively (P < 0.001). Conditional logistic regression analysis revealed that cases were 1.86 [95% confidence interval (CI) = 1.39-2.48] times as likely as controls to have been previously diagnosed with CP, after adjusting for sociodemographic characteristics as well as hyperlipidemia, hypertension, coronary heart disease, alcohol abuse/alcohol-dependence syndrome, tobacco use disorder and chronic obstructive pulmonary disease. After analyzing by gender, it was realized that while female cases had a higher chance than female controls of having earlier CP (adjusted odds ratio = 2.08; 95% CI = 1.49-2.95), there was no statistical association detected between these two conditions in men. CONCLUSIONS This study provides evidence for an association between CP and MS in female, but not male, subjects. Further epidemiological studies are needed to confirm the association and gender-specific differences found in the present study.
Collapse
Affiliation(s)
- J-J Sheu
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
| | | |
Collapse
|
48
|
Fungal infection in cerebrospinal fluid from some patients with multiple sclerosis. Eur J Clin Microbiol Infect Dis 2013; 32:795-801. [PMID: 23322279 DOI: 10.1007/s10096-012-1810-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/18/2012] [Indexed: 01/19/2023]
Abstract
Multiple sclerosis (MS) is the prototypical inflammatory disease of the central nervous system and spinal cord, leading to axonal demyelination of neurons. Recently, we have found a correlation between fungal infection and MS in peripheral blood of patients. The present work provides evidence of fungal infection in the cerebrospinal fluid (CSF) of some MS patients. Thus, fungal antigens can be demonstrated in CSF, as well as antibodies reacting against several Candida species. Comparison was made between CSF and blood serum for the presence of fungal antigens (proteins) and antibodies against different Candida spp. Analyses of both CSF and serum are complementary and serve to better evaluate for the presence of disseminated fungal infection. In addition, PCR analyses indicate the presence of DNA from different fungal species in CSF, depending on the patient analyzed. Overall, these findings support the notion that fungal infection can be demonstrated in CSF from some MS patients. This may constitute a risk factor in this disease and could also help in understanding the pathogenesis of MS.
Collapse
|
49
|
Hogan EL, Podbielska M, O'Keeffe J. Implications of Lymphocyte Anergy to Glycolipids in Multiple Sclerosis (MS): iNKT Cells May Mediate the MS Infectious Trigger. ACTA ACUST UNITED AC 2013; 4. [PMID: 26347308 PMCID: PMC4557814 DOI: 10.4172/2155-9899.1000144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunogenic lipids may play key roles in host defenses against infection and in generating autoimmune inflammation and organ-specific damage. In multiple sclerosis (MS) there are unequivocal autoimmune features and vulnerability to aggravation or induction by microbial or viral infection. We have found glycolipid-driven anergy of circulating lymphocytes in MS indicating that this immune response is affected in MS and the robust effects of iNKT activation with potent cellular and cytokine activities emphasizes its potential importance. Diverse glycolipids including the endogenous myelin acetylated-galactosylceramides (AcGalCer) can drive activation that could be critical to the inflammatory demyelination in the central nervous system and clinical consequences. The iNKT cells and their invariant or iTCR (Vα24Jα18Vβ11) receptor an innate defense–a discrete immune arm that is separate from peptide-driven acquired immune responses. This offers new possibilities for insight including a likelihood that the pattern recognition of exogenous microbial and myelin immunogens can overlap and cross-react especially in an inflammatory milieu.
Collapse
Affiliation(s)
- Edward L Hogan
- Georgia Regents University, Institute of Molecular Medicine and Genetics, Department of Neurology, 1120 15 Street, Augusta, 30912-2620 GA, USA ; National University of Ireland Galway, Department of Microbiology, University Road, Galway, Ireland ; Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue, Charleston, SC 29401, USA
| | - Maria Podbielska
- Georgia Regents University, Institute of Molecular Medicine and Genetics, Department of Neurology, 1120 15 Street, Augusta, 30912-2620 GA, USA ; Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Laboratory of Signaling Proteins, R. Weigla Street 12, 53-114 Wrocław, Poland
| | - Joan O'Keeffe
- Department of Life and Physical Sciences, School of Science, Galway-Mayo Institute of Technology, Galway, Ireland
| |
Collapse
|
50
|
Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S, Shoenfeld Y. Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev 2012; 12:726-40. [PMID: 23266520 PMCID: PMC7105216 DOI: 10.1016/j.autrev.2012.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 02/06/2023]
Abstract
The "exposome" is a term recently used to describe all environmental factors, both exogenous and endogenous, which we are exposed to in a lifetime. It represents an important tool in the study of autoimmunity, complementing classical immunological research tools and cutting-edge genome wide association studies (GWAS). Recently, environmental wide association studies (EWAS) investigated the effect of environment in the development of diseases. Environmental triggers are largely subdivided into infectious and non-infectious agents. In this review, we introduce the concept of the "infectome", which is the part of the exposome referring to the collection of an individual's exposures to infectious agents. The infectome directly relates to geoepidemiological, serological and molecular evidence of the co-occurrence of several infectious agents associated with autoimmune diseases that may provide hints for the triggering factors responsible for the pathogenesis of autoimmunity. We discuss the implications that the investigation of the infectome may have for the understanding of microbial/host interactions in autoimmune diseases with long, pre-clinical phases. It may also contribute to the concept of the human body as a superorganism where the microbiome is part of the whole organism, as can be seen with mitochondria which existed as microbes prior to becoming organelles in eukaryotic cells of multicellular organisms over time. A similar argument can now be made in regard to normal intestinal flora, living in symbiosis within the host. We also provide practical examples as to how we can characterise and measure the totality of a disease-specific infectome, based on the experimental approaches employed from the "immunome" and "microbiome" projects.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London, UK.
| | | | | | | | | | | | | |
Collapse
|