1
|
Jiang Y, Qi Z, Zhu H, Shen K, Liu R, Fang C, Lou W, Jiang Y, Yuan W, Cao X, Chen L, Zhuang Q. Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. Neural Regen Res 2025; 20:1628-1643. [PMID: 38845220 PMCID: PMC11688550 DOI: 10.4103/nrr.nrr-d-23-01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/12/2024] [Accepted: 04/21/2024] [Indexed: 08/07/2024] Open
Abstract
The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.
Collapse
Affiliation(s)
- Yimiao Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Huixian Zhu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Kangli Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Ruiqi Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Chenxin Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Weiwei Lou
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yifan Jiang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Wangrui Yuan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
| | - Qianxing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Putzolu M, Botta A, Cosentino C, Mezzarobba S, Bonassi G, Ravizzotti E, Terranova S, Lagravinese G, Pelosin E, Avanzino L. Recent advances of transcranial electrical stimulation in healthy aging and Parkinson's disease: Effects on dual tasking. JOURNAL OF PARKINSON'S DISEASE 2025:1877718X251327758. [PMID: 40241492 DOI: 10.1177/1877718x251327758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Dual tasking involves the simultaneous execution of two actions. In the context of healthy aging and neurodegenerative disorders, such as Parkinson's disease (PD) engagement in dual tasking frequently results in impaired gait or upper limb performance, thereby affecting functional independence. Transcranial electrical stimulation is a non-invasive technique able to modulate brain activity, which might represent a potential tool for reducing dual task interference. The goal of this review is to provide a comprehensive summary of the most recent findings about the use of transcranial electrical stimulation in improving dual tasking in the elderly and people with PD, including considerations about the optimal stimulation parameters. Differences in terms of stimulation protocols emerged across the included studies. Among transcranial electrical stimulation techniques, transcranial direct current stimulation (tDCS) was the most frequently employed. Currently, using tDCS to target dorsolateral prefrontal cortex either alone or in a multi-site fashion, along with a concurrent complex task, appears to be the most promising method for reducing dual task interference. Nevertheless, the lack of control over interindividual variability, the heterogeneity in outcome measures assessing dual tasking, and the variations in protocol elements like the frequency and the number of sessions prevented us from drawing definitive conclusions about the best paradigm.
Collapse
Affiliation(s)
- Martina Putzolu
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Susanna Mezzarobba
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Gaia Bonassi
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Elisa Ravizzotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Sara Terranova
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
| | | | - Elisa Pelosin
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Kundu NC, Kundu A, Khalil MI, Joy KMNI, Sen M, Hasan Z, Sahabuddin M, Rafi MA, Hasan MJ. A case-control study on vitamin D receptor gene polymorphisms in patients with Parkinson's disease in Bangladesh. Sci Rep 2025; 15:12333. [PMID: 40210960 PMCID: PMC11986123 DOI: 10.1038/s41598-025-96195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a multifactorial etiology. This study aimed to investigate the association between vitamin D receptor (VDR) gene polymorphisms (ApaI, BsmI, FokI and TaqI) and the risk of PD in a Bangladeshi population. A case-control study was conducted with 100 PD patients and 100 age- and sex-matched healthy controls. Serum vitamin D levels were measured using a chemiluminescent immunoassay, and VDR gene polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Genetic models (allele, dominant, recessive and additive models) were used to assess the association between each polymorphism and PD risk. The mean age of the patients with PD was 63 years, with 65% being male, while the control group had a mean age of 54.5 years and 60% were male. In genetic models, the T allele of the ApaI gene demonstrated a significant association with PD (OR 1.92, 95% CI 1.20-3.13, p-value 0.007). This significant association persisted across both recessive and additive models (for recessive model: OR 2.17, 95% CI 1.10-4.55, p-value 0.027 and for additive model: OR 2.78, 95% CI 1.22-6.67, p-value 0.015). Similarly, the T allele of the FokI gene was found to be significantly associated with PD (OR 2.27, 95% CI 1.43-3.57, p-value 0.001). This association was also evident in both dominant and additive models (for dominant model: OR 2.56, 95% CI 1.45-4.55, p-value 0.001 and for additive model: OR 3.03, 95% CI 1.67-5.56, p-value 0.001). Conversely, no significant associations were observed for the genetic polymorphisms of the BsmI and TaqI genes across any of the genetic models examined. The findings suggest that specific VDR gene polymorphisms, particularly ApaI and FokI, are significantly associated with the risk of PD in the Bangladeshi population.
Collapse
Affiliation(s)
- Narayan Chandra Kundu
- Department of Neurology, Shaheed Suhrawardy Medical College, Dhaka, 1207, Bangladesh.
| | - Anindya Kundu
- University of Western Australia, Perth, WA, 6009, Australia
| | - Md Ibrahim Khalil
- Department of Neurology, Shaheed Suhrawardy Medical College, Dhaka, 1207, Bangladesh
| | - K M Nazmul Islam Joy
- Department of Neurology, Shaheed Suhrawardy Medical College, Dhaka, 1207, Bangladesh
| | - Moushumi Sen
- Department of Biochemistry, Anwer Khan Modern Medical College, Dhaka, 1205, Bangladesh
| | - Zahid Hasan
- Bangladesh University of Health Science, Dhaka, 1216, Bangladesh
| | - Md Sahabuddin
- Bangladesh Specialized Hospital, Dhaka, 1207, Bangladesh
| | - Md Abdur Rafi
- Pi Research & Development Center, Dhaka, 1100, Bangladesh
| | | |
Collapse
|
4
|
Zheng Q, Yuan W, Wen J, Qin J, Wu C, Wu H, Duanmu X, Tan S, Guo T, Zhou C, Wu J, Chen J, Zeng Q, Fang Y, Zhu B, Yan Y, Tian J, Zhang B, Zhang M, Guan X, Xu X. Arterial spin labeling MRI based perfusion pattern related to motor dysfunction and L-DOPA reactivity in Parkinson's disease. Neuroimage Clin 2025; 46:103776. [PMID: 40209569 PMCID: PMC12008145 DOI: 10.1016/j.nicl.2025.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/23/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
OBJECTIVE Identifying intrinsic pattern of Parkinson's disease (PD) helps to better understand of PD and provide insights to disease identification and treatment monitoring. Here we confirmed the PD-related covariance pattern (PDRP) by using arterial spin labelling technology (ASL-PDRP) and explore its potential for predicting motor progression and levodopa (L-DOPA) reactivity reduction. METHODS Data from an original cohort of 179 PD and 62 normal controls (NC) and a validation cohort including 36 PD and 19 NC to construct and validate the ASL-PDRP. The correlations between the pattern and motor symptoms were analyzed cross-sectionally and longitudinally (71 PD owned longitudinal data) with hierarchical linear regression analysis. Kaplan-Meier analysis was conducted in 54 L-DOPA-managed PD patients to predict the levodopa reactivity reduction. RESULTS The first principal component was predominantly recognized as the ASL-PDRP, with its expression being higher in PD than NC in both sets (original: P = 0.017, AUC = 0.598; validation: P = 0.024, AUC = 0.661). The pattern expression was associated with UPDRS III (P = 0.006) and sub-symptoms (axial: P < 0.001; rigidity: P = 0.003; bradykinesia: P = 0.015) at baseline. The ASL-PDRP could predict the progression of UPDRS III (P = 0.021, β = 4.930). Higher expression of the pattern had slower rate of levodopa reactivity reduction in PD patients with axial symptom (P = 0.031). CONCLUSION The identified ASL-PDRP may have potential for characterizing PD with the ability to predict motor progression and L-DOPA reactivity reduction.
Collapse
Affiliation(s)
- Qianshi Zheng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijin Yuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuelin Fang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Bingting Zhu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Amstutz D, Sousa M, Maradan-Gachet ME, Debove I, Lhommée E, Krack P. Psychiatric and cognitive symptoms of Parkinson's disease: A life's tale. Rev Neurol (Paris) 2025; 181:265-283. [PMID: 39710559 DOI: 10.1016/j.neurol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Neuropsychiatric symptoms are highly prevalent in Parkinson's disease (PD) and significantly affect the quality of life of patients and their significant others. The aim of this work is to describe typical neuropsychiatric symptoms and their treatment. METHODS This is a narrative opinion paper, illustrated by a fictional case report. The most common neuropsychiatric symptoms such as depressive symptoms, anxiety, apathy, psychotic symptoms, impulse control disorders, as well as cognitive impairment are discussed in the context of prodromal stage, early stage, fluctuations stage, post-surgical intervention, and late stage of PD. RESULTS Multiple factors such as pathophysiology, dopaminergic medication, deep brain stimulation, personality traits and individual life circumstances influence neuropsychiatric symptoms. Since the complexity and causes of neuropsychiatric symptoms can change, management strategies have to be adapted and individualised throughout the disease trajectory. DISCUSSION Recognising neuropsychiatric symptoms within the framework of the disease stage and identifying their potential causes is pivotal to provide adequate interventions.
Collapse
Affiliation(s)
- D Amstutz
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - M Sousa
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - M E Maradan-Gachet
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - I Debove
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - E Lhommée
- Department of Neurorehabilitation, Centre Hospitalier Universitaire Grenoble Alpes, University of Grenoble, Grenoble, France
| | - P Krack
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Horn A, Li N, Meyer GM, Gadot R, Provenza NR, Sheth SA. Deep Brain Stimulation response circuits in Obsessive Compulsive Disorder. Biol Psychiatry 2025:S0006-3223(25)01096-0. [PMID: 40120789 DOI: 10.1016/j.biopsych.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
In the field of deep brain stimulation (DBS), two major themes are currently making significant progress. First, the framework of connectomic DBS, in which circuits that are associated with improvements of specific symptoms are described and targeted to improve and potentially personalize treatment. Second, the concept of brain sensing and adaptive DBS, which aims at identifying neural biomarkers that may guide stimulation in a closed-loop fashion. In DBS for Obsessive Compulsive Disorder (OCD), substantial progress has been made on both ends, over the last five years. Together, results begin to draw a picture of exactly which circuit is associated with treatment response, and how it may be affected by dysfunctional brain activity that may be attenuated using DBS. In turn, this knowledge, if further refined and validated, will define where, when, and how to stimulate which patients with OCD. We review the key studies from recent years with the aim to aggregate and condense findings along both spatial and temporal domains. The result is a concept that anatomically defines a circuit that is likely dysfunctional in patients with typical OCD phenotypes, and which may be adaptively targeted using DBS to maximally improve symptoms.
Collapse
Affiliation(s)
- Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston MA 02115, USA; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Ron Gadot
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA; Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA; Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
van der Maden MM, Verbeek MM, Beckers M. Lactobacillaceae and Parkinson's disease: An apparent paradox. JOURNAL OF PARKINSON'S DISEASE 2025; 15:269-281. [PMID: 39973489 DOI: 10.1177/1877718x241312401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder predominantly known for its motor symptoms such as bradykinesia, rigidity and tremor, but the disorder is also increasingly recognized for its association with impaired gastrointestinal function. The composition of the gut microbiome is known to be different in PD compared with healthy individuals. One of the bacterial families with increased abundance in people with PD is Lactobacillaceae. Interestingly, opposite effects have been ascribed to Lactobacillaceae in PD. A number of studies have linked Lactobacillaceae spp. in the gut to worse motor function, and to premature degradation of levodopa. However, other studies have linked administration of Lactobacillaceae-containing probiotics to improved motor function and reduced gastrointestinal problems. In this narrative review, we investigate this apparent paradox. The key to its understanding appears to lie in the specific species of Lactobacillaceae. The species L. plantarum in particular seemed to show a correlation with improved motor symptoms, as well as a reduction in intestinal inflammation, whereas L. brevis, L. curvatus and L. fermentum have properties that might be detrimental to people with PD.
Collapse
Affiliation(s)
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Milan Beckers
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Santyr B, Boutet A, Ajala A, Germann J, Qiu J, Fasano A, Lozano AM, Kucharczyk W. Emerging Techniques for the Personalization of Deep Brain Stimulation Programming. Can J Neurol Sci 2025:1-13. [PMID: 39963066 DOI: 10.1017/cjn.2025.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
The success of deep brain stimulation (DBS) relies on applying carefully titrated therapeutic stimulation at specific targets. Once implanted, the electrical stimulation parameters at each electrode contact can be modified. Iteratively adjusting the stimulation parameters enables testing for the optimal stimulation settings. Due to the large parameter space, the currently employed empirical testing of individual parameters based on acute clinical response is not sustainable. Within the constraints of short clinical visits, optimization is particularly challenging when clinical features lack immediate feedback, as seen in DBS for dystonia and depression and with the cognitive and axial side effects of DBS for Parkinson's disease. A personalized approach to stimulation parameter selection is desirable as the increasing complexity of modern DBS devices also expands the number of available parameters. This review describes three emerging imaging and electrophysiological methods of personalizing DBS programming. Normative connectome-base stimulation utilizes large datasets of normal or disease-matched connectivity imaging. The stimulation location for an individual patient can then be varied to engage regions associated with optimal connectivity. Electrophysiology-guided open- and closed-loop stimulation capitalizes on the electrophysiological recording capabilities of modern implanted devices to individualize stimulation parameters based on biomarkers of success or symptom onset. Finally, individual functional MRI (fMRI)-based approaches use fMRI during active stimulation to identify parameters resulting in characteristic patterns of functional engagement associated with long-term treatment response. Each method provides different but complementary information, and maximizing treatment efficacy likely requires a combined approach.
Collapse
Affiliation(s)
- Brendan Santyr
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | | | - Alfonso Fasano
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, UHN, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Walter Kucharczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Battista P, Aresta S, Tagliente S, Merlo F, Mongelli D, Lagravinese G, Falcone R, Palmirotta C, Turi G, Castellari M, Zonno A, Gelao C, Picciola E, Fiore P, Battel I, Minafra B. Exploring the Neuropsychological Correlates of Swallowing Disorders in People with Parkinson's Disease: a Cross-Sectional Study. Dysphagia 2025; 40:292-304. [PMID: 38951235 DOI: 10.1007/s00455-024-10728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Around 80% of persons with Parkinson's disease (PD) present symptoms of dysphagia. Although cognitive impairment may contribute to dysphagia, few studies have investigated the association between the PD neuropsychological profile and objective measures of swallowing dysfunction. Since the swallowing function comprises involuntary but also voluntary actions, we hypothesize that specific measures of attention and executive functions can be underlined in PD-related dysphagia. Therefore, the aim of this study was to extensively investigate the correlation and the relationship between attentive and executive functions and safety/efficiency of pharyngeal phase of swallowing in people with PD. All participants received a fiberoptic endoscopic evaluation of swallowing and were evaluated using the Penetration Aspiration Scale (PAS); the Yale Pharyngeal Residue Severity Rating Scale (IT-YPRSRS), and the Functional Oral Intake Scale (FOIS-IT). Participants also underwent a neuropsychological assessment covering global cognitive status, attention, and frontal executive functions. Correlations and associations between neuropsychological measures and swallowing components were calculated. Twenty-one participants with PD (mean age 69.38 ± 6.58 years, mean disease duration 8.38 ± 5.31 years; mean MDS-UPDRS III 43.95 ± 24.18) completed all evaluations. The most significant correlations were found between attentive functions (i.e., Stroop Time), and executive functions (i.e., Raven's Progressive Matrices, Digit Backward and Semantic Fluency), and FOIS-IT, PAS, and IT-YPRSRS sinuses and valleculae. These associations were not influenced by disease duration. These results suggest that a dysfunction to attentional processes and/or to executive functions can contribute to penetration and the presence of pharyngeal residue in participants with middle-stage PD.
Collapse
Affiliation(s)
- Petronilla Battista
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Institute of Bari, Bari, Italy.
| | - Simona Aresta
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Institute of Bari, Bari, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit , Institute of Bari, Bari, Italy
| | - Serena Tagliente
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Institute of Bari, Bari, Italy
| | | | - Davide Mongelli
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Institute of Bari, Bari, Italy
| | - Gianvito Lagravinese
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Institute of Bari, Bari, Italy
| | - Rosanna Falcone
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Institute of Bari, Bari, Italy
| | - Cinzia Palmirotta
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Institute of Bari, Bari, Italy
| | - Gilda Turi
- Istituti Clinici Scientifici Maugeri IRCCS, Laboratory of Neuropsychology, Institute of Bari, Bari, Italy
| | - Micol Castellari
- Department of Physical and Rehabilitation Medicine, University of Foggia, Foggia, Italy
| | - Alessandra Zonno
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit , Institute of Bari, Bari, Italy
| | - Christian Gelao
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit , Institute of Bari, Bari, Italy
| | - Emilia Picciola
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit , Institute of Bari, Bari, Italy
| | - Pietro Fiore
- Department of Physical and Rehabilitation Medicine, University of Foggia, Foggia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit, Institute of Milan, Milan, Italy
| | - Irene Battel
- Department of Biomedical, Surgical and Dental Sciences, University "La Statale", Milan, Italy
| | - Brigida Minafra
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit , Institute of Bari, Bari, Italy
| |
Collapse
|
10
|
Domingues VL, Makhoul MP, de Freitas TB, Polese JC, Silva-Batista C, Barbieri FA, Torriani-Pasin C. Factors Associated With Physical Activity and Sedentary Behavior in People With Parkinson Disease: A Systematic Review and Meta-Analysis. Phys Ther 2024; 104:pzae114. [PMID: 39126377 DOI: 10.1093/ptj/pzae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE The goal of this review was to investigate factors associated with physical activity and sedentary behavior in people with Parkinson disease (PD). The magnitude of these associations was investigated in line with the International Classification of Functioning, Disability and Health components. METHODS A systematic literature review was conducted until February 2023, searching four databases (PubMed, EMBASE, Web of Science, and Scopus) for original articles investigating associations with physical activity or sedentary behavior in people with PD. Two independent researchers performed data extraction, and the risk of bias in the included studies was assessed using the Quality in Prognosis Studies tool. Meta-analyses were conducted to determine the magnitude of the associations, and significant regression models from the included studies were described. RESULTS Forty-two studies were included. Twenty-one factors associated with overall physical activity were identified. Higher levels of physical activity had a small association with cognition and body mass index and a fair association with 17 factors related to self-efficacy, physical function, mobility, quality of life, age, PD symptoms, and more. Better manual dexterity and functional gait had moderate to good associations with higher levels of physical activity. The regression model with the higher magnitude was composed mostly of contextual factors, except for the body max index. The magnitude of factors associated with physical activity intensity or sedentary behavior could not be identified. CONCLUSION Functional gait and manual dexterity were the strongest factors related to physical activity in people with PD. Further investigation is needed to understand the factors associated with physical activity intensity and sedentary behavior. IMPACT This study emphasizes the significance of considering contextual factors alongside body function and structure, activity and participation, and the health condition to enhance physical activity improvement during the rehabilitation process. By adopting such a holistic approach, rehabilitation professionals can optimize the overall health and well-being of individuals with Parkinson disease.
Collapse
Affiliation(s)
- Vitoria L Domingues
- Motor Behavior Laboratory (LACOM), Department of Pedagogy of Human Body Movement, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Marina P Makhoul
- Motor Behavior Laboratory (LACOM), Department of Pedagogy of Human Body Movement, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Tatiana B de Freitas
- Motor Behavior Laboratory (LACOM), Department of Pedagogy of Human Body Movement, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Janaine C Polese
- NeuroGroup, Department of Physiotherapy, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carla Silva-Batista
- Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
| | - Fabio A Barbieri
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, School of Sciences, São Paulo State University (Unesp), Bauru, SP, Brazil
| | - Camila Torriani-Pasin
- Motor Behavior Laboratory (LACOM), Department of Pedagogy of Human Body Movement, School of Physical Education and Sport, University of São Paulo (USP), São Paulo, SP, Brazil
- Neurorehabilitation, Exercise Science and Learning (NEUROEXCEL), Department of Physical Therapy and Movement Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
11
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
12
|
Mu L, Chen J, Li J, Nyirenda T, Hegland KW, Beach TG. Mechanisms of Swallowing, Speech and Voice Disorders in Parkinson's Disease: Literature Review with Our First Evidence for the Periperal Nervous System Involvement. Dysphagia 2024; 39:1001-1012. [PMID: 38498201 DOI: 10.1007/s00455-024-10693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The majority of patients with Parkinson's disease (PD) develop swallowing, speech, and voice (SSV) disorders. Importantly, swallowing difficulty or dysphagia and related aspiration are life-threatening conditions for PD patients. Although PD treatments have significant therapeutic effects on limb motor function, their effects on SSV disorders are less impressive. A large gap in our knowledge is that the mechanisms of SSV disorders in PD are poorly understood. PD was long considered to be a central nervous system disorder caused by the death of dopaminergic neurons in the basal ganglia. Aggregates of phosphorylated α-synuclein (PAS) underlie PD pathology. SSV disorders were thought to be caused by the same dopaminergic problem as those causing impaired limb movement; however, there is little evidence to support this. The pharynx, larynx, and tongue play a critical role in performing upper airway (UA) motor tasks and their dysfunction results in disordered SSV. This review aims to provide an overview on the neuromuscular organization patterns, functions of the UA structures, clinical features of SSV disorders, and gaps in knowledge regarding the pathophysiology underlying SSV disorders in PD, and evidence supporting the hypothesis that SSV disorders in PD could be associated, at least in part, with PAS damage to the peripheral nervous system controlling the UA structures. Determining the presence and distribution of PAS lesions in the pharynx, larynx, and tongue will facilitate the identification of peripheral therapeutic targets and set a foundation for the development of new therapies to treat SSV disorders in PD.
Collapse
Affiliation(s)
- Liancai Mu
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA.
| | - Jingming Chen
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Jing Li
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Themba Nyirenda
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Karen Wheeler Hegland
- Upper Airway Dysfunction Laboratory, M.A. Program in Communication Sciences & Disorders, Department of Speech, Language and Hearing Sciences, College of Public Health and Health Professions, University of Florida, 1225 Center Dr., Gainesville, FL, 32611, USA
| | - Thomas G Beach
- Director of Neuroscience, Director of Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 West Santa Fe Dr, Sun City, AZ, 85351, USA
| |
Collapse
|
13
|
Workman CD, Thrasher TA. The Influence of Dopaminergic Medication on Regularity and Determinism of Gait and Balance in Parkinson's Disease: A Pilot Analysis. J Clin Med 2024; 13:6485. [PMID: 39518623 PMCID: PMC11546099 DOI: 10.3390/jcm13216485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Understanding how dual-tasking and Parkinson's disease medication affect gait and balance regularity can provide valuable insights to patients, caregivers, and clinicians regarding frailty and fall risk. However, dual-task gait and balance studies in PD most often only employ linear measures to describe movement regularity. Some have used nonlinear techniques to analyze PD performances, but only in the on-medication state. Thus, it is unclear how the nonlinear aspects of gait or standing balance are affected by PD medication. This study aimed to assess how dopaminergic medication influenced the regularity and determinism of joint angle and anterior-posterior (AP) and medial-lateral (ML) center of pressure (COP) path time-series data while single- and dual-tasking in PD. Methods: Sixteen subjects with PD completed single- and dual-task gait and standing balance trials for 3 min off and on dopaminergic medication. Sample entropy and percent determinism were calculated for bilateral hip, knee, and shoulder joints, and the AP and ML COP path. Results: There were no relevant medication X task interactions for either the joint angles series or the balance series. Instead, the results supported independent effects of medication, dual-tasking, or standing with eyes closed. Balance task difficulty (i.e., eyes open vs. eyes closed) was detected by the nonlinear analyses, but the nonlinear measures yielded opposing results such that standing with eyes closed simultaneously yielded less regular and more deterministic signals. Conclusions: When juxtaposed with previous findings, these results suggest that medication-induced functional improvements in people with PD might be accompanied by a shift from lesser to greater signal consistency, and the effects of dual-tasking and standing with eyes closed were mixed. Future studies would benefit from including both linear and nonlinear measures to better describe gait and balance performance and signal complexity in people with PD.
Collapse
Affiliation(s)
- Craig D. Workman
- Department of Radiology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | - T. Adam Thrasher
- Department of Health and Human Performance, University of Houston, 3875 Holman Street, 104 Garrison Gym, Houston, TX 77204, USA
- Center for Neuromotor and Biomechanics Research, 4733 Wheeler Ave, Houston, TX 77204, USA
| |
Collapse
|
14
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
15
|
Yun SJ, Lee HS, Kim DH, Im S, Yoo YJ, Kim NY, Lee J, Kim D, Park HY, Yoon MJ, Kim YS, Chang WH, Seo HG. Efficacy of personalized repetitive transcranial magnetic stimulation based on functional reserve to enhance ambulatory function in patients with Parkinson's disease: study protocol for a randomized controlled trial. Trials 2024; 25:543. [PMID: 39152467 PMCID: PMC11328369 DOI: 10.1186/s13063-024-08385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is one of the non-invasive brain stimulations that modulate cortical excitability through magnetic pulses. However, the effects of rTMS on Parkinson's disease (PD) have yielded mixed results, influenced by factors including various rTMS stimulation parameters as well as the clinical characteristics of patients with PD. There is no clear evidence regarding which patients should be applied with which parameters of rTMS. The study aims to investigate the efficacy and safety of personalized rTMS in patients with PD, focusing on individual functional reserves to improve ambulatory function. METHODS This is a prospective, exploratory, multi-center, single-blind, parallel-group, randomized controlled trial. Sixty patients with PD will be recruited for this study. This study comprises two sub-studies, each structured as a two-arm trial. Participants are classified into sub-studies based on their functional reserves for ambulatory function, into either the motor or cognitive priority group. The Timed-Up and Go (TUG) test is employed under both single and cognitive dual-task conditions (serial 3 subtraction). The motor dual-task effect, using stride length, and the cognitive dual-task effect, using the correct response rate of subtraction, are calculated. In the motor priority group, high-frequency rTMS targets the primary motor cortex of the lower limb, whereas the cognitive priority group receives rTMS over the left dorsolateral prefrontal cortex. The active comparator for each sub-study is bilateral rTMS of the primary motor cortex of the upper limb. Over 4 weeks, the participants will undergo 10 rTMS sessions, with evaluations conducted pre-intervention, mid-intervention, immediately post-intervention, and at 2-month follow-up. The primary outcome is a change in TUG time between the pre- and immediate post-intervention evaluations. The secondary outcome variables are the TUG under cognitive dual-task conditions, Movement Disorder Society-Unified Parkinson's Disease Rating Scale Part III, New Freezing of Gait Questionnaire, Digit Span, trail-making test, transcranial magnetic stimulation-induced motor-evoked potentials, diffusion tensor imaging, and resting state functional magnetic resonance imaging. DISCUSSION The study will reveal the effect of personalized rTMS based on functional reserve compared to the conventional rTMS approach in PD. Furthermore, the findings of this study may provide empirical evidence for an rTMS protocol tailored to individual functional reserves to enhance ambulatory function in patients with PD. TRIAL REGISTRATION ClinicalTrials.gov NCT06350617. Registered on 5 April 2024.
Collapse
Affiliation(s)
- Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Seok Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Na Young Kim
- Department of Rehabilitation Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Jungsoo Lee
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc, Seoul, Republic of Korea
| | - Hae-Yeon Park
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Seok Kim
- Department of Rehabilitation Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Science and Technology, Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Chang CL, Lin TK, Pan CY, Wang TC, Tseng YT, Chien CY, Tsai CL. Distinct effects of long-term Tai Chi Chuan and aerobic exercise interventions on motor and neurocognitive performance in early-stage Parkinson's disease: a randomized controlled trial. Eur J Phys Rehabil Med 2024; 60:621-633. [PMID: 38888734 PMCID: PMC11403633 DOI: 10.23736/s1973-9087.24.08166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative condition characterized by movement disorders and probable cognitive impairment. Exercise plays an important role in PD management, and recent studies have reported improvement in motor symptoms and cognitive function following aerobic and Tai Chi Chuan exercise. AIM To explore the different effects of Tai Chi Chuan and aerobic exercise on the clinical motor status and neurocognitive performance of patients with early-stage PD. DESIGN A randomized controlled trial. SETTING Parkinson's Disease Center at Kaohsiung Chang Gung Memorial Hospital and National Cheng Kung University Hospital. POPULATION Patients with idiopathic PD. METHODS Fifty-six patients with PD were recruited and divided into three groups: aerobic exercise (AE, N.=14), Tai Chi Chuan exercise (TE, N.=16), and control (CG, N.=13). Before and after a 12-week intervention period, we used unified Parkinson's disease rating scale Part III (UPDRS-III) scores and neuropsychological (e.g., accuracy rates [ARs] and reaction times [RTs]) and neurophysiological (e.g., event-related potential [ERP] N2 and P3 latencies and amplitudes) parameters to respectively assess the patients' clinical motor symptoms and neurocognitive performance when performing a working memory (WM) task. RESULTS Compared to baseline, UPDRS-III scores were significantly lower in the AE and TE groups after the intervention period, whereas those for the CG group were higher. In terms of the neurocognitive parameters, when performing the WM task after the intervention period, the AE group exhibited significantly faster RTs and larger ERP P3 amplitudes, the TE group exhibited an improvement only in ERP P3 amplitude, and the CG group exhibited a significantly reduced ERP P3 amplitude. However, neither the TE nor the AE group exhibited improved ARs and ERP N2 performance. CONCLUSIONS The present study supported the distinct effectiveness of Tai Chi Chuan and aerobic exercise for improving motor symptoms and providing neurocognitive benefits in PD patients. CLINICAL REHABILITATION IMPACT These results have important implications regarding the use of these exercise interventions for managing PD, particularly in the early stages.
Collapse
Affiliation(s)
- Cheng-Liang Chang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan (ROC)
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan (ROC)
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (ROC)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (ROC)
| | - Chien-Yu Pan
- Department of Physical Education, National Kaohsiung Normal University, Kaohsiung, Taiwan (ROC)
| | - Tsai-Chiao Wang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan (ROC)
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan (ROC)
| | - Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Hsinchu, Taiwan (ROC)
| | - Chung-Yao Chien
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan (ROC)
| | - Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan (ROC) -
| |
Collapse
|
17
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
18
|
Cao H, Tian Q, Chu L, Gao Q. Effects of polyphenol on motor function in mice with Parkinson's disease: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2024; 65:2859-2879. [PMID: 40346822 DOI: 10.1080/10408398.2024.2352541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Polyphenols have been reported to have a multi-targeted neuroprotective effect on Parkinson's disease (PD). However, there has been no comprehensive analysis of the effect of polyphenol therapy on improving motor symptoms in PD. We used keywords to search the electronic databases PubMed, Scopus, EBSCO, SpringerLink, China National Knowledge Infrastructure (CNKI), Wan Fang and Web of Science from the establishment of the database to April 2023. A randomized effects model systematic review and meta-analysis of 83 included studies were conducted to investigate the ameliorative effects of polyphenols on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in a rodent model of PD. The results showed that compared with PD control group, polyphenols significantly improved balance, exploration, vertical crawling, horizontal crawling, muscle strength and sensorimotor function motor dysfunction of rodents. Subgroup analysis showed that the types of polyphenols had different recovery effects on motor symptoms of PD. Oral polyphenol intervention was superior to intraperitoneal and intravenous administration. This meta-analysis provides comprehensive evidence for the prevention or treatment of Parkinson's motor symptoms with polyphenols and expands the idea of future clinical application of polyphenols.
Collapse
Affiliation(s)
- Hongdou Cao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liwen Chu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qinghan Gao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
19
|
Theys C, Jaakkola E, Melzer TR, De Nil LF, Guenther FH, Cohen AL, Fox MD, Joutsa J. Localization of stuttering based on causal brain lesions. Brain 2024; 147:2203-2213. [PMID: 38797521 PMCID: PMC11146419 DOI: 10.1093/brain/awae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 05/29/2024] Open
Abstract
Stuttering affects approximately 1 in 100 adults and can result in significant communication problems and social anxiety. It most often occurs as a developmental disorder but can also be caused by focal brain damage. These latter cases may lend unique insight into the brain regions causing stuttering. Here, we investigated the neuroanatomical substrate of stuttering using three independent datasets: (i) case reports from the published literature of acquired neurogenic stuttering following stroke (n = 20, 14 males/six females, 16-77 years); (ii) a clinical single study cohort with acquired neurogenic stuttering following stroke (n = 20, 13 males/seven females, 45-87 years); and (iii) adults with persistent developmental stuttering (n = 20, 14 males/six females, 18-43 years). We used the first two datasets and lesion network mapping to test whether lesions causing acquired stuttering map to a common brain network. We then used the third dataset to test whether this lesion-based network was relevant to developmental stuttering. In our literature dataset, we found that lesions causing stuttering occurred in multiple heterogeneous brain regions, but these lesion locations were all functionally connected to a common network centred around the left putamen, including the claustrum, amygdalostriatal transition area and other adjacent areas. This finding was shown to be specific for stuttering (PFWE < 0.05) and reproducible in our independent clinical cohort of patients with stroke-induced stuttering (PFWE < 0.05), resulting in a common acquired stuttering network across both stroke datasets. Within the common acquired stuttering network, we found a significant association between grey matter volume and stuttering impact for adults with persistent developmental stuttering in the left posteroventral putamen, extending into the adjacent claustrum and amygdalostriatal transition area (PFWE < 0.05). We conclude that lesions causing acquired neurogenic stuttering map to a common brain network, centred to the left putamen, claustrum and amygdalostriatal transition area. The association of this lesion-based network with symptom severity in developmental stuttering suggests a shared neuroanatomy across aetiologies.
Collapse
Affiliation(s)
- Catherine Theys
- School of Psychology, Speech and Hearing, University of Canterbury, 8140 Christchurch, New Zealand
- New Zealand Institute of Language, Brain and Behaviour, University of Canterbury, 8140 Christchurch, New Zealand
- New Zealand Brain Research Institute, 8011 Christchurch, New Zealand
| | - Elina Jaakkola
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, 20014 Turku, Finland
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Tracy R Melzer
- School of Psychology, Speech and Hearing, University of Canterbury, 8140 Christchurch, New Zealand
- New Zealand Brain Research Institute, 8011 Christchurch, New Zealand
- Department of Medicine, University of Otago, 8011 Christchurch, New Zealand
- RHCNZ—Pacific Radiology Canterbury, 8031 Christchurch, New Zealand
| | - Luc F De Nil
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5G 1V7, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Frank H Guenther
- Departments of Speech, Language and Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander L Cohen
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, 20014 Turku, Finland
- Turku PET Centre, Neurocenter, Turku University Hospital, 20014 Turku, Finland
| |
Collapse
|
20
|
Simonet C, Pérez-Carbonell L, Galmés-Ordinas MA, Huxford BFR, Chohan H, Gill A, Leschziner G, Lees AJ, Schrag A, Noyce AJ. The Motor Dysfunction Seen in Isolated REM Sleep Behavior Disorder. Mov Disord 2024; 39:1054-1059. [PMID: 38470080 DOI: 10.1002/mds.29779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Isolated Rapid Eye Movement (REM) sleep Behavior Disorder (iRBD) requires quantitative tools to detect incipient Parkinson's disease (PD). METHODS A motor battery was designed and compared with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS-III) in people with iRBD and controls. This included two keyboard-based tests (BRadykinesia Akinesia INcoordination tap test and Distal Finger Tapping) and two dual tasking tests (walking and finger tapping). RESULTS We included 33 iRBD patients and 29 controls. The iRBD group performed both keyboard-based tapping tests more slowly (P < 0.001, P = 0.020) and less rhythmically (P < 0.001, P = 0.006) than controls. Unlike controls, the iRBD group increased their walking duration (P < 0.001) and had a smaller amplitude (P = 0.001) and slower (P = 0.007) finger tapping with dual task. The combination of the most salient motor markers showed 90.3% sensitivity for 89.3% specificity (area under the ROC curve [AUC], 0.94), which was higher than the MDS-UPDRS-III (minus action tremor) (69.7% sensitivity, 72.4% specificity; AUC, 0.81) for detecting motor dysfunction. CONCLUSION Speed, rhythm, and dual task motor deterioration might be accurate indicators of incipient PD in iRBD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Cristina Simonet
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Laura Pérez-Carbonell
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | - Brook F R Huxford
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Harneek Chohan
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Aneet Gill
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Guy Leschziner
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Andrew J Lees
- Reta Lila Weston Institute, Institute of Neurology, UCL and National Hospital, London, United Kingdom
| | - Anette Schrag
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
21
|
Rodriguez K, Schade R, Lopez FV, Kenney L, Ratajska A, Gertler J, Bowers D. Perception of cognitive change by individuals with Parkinson's disease or essential tremor seeking deep brain stimulation: Utility of the cognitive change index. J Int Neuropsychol Soc 2024; 30:370-379. [PMID: 37800314 PMCID: PMC10997739 DOI: 10.1017/s1355617723000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
OBJECTIVE The Cognitive Change Index (CCI-20) is a validated questionnaire that assesses subjective cognitive complaints (SCCs) across memory, language, and executive domains. We aimed to: (a) examine the internal consistency and construct validity of the CCI-20 in patients with movement disorders and (b) learn how the CCI-20 corresponds to objective neuropsychological and mood performance in individuals with Parkinson's disease (PD) or essential tremor (ET) seeking deep brain stimulation (DBS). METHODS 216 participants (N = 149 PD; N = 67 ET) underwent neuropsychological evaluation and received the CCI-20. The proposed domains of the CCI-20 were examined via confirmatory (CFA) and exploratory (EFA) factor analyses. Hierarchical regressions were used to assess the relationship among subjective cognitive complaints, neuropsychological performance and mood symptoms. RESULTS PD and ET groups were similar across neuropsychological, mood, and CCI-20 scores and were combined into one group who was well educated (m = 15.01 ± 2.92), in their mid-60's (m = 67.72 ± 9.33), predominantly male (63%), and non-Hispanic White (93.6%). Previously proposed 3-domain CCI-20 model failed to achieve adequate fit. Subsequent EFA revealed two CCI-20 factors: memory and non-memory (p < 0.001; CFI = 0.924). Regressions indicated apathy and depressive symptoms were associated with greater memory and total cognitive complaints, while poor executive function and anxiety were associated with more non-memory complaints. CONCLUSION Two distinct dimensions were identified in the CCI-20: memory and non-memory complaints. Non-memory complaints were indicative of worse executive function, consistent with PD and ET cognitive profiles. Mood significantly contributed to all CCI-20 dimensions. Future studies should explore the utility of SCCs in predicting cognitive decline in these populations.
Collapse
Affiliation(s)
- Katie Rodriguez
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Rachel Schade
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Francesca V. Lopez
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Lauren Kenney
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Adrianna Ratajska
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Joshua Gertler
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gaineville, FL
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Moura BM, Madeira L, Bakker PR, van Harten P, Marcelis M. The association between alterations in motor and cognitive dimensions of schizophrenia-spectrum disorders: A systematic review. Schizophr Res 2024; 267:398-414. [PMID: 38640851 DOI: 10.1016/j.schres.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Motor and cognitive alterations in schizophrenia-spectrum disorders (SSD) share common neural underpinnings, highlighting the necessity for a thorough exploration of the connections between these areas. This relationship is crucial, as it holds potential significance in unraveling the underlying mechanisms of SSD pathophysiology, ultimately leading to advancements in clinical staging and treatment strategies. The purpose of this review was to characterize the relationship between different hyper and hypokinetic domains of motor alterations and cognition in SSD. We systematically searched the literature (PROSPERO protocol CRD42019145964) and selected 66 original scientific contributions for review, published between 1987 and 2022. A narrative synthesis of the results was conducted. Hyper and hypokinetic motor alterations showed weak to moderate negative correlations with cognitive function across different SSD stages, including before antipsychotic treatment. The literature to date shows a diverse set of methodologies and composite cognitive scores hampering a strong conclusion about which specific cognitive domains were more linked to each group of motor alterations. However, executive functions seemed the domain more consistently associated with parkinsonism with the results regarding dyskinesia being less clear. Akathisia and catatonia were scarcely discussed in the reviewed literature. The present review reinforces the intimate relationship between specific motor alterations and cognition. Identified gaps in the literature challenge the formulation of definitive conclusions. Nevertheless, a discussion of putative underlying mechanisms is included, prompting guidance for future research endeavors.
Collapse
Affiliation(s)
- Bernardo Melo Moura
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; Universidade Católica Portuguesa, Faculdade de Medicina, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal.
| | - Luís Madeira
- Universidade Católica Portuguesa, Faculdade de Medicina, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal; Área Disciplinar Ética e Deontologia Médica, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - P Roberto Bakker
- Department of Research, Arkin Mental Health Care, Klaprozenweg 111, 1033 NN Amsterdam, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Peter van Harten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Center for Expertise on Side Effects, GGz Centraal, Boomgaardweg 12, 1326 AD Almere, the Netherlands
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, the Netherlands; GGzE Institute for Mental Health Care Eindhoven, Dr. Poletlaan 39, 5626 ND Eindhoven, the Netherlands.
| |
Collapse
|
23
|
Bej E, Cesare P, Volpe AR, d’Angelo M, Castelli V. Oxidative Stress and Neurodegeneration: Insights and Therapeutic Strategies for Parkinson's Disease. Neurol Int 2024; 16:502-517. [PMID: 38804477 PMCID: PMC11130796 DOI: 10.3390/neurolint16030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition marked by the gradual deterioration of dopaminergic neurons in the substantia nigra. Oxidative stress has been identified as a key player in the development of PD in recent studies. In the first part, we discuss the sources of oxidative stress in PD, including mitochondrial dysfunction, dopamine metabolism, and neuroinflammation. This paper delves into the possibility of mitigating oxidative stress as a potential treatment approach for PD. In addition, we examine the hurdles and potential of antioxidant therapy, including the challenge of delivering antioxidants to the brain and the requirement for biomarkers to track oxidative stress in PD patients. However, even if antioxidant therapy holds promise, further investigation is needed to determine its efficacy and safety in PD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.B.); (P.C.); (A.R.V.); (M.d.)
| |
Collapse
|
24
|
Lee J, Sohn YH, Chung SJ, Kim E, Kim Y. Presentations of nonmotor symptoms by sex and onset age in people with Parkinson's disease. Int J Nurs Pract 2024; 30:e13177. [PMID: 37394896 DOI: 10.1111/ijn.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND There is growing evidence that sex and onset age are important factors of clinical features in Parkinson's disease. AIM The study aimed to identify nonmotor symptoms based on sex and onset age in people with Parkinson's disease. DESIGN This is a cross-sectional descriptive study. METHODS A total of 210 participants were recruited from the university hospital and the Parkinson's disease association. This study measured the Korean version of the nonmotor symptoms questionnaire which includes gastrointestinal, urinary, apathy/attention/memory, hallucination/delusions, depression/anxiety, sexual function, cardiovascular, sleep disorder, and miscellaneous domains. RESULTS All participants reported at least one nonmotor symptom. The most commonly reported symptoms were nocturia (65.7%) and constipation (61.9%). The male participants reported more dribbling of saliva, constipation, and impaired sexual function, whereas the female reported more weight change. Young-onset people with Parkinson's disease reported more depression than late-onset people with Parkinson's disease. CONCLUSION This study contributes to the understanding of symptom experience beyond motor-related symptomatology for those with Parkinson's disease and adds to the current literature. Individualized symptom assessment and management should be provided by prioritizing prevalent sex or onset age-specific symptoms, rather than addressing with all nonmotor symptoms.
Collapse
Affiliation(s)
- JuHee Lee
- Mo-Im Kim Nursing Research Institute, Yonsei Evidence Based Nursing Centre of Korea: A Joanna Briggs Institute of Excellence, College of Nursing, Yonsei University, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Eunyoung Kim
- College of Nursing and Brain Korea 21 FOUR Project, Yonsei University, Seoul, South Korea
| | - Yielin Kim
- Division of Nursing, Severance Hospital, Yonsei University Health System, Seoul, South Korea
| |
Collapse
|
25
|
Wang L, Tian S, Ruan S, Wei J, Wei S, Chen W, Hu H, Qin W, Li Y, Yuan H, Mao J, Xu Y, Xie J. Neuroprotective effects of cordycepin on MPTP-induced Parkinson's disease mice via suppressing PI3K/AKT/mTOR and MAPK-mediated neuroinflammation. Free Radic Biol Med 2024; 216:60-77. [PMID: 38479634 DOI: 10.1016/j.freeradbiomed.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
Parkinson's disease (PD) is a prevalent progressive and multifactorial neurodegenerative disorder. Cordycepin is known to exhibit antitumor, anti-inflammatory, antioxidative stress, and neuroprotective effects; however, few studies have explored the neuroprotective mechanism of cordycepin in PD. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, we investigated the impact of cordycepin on PD and its underlying molecular mechanisms. The findings indicated that cordycepin significantly mitigated MPTP-induced behavior disorder and neuroapoptosis, diminished the loss of dopaminergic neurons in the striatum-substantia nigra pathway, elevated striatal monoamine levels and its metabolites, and inhibited the polarization of microglia and the expression of pro-inflammatory factors. Subsequent proteomic and phosphoproteomic analyses revealed the involvement of the MAPK, mTOR, and PI3K/AKT signaling pathways in the protective mechanism of cordycepin. Cordycepin treatment inhibited the activation of the PI3K/AKT/mTOR signaling pathway and enhanced the expression of autophagy proteins in the striatum and substantia nigra. We also demonstrated the in vivo inhibition of the ERK/JNK signaling pathway by cordycepin treatment. In summary, our investigation reveals that cordycepin exerts neuroprotective effects against PD by promoting autophagy and suppressing neuroinflammation and neuronal apoptosis by inhibiting the PI3K/AKT/mTOR and ERK/JNK signaling pathways. This finding highlights the favorable characteristics of cordycepin in neuroprotection and provides novel molecular insights into the neuroprotective role of natural products in PD.
Collapse
Affiliation(s)
- Linhai Wang
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Shu Tian
- Inner Mongolia Kunming Cigarette Limited Liability Company, Huhhot, Inner Mongolia Autonomous Region, China.
| | - Sisi Ruan
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Jingjing Wei
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Sijia Wei
- Xinxiang Central Hospital, Xinxiang, Hennan, China.
| | - Weiwei Chen
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Hangcui Hu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Weiwei Qin
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Yan Li
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Hang Yuan
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Jian Mao
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| | - Yan Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Jianping Xie
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China; Beijing Life Science Academy (BLSA), Beijing, China.
| |
Collapse
|
26
|
Yang W, Bai X, Guan X, Zhou C, Guo T, Wu J, Xu X, Zhang M, Zhang B, Pu J, Tian J. The longitudinal volumetric and shape changes of subcortical nuclei in Parkinson's disease. Sci Rep 2024; 14:7494. [PMID: 38553518 PMCID: PMC10980751 DOI: 10.1038/s41598-024-58187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Brain structural changes in Parkinson's disease (PD) are progressive throughout the disease course. Changes in surface morphology with disease progression remain unclear. This study aimed to assess the volumetric and shape changes of the subcortical nuclei during disease progression and explore their association with clinical symptoms. Thirty-four patients and 32 healthy controls were enrolled. The global volume and shape of the subcortical nuclei were compared between patients and controls at baseline. The volume and shape changes of the subcortical nuclei were also explored between baseline and 2 years of follow-up. Association analysis was performed between the volume of subcortical structures and clinical symptoms. In patients with PD, there were significantly atrophied areas in the left pallidum and left putamen, while in healthy controls, the right putamen was dilated compared to baseline. The local morphology of the left pallidum was correlated with Mini Mental State Examination scores. The left putamen shape variation was negatively correlated with changes in Unified Parkinson's Disease Rating Scale PART III scores. Local morphological atrophy of the putamen and pallidum is an important pathophysiological change in the development of PD, and is associated with motor symptoms and cognitive status in patients with PD.
Collapse
Affiliation(s)
- Wenyi Yang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xueqin Bai
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Cheng Zhou
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Tao Guo
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jingjing Wu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
27
|
Weng Y, Zhang Y, Li Y, Lin X, Guo Z, Hu H, Shao W, Yu G, Zheng F, Cai P, Li H, Wu S. Single-cell RNA-sequencing of cellular heterogeneity and pathogenic mechanisms in paraquat-induced Parkinson's disease with depression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116169. [PMID: 38447518 DOI: 10.1016/j.ecoenv.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative diseases, and approximately one third of patients with PD are estimated to have depression. Paraquat (PQ) exposure is an important environmental risk factor for PD. In this study, we established a mouse model of PQ-induced PD with depression to comprehensively investigate cellular heterogeneity and the mechanisms underlying the progression of depression in the context of PD. We utilized single-cell RNA-seq (scRNA-seq) to acquire the transcriptomic atlas of individual cells from model mice and characterize the gene expression profiles in each differentially expressed cell type. We identified a specific glutamatergic neuron cluster responsible for the development of heterogeneous depression-associated changes and established a comprehensive gene expression atlas. Furthermore, functional enrichment and cell trajectory analyses revealed that the mechanisms underlying the progression of PD with depression were associated with specific glutamatergic neurons. Together, our findings provide a valuable resource for deciphering the cellular heterogeneity of PD with depression. The suggested connection between intrinsic transcriptional states of neurons and the progression of depression can provide insight into potential biomarkers and specific targets for anti-depression treatment in patients with PD. SYNOPSIS: Our results obtained using model mice confirm the core effects of PQ exposure on glutamatergic neurons and their potential role in the development of PD with depression.
Collapse
Affiliation(s)
- Yali Weng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yinhan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ping Cai
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
28
|
Gobbo S, Urso E, Colombo A, Menghini M, Perin C, Isaias IU, Daini R. Facial expressions and identities recognition in Parkinson disease. Heliyon 2024; 10:e26860. [PMID: 38463872 PMCID: PMC10923660 DOI: 10.1016/j.heliyon.2024.e26860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Parkinson's Disease (PD) is associated with motor and non-motor symptoms. Among the latter are deficits in matching, identification, and recognition of emotional facial expressions. On one hand, this deficit has been attributed to a dysfunction in emotion processing. Another explanation (which does not exclude the former) links this deficit with reduced facial expressiveness in these patients, which prevents them from properly understanding or embodying emotions. To disentangle the specific contribution of emotion comprehension and that of facial expression processing in PD's observed deficit with emotions we performed two experiments on non-emotional facial expressions. In Experiment 1, a group of PD patients and a group of Healthy Controls (HC) underwent a task of non-emotional expression recognition in faces of different identity and a task of identity recognition in faces with different expression. No differences were observed between the two groups in accuracies. In Experiment 2, PD patients and Healthy Controls underwent a task where they had to recognize the identity of faces encoded through a non-emotional facial expression, through a rigid head movement, or as neutral. Again, no group differences were observed. In none of the two experiments hypomimia scores had a specific effect on expression processing. We conclude that in PD patients the observed impairment with emotional expressions is likely due to a specific deficit for emotions to a greater extent than for facial expressivity processing.
Collapse
Affiliation(s)
- Silvia Gobbo
- University of Milan-Bicocca, Department of Psychology, Milan, Italy
| | | | - Aurora Colombo
- Centro Parkinson e Parkinsonismi, ASST “Gaetano Pini-Cto”, Milano, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milano, Italy
| | - Matilde Menghini
- University of Milan-Bicocca, Department of Psychology, Milan, Italy
| | - Cecilia Perin
- Istituti Clinici Zucchi-GSD, Italy
- Università Milano Bicocca, Department of Medicine and Surgery, Milano, Italy
| | - Ioannis Ugo Isaias
- Centro Parkinson e Parkinsonismi, ASST “Gaetano Pini-Cto”, Milano, Italy
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Roberta Daini
- University of Milan-Bicocca, Department of Psychology, Milan, Italy
| |
Collapse
|
29
|
Vinding MC, Waldthaler J, Eriksson A, Manting CL, Ferreira D, Ingvar M, Svenningsson P, Lundqvist D. Oscillatory and non-oscillatory features of the magnetoencephalic sensorimotor rhythm in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:51. [PMID: 38443402 PMCID: PMC10915140 DOI: 10.1038/s41531-024-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Parkinson's disease (PD) is associated with changes in neural activity in the sensorimotor alpha and beta bands. Using magnetoencephalography (MEG), we investigated the role of spontaneous neuronal activity within the somatosensory cortex in a large cohort of early- to mid-stage PD patients (N = 78) on Parkinsonian medication and age- and sex-matched healthy controls (N = 60) using source reconstructed resting-state MEG. We quantified features of the time series data in terms of oscillatory alpha power and central alpha frequency, beta power and central beta frequency, and 1/f broadband characteristics using power spectral density. Furthermore, we characterised transient oscillatory burst events in the mu-beta band time-domain signals. We examined the relationship between these signal features and the patients' disease state, symptom severity, age, sex, and cortical thickness. PD patients and healthy controls differed on PSD broadband characteristics, with PD patients showing a steeper 1/f exponential slope and higher 1/f offset. PD patients further showed a steeper age-related decrease in the burst rate. Out of all the signal features of the sensorimotor activity, the burst rate was associated with increased severity of bradykinesia, whereas the burst duration was associated with axial symptoms. Our study shows that general non-oscillatory features (broadband 1/f exponent and offset) of the sensorimotor signals are related to disease state and oscillatory burst rate scales with symptom severity in PD.
Collapse
Affiliation(s)
- Mikkel C Vinding
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Josefine Waldthaler
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Allison Eriksson
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Cassia Low Manting
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Cognitive Neuroimaging Centre, Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore, Singapore
- McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer's Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran, Canaria, España
| | - Martin Ingvar
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Hu E, Tang T, Li Y, Li T, Zhu L, Ding R, Wu Y, Huang Q, Zhang W, Wu Q, Wang Y. Spatial amine metabolomics and histopathology reveal localized brain alterations in subacute traumatic brain injury and the underlying mechanism of herbal treatment. CNS Neurosci Ther 2024; 30:e14231. [PMID: 37183394 PMCID: PMC10915989 DOI: 10.1111/cns.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
INTRODUCTION Spatial changes of amine metabolites and histopathology of the whole brain help to reveal the mechanism of traumatic brain injury (TBI) and treatment. METHODS A newly developed liquid microjunction surface sampling-tandem mass tag-ultra performance liquid chromatography-mass spectrometry technique is applied to profile brain amine metabolites in five brain regions after impact-induced TBI at the subacute stage. H&E, Nissl, and immunofluorescence staining are performed to spatially correlate microscopical changes to metabolic alterations. Then, bioinformatics, molecular docking, ELISA, western blot, and immunofluorescence are integrated to uncover the mechanism of Xuefu Zhuyu decoction (XFZYD) against TBI. RESULTS Besides the hippocampus and cortex, the thalamus, caudate-putamen, and fiber tracts also show differentiated metabolic changes between the Sham and TBI groups. Fourteen amine metabolites (including isomers such as L-leucine and L-isoleucine) are significantly altered in specific regions. The metabolic changes are well matched with the degree of neuronal damage, glia activation, and neurorestoration. XFZYD reverses the dysregulation of several amine metabolites, such as hippocampal Lys-Phe/Phe-Lys and dopamine. Also, XFZYD enhances post-TBI angiogenesis in the hippocampus and the thalamus. CONCLUSION This study reveals the local amine-metabolite and histological changes in the subacute stage of TBI. XFZYD may promote TBI recovery by normalizing amine metabolites and spatially promoting dopamine production and angiogenesis.
Collapse
Affiliation(s)
- En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - You‐mei Li
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunanChina
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Lin Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Ruo‐qi Ding
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Qing Huang
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Qian Wu
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunanChina
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
31
|
Wu J, Ma L, Luo D, Jin Z, Wang L, Wang L, Li T, Zhang J, Liu T, Lv D, Yan T, Fang B. Functional and structural gradients reveal atypical hierarchical organization of Parkinson's disease. Hum Brain Mapp 2024; 45:e26647. [PMID: 38488448 PMCID: PMC10941507 DOI: 10.1002/hbm.26647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Parkinson's disease (PD) patients exhibit deficits in primary sensorimotor and higher-order executive functions. The gradient reflects the functional spectrum in sensorimotor-associated areas of the brain. We aimed to determine whether the gradient is disrupted in PD patients and how this disruption is associated with treatment outcome. Seventy-six patients (mean age, 59.2 ± 12.4 years [standard deviation], 44 women) and 34 controls participants (mean age, 58.1 ± 10.0 years [standard deviation], 19 women) were evaluated. We explored functional and structural gradients in PD patients and control participants. Patients were followed during 2 weeks of multidisciplinary intensive rehabilitation therapy (MIRT). The Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) was administered to patients before and after treatment. We investigated PD-related alterations in the principal functional and structural gradients. We further used a support vector machine (SVM) and correlation analysis to assess the classification ability and treatment outcomes related to PD gradient alterations, respectively. The gradients showed significant differences between patients and control participants, mainly in somatosensory and visual networks involved in primary function, and higher-level association networks (dorsal attentional network (DAN) and default mode network (DMN)) related to motor control and execution. On the basis of the combined functional and structural gradient features of these networks, the SVM achieved an accuracy of 91.2% in discriminating patients from control participants. Treatment reduced the gradient difference. The altered gradient exhibited a significant correlation with motor improvement and was mainly distributed across the visual network, DAN and DMN. This study revealed damage to gradients in the brain characterized by sensorimotor and executive control deficits in PD patients. The application of gradient features to neurological disorders could lead to the development of potential diagnostic and treatment markers for PD.
Collapse
Affiliation(s)
- Jinglong Wu
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Lihua Ma
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Di Luo
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| | - Li Wang
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Luyao Wang
- School of Life Science, Shanghai UniversityShanghaiChina
| | - Ting Li
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of TechnologyBeijingChina
| | - Tiantian Liu
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Diyang Lv
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| | - Tianyi Yan
- School of Life Science, Beijing Institute of TechnologyBeijingChina
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
32
|
Hollunder B, Ostrem JL, Sahin IA, Rajamani N, Oxenford S, Butenko K, Neudorfer C, Reinhardt P, Zvarova P, Polosan M, Akram H, Vissani M, Zhang C, Sun B, Navratil P, Reich MM, Volkmann J, Yeh FC, Baldermann JC, Dembek TA, Visser-Vandewalle V, Alho EJL, Franceschini PR, Nanda P, Finke C, Kühn AA, Dougherty DD, Richardson RM, Bergman H, DeLong MR, Mazzoni A, Romito LM, Tyagi H, Zrinzo L, Joyce EM, Chabardes S, Starr PA, Li N, Horn A. Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation. Nat Neurosci 2024; 27:573-586. [PMID: 38388734 PMCID: PMC10917675 DOI: 10.1038/s41593-024-01570-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregated the frontal cortex into circuits that had become dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to frontal, ranging from interconnections with sensorimotor cortices in dystonia, the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairments in the human brain.
Collapse
Affiliation(s)
- Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ilkem Aysu Sahin
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo Reinhardt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Zvarova
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mircea Polosan
- Université Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Department of Psychiatry, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Harith Akram
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chencheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pavel Navratil
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Martin M Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A Dembek
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Luigi M Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Himanshu Tyagi
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Department of Neuropsychiatry, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Eileen M Joyce
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Department of Neuropsychiatry, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Stephan Chabardes
- Université Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Park M, Lee YG. Association of Family History and Polygenic Risk Score With Longitudinal Prognosis in Parkinson Disease. Neurol Genet 2024; 10:e200115. [PMID: 38169864 PMCID: PMC10759146 DOI: 10.1212/nxg.0000000000200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 01/05/2024]
Abstract
Background and Objectives Evidence suggests that either family history or polygenic risk score (PRS) is associated with developing Parkinson disease (PD). However, little is known about the longitudinal prognosis of PD according to family history and higher PRS. Methods From the Parkinson's Progression Markers Initiative database, 395 patients with PD who followed up for more than 2 years were grouped into those with family history within first-degree, second-degree, and third-degree relatives (N = 127 [32.2%]) vs those without (N = 268 [67.8%]). The PRS of 386 patients was computed using whole-genome sequencing data. Longitudinal assessment of motor, cognition, and imaging based on dopaminergic degeneration was conducted during the regular follow-up period. Effects of family history, PRS, or both on longitudinal changes of cognition, motor severity, and nigrostriatal degeneration were tested using a linear mixed model. The risk of freezing of gait (FOG) according to family history was assessed using the Kaplan-Meier analysis and Cox regression models. Results During a median follow-up of 9.1 years, PD with positive family history showed a slower decline of caudate dopamine transporter uptake (β estimate of family history × time = 0.02, 95% CI = 0.002-0.036, p = 0.027). Family history of PD and higher PRS were independently associated with a slower decline of Montreal Cognitive Assessment (β estimate of family history × time = 0.12, 95% CI = 0.02-0.22, p = 0.017; β estimate of PRS × time = 0.09, 95% CI = 0.03-0.16, p = 0.006). In those 364 patients without FOG at baseline, PD with positive family history had a lower risk of FOG (hazard ratio of family history = 0.57, 95% CI = 0.38-0.84, p = 0.005). Discussion Having a family history of PD predicts slower progression of cognitive decline and caudate dopaminergic degeneration, and less FOG compared with those without a family history independent of PRS. Taken together, information on family history could be used as a proxy for the clinical heterogeneity of PD. Trial Registration Information The study was registered at clinicaltrials.gov (NCT01141023), and the enrollment began June 1, 2010.
Collapse
Affiliation(s)
- Mincheol Park
- From the Department of Neurology (M.P.), Gwangmyeong Hospital, Chung-Ang University College of Medicine; and Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Young-Gun Lee
- From the Department of Neurology (M.P.), Gwangmyeong Hospital, Chung-Ang University College of Medicine; and Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
34
|
Maggi G, Giacobbe C, Vitale C, Amboni M, Obeso I, Santangelo G. Theory of mind in mild cognitive impairment and Parkinson's disease: The role of memory impairment. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:156-170. [PMID: 38049608 PMCID: PMC10827829 DOI: 10.3758/s13415-023-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Social cognition is impaired in Parkinson's disease (PD). Whether social cognitive impairment (iSC) is a by-product of the underlying cognitive deficits in PD or a process independent of cognitive status is unknown. To this end, the present study was designed to investigate the weight of specific cognitive deficits in social cognition, considering different mild cognitive impairment subtypes of PD (PD-MCI). METHODS Fifty-eight PD patients underwent a neuropsychological battery assessing executive functions, memory, language, and visuospatial domains, together with social cognitive tests focused on theory of mind (ToM). Patients were divided into subgroups according to their clinical cognitive status: amnestic PD-MCI (PD-aMCI, n = 18), non-amnestic PD-MCI (PD-naMCI, n = 16), and cognitively unimpaired (PD-CU, n = 24). Composite scores for cognitive and social domains were computed to perform mediation analyses. RESULTS Memory and language impairments mediated the effect of executive functioning in social cognitive deficits in PD patients. Dividing by MCI subgroups, iSC occurred more frequently in PD-aMCI (77.8%) than in PD-naMCI (18.8%) and PD-CU (8.3%). Moreover, PD-aMCI performed worse than PD-CU in all social cognitive measures, whereas PD-naMCI performed worse than PD-CU in only one subtype of the affective and cognitive ToM tests. CONCLUSIONS Our findings suggest that ToM impairment in PD can be explained by memory dysfunction that mediates executive control. ToM downsides in the amnesic forms of PD-MCI may suggest that subtle changes in social cognition could partly explain future transitions into dementia. Hence, the evaluation of social cognition in PD is critical to characterize a possible behavioral marker of cognitive decline.
Collapse
Affiliation(s)
- Gianpaolo Maggi
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, 81100, Caserta, Italy.
| | - Chiara Giacobbe
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, 81100, Caserta, Italy
| | - Carmine Vitale
- Institute of Diagnosis and Health, IDC-Hermitage Capodimonte, Naples, Italy
- Department of Motor Sciences and Wellness, University "Parthenope, Naples, Italy
| | - Marianna Amboni
- Institute of Diagnosis and Health, IDC-Hermitage Capodimonte, Naples, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Ignacio Obeso
- HM Hospitales - Centro Integral de Neurociencias AC HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Avda. Carlos V, 70. 28938, Móstoles, Madrid, Spain.
- Department of Psychobiology and Methods on Behavioural Sciences, Complutense University of Madrid, Madrid, Spain.
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli," Viale Ellittico, 31, 81100, Caserta, Italy.
| |
Collapse
|
35
|
Vinding MC, Eriksson A, Comarovschii I, Waldthaler J, Manting CL, Oostenveld R, Ingvar M, Svenningsson P, Lundqvist D. The Swedish National Facility for Magnetoencephalography Parkinson's disease dataset. Sci Data 2024; 11:150. [PMID: 38296972 PMCID: PMC10830455 DOI: 10.1038/s41597-024-02987-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Parkinson's disease (PD) is characterised by a loss of dopamine and dopaminergic cells. The consequences hereof are widespread network disturbances in brain function. It is an ongoing topic of investigation how the disease-related changes in brain function manifest in PD relate to clinical symptoms. We present The Swedish National Facility for Magnetoencephalography Parkinson's Disease Dataset (NatMEG-PD) as an Open Science contribution to identify the functional neural signatures of Parkinson's disease and contribute to diagnosis and treatment. The dataset contains whole-head magnetoencephalographic (MEG) recordings from 66 well-characterised PD patients on their regular dose of dopamine replacement therapy and 68 age- and sex-matched healthy controls. NatMEG-PD contains three-minute eyes-closed resting-state MEG, MEG during an active movement task, and MEG during passive movements. The data includes anonymised MRI for source analysis and clinical scores. MEG data is rich in nature and can be used to explore numerous functional features. By sharing these data, we hope other researchers will contribute to advancing our understanding of the relationship between brain activity and disease state or symptoms.
Collapse
Affiliation(s)
- Mikkel C Vinding
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Allison Eriksson
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Igori Comarovschii
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Waldthaler
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Cassia Low Manting
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute of Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robert Oostenveld
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Martin Ingvar
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Lundqvist
- NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Hasan MM, Islam MR, Haque AR, Kabir MR, Khushe KJ, Hasan SMK. Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. BIORESOUR BIOPROCESS 2024; 11:10. [PMID: 38647952 PMCID: PMC10991904 DOI: 10.1186/s40643-023-00722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024] Open
Abstract
A significant portion of the human diet is comprised of fruits, which are consumed globally either raw or after being processed. A huge amount of waste and by-products such as skins, seeds, cores, rags, rinds, pomace, etc. are being generated in our homes and agro-processing industries every day. According to previous statistics, nearly half of the fruits are lost or discarded during the entire processing chain. The concern arises when those wastes and by-products damage the environment and simultaneously cause economic losses. There is a lot of potential in these by-products for reuse in a variety of applications, including the isolation of valuable bioactive ingredients and their application in developing healthy and functional foods. The development of novel techniques for the transformation of these materials into marketable commodities may offer a workable solution to this waste issue while also promoting sustainable economic growth from the bio-economic viewpoint. This approach can manage waste as well as add value to enterprises. The goal of this study is twofold based on this scenario. The first is to present a brief overview of the most significant bioactive substances found in those by-products. The second is to review the current status of their valorization including the trends and techniques, safety assessments, sensory attributes, and challenges. Moreover, specific attention is drawn to the future perspective, and some solutions are discussed in this report.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Khursheda Jahan Khushe
- Department of Food Science and Nutrition, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh.
| |
Collapse
|
37
|
Toro-Hernández FD, Migeot J, Marchant N, Olivares D, Ferrante F, González-Gómez R, González Campo C, Fittipaldi S, Rojas-Costa GM, Moguilner S, Slachevsky A, Chaná Cuevas P, Ibáñez A, Chaigneau S, García AM. Neurocognitive correlates of semantic memory navigation in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:15. [PMID: 38195756 PMCID: PMC10776628 DOI: 10.1038/s41531-024-00630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Cognitive studies on Parkinson's disease (PD) reveal abnormal semantic processing. Most research, however, fails to indicate which conceptual properties are most affected and capture patients' neurocognitive profiles. Here, we asked persons with PD, healthy controls, and individuals with behavioral variant frontotemporal dementia (bvFTD, as a disease control group) to read concepts (e.g., 'sun') and list their features (e.g., hot). Responses were analyzed in terms of ten word properties (including concreteness, imageability, and semantic variability), used for group-level comparisons, subject-level classification, and brain-behavior correlations. PD (but not bvFTD) patients produced more concrete and imageable words than controls, both patterns being associated with overall cognitive status. PD and bvFTD patients showed reduced semantic variability, an anomaly which predicted semantic inhibition outcomes. Word-property patterns robustly classified PD (but not bvFTD) patients and correlated with disease-specific hypoconnectivity along the sensorimotor and salience networks. Fine-grained semantic assessments, then, can reveal distinct neurocognitive signatures of PD.
Collapse
Affiliation(s)
- Felipe Diego Toro-Hernández
- Graduate Program in Neuroscience and Cognition, Federal University of ABC, São Paulo, Brazil
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Joaquín Migeot
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nicolás Marchant
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Daniela Olivares
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Laboratorio de Neuropsicología y Neurociencias Clínicas, Universidad de Chile, Santiago, Chile
| | - Franco Ferrante
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raúl González-Gómez
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Cecilia González Campo
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Gonzalo M Rojas-Costa
- Department of Radiology, Clínica las Condes, Santiago, Chile
- Advanced Epilepsy Center, Clínica las Condes, Santiago, Chile
- Join Unit FISABIO-CIPF, Valencia, Spain
- School of Medicine, Finis Terrae University, Santiago, Chile
- Health Innovation Center, Clínica Las Condes, Santiago, Chile
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Center (CMYN), Neurology Department, Hospital del Salvador & Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopatology Program - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Neurology and Psychiatry Department, Clínica Alemana-Universidad Desarrollo, Santiago, Chile
| | - Pedro Chaná Cuevas
- Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland
| | - Sergio Chaigneau
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- Center for Cognition Research, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Adolfo M García
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile.
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina.
- Global Brain Health Institute, University of California, San Francisco, California, USA; & Trinity College, Dublin, Ireland.
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
38
|
Cirillo R, Duperrier S, Parekh P, Millot M, Li Q, Thiolat ML, Morelli M, Xie J, Le Bars D, Redouté J, Bezard E, Sgambato V. Striatal Serotonin 4 Receptor is Increased in Experimental Parkinsonism and Dyskinesia. JOURNAL OF PARKINSON'S DISEASE 2024; 14:261-267. [PMID: 38339940 PMCID: PMC10977406 DOI: 10.3233/jpd-230331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
Alterations of serotonin type 4 receptor levels are linked to mood disorders and cognitive deficits in several conditions. However, few studies have investigated 5-HT4R alterations in movement disorders. We wondered whether striatal 5-HT4R expression is altered in experimental parkinsonism. We used a brain bank tissue from a rat and a macaque model of Parkinson's disease (PD). We then investigated its in vivo PET imaging regulation in a cohort of macaques. Dopaminergic depletion increases striatal 5-HT4R in the two models, further augmented after dyskinesia-inducing L-Dopa. Pending confirmation in PD patients, the 5-HT4R might offer a therapeutic target for dampening PD's symptoms.
Collapse
Affiliation(s)
- Rossella Cirillo
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), Unité Mixte de Recherche 5229 du Centre National de la Recherche Scientifique (CNRS), Bron, France
- Universitè de Lyon 1, Lyon, France
| | - Sandra Duperrier
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), Unité Mixte de Recherche 5229 du Centre National de la Recherche Scientifique (CNRS), Bron, France
- Universitè de Lyon 1, Lyon, France
| | - Pathik Parekh
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), Unité Mixte de Recherche 5229 du Centre National de la Recherche Scientifique (CNRS), Bron, France
- Universitè de Lyon 1, Lyon, France
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Monserrato, Italy
| | - Mathilde Millot
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), Unité Mixte de Recherche 5229 du Centre National de la Recherche Scientifique (CNRS), Bron, France
- Universitè de Lyon 1, Lyon, France
| | - Qin Li
- Motac Beijing Services, Beijing, China
| | - Marie-Laure Thiolat
- Universitè de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Monserrato, Italy
| | - Jing Xie
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), Unité Mixte de Recherche 5229 du Centre National de la Recherche Scientifique (CNRS), Bron, France
- Institut du Vieillissement, Centrede Recherche Clinique Vieillissement Cerveau Fragilité, Hôpital des Charpennes, Villeurbanne, France
| | | | | | - Erwan Bezard
- Motac Beijing Services, Beijing, China
- Universitè de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Véronique Sgambato
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), Unité Mixte de Recherche 5229 du Centre National de la Recherche Scientifique (CNRS), Bron, France
- Universitè de Lyon 1, Lyon, France
| |
Collapse
|
39
|
Sharma T, Kumar R, Mukherjee S. Neuronal Vulnerability to Degeneration in Parkinson's Disease and Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:715-730. [PMID: 37185323 DOI: 10.2174/1871527322666230426155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease affecting millions of people worldwide. Despite the crucial threat it poses, currently, no specific therapy exists that can completely reverse or halt the progression of the disease. Parkinson's disease pathology is driven by neurodegeneration caused by the intraneuronal accumulation of alpha-synuclein (α-syn) aggregates in Lewy bodies in the substantia nigra region of the brain. Parkinson's disease is a multiorgan disease affecting the central nervous system (CNS) as well as the autonomic nervous system. A bidirectional route of spreading α-syn from the gut to CNS through the vagus nerve and vice versa has also been reported. Despite our understanding of the molecular and pathophysiological aspects of Parkinson's disease, many questions remain unanswered regarding the selective vulnerability of neuronal populations, the neuromodulatory role of the locus coeruleus, and alpha-synuclein aggregation. This review article aims to describe the probable factors that contribute to selective neuronal vulnerability in Parkinson's disease, such as genetic predisposition, bioenergetics, and the physiology of neurons, as well as the interplay of environmental and exogenous modulators. This review also highlights various therapeutic strategies with cell transplants, through viral gene delivery, by targeting α-synuclein and aquaporin protein or epidermal growth factor receptors for the treatment of Parkinson's disease. The application of regenerative medicine and patient-specific personalized approaches have also been explored as promising strategies in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tanushree Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Molecular and Human Genetics, Banaras Hindu University Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
40
|
Belloso-Iguerategui A, Zamarbide M, Merino-Galan L, Rodríguez-Chinchilla T, Gago B, Santamaria E, Fernández-Irigoyen J, Cotman CW, Prieto GA, Quiroga-Varela A, Rodríguez-Oroz MC. Hippocampal synaptic failure is an early event in experimental parkinsonism with subtle cognitive deficit. Brain 2023; 146:4949-4963. [PMID: 37403195 PMCID: PMC10690043 DOI: 10.1093/brain/awad227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Learning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson's disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson's disease.
Collapse
Affiliation(s)
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | | - Belén Gago
- Faculty of Medicine, IBIMA Plataforma BIONAND, Universidad de Málaga, 29016 Málaga, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
| | - G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA 92697, USA
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76010 Querétaro, México
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- Neurosciences and Mental Health Area, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
41
|
Zuo C, Suo X, Lan H, Pan N, Wang S, Kemp GJ, Gong Q. Global Alterations of Whole Brain Structural Connectome in Parkinson's Disease: A Meta-analysis. Neuropsychol Rev 2023; 33:783-802. [PMID: 36125651 PMCID: PMC10770271 DOI: 10.1007/s11065-022-09559-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/14/2022] [Indexed: 10/14/2022]
Abstract
Recent graph-theoretical studies of Parkinson's disease (PD) have examined alterations in the global properties of the brain structural connectome; however, reported alterations are not consistent. The present study aimed to identify the most robust global metric alterations in PD via a meta-analysis. A comprehensive literature search was conducted for all available diffusion MRI structural connectome studies that compared global graph metrics between PD patients and healthy controls (HC). Hedges' g effect sizes were calculated for each study and then pooled using a random-effects model in Comprehensive Meta-Analysis software, and the effects of potential moderator variables were tested. A total of 22 studies met the inclusion criteria for review. Of these, 16 studies reporting 10 global graph metrics (916 PD patients; 560 HC) were included in the meta-analysis. In the structural connectome of PD patients compared with HC, we found a significant decrease in clustering coefficient (g = -0.357, P = 0.005) and global efficiency (g = -0.359, P < 0.001), and a significant increase in characteristic path length (g = 0.250, P = 0.006). Dopaminergic medication, sex and age of patients were potential moderators of global brain network changes in PD. These findings provide evidence of decreased global segregation and integration of the structural connectome in PD, indicating a shift from a balanced small-world network to 'weaker small-worldization', which may provide useful markers of the pathophysiological mechanisms underlying PD.
Collapse
Affiliation(s)
- Chao Zuo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Huan Lan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
42
|
Meerman JJ, Legler J, Piersma AH, Westerink RHS, Heusinkveld HJ. An adverse outcome pathway for chemical-induced Parkinson's disease: Calcium is key. Neurotoxicology 2023; 99:226-243. [PMID: 37926220 DOI: 10.1016/j.neuro.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.
Collapse
Affiliation(s)
- Julia J Meerman
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
43
|
Béreau M, Castrioto A, Servant M, Lhommée E, Desmarets M, Bichon A, Pélissier P, Schmitt E, Klinger H, Longato N, Phillipps C, Wirth T, Fraix V, Benatru I, Durif F, Azulay JP, Moro E, Broussolle E, Thobois S, Tranchant C, Krack P, Anheim M. Imbalanced motivated behaviors according to motor sign asymmetry in drug-naïve Parkinson's disease. Sci Rep 2023; 13:21234. [PMID: 38040775 PMCID: PMC10692157 DOI: 10.1038/s41598-023-48188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023] Open
Abstract
Few studies have considered the influence of motor sign asymmetry on motivated behaviors in de novo drug-naïve Parkinson's disease (PD). We tested whether motor sign asymmetry could be associated with different motivated behavior patterns in de novo drug-naïve PD. We performed a cross-sectional study in 128 de novo drug-naïve PD patients and used the Ardouin Scale of Behavior in Parkinson's disease (ASBPD) to assess a set of motivated behaviors. We assessed motor asymmetry based on (i) side of motor onset and (ii) MDS-UPDRS motor score, then we compared right hemibody Parkinson's disease to left hemibody Parkinson's disease. According to the MDS-UPDRS motor score, patients with de novo right hemibody PD had significantly lower frequency of approach behaviors (p = 0.031), including nocturnal hyperactivity (p = 0.040), eating behavior (p = 0.040), creativity (p = 0.040), and excess of motivation (p = 0.017) than patients with de novo left hemibody PD. Patients with de novo left hemibody PD did not significantly differ from those with de novo right hemibody PD regarding avoidance behaviors including apathy, anxiety and depression. Our findings suggest that motor sign asymmetry may be associated with an imbalance between motivated behaviors in de novo drug-naïve Parkinson's disease.
Collapse
Affiliation(s)
- Matthieu Béreau
- Neurology Department, University Hospital of Besançon, CHRU de Besançon, 3 Bd Alexandre Fleming, 25030, Besançon Cedex, France.
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive - UR LINC, Université Bourgogne Franche-Comté, Besançon, France.
| | - Anna Castrioto
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Mathieu Servant
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive - UR LINC, Université Bourgogne Franche-Comté, Besançon, France
| | - Eugénie Lhommée
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Maxime Desmarets
- Unité de Méthodologie, CIC INSERM 1431, CHU de Besançon, Besançon, France
| | - Amélie Bichon
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Pierre Pélissier
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Emmanuelle Schmitt
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Hélène Klinger
- Movement Disorders Unit, Neurology Department, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Bron, France
| | - Nadine Longato
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Clélie Phillipps
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thomas Wirth
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104, Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Valérie Fraix
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Isabelle Benatru
- Neurology Department, University Hospital of Poitiers, Poitiers, France
- INSERM, CHU de Poitiers, Centre d'Investigation Clinique CIC1402, University of Poitiers, Poitiers, France
| | - Franck Durif
- EA7280 NPsy-Sydo, Université Clermont Auvergne, Clermont-Ferrand, France
- Neurology Department, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Jean-Philippe Azulay
- Movement Disorders Unit, Neurology Department, University Hospital of Marseille, Marseille, France
| | - Elena Moro
- Inserm, U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, University Grenoble Alpes, 38000, Grenoble, France
| | - Emmanuel Broussolle
- Movement Disorders Unit, Neurology Department, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Bron, France
| | - Stéphane Thobois
- Movement Disorders Unit, Neurology Department, Hospices Civils de Lyon, Lyon, France
- Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Bron, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Paul Krack
- Department of Neurology, Movement Disorders Center, University Hospital of Bern, Bern, Switzerland
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104, Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
44
|
García AM, de Leon J, Tee BL, Blasi DE, Gorno-Tempini ML. Speech and language markers of neurodegeneration: a call for global equity. Brain 2023; 146:4870-4879. [PMID: 37497623 PMCID: PMC10690018 DOI: 10.1093/brain/awad253] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
In the field of neurodegeneration, speech and language assessments are useful for diagnosing aphasic syndromes and for characterizing other disorders. As a complement to classic tests, scalable and low-cost digital tools can capture relevant anomalies automatically, potentially supporting the quest for globally equitable markers of brain health. However, this promise remains unfulfilled due to limited linguistic diversity in scientific works and clinical instruments. Here we argue for cross-linguistic research as a core strategy to counter this problem. First, we survey the contributions of linguistic assessments in the study of primary progressive aphasia and the three most prevalent neurodegenerative disorders worldwide-Alzheimer's disease, Parkinson's disease, and behavioural variant frontotemporal dementia. Second, we address two forms of linguistic unfairness in the literature: the neglect of most of the world's 7000 languages and the preponderance of English-speaking cohorts. Third, we review studies showing that linguistic dysfunctions in a given disorder may vary depending on the patient's language and that English speakers offer a suboptimal benchmark for other language groups. Finally, we highlight different approaches, tools and initiatives for cross-linguistic research, identifying core challenges for their deployment. Overall, we seek to inspire timely actions to counter a looming source of inequity in behavioural neurology.
Collapse
Affiliation(s)
- Adolfo M García
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires B1644BID, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Latin American Brain Health (BrainLat) Institute, Universidad Adolfo Ibáñez, Avenida Diagonal Las Torres 2640 (7941169), Santiago, Peñalolén, Región Metropolitana, Chile
| | - Jessica de Leon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Boon Lead Tee
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Damián E Blasi
- Data Science Initiative, Harvard University, Cambridge, MA 02138, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Silva C, Rebelo M, Chendo I. Case report: Dopamine Dysregulation Syndrome, mania, and compulsive buying in a patient with Parkinson's disease. Front Neurol 2023; 14:1290653. [PMID: 38053797 PMCID: PMC10694353 DOI: 10.3389/fneur.2023.1290653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Neuropsychiatric symptoms and syndromes are among the most common non-motor symptoms of Parkinson's Disease but they are frequently unrecognized and untreated. Dopamine Dysregulation Syndrome is an uncommon complication of the treatment of Parkinson's disease, characterized by an addictive use of dopamine far more than the dosage required for treatment of objective motor impairment, leading to severe dyskinesia, euphoria, aggressivity, or psychosis. We present a paradigmatic case of Dopamine Dysregulation Syndrome, Mania, and Compulsive Buying in a 55-year-old male with Parkinson's Disease. We also reviewed the risk factors and the therapeutic management of Dopamine Dysregulation Syndrome in Parkinson's Disease.
Collapse
Affiliation(s)
- Carlos Silva
- Psychiatry Department, Department of Neurosciences, Hospital de Santa Maria, Lisbon, Portugal
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Rebelo
- Psychiatry Department, Department of Neurosciences, Hospital de Santa Maria, Lisbon, Portugal
| | - Inês Chendo
- Psychiatry Department, Department of Neurosciences, Hospital de Santa Maria, Lisbon, Portugal
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
Slézia A, Hegedüs P, Rusina E, Lengyel K, Solari N, Kaszas A, Balázsfi D, Botzanowski B, Acerbo E, Missey F, Williamson A, Hangya B. Behavioral, neural and ultrastructural alterations in a graded-dose 6-OHDA mouse model of early-stage Parkinson's disease. Sci Rep 2023; 13:19478. [PMID: 37945922 PMCID: PMC10636184 DOI: 10.1038/s41598-023-46576-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Studying animal models furthers our understanding of Parkinson's disease (PD) pathophysiology by providing tools to investigate detailed molecular, cellular and circuit functions. Different versions of the neurotoxin-based 6-hydroxydopamine (6-OHDA) model of PD have been widely used in rats. However, these models typically assess the result of extensive and definitive dopaminergic lesions that reflect a late stage of PD, leading to a paucity of studies and a consequential gap of knowledge regarding initial stages, in which early interventions would be possible. Additionally, the better availability of genetic tools increasingly shifts the focus of research from rats to mice, but few mouse PD models are available yet. To address these, we characterize here the behavioral, neuronal and ultrastructural features of a graded-dose unilateral, single-injection, striatal 6-OHDA model in mice, focusing on early-stage changes within the first two weeks of lesion induction. We observed early onset, dose-dependent impairments of overall locomotion without substantial deterioration of motor coordination. In accordance, histological evaluation demonstrated a partial, dose-dependent loss of dopaminergic neurons of substantia nigra pars compacta (SNc). Furthermore, electron microscopic analysis revealed degenerative ultrastructural changes in SNc dopaminergic neurons. Our results show that mild ultrastructural and cellular degradation of dopaminergic neurons of the SNc can lead to certain motor deficits shortly after unilateral striatal lesions, suggesting that a unilateral dose-dependent intrastriatal 6-OHDA lesion protocol can serve as a successful model of the early stages of Parkinson's disease in mice.
Collapse
Affiliation(s)
- Andrea Slézia
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- Institute of Cognitive Neuroscience and Psychology, Eotvos Lorand Research Network, Budapest, Hungary.
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France.
| | - Panna Hegedüs
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Evgeniia Rusina
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Katalin Lengyel
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Nicola Solari
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Attila Kaszas
- Institut de Neurosciences de la Timone, CNRS UMR 7289, Aix-Marseille Université, Marseille, France
| | - Diána Balázsfi
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary
| | - Boris Botzanowski
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Emma Acerbo
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Florian Missey
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences Des Systèmes, INSERM UMR S 1106, Aix-Marseille Université, Marseille, France.
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| | - Balázs Hangya
- Institute of Experimental Medicine, Lendület Laboratory of Systems Neuroscience, Budapest, Hungary.
| |
Collapse
|
47
|
Rahamim N, Slovik M, Mevorach T, Linkovski O, Bergman H, Rosin B, Eitan R. Tuned to Tremor: Increased Sensitivity of Cortico-Basal Ganglia Neurons to Tremor Frequency in the MPTP Nonhuman Primate Model of Parkinson's Disease. J Neurosci 2023; 43:7712-7722. [PMID: 37833067 PMCID: PMC10634551 DOI: 10.1523/jneurosci.0529-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Rest tremor is one of the most prominent clinical features of Parkinson's disease (PD). Here, we hypothesized that cortico-basal ganglia neurons tend to fire in a pattern that matches PD tremor frequency, suggesting a resonance phenomenon. We recorded spiking activity in the primary motor cortex (M1) and globus pallidus external segment of 2 female nonhuman primates, before and after parkinsonian state induction with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The arm of nonhuman primates was passively rotated at seven different frequencies surrounding and overlapping PD tremor frequency. We found entrainment of the spiking activity to arm rotation and a significant sharpening of the tuning curves in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine state, with a peak response at frequencies that matched the frequency of PD tremor. These results reveal increased sensitivity of the cortico-basal ganglia network to tremor frequency and could indicate that this network acts not only as a tremor switch but is involved in setting its frequency.SIGNIFICANCE STATEMENT Tremor is a prominent clinical feature of Parkinson's disease; however, its underlying pathophysiology is still poorly understood. Using electrophysiological recordings of single cortico-basal ganglia neurons before and after the induction of a parkinsonian state, and in response to passive arm rotation, this study reports increased sensitivity to tremor frequency in Parkinson's disease. We found sharpening of the population tuning to the midrange of the tested frequencies (1-13.3 Hz) in the healthy state that further increased in the parkinsonian state. These results hint at the increased frequency-tuned sensitivity of cortico-basal ganglia neurons and suggest that they tend to resonate with the tremor.
Collapse
Affiliation(s)
- Noa Rahamim
- Edmond and Lily Safra Center for Brain Science, Hebrew University, Jerusalem, 91120, Israel
| | - Maya Slovik
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Hadassah-Hebrew University Medical School, Jerusalem, 91120, Israel
| | - Tomer Mevorach
- Department of Psychological Medicine, Schneider Children's Medical Center in Israel, Petah Tikva, 4920235, Israel
- Psychiatric Division, Tel Aviv Sourasky Medical Center-Ichilov, Tel Aviv, 6423906, Israel
| | - Omer Linkovski
- Department of Psychology, Bar-Ilan University, Ramat Gan, 590002, Israel
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 590002, Israel
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Science, Hebrew University, Jerusalem, 91120, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Hadassah-Hebrew University Medical School, Jerusalem, 91120, Israel
| | - Boris Rosin
- Division of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Renana Eitan
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Hadassah-Hebrew University Medical School, Jerusalem, 91120, Israel
- Psychiatric Division, Tel Aviv Sourasky Medical Center-Ichilov, Tel Aviv, 6423906, Israel
| |
Collapse
|
48
|
Chen L, Sun J, Gao L, Wang J, Ma J, Xu E, Zhang D, Li L, Wu T. Dysconnectivity of the parafascicular nucleus in Parkinson's disease: A dynamic causal modeling analysis. Neurobiol Dis 2023; 188:106335. [PMID: 37890560 DOI: 10.1016/j.nbd.2023.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Recent animal model studies have suggested that the parafascicular nucleus has the potential to be an effective deep brain stimulation target for Parkinson's disease. However, our knowledge on the role of the parafascicular nucleus in Parkinson's disease patients remains limited. OBJECTIVE We aimed to investigate the functional alterations of the parafascicular nucleus projections in Parkinson's disease patients. METHODS We enrolled 72 Parkinson's disease patients and 60 healthy controls, then utilized resting-state functional MRI and spectral dynamic causal modeling to explore the effective connectivity of the bilateral parafascicular nucleus to the dorsal putamen, nucleus accumbens, and subthalamic nucleus. The associations between the effective connectivity of the parafascicular nucleus projections and clinical features were measured with Pearson partial correlations. RESULTS Compared with controls, the effective connectivity from the parafascicular nucleus to dorsal putamen was significantly increased, while the connectivity to the nucleus accumbens and subthalamic nucleus was significantly reduced in Parkinson's disease patients. There was a significantly positive correlation between the connectivity of parafascicular nucleus-dorsal putamen projection and motor deficits. The connectivity from the parafascicular nucleus to the subthalamic nucleus was negatively correlated with motor deficits and apathy, while the connectivity from the parafascicular nucleus to the nucleus accumbens was negatively associated with depression. CONCLUSION The present study demonstrates that the parafascicular nucleus-related projections are damaged and associated with clinical symptoms of Parkinson's disease. Our findings provide new insights into the impaired basal ganglia-thalamocortical circuits and give support for the parafascicular nucleus as a potential effective neuromodulating target of the disease.
Collapse
Affiliation(s)
- Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Gao
- Department of General Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jinghong Ma
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Erhe Xu
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liang Li
- Brain Science Center, Beijing Institute of Basic Medical Sciences, China.
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
49
|
Wu H, Zhou C, Guan X, Bai X, Guo T, Wu J, Chen J, Wen J, Wu C, Cao Z, Liu X, Gao T, Gu L, Huang P, Xu X, Zhang B, Zhang M. Functional connectomes of akinetic-rigid and tremor within drug-naïve Parkinson's disease. CNS Neurosci Ther 2023; 29:3507-3517. [PMID: 37305965 PMCID: PMC10580330 DOI: 10.1111/cns.14284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/26/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
AIMS To detect functional connectomes of akinetic-rigid (AR) and tremor and compare their connection pattern. METHODS Resting-state functional MRI data of 78 drug-naïve PD patients were enrolled to construct connectomes of AR and tremor via connectome-based predictive modeling (CPM). The connectomes were further validated with 17 drug-naïve patients to verify their replication. RESULTS The connectomes related to AR and tremor were identified via CPM method and successfully validated in the independent set. Additional regional-based CPM demonstrated neither AR nor tremor could be simplified to functional changes within a single brain region. Computational lesion version of CPM revealed that parietal lobe and limbic system were the most important regions among AR-related connectome, and motor strip and cerebellum were the most important regions among tremor-related connectome. Comparing two connectomes found that the patterns of connection between them were largely distinct, with only four overlapped connections identified. CONCLUSION AR and tremor were found to be associated with functional changes in multiple brain regions. Distinct connection patterns of AR-related and tremor-related connectomes suggest different neural mechanisms underlying the two symptoms.
Collapse
Affiliation(s)
- Haoting Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ting Gao
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Luyan Gu
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
50
|
Jeong EH, Lee JY, Han SK, Song YS. Motor subtypes and clinical characteristics in sporadic and genetic Parkinson's disease groups: analysis of the PPMI cohort. Front Neurol 2023; 14:1276251. [PMID: 37954645 PMCID: PMC10634614 DOI: 10.3389/fneur.2023.1276251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The extensive clinical variations observed in Parkinson's disease (PD) pose challenges in early diagnosis and treatment initiation. However, genetic research in PD has significantly transformed the clinical approach to its treatment. Moreover, researchers have adopted a subtyping strategy based on homogeneous clinical symptoms to improve clinical diagnosis and treatment approaches. We conducted a study to explore clinical characteristics in genetic PD groups with motor symptom subtyping. Methods Data was driven from the Parkinson's Progression Markers Initiative (PPMI) database. The sporadic PD (sPD) group and the genetic PD group including patients with leucine-rich kinase 2 (LRRK2) or glucosylceramidase β (GBA) mutations were analyzed. Motor subtyping was performed using Movement Disorder Society-Unified Parkinson's disease rating scale (MDS-UPDRS) scores. I-123 FP-CIT SPECT scans were used to calculate specific binding ratios (SBRs) in the caudate and putamen. Clinical symptoms of each group were also compared. Results MDS-UPDRS III scores were lower in the LRRK2 group, compared with the GBA and sPD group (P < 0.001), but no significant differences in striatal SBRs. The putaminal SBR value of the LRRK2 group was higher than the sPD group (P < 0.05). Within the GBA group, we observed lower SBR values in the postural instability/gait difficulty (PIGD) subtype GBA group compared to the tremor-dominant (TD) subtype GBA group (P < 0.05). The TD subtype GBA group exhibited superior putaminal SBRs compared to the TD subtype sPD group (P < 0.05). The TD subtype LRRK2 group had better putaminal SBR values (P < 0.001) and MDS-UPDRS Part III scores (P < 0.05) compared to the TD sPD group. Discussions Our subtyping approach offers valuable insights into the clinical characteristics and progression of different genetic PD subtypes. To further validate and expand these findings, future research with larger groups and long-term follow-up data is needed. The subtyping strategy based on motor symptoms holds promise in enhancing the diagnosis and treatment of genetic PD.
Collapse
Affiliation(s)
- Eun Hye Jeong
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Yong Lee
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sun-Ku Han
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
- College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|