1
|
Zhang Q, Shu F, Chen X, Liu W, Bian Y, Kang H. Construction of nucleus-directed fluorescent reporter systems and its application to verification of heterokaryon formation in Morchella importuna. Front Microbiol 2022; 13:1051013. [PMID: 36478869 PMCID: PMC9720127 DOI: 10.3389/fmicb.2022.1051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Morchella importuna (M. importuna) is a rare fungus with high nutrition value and distinct flavor. Despite the successful artificial cultivation, its genetic characteristics and biological processes such as life cycle, reproductive system, and trophic mode remain poorly understood. METHODS Considering this, we constructed pEH2B and pMH2B vectors by fusing M. importuna endogenous histone protein H2B with fluorescent proteins eGFP or mCherry, respectively. Based on the constructed pEH2B and pMH2B vectors, nuclear fluorescence localization was performed via Agrobacterium tumefaciens-mediated transformation (ATMT). These two vectors were both driven by two endogenous promoters glyceraldehyde 3-phosphate dehydrogenase (GPD) and ubiquitin (UBI). The vector-based reporter systems were tested by the paired culture of two genetically modified strains pEH2B-labeled M04M24 (24e, MAT1-1-1) and pMH2B-abeled M04M26 (26m, MAT1-2-1). RESULTS The fluorescence observation and molecular identification results indicated the successful hyphal fusion and heterokaryon formation. We found that the expression of the reporter genes was stable, and it did not interfere with the growth of the fungus. DISCUSSION Our constructed nucleus-directed fluorescent systems in M. importuna can be used for monitoring the dynamic development and reproductive processes in living cells and also for monitoring the interaction between morels and plant roots. Therefore, morels exhibit the potential to be a candidate organism used for the research on basic biology and genetics of ascomycetes.
Collapse
Affiliation(s)
- Qianqian Zhang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fang Shu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xin Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Liu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Heng Kang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
2
|
Völz R, Park JY, Kim S, Park SY, Harris W, Chung H, Lee YH. The rice/maize pathogen Cochliobolus spp. infect and reproduce on Arabidopsis revealing differences in defensive phytohormone function between monocots and dicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:412-429. [PMID: 32168401 DOI: 10.1111/tpj.14743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
The fungal genus Cochliobolus describes necrotrophic pathogens that give rise to significant losses on rice, wheat, and maize. Revealing plant mechanisms of non-host resistance (NHR) against Cochliobolus will help to uncover strategies that can be exploited in engineered cereals. Therefore, we developed a heterogeneous pathosystem and studied the ability of Cochliobolus to infect dicotyledons. We report here that C. miyabeanus and C. heterostrophus infect Arabidopsis accessions and produce functional conidia, thereby demonstrating the ability to accept Brassica spp. as host plants. Some ecotypes exhibited a high susceptibility, whereas others hindered the necrotrophic disease progression of the Cochliobolus strains. Natural variation in NHR among the tested Arabidopsis accessions can advance the identification of genetic loci that prime the plant's defence repertoire. We found that applied phytotoxin-containing conidial fluid extracts of C. miyabeanus caused necrotic lesions on rice leaves but provoked only minor irritations on Arabidopsis. This result implies that C. miyabeanus phytotoxins are insufficiently adapted to promote dicot colonization, which corresponds to a retarded infection progression. Previous studies on rice demonstrated that ethylene (ET) promotes C. miyabeanus infection, whereas salicylic acid (SA) and jasmonic acid (JA) exert a minor function. However, in Arabidopsis, we revealed that the genetic disruption of the ET and JA signalling pathways compromises basal resistance against Cochliobolus, whereas SA biosynthesis mutants showed a reduced susceptibility. Our results refer to the synergistic action of ET/JA and indicate distinct defence systems between Arabidopsis and rice to confine Cochliobolus propagation. Moreover, this heterogeneous pathosystem may help to reveal mechanisms of NHR and associated defensive genes against Cochliobolus infection.
Collapse
Affiliation(s)
- Ronny Völz
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
| | - Ju-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- R&D Institute, YUHAN Inc., Yongin, 17084, Korea
| | - Soonok Kim
- Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Korea
| | - Sook-Young Park
- Department of Plant Medicine, Suncheon National University, Suncheon, 57922, Korea
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Yong-Hwan Lee
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
3
|
Thyrostroma carpophilum insertional mutagenesis: A step towards understanding its pathogenicity mechanism. J Microbiol Methods 2020; 171:105885. [PMID: 32147575 DOI: 10.1016/j.mimet.2020.105885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/24/2022]
Abstract
Thyrostroma carpophilum, a causal agent of shot hole disease of stone fruits, cause severe loss in economically important fruit crops of Kashmir. Understanding its pathogenesis at molecular level will aid in devising a better management strategy. In this study, we optimized Agrobacterium tumefaciens mediated transformation (ATMT) conditions for T. carpophilum using PBIF2-EGFP construct. Using this protocol, we obtained 328 positive transformants per 104 spores and subsequent sub-culturing of transformants on selective and non-selective media resulted in stable T-DNA integration. Southern blot analysis revealed that most of the transformants embodied single T-DNA integration. Using this method, we obtained a small-scale transformant library (2050 transformants). Among this pool, we tested 1005 transformants for their pathogenicity; out of which 185 showed complete pathogenicity loss, 35 displayed reduced virulence and 785 were pathogenically similar to wild type. Out of this experimental stock, three transformants from each category were randomly selected to dissect the infection assay. The findings deciphered that transformants with complete pathogenicity loss failed to penetrate the host tissue and a few transformants failed to sporulate in laboratory. Transformants from reduced category could not form appressorium and occasionally sporulated. Transformants similar to wild type were morphologically and pathogenically similar to wild type because of un-alteration in their modus operandi. Our work provides a new platform to understand the pathogenicity mechanism of T. carpophilum. The optimized ATMT protocol will help in developing large transformant library that can help to identify the virulence arsenals necessary for the pathogen to cause disease.
Collapse
|
4
|
Nandakumar M, Malathi P, Sundar AR, Viswanathan R. Use of Green Fluorescent Protein Expressing Colletotrichum falcatum, the Red Rot Pathogen for Precise Host–Pathogen Interaction Studies in Sugarcane. SUGAR TECH 2020; 22:112-121. [DOI: 10.1007/s12355-019-00751-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023]
|
5
|
Hernandez-Escribano L, Visser EA, Iturritxa E, Raposo R, Naidoo S. The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genomics 2020; 21:28. [PMID: 31914917 PMCID: PMC6950806 DOI: 10.1186/s12864-019-6444-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/30/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fusarium circinatum, the causal agent of pitch canker disease, poses a serious threat to several Pinus species affecting plantations and nurseries. Although Pinus pinaster has shown moderate resistance to F. circinatum, the molecular mechanisms of defense in this host are still unknown. Phytohormones produced by the plant and by the pathogen are known to play a crucial role in determining the outcome of plant-pathogen interactions. Therefore, the aim of this study was to determine the role of phytohormones in F. circinatum virulence, that compromise host resistance. RESULTS A high quality P. pinaster de novo transcriptome assembly was generated, represented by 24,375 sequences from which 17,593 were full length genes, and utilized to determine the expression profiles of both organisms during the infection process at 3, 5 and 10 days post-inoculation using a dual RNA-sequencing approach. The moderate resistance shown by Pinus pinaster at the early time points may be explained by the expression profiles pertaining to early recognition of the pathogen, the induction of pathogenesis-related proteins and the activation of complex phytohormone signaling pathways that involves crosstalk between salicylic acid, jasmonic acid, ethylene and possibly auxins. Moreover, the expression of F. circinatum genes related to hormone biosynthesis suggests manipulation of the host phytohormone balance to its own benefit. CONCLUSIONS We hypothesize three key steps of host manipulation: perturbing ethylene homeostasis by fungal expression of genes related to ethylene biosynthesis, blocking jasmonic acid signaling by coronatine insensitive 1 (COI1) suppression, and preventing salicylic acid biosynthesis from the chorismate pathway by the synthesis of isochorismatase family hydrolase (ICSH) genes. These results warrant further testing in F. circinatum mutants to confirm the mechanism behind perturbing host phytohormone homeostasis.
Collapse
Affiliation(s)
- Laura Hernandez-Escribano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Eugenia Iturritxa
- NEIKER, Granja Modelo de Arkaute, Apdo 46, 01080, Vitoria-Gasteiz, Spain
| | - Rosa Raposo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Instituto de Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid/INIA, Valladolid, Spain
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
6
|
Hettiarachchige IK, Ludlow EJ, Ekanayake PN, Brohier ND, Sahab S, Sawbridge TI, Spangenberg GC, Guthridge KM. Generation of Epichloë Strains Expressing Fluorescent Proteins Suitable for Studying Host-Endophyte Interactions and Characterisation of a T-DNA Integration Event. Microorganisms 2019; 8:E54. [PMID: 31892173 PMCID: PMC7023320 DOI: 10.3390/microorganisms8010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
Methods for the identification and localisation of endophytic fungi are required to study the establishment, development, and progression of host-symbiont interactions, as visible reactions or disease symptoms are generally absent from host plants. Fluorescent proteins have proved valuable as reporter gene products, allowing non-invasive detection in living cells. This study reports the introduction of genes for two fluorescent proteins, green fluorescent protein (GFP) and red fluorescent protein, DsRed, into the genomes of two distinct perennial ryegrass (Lolium perenne L.)-associated Epichloë endophyte strains using A. tumefaciens-mediated transformation. Comprehensive characterisation of reporter gene-containing endophyte strains was performed using molecular genetic, phenotypic, and bioinformatic tools. A combination of long read and short read sequencing of a selected transformant identified a single complex T-DNA insert of 35,530 bp containing multiple T-DNAs linked together. This approach allowed for comprehensive characterisation of T-DNA integration to single-base resolution, while revealing the unanticipated nature of T-DNA integration in the transformant analysed. These reporter gene endophyte strains were able to establish and maintain stable symbiotum with the host. In addition, the same endophyte strain labelled with two different fluorescent proteins were able to cohabit the same plant. This knowledge can be used to provide the basis to develop strategies to gain new insights into the host-endophyte interaction through independent and simultaneous monitoring in planta throughout its life cycle in greater detail.
Collapse
Affiliation(s)
- Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Emma J. Ludlow
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Piyumi N. Ekanayake
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Natasha D. Brohier
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Sareena Sahab
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| | - Timothy I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (I.K.H.); (E.J.L.); (P.N.E.); (N.D.B.); (S.S.); (T.I.S.); (G.C.S.)
| |
Collapse
|
7
|
Zhang T, Ren P, De Jesus M, Chaturvedi V, Chaturvedi S. Green Fluorescent Protein Expression in Pseudogymnoascus destructans to Study Its Abiotic and Biotic Lifestyles. Mycopathologia 2018; 183:805-814. [PMID: 29987576 DOI: 10.1007/s11046-018-0285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Pseudogymnoascus destructans (Pd) is the etiologic agent of bat White-nose syndrome, a disease that has caused the unprecedented reduction in the hibernating bat populations across eastern North America. The Pd pathogenesis appears to be a complex adaptation of fungus in its abiotic (caves and mines) and biotic (bats) environments. There is a general lack of experimental tools for the study of Pd biology. We described the successful expression of codon-optimized synthetic green fluorescent protein sGFP in Pd. The sGFP(S65T) gene was first fused in frame with the Aspergillus nidulans promoter in the tumor-inducing plasmid pRF-HUE, and the resulting plasmid pHUE-sGFP(S65T) was transformed into Pd by Agrobacterium tumefaciens-mediated transformation system. The integration of sGFP(S65T) in Pd genome was analyzed by PCR, and single integration frequency of approximately 66% was confirmed by Southern hybridization. Fluorescent microscopy and flow cytometric analyses of two randomly selected transformants with single integration revealed high expression of sGFP in both spores and hyphal structures. The biology of mutants as judged by sporulation, growth rate, and urease production was not altered indicating sGFP is not toxic to Pd. Thus, we have generated a valuable tool that will facilitate the elucidation of Pd biology, ecology, and pathogenicity in real time.
Collapse
Affiliation(s)
- Tao Zhang
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Magdia De Jesus
- Immunology and Infectious Disease Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| |
Collapse
|
8
|
Sarmiento‐Villamil JL, Prieto P, Klosterman SJ, García‐Pedrajas MD. Characterization of two homeodomain transcription factors with critical but distinct roles in virulence in the vascular pathogen Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2018; 19:986-1004. [PMID: 28727279 PMCID: PMC6638091 DOI: 10.1111/mpp.12584] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 05/11/2023]
Abstract
Vascular wilt caused by Verticillium dahliae is a destructive disease that represents a chronic economic problem for crop production worldwide. In this work, we characterized two new regulators of pathogenicity in this species. Vph1 (VDAG_06555) was identified in a candidate gene approach as a putative homologue of the transcription factor Ste12. Vhb1 (VDAG_08786), identified in a forward genetics approach, is similar to the homeobox transcription factor Htf1, reported as a regulator of conidiogenesis in several fungi. Deletion of vph1 did not affect vegetative growth, whereas deletion of vhb1 greatly reduced sporulation rates in liquid medium. Both mutants failed to induce Verticillium wilt symptoms. However, unlike Δvph1, Δvhb1 could be re-isolated from the vascular system of some asymptomatic plants. Confocal microscopy further indicated that Δvph1 and Δvhb1 differed in their behaviour in planta; Δvph1 could not penetrate the root cortex, whereas Δvhb1 was impaired in its ability to colonize the xylem. In agreement with these observations, only Δvhb1 could penetrate cellophane paper. On cellophane, wild-type and Δvhb1 strains produced numerous short branches with swollen tips, resembling the hyphopodia formed on root surfaces, contrasting with Δvph1, which generated unbranched long filaments without swollen tips. A microarray analysis showed that these differences in growth were associated with differences in global transcription patterns, and allowed us to identify a large set of novel genes potentially involved in virulence in V. dahliae. Ste12 homologues are known regulators of invasive growth, but Vhb1 is the first putative Htf1 homologue identified with a critical role in virulence.
Collapse
Affiliation(s)
- Jorge L. Sarmiento‐Villamil
- Estación Experimental ‘La Mayora’Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Algarrobo‐CostaMálaga 29750Spain
| | - Pilar Prieto
- Departamento de Mejora Genética, Instituto de Agricultura Sostenible (IAS)Consejo Superior de Investigaciones Científicas (CSIC)Córdoba14004Spain
| | - Steven J. Klosterman
- Agricultural Research ServiceUnited States Department of AgricultureSalinasCA 93905USA
| | - María D. García‐Pedrajas
- Estación Experimental ‘La Mayora’Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga, Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Algarrobo‐CostaMálaga 29750Spain
| |
Collapse
|
9
|
Nichols NN, Quarterman JC, Frazer SE. Use of green fluorescent protein to monitor fungal growth in biomass hydrolysate. Biol Methods Protoc 2018; 3:bpx012. [PMID: 32161794 DOI: 10.1093/biomethods/bpx012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
A reporter gene encoding green fluorescent protein (GFP) was introduced into the ascomycete Coniochaeta ligniaria NRRL30616, and fluorescence of cultures was monitored as a measure of cell growth. Fluorescence in the GFP-expressing strain was measured during growth of cells in defined and complex media as well as in the liquor derived from pretreatment of corn stover, an agricultural residue. Fluorescence mirrored growth of cultures, as measured by optical density and counts of colony forming units. Because traditional methods to monitor growth cannot be used in biomass liquors due to its fibrous, dark-colored nature, the speed and convenience of using GFP to monitor growth is advantageous. Fluorescence of cultures in biomass hydrolysate also correlated with the concentration of furfural in hydrolysate. Furfural and other compounds, present in hydrolysate due to physico-chemical pretreatment of biomass, are inhibitory to fermenting microbes. Therefore, measurement of fluorescence in GFP-expressing C. ligniaria is a proxy for measures of microbial growth and furfural consumption, and serves as a convenient indicator of metabolism of fermentation inhibitors in biomass hydrolysate.
Collapse
Affiliation(s)
- Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N. University Street, Peoria, IL 61604, USA
| | - Joshua C Quarterman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N. University Street, Peoria, IL 61604, USA
| | - Sarah E Frazer
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N. University Street, Peoria, IL 61604, USA
| |
Collapse
|
10
|
Florencio CS, Brandão FAS, Teixeira MDM, Bocca AL, Felipe MSS, Vicente VA, Fernandes L. Genetic manipulation of Fonsecaea pedrosoi using particles bombardment and Agrobacterium mediated transformation. Microbiol Res 2018; 207:269-279. [PMID: 29458863 DOI: 10.1016/j.micres.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/04/2017] [Accepted: 01/01/2018] [Indexed: 11/24/2022]
Abstract
Fonsecaea pedrosoi, a melanized fungal pathogen that causes Chromoblastomycosis, a human disease with a worldwide distribution. Biolistic is a widely used technique for direct delivery of genetic material into intact cells by particles bombardment. Another well-established transformation method is Agrobacterium-mediated transformation (ATMT), which involves the transfer of a T-DNA from the bacterium to the target cells. In F. pedrosoi there are no reports of established protocols for genetic transformation, which require optimization of physical and biological parameters. In this work, intact conidia of F. pedrosoi were particle bombarded and subjected to ATMT. In addition, we proposed hygromycin B, nourseothricin and neomycin as dominant selective markers for F. pedrosoi and vectors were constructed. We tested two parameters for biolistic: the distance of the particles to the target cells and time of cells recovery in nonselective medium. The biolistic efficiency was 37 transformants/μg of pFpHYG, and 45 transformants/μg of pAN7.1. Transformants expressing GFP were successfully obtained by biolistic. A co-culture ratio of 10: 1 (bacterium: conidia) and co-incubation time of 72 h yielded the largest number of transformants after ATMT. Southern blot analysis showed the number of foreign DNA insertion into the genome is dependent upon the plasmid used to generate the mutants. This work describes for the first time two efficient methods for genetic modification of Fonsecaea and these results open new avenues to better understand the biology and pathogenicity of the main causal agent of this neglected disease.
Collapse
Affiliation(s)
- Camille Silva Florencio
- Programa de Pós-graduação em Ciências e Tecnologias em Saúde, Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | - Fabiana Alves Silva Brandão
- Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | | | - Anamélia Lorenzetti Bocca
- Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | | | - Vânia Aparecida Vicente
- Programa de Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Setor de Ciências Biológicas, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Larissa Fernandes
- Programa de Pós-graduação em Ciências e Tecnologias em Saúde, Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil; Programa de Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Setor de Ciências Biológicas, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
11
|
A highly efficient Agrobacterium tumefaciens-mediated transformation system for the postharvest pathogen Penicillium digitatum using DsRed and GFP to visualize citrus host colonization. J Microbiol Methods 2017; 144:134-144. [PMID: 29175534 DOI: 10.1016/j.mimet.2017.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/21/2022]
Abstract
Penicillium digitatum is a major postharvest pathogen of citrus crops. This fungus broadly spreads worldwide and causes green mold disease, which results in severe losses for citrus production. Understanding of the citrus infection by P. digitatum may help develop effective strategies for controlling this pathogen. In this study, we have characterized a virulent strain of P. digitatum isolated in Vietnam and established a highly efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for this fungal strain with two newly constructed binary vectors. These binary vectors harbor dominant selectable markers for hygromycin or nourseothricin resistance, and expression cassettes for the red fluorescent protein (DsRed) or the green fluorescent protein (GFP), respectively. Using the established ATMT system, the transformation efficiency of the Vietnamese strain could reach a very high yield of 1240±165 transformants per 106 spores. Interestingly, we found that GFP is much better than DsRed for in situ visualization of citrus fruit colonization by the fungus. Additionally, we showed that the transformation system can also be used to generate T-DNA insertion mutants for screening non-pathogenic or less virulent strains. Our work provides a new platform including a virulent tropical strain of P. digitatum, an optimized ATMT method and two newly constructed binary vectors for investigation of the postharvest pathogen. This platform will help develop strategies to dissect molecular mechanisms of host-pathogen interactions in more detail as well as to identify potential genes of pathogenicity by either insertional mutagenesis or gene disruption in this important pathogenic fungus.
Collapse
|
12
|
Fisher JJ, Castrillo LA, Donzelli BGG, Hajek AE. Starvation and Imidacloprid Exposure Influence Immune Response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a Fungal Pathogen. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1451-1459. [PMID: 28482047 DOI: 10.1093/jee/tox124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 06/07/2023]
Abstract
In several insect systems, fungal entomopathogens synergize with neonicotinoid insecticides which results in accelerated host death. Using the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), an invasive woodborer inadvertently introduced into North America and Europe, we investigated potential mechanisms in the synergy between the entomopathogenic fungus Metarhizium brunneum Petch and the insecticide imidacloprid. A potential mechanism underlying this synergy could be imidacloprid's ability to prevent feeding shortly after administration. We investigated whether starvation would have an impact similar to imidacloprid exposure on the mortality of fungal-inoculated beetles. Using real-time PCR to quantify fungal load in inoculated beetles, we determined how starvation and pesticide exposure impacted beetles' ability to tolerate or resist a fungal infection. The effect of starvation and pesticide exposure on the encapsulation and melanization immune responses of the beetles was also quantified. Starvation had a similar impact on the survival of M. brunneum-inoculated beetles compared to imidacloprid exposure. The synergy, however, was not completely due to starvation, as imidacloprid reduced the beetles' melanotic encapsulation response and capsule area, while starvation did not significantly reduce these immune responses. Our results suggest that there are multiple interacting mechanisms involved in the synergy between M. brunneum and imidacloprid.
Collapse
Affiliation(s)
- Joanna J Fisher
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601
| | | | - Bruno G G Donzelli
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853-5904
| | - Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601
| |
Collapse
|
13
|
Sabuquillo P, Gea A, Matas IM, Ramos C, Cubero J. The use of stable and unstable green fluorescent proteins for studies in two bacterial models: Agrobacterium tumefaciens and Xanthomonas campestris pv. campestris. Arch Microbiol 2016; 199:581-590. [PMID: 27995281 DOI: 10.1007/s00203-016-1327-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/20/2016] [Accepted: 12/07/2016] [Indexed: 01/23/2023]
Abstract
Fluorescent proteins have been used to track plant pathogens to understand their host interactions. To be useful, the transgenic pathogens must present similar behaviour than the wild-type isolates. Herein, a GFP marker was used to transform two plant pathogenic bacteria, Agrobacterium and Xanthomonas, to localize and track the bacteria during infection. The transgenic bacteria were evaluated to determine whether they showed the same fitness than the wild-type strains or whether the expression of the GFP protein interfered in the bacterial activity. In Agrobacterium, the plasmid used for transformation was stable in the bacteria and the strain kept the virulence, while Xanthomonas was not able to conserve the plasmid and transformed strains showed virulence variations compared to wild-type strains. Although marking bacteria with GFP to track infection in plants is a common issue, works to validate the transgenic strains and corroborate their fitness are not usual. Results, presented here, confirm the importance of proper fitness tests on the marked strains before performing localization assays, to avoid underestimation of the microbe population or possible artificial effects in its interaction with the plant.
Collapse
Affiliation(s)
- Pilar Sabuquillo
- Laboratorio de Bacteriología. Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Adela Gea
- Laboratorio de Bacteriología. Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Isabel M Matas
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain.,Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, 31192, Mutilva, Navarra, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jaime Cubero
- Laboratorio de Bacteriología. Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| |
Collapse
|
14
|
Yan M, Cai E, Zhou J, Chang C, Xi P, Shen W, Li L, Jiang Z, Deng YZ, Zhang LH. A Dual-Color Imaging System for Sugarcane Smut Fungus Sporisorium scitamineum. PLANT DISEASE 2016; 100:2357-2362. [PMID: 30686163 DOI: 10.1094/pdis-02-16-0257-sr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The life cycle of the sugarcane smut fungus Sporisorium scitamineum is a multistep process. Haploid sporidia of compatible (MAT-1 versus MAT-2) mating types fuse to generate pathogenic dikaryotic hyphae to infect the host. Within the host tissues, diploid teliospores are formed and induce a characteristic sorus that looks like a black whip. The diploid teliospores germinate to form haploid sporidia by meiosis. In order to monitor fungal development throughout the whole life cycle, we expressed the green fluorescent protein (GFP) and red fluorescent protein (RFP) in S. scitamineum MAT-1 and MAT-2 sporidia, respectively. Observation by epifluorescence microscope showed that conjugation tube formation and sporidia fusion occurred at 4 to 8 h, and formation of dikaryotic filaments was detected at 12 h after mating. The resultant teliospores, with diffused GFP and RFP, underwent meiosis as demonstrated by septated hypha with single fluorescent signal. We demonstrated that GFP- and RFP-tagged strains can be used to study the life cycle development of the fungal pathogen S. scitamineum, including the sexual mating and meiosis events. This dual-color imaging system would be a valuable tool for investigation of biotic and abiotic factors that might affect the fungal life cycle development and pathogenesis.
Collapse
Affiliation(s)
- Meixin Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China, and Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, P. R. China
| | - Enping Cai
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Changqing Chang
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, and Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, P. R. China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Wankuan Shen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Lingyu Li
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Yi Zhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
15
|
Ray M, Ray A, Dash S, Mishra A, Achary KG, Nayak S, Singh S. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosens Bioelectron 2016; 87:708-723. [PMID: 27649327 DOI: 10.1016/j.bios.2016.09.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/25/2016] [Accepted: 09/10/2016] [Indexed: 11/19/2022]
Abstract
Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use.
Collapse
Affiliation(s)
- Monalisa Ray
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Asit Ray
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Swagatika Dash
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Abtar Mishra
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | | | - Sanghamitra Nayak
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India
| | - Shikha Singh
- Centre of Biotechnology, Siksha O Anusandhan University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha, India.
| |
Collapse
|
16
|
McCluskey K. Boosting Research and Industry by Providing Extensive Resources for Fungal Research. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Zhang J, Bayram Akcapinar G, Atanasova L, Rahimi MJ, Przylucka A, Yang D, Kubicek CP, Zhang R, Shen Q, Druzhinina IS. The neutral metallopeptidase NMP1 ofTrichoderma guizhouenseis required for mycotrophy and self-defence. Environ Microbiol 2015; 18:580-97. [DOI: 10.1111/1462-2920.12966] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Jian Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Gunseli Bayram Akcapinar
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Lea Atanasova
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Mohammad Javad Rahimi
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | | | - Dongqing Yang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Christian P. Kubicek
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| | - Ruifu Zhang
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers; Nanjing Agricultural University; Nanjing China
| | - Irina S. Druzhinina
- Microbiology Group; Research Area Biotechnology and Microbiology; Institute of Chemical Engineering; Vienna University of Technology; Vienna Austria
| |
Collapse
|
18
|
Niño-Sánchez J, Tello V, Casado-Del Castillo V, Thon MR, Benito EP, Díaz-Mínguez JM. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum. Front Microbiol 2015; 6:234. [PMID: 25883592 PMCID: PMC4383042 DOI: 10.3389/fmicb.2015.00234] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2.
Collapse
Affiliation(s)
- Jonathan Niño-Sánchez
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Vega Tello
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Virginia Casado-Del Castillo
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Michael R Thon
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - Ernesto P Benito
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| | - José María Díaz-Mínguez
- Departamento de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
19
|
Morán-Diez ME, Trushina N, Lamdan NL, Rosenfelder L, Mukherjee PK, Kenerley CM, Horwitz BA. Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots. BMC Genomics 2015; 16:8. [PMID: 25608961 PMCID: PMC4326404 DOI: 10.1186/s12864-014-1208-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/30/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Members of the fungal genus Trichoderma directly antagonize soil-borne fungal pathogens, and an increasing number of species are studied for their potential in biocontrol of plant pathogens in agriculture. Some species also colonize plant roots, promoting systemic resistance. The Trichoderma-root interaction is hosted by a wide range of plant species, including monocots and dicots. RESULTS To test the hypothesis that gene expression by the fungal partner in this beneficial interaction is modulated by the plant, Trichoderma virens was co-cultured with maize or tomato in a hydroponic system allowing interaction with the roots. The transcriptomes for T. virens alone were compared with fungus-inoculated tomato or maize roots by hybridization on microarrays of 11645 unique oligonucleotides designed from the predicted protein-coding gene models. Transcript levels of 210 genes were modulated by interaction with roots. Almost all were up-regulated. Glycoside hydrolases and transporters were highly represented among transcripts induced by co-culture with roots. Of the genes up-regulated on either or both host plants, 35 differed significantly in their expression levels between maize and tomato. Ten of these were expressed higher in the fungus in co-culture with tomato roots than with maize. Average transcript levels for these genes ranged from 1.9 fold higher on tomato than on maize to 60.9 fold for the most tomato-specific gene. The other 25 host-specific transcripts were expressed more strongly in co-culture with maize than with tomato. Average transcript levels for these genes were 2.5 to 196 fold higher on maize than on tomato. CONCLUSIONS Based on the relevant role of Trichoderma virens as a biological control agent this study provides a better knowledge of its crosstalk with plants in a host-specific manner. The differentially expressed genes encode proteins belonging to several functional classes including enzymes, transporters and small secreted proteins. Among them, glycoside hydrolases and transporters are highlighted by their abundance and suggest an important factor in the metabolism of host cell walls during colonization of the outer root layers. Host-specific gene expression may contribute to the ability of T. virens to colonize the roots of a wide range of plant species.
Collapse
Affiliation(s)
- Maria E Morán-Diez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
- Present address: Bio-Protection Research Centre, Lincoln University, PO Box 84, Lincoln, 7647, New Zealand.
| | - Naomi Trushina
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Haifa, 3200000, Israel.
| | - Netta Li Lamdan
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Haifa, 3200000, Israel.
| | - Lea Rosenfelder
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Haifa, 3200000, Israel.
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Mumbai, India.
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| | - Benjamin A Horwitz
- Department of Biology, Technion - Israel Institute of Technology, Neve Shaanan Campus, Haifa, 3200000, Israel.
| |
Collapse
|
20
|
Tang N, van der Lee T, Shahin A, Holdinga M, Bijman P, Caser M, Visser RGF, van Tuyl JM, Arens P. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2015; 35:122. [PMID: 25983613 PMCID: PMC4422938 DOI: 10.1007/s11032-015-0316-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/20/2015] [Indexed: 05/05/2023]
Abstract
Fusarium oxysporum is a major problem in the production of tulip bulbs. Breeding for resistant cultivars through a conventional approach is a slow process due to the long life cycle of tulip. Until now, marker-assisted selection (MAS) has been hampered by the large genome size and the absence of a genetic map. This study is aimed at construction of the first genetic map for tulip and at the identification of loci associated with resistance to F. oxysporum. A cross-pollinated population of 125 individuals segregating for Fusarium resistance was obtained from Tulipa gesneriana "Kees Nelis" and T. fosteriana "Cantata." Fusarium resistance of the mapping population was evaluated through a soil infection test in two consecutive years, and a spot inoculation test in which a green fluorescent protein tagged Fusarium strain was used for inoculation. The genetic maps have been constructed for the parents separately. The genetic map of "Kees Nelis" comprised 342 markers on 27 linkage groups covering 1707 cM, while the map of "Cantata" comprised 300 markers on 21 linkage groups covering 1201 cM. Median distance between markers was 3.9 cM for "Kees Nelis" and 3.1 cM for "Cantata." Six putative quantitative trait loci (QTLs) for Fusarium resistance were identified, derived from both parents. QTL2, QTL3, and QTL6 were significant in all disease tests. For the flanking markers of the QTLs, phenotypic means of the two allelic groups, segregating from a parent for such a marker, were significantly different. These markers will be useful for the development of MAS in tulip breeding.
Collapse
Affiliation(s)
- Nan Tang
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- />Plateau Flower Research Centre, Qinghai University, Xining, 810016 Qinghai China
| | - Theo van der Lee
- />Biointeractions and Plant Health, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Arwa Shahin
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- />Department of Horticulture, Agriculture Faculty, Damascus University, Damascus, Syria
| | - Maarten Holdinga
- />Biointeractions and Plant Health, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Paul Bijman
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Matteo Caser
- />Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| | - Richard G. F. Visser
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaap M. van Tuyl
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Paul Arens
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
21
|
Alkan N, Friedlander G, Ment D, Prusky D, Fluhr R. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. THE NEW PHYTOLOGIST 2015; 205:801-15. [PMID: 25377514 DOI: 10.1111/nph.13087] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/22/2014] [Indexed: 05/20/2023]
Abstract
The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, the Volcani Center, Bet Dagan, 50250, Israel
| | | | | | | | | |
Collapse
|
22
|
Ridenour JB, Smith JE, Hirsch RL, Horevaj P, Kim H, Sharma S, Bluhm BH. UBL1 of Fusarium verticillioides links the N-end rule pathway to extracellular sensing and plant pathogenesis. Environ Microbiol 2013; 16:2004-22. [PMID: 24237664 DOI: 10.1111/1462-2920.12333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/07/2013] [Indexed: 01/06/2023]
Abstract
Fusarium verticillioides produces fumonisin mycotoxins during colonization of maize. Currently, molecular mechanisms underlying responsiveness of F.verticillioides to extracellular cues during pathogenesis are poorly understood. In this study, insertional mutants were created and screened to identify genes involved in responses to extracellular starch. In one mutant, the restriction enzyme-mediated integration cassette disrupted a gene (UBL1) encoding a UBR-Box/RING domain E3 ubiquitin ligase involved in the N-end rule pathway. Disruption of UBL1 in F.verticillioides (Δubl1) influenced conidiation, hyphal morphology, pigmentation and amylolysis. Disruption of UBL1 also impaired kernel colonization, but the ratio of fumonisin B1 per unit growth was not significantly reduced. The inability of a Δubl1 mutant to recognize an N-end rule degron confirmed involvement of UBL1 in the N-end rule pathway. Additionally, Ubl1 physically interacted with two G protein α subunits of F.verticillioides, thus implicating UBL1 in G protein-mediated sensing of the external environment. Furthermore, deletion of the UBL1 orthologue in F.graminearum reduced virulence on wheat and maize, thus indicating that UBL1 has a broader role in virulence among Fusarium species. This study provides the first linkage between the N-end rule pathway and fungal pathogenesis, and illustrates a new mechanism through which fungi respond to the external environment.
Collapse
Affiliation(s)
- John B Ridenour
- Department of Plant Pathology, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Shin JH, Kim JE, Malapi-Wight M, Choi YE, Shaw BD, Shim WB. Protein phosphatase 2A regulatory subunits perform distinct functional roles in the maize pathogen Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2013; 14:518-29. [PMID: 23452277 PMCID: PMC6638791 DOI: 10.1111/mpp.12023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fusarium verticillioides is a pathogen of maize causing ear rot and stalk rot. The fungus also produces fumonisins, a group of mycotoxins linked to disorders in animals and humans. A cluster of genes, designated FUM genes, plays a key role in the synthesis of fumonisins. However, our understanding of the regulatory mechanism of fumonisin biosynthesis is still incomplete. We have demonstrated previously that Cpp1, a protein phosphatase type 2A (PP2A) catalytic subunit, negatively regulates fumonisin production and is involved in cell shape maintenance. In general, three PP2A subunits, structural A, regulatory B and catalytic C, make up a heterotrimer complex to perform regulatory functions. Significantly, we identified two PP2A regulatory subunits in the F. verticillioides genome, Ppr1 and Ppr2, which are homologous to Saccharomyces cerevisiae Cdc55 and Rts1, respectively. In this study, we hypothesized that Ppr1 and Ppr2 are involved in the regulation of fumonisin biosynthesis and/or cell development in F. verticillioides, and generated a series of mutants to determine the functional role of Ppr1 and Ppr2. The PPR1 deletion strain (Δppr1) resulted in drastic growth defects, but increased microconidia production. The PPR2 deletion mutant strain (Δppr2) showed elevated fumonisin production, similar to the Δcpp1 strain. Germinating Δppr1 conidia formed abnormally swollen cells with a central septation site, whereas Δppr2 showed early hyphal branching during conidia germination. A kernel rot assay showed that the mutants were slow to colonize kernels, but this is probably a result of growth defects rather than a virulence defect. Results from this study suggest that two PP2A regulatory subunits in F. verticillioides carry out distinct roles in the regulation of fumonisin biosynthesis and fungal development.
Collapse
Affiliation(s)
- Joon-Hee Shin
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | |
Collapse
|
24
|
Buron-Moles G, López-Pérez M, González-Candelas L, Viñas I, Teixidó N, Usall J, Torres R. Use of GFP-tagged strains of Penicillium digitatum and Penicillium expansum to study host-pathogen interactions in oranges and apples. Int J Food Microbiol 2012. [PMID: 23177056 DOI: 10.1016/j.ijfoodmicro.2012.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Penicillium digitatum and Penicillium expansum are responsible for green and blue molds in citrus and pome fruits, respectively, which result in major monetary losses worldwide. In order to study their infection process in fruits, we successfully introduced a green fluorescent protein (GFP) encoding gene into wild type P. digitatum and P. expansum isolates, using Agrobacterium tumefaciens-mediated transformation (ATMT), with hygromycin B resistance as the selectable marker. To our knowledge, this is the first report describing the transformation of these two important postharvest pathogens with GFP and the use of transformed strains to study compatible and non-host pathogen interactions. Transformation did not affect the pathogenicity or the ecophysiology of either species compared to their respective wild type strains. The GFP-tagged strains were used for in situ analysis of compatible and non-host pathogen interactions on oranges and apples. Knowledge of the infection process of apples and oranges by these pathogens will facilitate the design of novel strategies to control these postharvest diseases and the use of the GFP-tagged strains will help to determine the response of P. digitatum and P. expansum on/in plant surface and tissues to different postharvest treatments.
Collapse
Affiliation(s)
- G Buron-Moles
- University of Lleida, XaRTA-Postharvest, Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Ment D, Churchill ACL, Gindin G, Belausov E, Glazer I, Rehner SA, Rot A, Donzelli BGG, Samish M. Resistant ticks inhibit Metarhizium infection prior to haemocoel invasion by reducing fungal viability on the cuticle surface. Environ Microbiol 2012; 14:1570-83. [PMID: 22507442 DOI: 10.1111/j.1462-2920.2012.02747.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied disease progression of, and host responses to, four species in the Metarhizium anisopliae complex expressing green fluorescent protein (GFP). We compared development and determined their relative levels of virulence against two susceptible arthropods, the cattle tick Rhipicephalus annulatus and the lepidopteran Galleria mellonella, and two resistant ticks, Hyalomma excavatum and Rhipicephalus sanguineus. Metarhizium brunneum Ma7 caused the greatest mortality of R. annulatus, Metarhizium robertsii ARSEF 2575 and Metarhizium pingshaense PPRC51 exhibited intermediate levels of virulence, and Metarhizium majus PPRC27 caused low mortality of cattle ticks. Conidia of all four species germinated on all hosts examined, but on resistant hosts, sustained hyphal growth was inhibited and GFP emission steadily and significantly decreased over time, suggesting a loss of fungal viability. Cuticle penetration was observed only for the three most virulent species infecting susceptible hosts. Cuticles of resistant and susceptible engorged female ticks showed significant increases in red autofluorescence at sites immediately under fungal hyphae. This is the first report (i) of tick mortality occurring after cuticle penetration but prior to haemocoel colonization and (ii) that resistant ticks do not support development of Metarhizium germlings on the outer surface of the cuticle. Whether reduced Metarhizium viability on resistant tick cuticles is due to antibiosis or limited nutrient availability is unknown.
Collapse
Affiliation(s)
- Dana Ment
- ARO, The Volcani Center, Bet-Dagan, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hohmann P, Jones EE, Hill RA, Stewart A. Ecological studies of the bio-inoculant Trichoderma hamatum LU592 in the root system of Pinus radiata. FEMS Microbiol Ecol 2012; 80:709-21. [PMID: 22375861 DOI: 10.1111/j.1574-6941.2012.01340.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/29/2012] [Accepted: 02/18/2012] [Indexed: 11/29/2022] Open
Abstract
The plant health- and growth-promoting biological inoculant (bio-inoculant) Trichoderma hamatum LU592 was transformed with the constitutively expressed green fluorescent protein (gfp) and hygromycin B resistance (hph) genes to specifically monitor the isolate in the root system of Pinus radiata within a strong indigenous Trichoderma population. A modified dilution plating technique was developed to allow the determination of the mycelia proportion of total propagule levels. LU592 was shown to colonize the rhizosphere most effectively when 10(5) spores per pot were applied compared with inoculum concentrations of 10(3) and 10(7) spores per pot. LU592 extended its zone of activity beyond the rhizosphere to at least 1 cm away from the root surface. A positive relationship was shown between P. radiata root maturation and the spatial and temporal proliferation of LU592 in the root system. A steep increase in mycelia levels and proportion of penetrated root segments was observed after 12 weeks. This study reinforces the value of genetic markers for use in ecological studies of filamentous fungi. However, despite isolate-specific recovery of the introduced isolate, it was shown that total propagule counts do not always correlate with the amount of viable mycelium present in the root system. Therefore, it is proposed that the differentiation of mycelia from spores and root penetration is used as more accurate measures of fungal activity.
Collapse
Affiliation(s)
- Pierre Hohmann
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.
| | | | | | | |
Collapse
|
27
|
The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog 2012; 8:e1002467. [PMID: 22241993 PMCID: PMC3252377 DOI: 10.1371/journal.ppat.1002467] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/17/2011] [Indexed: 12/14/2022] Open
Abstract
The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins) that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR) gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular basis of the wheat-S. nodorum interaction, an emerging model for necrotrophic pathosystems. In this manuscript we describe the cloning of SnTox1 from Stagonospora nodorum, the gene encoding the first host selective toxin (SnTox1) identified in this fungus. SnTox1 induces necrosis and promotes disease on wheat lines harboring the Snn1 gene. We verified the function of the SnTox1 gene by expressing it in a yeast culture where the resulting culture filtrate induced necrosis but only on wheat lines that carried a functional Snn1. The SnTox1 gene was also transformed into an avirulent S. nodorum isolate, resulting in an isolate that was virulent on wheat lines harboring Snn1. SnTox1 was also disrupted in virulent S. nodorum isolates resulting in the elimination of disease on Snn1 differential wheat lines. Additionally, we investigated the host response to SnTox1 and S. nodorum strains producing SnTox1 and discovered that several hallmarks of a resistance response were present during the susceptible reaction, showing that the necrotrophic pathogen S. nodorum is likely using SnTox1 to stimulate a host resistance pathway involving Snn1 to induce disease.
Collapse
|
28
|
Auyong ASM, Ford R, Taylor PWJ. Genetic transformation of Colletotrichum truncatum associated with anthracnose disease of chili by random insertional mutagenesis. J Basic Microbiol 2011; 52:372-82. [PMID: 22052577 DOI: 10.1002/jobm.201100250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/05/2011] [Indexed: 11/06/2022]
Abstract
An Agrobacterium tumefaciens -mediated transformation (ATMT) system was successfully developed for Colletotrichum truncatum, the causal agent of chili anthracnose. A. tumefaciens carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (gfp) gene was used to transform the conidiospores of two C. truncatum pathotypes F8-3B and BRIP26974. Optimum transformation efficiency was obtained when equal volumes of A. tumefaciens strain AGL1 carrying either pJF1 or pPK2 binary vector was used to transform C. truncatum conidiospores at 10(6) /ml and co-cultivated at 24 °C for three days. Southern blot analysis indicated that 87.5% of the transformants contained randomly inserted, single copies of the T-DNA. Infection and colonisation of chili fruit at the mature red stage with F8-3B-GFP and BRIP26974-GFP confirmed the maintenance of virulence within these transformed pathotypes. In situ studies of infection and colonisation of the susceptible genotype fruit using fluorescent microscopy and transformed isolates of C. truncatum expressing GFP revealed that the pathogen was able to colonise healthy fruit tissue intercellularly in an endophytic manner without producing secondary biotrophic infection structures. The developed transformation system will be used to study the function of pathogenicity genes in C. truncatum using both forward and reverse genetics approaches.
Collapse
Affiliation(s)
- Adelene Shu Mei Auyong
- Centre for Plant Health/BioMarka, Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
29
|
Mukherjee M, Kim JE, Park YS, Kolomiets MV, Shim WB. Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels. MOLECULAR PLANT PATHOLOGY 2011; 12:479-91. [PMID: 21535353 PMCID: PMC6640359 DOI: 10.1111/j.1364-3703.2010.00686.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
GBB1, a heterotrimeric G-protein β-subunit gene, was shown to be a key regulator of fumonisin B(1) (FB(1) ) biosynthesis in the maize pathogen Fusarium verticillioides. In this study, we performed functional analyses of genes that encode putative RGS (regulators of G-protein signalling) proteins and PhLPs (phosducin-like proteins) in F. verticillioides. These proteins are known to regulate heterotrimeric G-protein activity by altering the intrinsic guanosine triphosphatase (GTPase) activity, which, in turn, influences the signalling mechanisms that control fungal growth, virulence and secondary metabolism. Our aim was to isolate and characterize gene(s) that are under the transcriptional control of GBB1, and to test the hypothesis that these genes are directly associated with FB(1) regulation and fungal development in F. verticillioides on maize kernels. We first identified eight genes (two PhLPs and six RGSs) in the F. verticillioides genome, and a subsequent transcriptional expression study revealed that three RGS genes were up-regulated in the gbb1 deletion (Δgbb1) mutant and one RGS gene was up-regulated in the wild-type. To characterize their function, we generated knockout mutants using a homologous recombination strategy. When grown on autoclaved nonviable kernels, two mutants (ΔflbA2 and ΔrgsB) produced significantly higher levels of FB(1) compared with the wild-type progenitor, suggesting that the two mutated genes are negative regulators of FB(1) biosynthesis. ΔflbA2 also showed a severe curly conidia germination pattern, which was contradictory to that observed in the Δgbb1 strain. Strikingly, when these mutants were grown on live maize kernels, we observed contrasting FB(1) and conidiation phenotypes in fungal mutants, which strongly suggests that these G-protein regulators have an impact on how F. verticillioides responds to host/environmental factors. Our data also provide evidence that fungal G-protein signalling is important for modulating the ethylene biosynthetic pathway in maize kernels.
Collapse
Affiliation(s)
- Mala Mukherjee
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | |
Collapse
|
30
|
Leroch M, Mernke D, Koppenhoefer D, Schneider P, Mosbach A, Doehlemann G, Hahn M. Living colors in the gray mold pathogen Botrytis cinerea: codon-optimized genes encoding green fluorescent protein and mCherry, which exhibit bright fluorescence. Appl Environ Microbiol 2011; 77:2887-97. [PMID: 21378036 PMCID: PMC3126427 DOI: 10.1128/aem.02644-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/25/2011] [Indexed: 12/18/2022] Open
Abstract
The green fluorescent protein (GFP) and its variants have been widely used in modern biology as reporters that allow a variety of live-cell imaging techniques. So far, GFP has rarely been used in the gray mold fungus Botrytis cinerea because of low fluorescence intensity. The codon usage of B. cinerea genes strongly deviates from that of commonly used GFP-encoding genes and reveals a lower GC content than other fungi. In this study, we report the development and use of a codon-optimized version of the B. cinerea enhanced GFP (eGFP)-encoding gene (Bcgfp) for improved expression in B. cinerea. Both the codon optimization and, to a smaller extent, the insertion of an intron resulted in higher mRNA levels and increased fluorescence. Bcgfp was used for localization of nuclei in germinating spores and for visualizing host penetration. We further demonstrate the use of promoter-Bcgfp fusions for quantitative evaluation of various toxic compounds as inducers of the atrB gene encoding an ABC-type drug efflux transporter of B. cinerea. In addition, a codon-optimized mCherry-encoding gene was constructed which yielded bright red fluorescence in B. cinerea.
Collapse
Affiliation(s)
- Michaela Leroch
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Leng Y, Wu C, Liu Z, Friesen TL, Rasmussen JB, Zhong S. RNA-mediated gene silencing in the cereal fungal pathogen Cochliobolus sativus. MOLECULAR PLANT PATHOLOGY 2011; 12:289-98. [PMID: 21356000 PMCID: PMC6640516 DOI: 10.1111/j.1364-3703.2010.00666.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A high-throughput RNA-mediated gene silencing system was developed for Cochliobolus sativus (anamorph: Bipolaris sorokiniana), the causal agent of spot blotch, common root rot and black point in barley and wheat. The green fluorescent protein gene (GFP) and the proteinaceous host-selective toxin gene (ToxA) were first introduced into C. sativus via the polyethylene glycol (PEG)-mediated transformation method. Transformants with a high level of expression of GFP or ToxA were generated. A silencing vector (pSGate1) based on the Gateway cloning system was developed and used to construct RNA interference (RNAi) vectors. Silencing of GFP and ToxA in the transformants was demonstrated by transformation with the RNAi construct expressing hairpin RNA (hpRNA) of the target gene. The polyketide synthase gene (CsPKS1), involved in melanin biosynthesis pathways in C. sativus, was also targeted by transformation with the RNAi vector (pSGate1-CsPKS1) encoding hpRNA of the CsPKS1 gene. The transformants with pSGate1-CsPKS1 exhibited an albino phenotype or reduced melanization, suggesting effective silencing of the endogenous CsPKS1 in C. sativus. Sectors exhibiting the wild-type phenotype of the fungus appeared in some of the CsPKS1-silenced transformants after subcultures as a result of inactivation or deletions of the RNAi transgene. The gene silencing system established provides a useful tool for functional genomics studies in C. sativus and other filamentous fungi.
Collapse
Affiliation(s)
- Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | | | | | |
Collapse
|
32
|
Linsell KJ, Keiper FJ, Forgan A, Oldach KH. New insights into the infection process of Rhynchosporium secalis in barley using GFP. Fungal Genet Biol 2011; 48:124-31. [DOI: 10.1016/j.fgb.2010.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 08/22/2010] [Accepted: 10/05/2010] [Indexed: 11/29/2022]
|
33
|
Behr M, Humbeck K, Hause G, Deising HB, Wirsel SGR. The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:879-92. [PMID: 20521951 DOI: 10.1094/mpmi-23-7-0879] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Typically, pathogenesis of the hemibiotroph Colletotrichum graminicola and defense responses of its host, Zea mays, are studied on young leaves. Equivalent studies have not been performed with leaves undergoing senescence, a situation that is relevant in the field. We discovered that, in contrast to anthracnose symptoms formed on young and mature leaves, green islands reminiscent of those known from obligate biotrophs were formed on senescing leaves. Microscopy revealed that the fungus grew in both symptoms from the epidermis towards the bundle sheath. In green islands, tissues remained intact for an extended time period. Imaging PAM (pulse-amplitude-modulation) fluorescence analyses revealed that photosynthesis is transiently maintained at green islands but declined in tissue surrounding the infection. In younger leaves however, photosynthesis was reduced only at infection sites. Support for the local modification of host physiology came from quantitative reverse transcription-polymerase chain reaction analyzing gene expression at high spatial resolution. Decreased transcript levels of the senescence markers see1 and ccp1 corroborated a pathogen-induced delay of senescence. Expression of several genes encoding proteins involved in photosynthesis was strongly reduced by infection. In contrast, transcript levels of incw1, encoding a cell-wall invertase, were increased 70-fold at green islands, suggesting that C. graminicola induced carbon sinks in senescing tissue.
Collapse
Affiliation(s)
- Michael Behr
- Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftlische Fakultät III, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
34
|
Caasi OC, Walker NR, Marek SM, Enis JN, Mitchell TK. Infection and colonization of turf-type bermudagrass by Ophiosphaerella herpotricha expressing green or red fluorescent proteins. PHYTOPATHOLOGY 2010; 100:415-23. [PMID: 20373961 DOI: 10.1094/phyto-100-5-0415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Spring dead spot, caused by Ophiosphaerella herpotricha, is the most important disease of turf-type bermudagrass (Cynodon spp.) in the transition zone of the United States. Despite the importance of the disease, only limited information is available about the host-pathogen interaction at the cellular level. To evaluate the host plant interaction, an isolate of O. herpotricha expressing green fluorescent proteins (GFP) or red fluorescent proteins (tdTomato) was used to study the infection and colonization of roots and stolons of several bermudagrass cultivars. Roots of cultivars Tifway 419 and Midlawn were colonized similarly, resulting in extensive root necrosis, whereas an accession of Cynodon transvaalensis was less necrotic. The stele of C. transvaalensis roots was colonized but not those of Tifway 419 and Midlawn. For intact stolons, colonization was limited to the epidermis and defined macroscopic necrotic lesions were observed on Tifway 419 and Midlawn while C. transvaalensis stolon tissues remained mostly nonnecrotic. Internal colonization of stolons occurred when hyphae grew into wounds, resulting in necrosis in Tifway 419 and Midlawn, but not in C. transvaalensis. These studies suggest that the interaction of O. herpotricha with bermudagrass varies across host genotypes and the host tissues infected. The limited necrosis in C. transvaalensis tissues, though colonized, suggests an inherent tolerance to O. herpotricha.
Collapse
Affiliation(s)
- Oliver C Caasi
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | |
Collapse
|
35
|
Donzelli BGG, Krasnoff SB, Churchill ACL, Vandenberg JD, Gibson DM. Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 in Metarhizium robertsii. Curr Genet 2010; 56:151-62. [PMID: 20355253 DOI: 10.1007/s00294-010-0288-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fungal entomopathogen Metarhizium robertsii (formerly known as M. anisopliae var. anisopliae) is a prolific producer of secondary metabolites of which very little is known at the genetic level. To establish the genetic bases for the biosynthesis of the mutagenic compound NG- 391, we identified a 19,818 kb genomic region harboring the predicted hybrid polyketide synthase-nonribosomal peptide synthetase NGS1, plus five additional ORFs. NGS1 knockouts generated by Agrobacterium-mediated transformation failed to produce detectable levels of NG-391, indicating the involvement of this locus in its biosynthesis. NGS1 deletion mutants had no significant changes in virulence levels against larvae of Spodoptera exigua and in resistance to hydrogen peroxide-generated oxidative stress compared to the wild-type strain. All 6 ORFs were expressed in medium supporting production of NG-391, and NGS1 was expressed during the interaction with the S. exigua host. The use of an NGS1 promoter-GFP reporter fusion showed that during in vitro growth in still broth cultures, NGS1 expression is restricted to the early exponential phase and is affected by M. robertsii cell density.
Collapse
Affiliation(s)
- Bruno Giuliano Garisto Donzelli
- Biological Integrated Pest Management Research Unit, Robert W. Holley Center for Agriculture and Health, USDA-ARS, Tower Road, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
36
|
Chagué V, Maor R, Sharon A. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC Microbiol 2009; 9:173. [PMID: 19698103 PMCID: PMC2769210 DOI: 10.1186/1471-2180-9-173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 08/21/2009] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The fungus Colletotrichum gloeosporioides f. sp. aeschynomene produces high levels of indole-3-acetic acid (IAA) in axenic cultures and during plant infection. We generated a suppression subtractive hybridization library enriched for IAA-induced genes and identified a clone, which was highly expressed in IAA-containing medium. RESULTS The corresponding gene showed similarity to oligopeptide transporters of the OPT family and was therefore named CgOPT1. Expression of CgOPT1 in mycelia was low, and was enhanced by external application of IAA. cgopt1-silenced mutants produced less spores, had reduced pigmentation, and were less pathogenic to plants than the wild-type strain. IAA enhanced spore formation and caused changes in colony morphology in the wild-type strain, but had no effect on spore formation or colony morphology of the cgopt1-silenced mutants. CONCLUSION Our results show that IAA induces developmental changes in C. gloeosporioides. These changes are blocked in cgopt1-silenced mutants, suggesting that this protein is involved in regulation of fungal response to IAA. CgOPT1 is also necessary for full virulence, but it is unclear whether this phenotype is related to auxin.
Collapse
Affiliation(s)
- Véronique Chagué
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rudy Maor
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Current address: Rosetta Genomics, 10 Plaut Street, Rehovot, 76706, Israel
| | - Amir Sharon
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
37
|
Meiosis and ascospore development in Cochliobolus heterostrophus. Fungal Genet Biol 2008; 45:554-64. [DOI: 10.1016/j.fgb.2007.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 11/20/2022]
|
38
|
Sukno SA, García VM, Shaw BD, Thon MR. Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl Environ Microbiol 2008; 74:823-32. [PMID: 18065625 PMCID: PMC2227703 DOI: 10.1128/aem.01165-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 11/15/2007] [Indexed: 11/20/2022] Open
Abstract
Colletotrichum graminicola is a filamentous ascomycete that causes anthracnose disease of maize. While the fungus can cause devastating foliar leaf blight and stalk rot diseases, little is known about its ability to infect roots. Previously published reports suggest that C. graminicola may infect maize roots and that root infections may contribute to the colonization of aboveground plant tissues, leading to disease. To determine whether C. graminicola can infect maize roots and whether root infections can result in the colonization of aboveground plant tissues, we developed a green fluorescent protein-tagged strain and used it to study the plant root colonization and infection process in vivo. We observed structures produced by other root pathogenic fungi, including runner hyphae, hyphopodia, and microsclerotia. A mosaic pattern of infection resulted from specific epidermal and cortical cells becoming infected by intercellular hyphae while surrounding cells were uninfected, a pattern that is distinctly different from that described for leaves. Interestingly, falcate conidia, normally restricted to acervuli, were also found filling epidermal cells and root hairs. Twenty-eight percent of plants challenged with soilborne inoculum became infected in aboveground plant parts (stem and/or leaves), indicating that root infection can lead to asymptomatic systemic colonization of the plants. Many of the traits observed for C. graminicola have been previously reported for other root-pathogenic fungi, suggesting that these traits are evolutionally conserved in multiple fungal lineages. These observations suggest that root infection may be an important component of the maize anthracnose disease cycle.
Collapse
Affiliation(s)
- Serenella A Sukno
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
39
|
MyD88 signaling contributes to early pulmonary responses to Aspergillus fumigatus. Infect Immun 2007; 76:952-8. [PMID: 18039832 DOI: 10.1128/iai.00927-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptors and the beta-glucan receptor, dectin-1, mediate macrophage inflammatory responses to Aspergillus fumigatus through MyD88-dependent and -independent signaling mechanisms; however, pulmonary inflammatory responses in MyD88-deficient mice challenged with A. fumigatus are poorly defined. The role of MyD88 signaling in early pulmonary inflammation and fungal clearance was evaluated in C57BL/6J wild-type (WT) and MyD88-deficient (MyD88-/-) mice. Early (<48 h) after infection, MyD88-/- mice had higher fungal burdens than those of WT mice, although fungal burdens rapidly declined (>72 h) in both. MyD88-/- mice had less consolidated inflammation, with fewer NK cells, in lung tissue early (24 h) after infection than did WT mice. At the latter time point, MyD88-/- mouse lungs were characterized by a large amount of necrotic cellular debris and fibrin, while WT lungs had organized inflammation. Although there were equivalent numbers of macrophages in WT and MyD88-/- mouse lung tissues, MyD88-/- cells demonstrated delayed uptake of green fluorescent protein-expressing A. fumigatus (GFP-Af293); histologically, MyD88-/- mouse lungs had more hyphal invasion of terminal airways and vessels, the appearance of bronchiolar epithelial cell necrosis, and necrotizing vasculitis. MyD88-/- lung homogenates contained comparatively decreased amounts of interleukin-1beta (IL-1beta), IL-6, KC, and gamma interferon and paradoxically increased amounts of tumor necrosis factor alpha and macrophage inflammatory protein 1alpha. These data indicate that the MyD88-dependent pathway mediates acute pulmonary fungal clearance, inflammation, and tissue injury very early after infection. Resolution of abnormalities within a 3-day window demonstrates the importance of redundant signaling pathways in mediating pulmonary inflammatory responses to fungi.
Collapse
|
40
|
Yang J, Tian B, Liang L, Zhang KQ. Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 2007; 75:21-31. [PMID: 17318531 DOI: 10.1007/s00253-007-0881-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/03/2007] [Accepted: 02/04/2007] [Indexed: 10/23/2022]
Abstract
Nematophagous fungi are an important group of soil microorganisms that can suppress the populations of plant-parasitic nematodes. The pathogenic mechanisms of nematophagous fungi are diverse: They can be parasitical-mechanical through producing specialized capturing devices, or toxin-dependent. During infections, a variety of virulence factors may be involved against nematodes by nematophagous fungi. In this review, we present up-to-date information on the modes of infection by nematophagous fungi. The roles of extracellular hydrolytic enzymes and other virulence factors involved in infection against nematodes were summarized. The biochemical properties and peptide sequences of a special group of enzymes, the serine proteases, were compared, and their implications in infections were discussed. We also discussed the impact of emerging new techniques on our understanding of this unique group of fungi.
Collapse
Affiliation(s)
- Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, PR China
| | | | | | | |
Collapse
|
41
|
Miller SS, Reid LM, Harris LJ. Colonization of maize silks by Fusarium graminearum, the causative organism of gibberella ear rot. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the most economically important diseases of maize in Canada is gibberella ear rot caused by Fusarium graminearum Schwabe (teleomorph = Gibberella zeae (Schw.) Petch). Understanding how the fungus becomes established will help in developing effective strategies to reduce the incidence of this disease. This study investigates the infection process of F. graminearum on maize silks using both a wild-type F. graminearum as well as a strain transformed with a gene from jellyfish to constitutively express green fluorescent protein. Immature ears of maize were inoculated in the field with wild-type F. graminearum and harvested at specific times post infection, and the silks were stained with Chlorazol Black E for examination. In addition, uninoculated ears were excised, placed on water agar in large Petri dishes, and the silks inoculated with a suspension of macroconidia of the transformed fungus. The progress of fungal growth was then monitored using microscopy. Germination of conidia was observed 4–6 h after inoculation. A variable period of random growth often followed, after which some of the hyphae would grow in more or less straight lines down the silk towards the cob (rachis), and ultimately infect the developing kernels. Access to the cob occurred in 7–9 d in susceptible genotypes and 12–15 d in resistant genotypes. The fungus could penetrate the ovary directly through the silk attachment point or, when the silk was growing over other kernels, the fungus could traverse from the silk to colonize interkernel spaces. Entry into the cob was either through the rachis surface via exterior growth between kernels, or into the rachis via the pedicel.
Collapse
Affiliation(s)
- S. Shea Miller
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada
| | - Lana M. Reid
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada
| | - Linda J. Harris
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Central Experimental Farm, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
42
|
Sabev HA, Robson GD, Handley PS. Influence of starvation, surface attachment and biofilm growth on the biocide susceptibility of the biodeteriogenic yeast Aureobasidium pullulans. J Appl Microbiol 2007; 101:319-30. [PMID: 16882139 DOI: 10.1111/j.1365-2672.2006.03014.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To investigate the effect of starvation, surface attachment and growth in a biofilm on the susceptibility of Aureobasidium pullulans to the biocides 2-n-octyl-4-isothiazolin-3-one (OIT) and sodium hypochlorite (NaOCl). METHODS AND RESULTS Fluorescence loss from a green fluorescent protein (GFP)-transformed strain was used to monitor real-time loss in viability as previously described in situ in 96-well plates. Exponential phase, yeast-like (YL) cells were settled in the bottom of the wells as a low-density monolayer (LDM) and were susceptible to all biocide concentrations (25-100 mug ml(-1)). The exponential phase YL cells were either starved for 48 h in suspension or starved for 48 h as LDMs in the wells. Starvation in both cases led to a small reduction in susceptibility to the biocides. In contrast, 48-h biofilms grown in malt extract broth showed an apparent lack of susceptibility to 25 and 50 mug ml(-1) OIT and to 25-100 mug ml(-1) NaOCl. However, when the OIT concentration was increased to compensate for the higher cell density in the biofilm, the biofilms were found to be equally susceptible to the LDM. CONCLUSIONS Starvation of A. pullulans YL cells either in suspension or as attached LDM resulted in a decrease in susceptibility to low concentrations of both OIT and NaOCl while the apparent reduced susceptibility of mature biofilms was due to the increase in biofilm cell density rather than true biofilm resistance per se. SIGNIFICANCE AND IMPACT OF THE STUDY Monitoring fluorescence loss from the GFP-transformed strain of A. pullulans can be used as a fast and reliable method for monitoring cell death in real time as a response to biocide and antimicrobial challenge.
Collapse
Affiliation(s)
- H A Sabev
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
43
|
Neveu B, Labbé C, Bélanger RR. GFP technology for the study of biocontrol agents in tritrophic interactions: A case study with Pseudozyma flocculosa. J Microbiol Methods 2007; 68:275-81. [PMID: 17028024 DOI: 10.1016/j.mimet.2006.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/08/2006] [Accepted: 08/19/2006] [Indexed: 10/24/2022]
Abstract
GFP technology was applied to the biocontrol agent (BCA) Pseudozyma flocculosa to study its development and interactions at the tritrophic level plant-powdery mildew-BCA. Transformation experiments with GFP led to the production of a strongly fluorescent strain, Act-4, that displayed biocontrol traits typical of P. flocculosa WT. Following inundative applications, growth of P. flocculosa Act-4 was closely and almost exclusively associated with the colonies of the pathogen regardless of the powdery mildew species or the host plant tested. Development of P. flocculosa Act-4 on control leaves alone was extremely limited 24 h after its application and was typical of the epiphytic growth characterizing this type of yeast-like fungus. Based on the strong correlation between the colonization pattern of the different powdery mildew species tested and the presence of P. flocculosa Act-4, as determined by its fluorescence, it seems that growth of the BCA is dependant on the presence of powdery mildews. These results demonstrate that the GFP technology can be used to study plant-pathogen-BCA interactions and fulfill a wide array of purposes ranging from fundamental observations of the biocontrol behavior of a BCA to very applied ones serving some of the requirements for the registration of BCA's such as defining their environmental fate.
Collapse
Affiliation(s)
- Bertrand Neveu
- Département de Phytologie, Centre de Recherche en Horticulture, Pavillon Envirotron, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
44
|
Barhoom S, Sharon A. Bcl-2 proteins link programmed cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Fungal Genet Biol 2007; 44:32-43. [PMID: 16950636 DOI: 10.1016/j.fgb.2006.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 06/05/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Proteins belonging to the Bcl-2 family regulate apoptosis in mammals by controlling mitochondria efflux of cytochrome c and other apoptosis-related proteins. Homologues of human Bcl-2 proteins are found in different metazoan organisms where they play a similar role, while they seem to be absent in plants and fungi. Nonetheless, Bcl-2 protein members can induce or prevent yeast cell death, suggesting that enough functional conservation exists between apoptotic machineries of mammals and fungi. Here we show that induction or prevention of apoptosis by Bcl-2 proteins in the fungal plant pathogen Colletotrichum gloeosporioides is tightly linked with growth and morphogenetic adaptation that occur throughout the entire fungal life cycle. Isolates expressing the pro-apoptotic Bax protein underwent cell death with apoptotic characteristics, and showed alterations in conidial germination that are associated with pathogenic and non-pathogenic life styles. Isolates expressing the anti-apoptotic Bcl-2 protein had prolonged longevity, were protected from Bax-induced cell death, and exhibited enhanced stress resistance. These isolates also had enhanced mycelium and conidia production, and were hyper virulent to host plants. Our findings show that apoptotic-associated machinery regulates morphogenetic switches, which are critical for proper responses and adaptation fungi to different environments.
Collapse
Affiliation(s)
- Sima Barhoom
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
45
|
Sarrocco S, Mikkelsen L, Vergara M, Jensen DF, Lübeck M, Vannacci G. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain. ACTA ACUST UNITED AC 2006; 110:179-87. [PMID: 16388938 DOI: 10.1016/j.mycres.2005.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 08/02/2005] [Accepted: 08/25/2005] [Indexed: 11/30/2022]
Abstract
The gfp gene from the jellyfish Aequorea victoria, coding for the Green Fluorescent Protein (GFP), was used as a reporter gene to transform a Trichoderma virens strain I10, characterized as having a promising biocontrol activity against a large number of phytopathogenic fungi. On the basis of molecular and biological results, a stable GFP transformant was selected for further experiments. In order to evaluate the effects of GFP transformation on mycoparasitic ability of T. virens I10, sclerotia of Sclerotium rolfsii, Sclerotinia sclerotiorum and S. minor were inoculated with the T. virens strain I10 GFP transformant or the wild type strain. Statistical analysis of percentages of decayed sclerotia showed that the transformation of the antagonistic isolate with the GFP reporter gene did not modify mycoparasitic activity against sclerotia. Sclerotium colonization was followed by fluorescent microscopy revealing intracellular growth of the antagonist in the cortex (S. rolfsii) and inter-cellular growth in the medulla (S. rolfsii, and S. sclerotiorum). The uniformly distributed mycelium of T. virens just beneath the rind of sclerotia of both S. rolfsii and S. sclerotiorum suggests that the sclerotia became infected at numerous randomly distributed locations without any preferential point of entry.
Collapse
Affiliation(s)
- Sabrina Sarrocco
- Department of Tree Science, Entomology and Plant Pathology "G. Scaramuzzi", Plant Pathology Section, Faculty of Agriculture, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Avis TJ, Cheng YL, Zhao YY, Bolduc S, Neveu B, Anguenot R, Labbé C, Belzile F, Bélanger RR. The potential of Pseudozyma yeastlike epiphytes for the production of heterologous recombinant proteins. Appl Microbiol Biotechnol 2005; 69:304-11. [PMID: 15830195 DOI: 10.1007/s00253-005-1986-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 03/24/2005] [Accepted: 03/31/2005] [Indexed: 11/27/2022]
Abstract
Although Basidiomycetes represent the most evolved class of fungi, they have been neglected with regard to recombinant gene expression. In this work, basidiomycetous yeasts belonging to Pseudozyma spp. were studied with respect to their amenability to heterologous protein production. Single plasmid or cotransformation experiments routinely afforded 100 to 200 independent transformants for the two tested species of Pseudozyma. Green fluorescent protein (GFP) was expressed in the correctly folded conformation, as demonstrated by fluorescence microscopy, and hen egg white lysozyme (HEWL) was expressed in its active form, as revealed by its lytic activity on Micrococcus lysodeikticus cells. Protease analysis established that Pseudozyma spp. contained equivalent or less extracellular protease activity than yeasts and far less protease activity than ascomycetous filamentous fungi in similar culture conditions. This proteolytic activity was inhibited by over 97% with a combination of PMSF and Pepstatin A. N-glycosylation patterns of native Pseudozyma flocculosa secreted proteins were comprised of one or a few short glycan chains that possess a classic eukaryotic structure typical of higher fungi and animal cells. This is the first report of a Basidiomycete that possesses multiple intrinsic characteristics necessary for use as a heterologous gene expression system.
Collapse
Affiliation(s)
- T J Avis
- Département de Phytologie, Centre de recherche en horticulture, Université Laval, Pavillon de l'Envirotron, Laval, Québec G1K 7P4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Aboul-Soud MAM, Yun BW, Harrier LA, Loake GJ. Transformation of Fusarium oxysporum by particle bombardment and characterisation of the resulting transformants expressing a GFP transgene. Mycopathologia 2005; 158:475-82. [PMID: 15702267 DOI: 10.1007/s11046-005-5370-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Accepted: 10/28/2003] [Indexed: 10/25/2022]
Abstract
Fusarium is the causative agent of a variety of economically significant vascular wilt diseases of vegetables, flowers and field crops. The completion of the first Fusarium genome and the availability of an EST database now provides a platform for both forward and reverse genetic approaches to ascribe gene function in this phytopathogen. To underpin these strategies effective gene transfer procedures will be required. Here we describe an efficient and robust procedure for Fusarium oxysporum transformation based on particle bombardment. We utilised this procedure to introduce a chimeric gene comprised of the Aspergillus nidulans Pgdp promoter fused to a GFP reporter gene. A transformation efficiency of 45 transformants per mug of plasmid DNA was routinely achieved. The Pgdp promoter directed strong cytoplasmic expression of the GFP marker in transformed F. oxysporum monitored via fluorescence and confocal microscopy. A pathogenicity assay undertaken on Arabidopsis seedlings with selected transformants revealed that virulence was retained following transformation. Moreover, in a similar fashion to wild-type F. oxysporum, these transformants activated three distinct Arabidopsis defence gene promoter::luciferase fusions, which defined specific defence gene subsets.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JH, Scotland, UK
| | | | | | | |
Collapse
|
48
|
Kaufman G, Horwitz BA, Hadar R, Ullmann Y, Berdicevsky I. Green fluorescent protein (GFP) as a vital marker for pathogenic development of the dermatophyte Trichophyton mentagrophytes. MICROBIOLOGY-SGM 2004; 150:2785-2790. [PMID: 15289574 DOI: 10.1099/mic.0.27094-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Skin infections by dermatophytes of the genus Trichophyton are widespread, but methods to investigate the molecular basis of pathogenicity are only starting to be developed. The initial stages of growth on the host can only be studied by electron microscopy, which requires fixing the tissue. This paper shows that restriction-enzyme-mediated integration (REMI) provides stable expression of the green fluorescent protein (GFP) in a clinical isolate of Trichophyton mentagrophytes. Under control of a constitutively active fungal promoter, GFP renders the hyphae fluorescent both in culture and in a recently developed model using human skin explants. Stages of infection and penetration into the skin layers were visualized by confocal microscopy. The stages of infection can thus be followed using GFP as a vital marker, and this method will also provide, for the first time, a means to follow gene expression during infection of skin by dermatophyte fungi.
Collapse
Affiliation(s)
- Gil Kaufman
- Department of Molecular Microbiology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin A Horwitz
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Ruthi Hadar
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical Center, Haifa, Israel
| | - Israela Berdicevsky
- Department of Molecular Microbiology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
49
|
Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, Panepinto JC, Postow M, Rhodes JC, Askew DS. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun 2004; 72:4731-40. [PMID: 15271935 PMCID: PMC470587 DOI: 10.1128/iai.72.8.4731-4740.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus CgrA is the ortholog of a yeast nucleolar protein that functions in ribosome synthesis. To determine how CgrA contributes to the virulence of A. fumigatus, a Delta cgrA mutant was constructed by targeted gene disruption, and the mutant was reconstituted to wild type by homologous introduction of a functional cgrA gene. The Delta cgrA mutant had the same growth rate as the wild type at room temperature. However, when the cultures were incubated at 37 degrees C, a condition that increased the growth rate of the wild-type and reconstituted strains approximately threefold, the Delta cgrA mutant was unable to increase its growth rate. The absence of cgrA function caused a delay in both the onset and rate of germination at 37 degrees C but had little effect on germination at room temperature. The Delta cgrA mutant was significantly less virulent than the wild-type or reconstituted strain in immunosuppressed mice and was associated with smaller fungal colonies in lung tissue. However, this difference was less pronounced in a Drosophila infection model at 25 degrees C, which correlated with the comparable growth rates of the two strains at this temperature. To determine the intracellular localization of CgrA, the protein was tagged at the C terminus with green fluorescent protein, and costaining with propidium iodide revealed a predominantly nucleolar localization of the fusion protein in living hyphae. Together, these findings establish the intracellular localization of CgrA in A. fumigatus and demonstrate that cgrA is required for thermotolerant growth and wild-type virulence of the organism.
Collapse
Affiliation(s)
- Ruchi Bhabhra
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Bethesda Ave., OH 45267-0529, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Atkins SD, Mauchline TH, Kerry BR, Hirsch PR. Development of a transformation system for the nematophagous fungus Pochonia chlamydosporia. ACTA ACUST UNITED AC 2004; 108:654-61. [PMID: 15323248 DOI: 10.1017/s0953756204009906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nematophagous fungus Pochonia chlamydosporia is a potential biocontrol agent against root knot and cyst nematodes. Genetic transformation of the fungus to introduce visual marker genes, novel traits, or changes in expression levels of endogenous genes, would greatly enhance understanding of its behaviour on nematode-infested roots and of its interactions with other soil and rhizosphere microorganisms. A transformation system for the introduction of novel genes into P. chlamydosporia has been developed. Methods to generate protoplasts, introduce DNA and regenerate transformed viable fungal mycelium have been optimised, using plasmids carrying the green fluorescent protein marker gene gfp and the hygromycin resistance gene hph. Cultures of P. chlamydosporia were resistant to high levels of a range of fungal inhibitors, including hygromycin, that are commonly used with dominant selectable marker genes in the transformation of other fungi. However, regenerating protoplasts transformed with hph could be selected by their ability to grow through an agar overlay containing 1 mg ml(-1) hygromycin. Green fluorescence was observed in protoplasts and regenerating mycelium after transformation with gfp, but the GFP phenotype was lost on subculture. Maintenance of introduced genes was not stable, and during subculture, PCR assays indicated that the transformants lost both hph and gfp. When these genes were introduced on the same plasmid, segregation of hph and gfp was observed prior to their loss. It was unclear whether the introduced plasmids were able to replicate autonomously in P. chlamydosporia, or if they integrated transiently into the fungal genome. Possible reasons for the instability of the transformants are discussed.
Collapse
Affiliation(s)
- Simon D Atkins
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | | | | | | |
Collapse
|