1
|
Zhang S, Zheng S, Gong Y, Wang Y, Wei Q, Zhu Y, Liu L, Wu R, Du S. Does the herbicide napropamide exhibit enantioselective effects across genus plasmid transfer from Escherichia coli to Bacillus subtilis? JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136704. [PMID: 39637801 DOI: 10.1016/j.jhazmat.2024.136704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) into the environment is an urgent concern. However, the enantioselective effects of herbicides on plasmid conjugation among bacterial genera and their underlying mechanisms remain unclear. This study demonstrates for the first time that the herbicide napropamide (NAP), commonly used in vegetable fields, exhibits a concentration-dependent effect on the transfer efficiency of the pBE2R plasmid from Escherichia coli to Bacillus subtilis. Notably, at a concentration of 5 mg L-1, R-NAP increased transfer efficiency by threefold compared to the S-enantiomer. Scanning electron microscopy revealed that R-NAP caused less structural damage to bacteria than S-NAP but more effectively reduced cell wall components (lipopolysaccharides and peptidoglycan) in donor and recipient bacteria, increasing reactive oxygen species levels and membrane permeability. Transcriptomic analysis indicated that NAP enantiomers altered the expression of genes related to membrane transport activity and transposons. Cross-domain network analysis identified yieK, ygeH, and ydbL as key genes mediating conjugation transfer. Molecular docking results showed that NAP likely interacts hydrophobically with the active sites of the proteins encoded by these genes. In conclusion, herbicides like R-NAP should be carefully managed in fields irrigated with livestock manure to mitigate the risk of ARG transfer and accumulation in crops.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shihao Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanxia Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yin Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qing Wei
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Abbasi Dezfouli S, Michailides ME, Uludag H. Delivery Aspects for Implementing siRNA Therapeutics for Blood Diseases. Biochemistry 2024; 63:3059-3077. [PMID: 39388611 DOI: 10.1021/acs.biochem.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hematological disorders result in significant health consequences, and traditional therapies frequently entail adverse reactions without addressing the root cause. A potential solution for hematological disorders characterized by gain-of-function mutations lies in the emergence of small interfering RNA (siRNA) molecules as a therapeutic option. siRNAs are a class of RNA molecules composed of double-stranded RNAs that can degrade specific mRNAs, thereby inhibiting the synthesis of underlying disease proteins. Therapeutic interventions utilizing siRNA can be tailored to selectively target genes implicated in diverse hematological disorders, including sickle cell anemia, β-thalassemia, and malignancies such as lymphoma, myeloma, and leukemia. The development of efficient siRNA silencers necessitates meticulous contemplation of variables such as the RNA backbone, stability, and specificity. Transportation of siRNA to specific cells poses a significant hurdle, prompting investigations of diverse delivery approaches, including chemically modified forms of siRNA and nanoparticle formulations with various biocompatible carriers. This review delves into the crucial role of siRNA technology in targeting and treating hematological malignancies and disorders. It sheds light on the latest research, development, and clinical trials, detailing how various pharmaceutical approaches leverage siRNA against blood disorders, mainly concentrating on cancers. It outlines the preferred molecular targets and physiological barriers to delivery while emphasizing the growing potential of various therapeutic delivery methods. The need for further research is articulated in the context of overcoming the shortcomings of siRNA in order to enrich discussions around siRNA's role in managing blood disorders and aiding the scientific community in advancing more targeted and effective treatments.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| | | | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| |
Collapse
|
3
|
Weber P, Asadikorayem M, Surman F, Zenobi-Wong M. Zwitterionic polymer-dexamethasone conjugates penetrate and protect cartilage from inflammation. Mater Today Bio 2024; 26:101049. [PMID: 38654933 PMCID: PMC11035115 DOI: 10.1016/j.mtbio.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Improving the pharmacokinetics of intra-articularly injected therapeutics is a major challenge in treating joint disease. Small molecules and biologics are often cleared from the joint within hours, which greatly reduces their therapeutic efficacy. Furthermore, they are often injected at high doses, which can lead to local cytotoxicity and systemic side effects. In this study, we present modular polymer-drug conjugates of zwitterionic poly(carboxybetaine acrylamide) (pCBAA) and the anti-inflammatory glucocorticoid dexamethasone (DEX) to create cartilage-targeted carriers with slow-release kinetics. pCBAA polymers showed excellent cartilage penetration (full thickness in 1 h) and retention (>50 % after 2 weeks of washing). DEX was loaded onto the pCBAA polymer by employing two different DEX-bearing comonomers to produce pCBAA-co-DEX conjugates with different release kinetics. The slow-releasing conjugate showed zero-order release kinetics in PBS over 70 days. The conjugates elicited no oxidative stress on chondrocytes compared to dose-matched free DEX and protected bovine cartilage explants from the inflammatory response after treatment with IL-1β. By combining cartilage targeting and sustained drug release properties, the pCBAA-co-DEX conjugates solve many issues of today's intra-articular therapeutics, which could ultimately enable better long-term clinical outcomes with fewer side effects.
Collapse
Affiliation(s)
- Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093, Zürich, Switzerland
| |
Collapse
|
4
|
Mehta MJ, Kim HJ, Lim SB, Naito M, Miyata K. Recent Progress in the Endosomal Escape Mechanism and Chemical Structures of Polycations for Nucleic Acid Delivery. Macromol Biosci 2024; 24:e2300366. [PMID: 38226723 DOI: 10.1002/mabi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Nucleic acid-based therapies are seeing a spiralling surge. Stimuli-responsive polymers, especially pH-responsive ones, are gaining widespread attention because of their ability to efficiently deliver nucleic acids. These polymers can be synthesized and modified according to target requirements, such as delivery sites and the nature of nucleic acids. In this regard, the endosomal escape mechanism of polymer-nucleic acid complexes (polyplexes) remains a topic of considerable interest owing to various plausible escape mechanisms. This review describes current progress in the endosomal escape mechanism of polyplexes and state-of-the-art chemical designs for pH-responsive polymers. The importance is also discussed of the acid dissociation constant (i.e., pKa) in designing the new generation of pH-responsive polymers, along with assays to monitor and quantify the endosomal escape behavior. Further, the use of machine learning is addressed in pKa prediction and polymer design to find novel chemical structures for pH responsiveness. This review will facilitate the design of new pH-responsive polymers for advanced and efficient nucleic acid delivery.
Collapse
Affiliation(s)
- Mohit J Mehta
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Sung Been Lim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
5
|
Kreofsky NW, Roy P, Brown ME, Perez U, Leighton RE, Frontiera RR, Reineke TM. Cinchona Alkaloid Polymers Demonstrate Highly Efficient Gene Delivery Dependent on Stereochemistry, Methoxy Substitution, and Length. Biomacromolecules 2024; 25:486-501. [PMID: 38150323 DOI: 10.1021/acs.biomac.3c01099] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Nucleic acid delivery with cationic polymers is a promising alternative to expensive viral-based methods; however, it often suffers from a lower performance. Herein, we present a highly efficient delivery system based on cinchona alkaloid natural products copolymerized with 2-hydroxyethyl acrylate. Cinchona alkaloids are an attractive monomer class for gene delivery applications, given their ability to bind to DNA via both electrostatics and intercalation. To uncover the structure-activity profile of the system, four structurally similar cinchona alkaloids were incorporated into polymers: quinine, quinidine, cinchonine, and cinchonidine. These polymers differed in the chain length, the presence or absence of a pendant methoxy group, and stereochemistry, all of which were found to alter gene delivery performance and the ways in which the polymers overcome biological barriers to transfection. Longer polymers that contained the methoxy-bearing cinchona alkaloids (i.e., quinine and quinidine) were found to have the best performance. These polymers exhibited the tightest DNA binding, largest and most abundant DNA-polymer complexes, and best endosomal escape thanks to their increased buffering capacity and closest nuclear proximity of the payload. Overall, this work highlights the remarkable efficiency of polymer systems that incorporate cinchona alkaloid natural products while demonstrating the profound impact that small structural changes can have on overcoming biological hurdles associated with gene delivery.
Collapse
Affiliation(s)
- Nicholas W Kreofsky
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Punarbasu Roy
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary E Brown
- University Imaging Centers, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ulises Perez
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ryan E Leighton
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
7
|
Smith S, Rossi Herling B, Zhang C, Beach MA, Teo SLY, Gillies ER, Johnston APR, Such GK. Self-Immolative Polymer Nanoparticles with Precise and Controllable pH-Dependent Degradation. Biomacromolecules 2023; 24:4958-4969. [PMID: 37709729 PMCID: PMC10649787 DOI: 10.1021/acs.biomac.3c00630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Polymer nanoparticles have generated significant interest as delivery systems for therapeutic cargo. Self-immolative polymers (SIPs) are an interesting category of materials for delivery applications, as the characteristic property of end-to-end depolymerization allows for the disintegration of the delivery system, facilitating a more effective release of the cargo and clearance from the body after use. In this work, nanoparticles based on a pH-responsive polymer poly(ethylene glycol)-b-(2-diisopropyl)amino ethyl methacrylate) and a self-immolative polymer poly[N,N-(diisopropylamino)ethyl glyoxylamide-r-N,N-(dibutylamino)ethyl glyoxylamide] (P(DPAEGAm-r-DBAEGAm)) were developed. Four particles were synthesized based on P(DPAEGAm-r-DBAEGAm) polymers with varied diisopropylamino to dibutylamino ratios of 4:1, 2:1, 2:3, and 0:1, termed 4:1, 2:1, 2:3, and 0:1 PGAm particles. The pH of particle disassembly was tuned from pH 7.0 to pH 5.0 by adjusting the ratio of diisopropylamino to dibutylamino substituents on the pendant tertiary amine. The P(DPAEGAm-r-DBAEGAm) polymers were observed to depolymerize (60-80%) below the particle disassembly pH after ∼2 h, compared to <10% at pH 7.4 and maintained reasonable stability at pH 7.4 (20-50% depolymerization) after 1 week. While all particles exhibited the ability to load a peptide cargo, only the 4:1 PGAm particles had higher endosomal escape efficiency (∼4%) compared to the 2:3 or 0:1 PGAm particles (<1%). The 4:1 PGAm particle is a promising candidate for further optimization as an intracellular drug delivery system with rapid and precisely controlled degradation.
Collapse
Affiliation(s)
- Samuel
A. Smith
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bruna Rossi Herling
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Maximilian A. Beach
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Serena L. Y. Teo
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3010, Australia
| | - Elizabeth R. Gillies
- Department
of Chemistry and Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Angus P. R. Johnston
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Ranjbar S, Zhong XB, Manautou J, Lu X. A holistic analysis of the intrinsic and delivery-mediated toxicity of siRNA therapeutics. Adv Drug Deliv Rev 2023; 201:115052. [PMID: 37567502 PMCID: PMC10543595 DOI: 10.1016/j.addr.2023.115052] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Small interfering RNAs (siRNAs) are among the most promising therapeutic platforms in many life-threatening diseases. Owing to the significant advances in siRNA design, many challenges in the stability, specificity and delivery of siRNA have been addressed. However, safety concerns and dose-limiting toxicities still stand among the reasons for the failure of clinical trials of potent siRNA therapies, calling for a need of more comprehensive understanding of their potential mechanisms of toxicity. This review delves into the intrinsic and delivery related toxicity mechanisms of siRNA drugs and takes a holistic look at the safety failure of the clinical trials to identify the underlying causes of toxicity. In the end, the current challenges, and potential solutions for the safety assessment and high throughput screening of investigational siRNA and delivery systems as well as considerations for design strategies of safer siRNA therapeutics are outlined.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - José Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
9
|
Leelawattanachai J, Panyasu K, Prasertsom K, Manakasettharn S, Duangdaw H, Budthong P, Thepphornbanchakit N, Chetprayoon P, Muangnapoh K, Srinives S, Waraho-Zhmayev D, Triampo D. Highly stable and fast-dissolving ascorbic acid-loaded microneedles. Int J Cosmet Sci 2023; 45:612-626. [PMID: 37133325 DOI: 10.1111/ics.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVES Ascorbic acid has many benefits to the skin. Numerous attempts to promote its topical delivery show great challenges since its chemical instability and poor skin impermeability. Microneedle delivery is a simple, safe, painless and effective means to deliver therapeutic or nourishing molecules into the skin. The purpose of this study was twofold: (a) to develop a new formulation of ascorbic acid-loaded microneedles to enhance ascorbic acid stability by investigating an optimal amount of polyethyleneimine as an additive to the dextran-based microneedle formulation and (b) to assess microneedle properties in terms of dissolving rate, skin penetration ability, biocompatibility and antimicrobial activity. METHODS The microneedles formulated with ascorbic acid and varied polyethyleneimine concentrations were fabricated and subsequently tested for ascorbic acid stability using 2,2-diphenyl-1-picrylhydrazyl assay. The dissolution rate and skin penetration depth were investigated in porcine skin and the reconstructed human full-thickness skin model respectively. The skin irritation tests were done according to the Organisation for Economic Co-operation and Development Test Guideline No. 439. An antimicrobial disc susceptibility test was performed against Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. RESULTS Among varied amounts of 0%, 1.5%, 3.0% and 4.5% (w/v), the 3.0% polyethyleneimine showed the most desirable characteristics, including well-preserved shape integrity after demoulding, significantly improved stability of ascorbic acid (p < 0.001) from 33% to 96% antioxidant activity after 8 weeks of storage at 40°C, increased dissolving rate (p < 0.001) by being completely dissolved within 2 min after the skin insertion, passing skin penetration and biocompatibility tests as well as having a broad spectrum of antimicrobial property. CONCLUSION With a safety profile and enhanced properties, the new formulation of ascorbic acid-loaded microneedles shows outstanding potential as commercially available cosmetics and healthcare products.
Collapse
Affiliation(s)
- Jeerapond Leelawattanachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kedsara Panyasu
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kornkanok Prasertsom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Supone Manakasettharn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Hathaiphat Duangdaw
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Pitchaon Budthong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, Thailand
| | | | - Paninee Chetprayoon
- Toxicology and Bio Evaluation Service Center (TBES), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kullachate Muangnapoh
- National Metal and Material Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sira Srinives
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Darapond Triampo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
10
|
Gong J, Nhan J, St-Pierre JP, Gillies ER. Designing polymers for cartilage uptake: effects of architecture and molar mass. J Mater Chem B 2023; 11:8804-8816. [PMID: 37668597 DOI: 10.1039/d3tb01417g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Osteoarthritis (OA) is a progressive disease, involving the progressive breakdown of cartilage, as well as changes to the synovium and bone. There are currently no disease-modifying treatments available clinically. An increasing understanding of the disease pathophysiology is leading to new potential therapeutics, but improved approaches are needed to deliver these drugs, particularly to cartilage tissue, which is avascular and contains a dense matrix of collagens and negatively charged aggrecan proteoglycans. Cationic delivery vehicles have been shown to effectively penetrate cartilage, but these studies have thus far largely focused on proteins or nanoparticles, and the effects of macromolecular architectures have not yet been explored. Described here is the synthesis of a small library of polycations composed of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) with linear, 4-arm, or 8-arm structures and varying degrees of polymerization (DP) by reversible addition fragmentation chain-transfer (RAFT) polymerization. Uptake and retention of the polycations in bovine articular cartilage was assessed. While all polycations penetrated cartilage, uptake and retention generally increased with DP before decreasing for the highest DP. In addition, uptake and retention were higher for the linear polycations compared to the 4-arm and 8-arm polycations. In general, the polycations were well tolerated by bovine chondrocytes, but the highest DP polycations imparted greater cytotoxicity. Overall, this study reveals that linear polymer architectures may be more favorable for binding to the cartilage matrix and that the DP can be tuned to maximize uptake while minimizing cytotoxicity.
Collapse
Affiliation(s)
- Jue Gong
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.
| | - Jordan Nhan
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada.
| | - Jean-Philippe St-Pierre
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada.
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario, N6A 5B9, Canada
| |
Collapse
|
11
|
Saeki R, Kobayashi S, Shimazui R, Nii T, Kishimura A, Mori T, Tanaka M, Katayama Y. Characterization of polypropyleneimine as an alternative transfection reagent. ANAL SCI 2023; 39:1015-1020. [PMID: 36859695 DOI: 10.1007/s44211-023-00284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 03/03/2023]
Abstract
Polypropyleneimine (PPI) was examined as a transfection reagent comparing with most widely used polymer, polyethyleneimine (PEI). PPI had better responsiveness to the endosomal pH and showed more condensation ability of plasmid DNA than PEI. Although the cytotoxicity of PPI was somewhat higher than PEI, the transfection efficacy of PPI was comparable with PEI or higher than PEI in some cell line. Thus, PPI would be an alternative transfection reagent.
Collapse
Affiliation(s)
- Riku Saeki
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Rena Shimazui
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan. .,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.
| | - Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan. .,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan. .,International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan. .,Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan. .,Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li, Taoyuan City, 32023 ROC, Taiwan.
| |
Collapse
|
12
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
13
|
Cheng J, Zheng Z, Tang W, Shao J, Jiang H, Lin H. A new strategy for stem cells therapy for erectile dysfunction: Adipose-derived stem cells transfect Neuregulin-1 gene through superparamagnetic iron oxide nanoparticles. Investig Clin Urol 2022; 63:359-367. [PMID: 35534221 PMCID: PMC9091825 DOI: 10.4111/icu.20220016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Our previous studies showed that nanotechnology improves derived adipose-derived stem cells (ADSCs) therapy for erectile dysfunction (ED). In this study, the Neuregulin-1(NRG1) gene was transfected into ADSCs with superparamagnetic iron oxide nanoparticles (SPION) further to improve the therapeutic effect of ADSCs on ED. MATERIALS AND METHODS ADSCs were isolated from epididymal adipose tissue of Sprague-Dawley rats. The optimal concentration of PEI-SPION (SPION modified with polyethyleneimine) was selected to construct the gene complex. After electrostatic binding of PEI-SPION and DNA, a PEI layer was wrapped to make the PEI-SPION-NRG1-PEI gene transfection complex. Different groups were set up for transfection tests. Lipo2000 transfection reagent was used as the control. PEI-SPION-NRG1-PEI in the experimental group was transfected under an external magnetic field. RESULTS When the concentration of PEI-SPION was 10 µg/mL, it had little cytotoxicity, and cell activity was not significantly affected. PEI-SPION-NRG1-PEI forms positively charged nanocomposites with a particle size of 72.6±14.9 nm when N/P ≥8. The PEI-SPION-NRG1-PEI gene complex can significantly improve the transfection efficiency of ADSCs, reaching 26.74%±4.62%, under the action of the external magnetic field. PCR and Western blot showed that the expression level of the NRG1 gene increased significantly, which proved that the transfection was effective. CONCLUSIONS PEI-SPION can be used as a vector for NRG1 gene transfection into ADSCs. PEI-SPION-NRG1-PEI packaging has the highest transfection efficiency under the external magnetic field than the other groups. These findings may provide a new strategy for ADSCs therapy for ED.
Collapse
Affiliation(s)
- Jianxing Cheng
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China
| | - Zhongjie Zheng
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China
| | - Wenhao Tang
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China
- Department of Human Sperm Bank, Peking University Third Hospital, Peking University, Beijing, China.
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
- Reproductive Medicine Center, Peking University Third Hospital, Peking University, Beijing, China
- Department of Andrology, Peking University Third Hospital, Peking University, Beijing, China.
| |
Collapse
|
14
|
Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, He H, Chang J, Liang XJ, Weng Y, Huang Y. mRNA vaccines for COVID-19 and diverse diseases. J Control Release 2022; 345:314-333. [PMID: 35331783 PMCID: PMC8935967 DOI: 10.1016/j.jconrel.2022.03.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
Abstract
Since its outbreak in late 2019, the novel coronavirus disease 2019 (COVID-19) has spread to every continent on the planet. The global pandemic has affected human health and socioeconomic status around the world. At first, the global response to the pandemic was to isolate afflicted individuals to prevent the virus from spreading, while vaccine development was ongoing. The genome sequence was first presented in early January 2020, and the phase I clinical trial of the vaccine started in March 2020 in the United States using novel lipid-based nanoparticle (LNP), encapsulated with mRNA termed as mRNA-1273. Till now, various mRNA-based vaccines are in development, while one mRNA-based vaccine got market approval from US-FDA for the prevention of COVID-19. Previously, mRNA-based vaccines were thought to be difficult to develop, but the current development is a significant accomplishment. However, widespread production and global availability of mRNA-based vaccinations to combat the COVID-19 pandemic remains a major challenge, especially when the mutations continually occur on the virus (e.g., the recent outbreaks of Omicron variant). This review elaborately discusses the COVID-19 pandemic, the biology of SARS-CoV-2 and the progress of mRNA-based vaccines. Moreover, the review also highlighted a detailed description of mRNA delivery technologies and the application potential in controlling other life-threatening diseases. Therefore, it provides a comprehensive view and multidisciplinary insights into mRNA therapy for broader audiences.
Collapse
Affiliation(s)
- Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haiyin Yang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Liu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
| | - Muhammad Irfan
- School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China; School of Business Administration, Ilma University, Karachi 75190, Pakistan
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
15
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Xu D, Su Y, Xu Q, Huang T, Chen Z, Zhang T. Uniform iron oxide nanoparticles reduce the required amount of polyethylenimine in the gene delivery to mesenchymal stem cells. NANOTECHNOLOGY 2021; 33:125101. [PMID: 34874301 DOI: 10.1088/1361-6528/ac4066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Cationic polyethylenimine (PEI) is regarded as the 'golden standard' of non-viral gene vectors. However, the superiority of PEI with high positive charge density also induces its major drawback of cytotoxicity, which restricts its application for an effective and safe gene delivery to stem cells. To redress this shortcoming, herein, a magnetic gene complex containing uniform iron oxide nanoparticles (UIONPs), plasmid DNA, and free PEI is prepared through electrostatic interactions for the gene delivery to bone marrow-derived mesenchymal stem cells (BM-MSCs). Results show that UIONPs dramatically promote the gene delivery to BM-MSCs using the assistance of magnetic force. In addition, decreasing the free PEI nitrogen to DNA phosphate (N/P) ratio from 10 to 6 has little adverse impact on the transgene expression levels (over 300 times than that of PEI alone at the N/P ratio of 6) and significantly reduces the cytotoxicity to BM-MSCs. Further investigations confirmed that the decrease of free PEI has little influence on the cellular uptake after applying external magnetic forces, but that the reduced positive charge density decreases the cytotoxicity. The present study demonstrates that magnetic gene delivery not only contributes to the enhanced gene expression but also helps to reduce the required amount of PEI, providing a potential strategy for an efficient and safe gene delivery to stem cells.
Collapse
Affiliation(s)
- Donghang Xu
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qianhao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhilan Chen
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
Chen S, Zhou Q, Wang G, Zhou Z, Tang J, Xie T, Shen Y. Effect of Cationic Charge Density on Transcytosis of Polyethylenimine. Biomacromolecules 2021; 22:5139-5150. [PMID: 34775750 DOI: 10.1021/acs.biomac.1c01109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The adsorption-mediated transcytosis (AMT) induced by the electrostatic interaction between the positively charged surface of carriers and negatively charged cell membrane is a new paradigm enabling nanomedicine's tumor extravasation and infiltration. However, little is known about the correlation between the carrier's charge density and its AMT-induced tumor infiltration efficiency. Herein, we investigate the effect of the cationic polymer's charge on the AMT-induced tumor penetration ability using in vitro multilayer tumor spheroids (MTSs). A cationic polymer, polyethylenimine (PEI), is amidized with acetic anhydride to obtain acetylated PEIs (AcPEIs) with different cationic charge densities. As the amidization ratio increases, the AcPEIs' cytotoxicity, zeta potential, and cell-binding affinity significantly decrease. Notably, not only does the weak cell binding (AcPEIs with high acetylation degrees) lead to slow endocytosis and inefficient transcytosis, so does the strong cell-binding PEI. The PEI with 24% acetylation (AcPEI24%) is found to have the highest transcytosis efficiency because its balanced cell-binding affinity triggers fast adsorption-mediated endocytosis. The subsequent Golgi apparatus/endoplasmic reticulum-mediated exocytosis via extracellular vesicles leads to highly effective transcellular delivery and tumor penetration in MTSs. Therefore, the drug carrier's surface cationic charge density critically influences its AMT-induced tumor penetration efficiency. This study provides mechanistic insights into the design of drug-delivery systems with active transcytosis for improved tumor penetration and enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Siqin Chen
- Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Quan Zhou
- Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Guowei Wang
- Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Zhuxian Zhou
- Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Jianbin Tang
- Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Tao Xie
- Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Youqing Shen
- Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
18
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Klemm P, Behnke M, Solomun JI, Bonduelle C, Lecommandoux S, Traeger A, Schubert S. Self-assembled PEGylated amphiphilic polypeptides for gene transfection. J Mater Chem B 2021; 9:8224-8236. [PMID: 34643200 DOI: 10.1039/d1tb01495a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the present study, three biodegradable block copolymers composed of a poly(ethylene glycol) block and a copolypeptide block with varying compositions of cationic L-lysine (L-Lys) and hydrophobic benzyl-L-glutamate (Bzl-L-Glu) were designed for gene delivery applications. The polypeptides were synthesized by ring opening polymerization (ROP) and after orthogonal deprotection of Boc-L-Lys side chains, the polymer exhibited an amphiphilic character. To bind or encapsulate plasmid DNA (pDNA), different formulations were investigated: a nanoprecipitation and an emulsion technique using various organic solvents as well as an aqueous pH-controlled formulation method. The complex and nanoparticle (NP) formations were monitored by dynamic light scattering (DLS), and pDNA interaction was shown by gel electrophoresis and subsequent controlled release with heparin. The polypeptides were further tested for their cytotoxicity as well as biodegradability. The complexes and NPs presenting the most promising size distributions and pDNA binding ability were subsequently evaluated for their transfection efficiency in HEK293T cells. The highest transfection efficiencies were obtained with an aqueous formulation of the polypeptide containing the highest L-Lys content and lowest proportion of hydrophobic, helical structures (P1*), which is therefore a promising candidate for efficient gene delivery by biodegradable gene delivery vectors.
Collapse
Affiliation(s)
- Paul Klemm
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Mira Behnke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Colin Bonduelle
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | | | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany. .,Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| |
Collapse
|
20
|
Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021; 22:4060-4083. [PMID: 34498457 DOI: 10.1021/acs.biomac.1c00697] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyplex-mediated gene transfection is now in its' fourth decade of serious research, but the promise of polyplex-mediated gene therapy has yet to fully materialize. Only approximately one in a million applied plasmids actually expresses. A large part of this is due to an incomplete understanding of the mechanism of polyplex transfection. There is an assumption that internalization must follow a canonical mechanism of receptor mediated endocytosis. Herein, we present arguments that untargeted (and most targeted) polyplexes do not utilize these routes. By incorporating knowledge of syndecan-polyplex interactions, we can show that syndecans are the "target" for polyplexes. Further, it is known that free polycations (which disrupt cell-membranes by acid-catalyzed hydrolysis of phospholipid esters) are necessary for (untargeted) endocytosis. This can be incorporated into the model to produce a novel mechanism of endocytosis, which fits the observed phenomenology. After membrane translocation, polyplex containing vesicles reach the endosome after diffusing through the actin mesh below the cell membrane. From there, they are acidified and trafficked toward the lysosome. Some polyplexes are capable of escaping the endosome and unpacking, while others are not. Herein, it is argued that for some polycations, as acidification proceeds the polyplexes excluding free polycations, which disrupt the endosomal membrane by acid-catalyzed hydrolysis, allowing the polyplex to escape. The polyplex's internal charge ratio is now insufficient for stability and it releases plasmids which diffuse to the nucleus. A small proportion of these plasmids diffuse through the nuclear pore complex (NPC), with aggregation being the major cause of loss. Those plasmids that have diffused through the NPC will also aggregate, and this appears to be the reason such a small proportion of nuclear plasmids express mRNA. Thus, the structural features which promote unpacking in the endosome and allow for endosomal escape can be determined, and better polycations can be designed.
Collapse
Affiliation(s)
- Bryn D Monnery
- Department of Organic and (Bio)Polymer Chemistry, Hasselt University, Building F, Agoralaan 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
21
|
Bidram M, Zhao Y, Shebardina NG, Baldin AV, Bazhin AV, Ganjalikhany MR, Zamyatnin AA, Ganjalikhani-hakemi M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines (Basel) 2021; 9:1060. [PMID: 34696168 PMCID: PMC8540049 DOI: 10.3390/vaccines9101060] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma is one of the most aggressive forms of cancer and the leading cause of death from skin tumors. Given the increased incidence of melanoma diagnoses in recent years, it is essential to develop effective treatments to control this disease. In this regard, the use of cancer vaccines to enhance cell-mediated immunity is considered to be one of the most modern immunotherapy options for cancer treatment. The most recent cancer vaccine options are mRNA vaccines, with a focus on their usage as modern treatments. Advantages of mRNA cancer vaccines include their rapid production and low manufacturing costs. mRNA-based vaccines are also able to induce both humoral and cellular immune responses. In addition to the many advantages of mRNA vaccines for the treatment of cancer, their use is associated with a number of challenges. For this reason, before mRNA vaccines can be used for the treatment of cancer, comprehensive information about them is required and a large number of trials need to be conducted. Here, we reviewed the general features of mRNA vaccines, including their basis, stabilization, and delivery methods. We also covered clinical trials involving the use of mRNA vaccines in melanoma cancer and the challenges involved with this type of treatment. This review also emphasized the combination of treatment with mRNA vaccines with the use of immune-checkpoint blockers to enhance cell-mediated immunity.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran; (M.B.); (M.R.G.)
| | - Yue Zhao
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany; (Y.Z.); (A.V.B.)
| | - Natalia G. Shebardina
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Alexey V. Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany; (Y.Z.); (A.V.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran; (M.B.); (M.R.G.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Mazdak Ganjalikhani-hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673441, Iran
| |
Collapse
|
22
|
Hausig F, Sobotta FH, Richter F, Harz DO, Traeger A, Brendel JC. Correlation between Protonation of Tailor-Made Polypiperazines and Endosomal Escape for Cytosolic Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35233-35247. [PMID: 34283557 DOI: 10.1021/acsami.1c00829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Responsive polymers, which become protonated at decreasing pH, are considered a milestone in the development of synthetic cell entry vectors. Exact correlations between their properties and their ability to escape the endosome, however, often remain elusive due to hydrophobic interactions or limitations in the design of water-soluble materials with suitable basicity. Here, we present a series of well-defined, hydrophilic polypiperazines, where systematic variation of the amino moiety facilitates an unprecedented fine-tuning of the basicity or pKa value within the physiologically relevant range (pH 6-7.4). Coincubation of HEK 293T cells with various probes, including small fluorophores or functioning proteins, revealed a rapid increase of endosomal release for polymers with pKa values above 6.5 or 7 in serum-free or serum-containing media, respectively. Similarly, cytotoxic effects became severe at increased pKa values (>7). Although the window for effective transport appears narrow, the discovered correlations offer a principal guideline for the design of effective polymers for endosomal escape.
Collapse
Affiliation(s)
- Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Fabian H Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Dominic O Harz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
23
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
24
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Egorova KS, Posvyatenko AV, Larin SS, Ananikov V. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021; 49:1201-1234. [PMID: 33476366 PMCID: PMC7897475 DOI: 10.1093/nar/gkaa1280] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
26
|
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021; 20:33. [PMID: 33593376 PMCID: PMC7884263 DOI: 10.1186/s12943-021-01311-z] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA vaccines have tremendous potential to fight against cancer and viral diseases due to superiorities in safety, efficacy and industrial production. In recent decades, we have witnessed the development of different kinds of mRNAs by sequence optimization to overcome the disadvantage of excessive mRNA immunogenicity, instability and inefficiency. Based on the immunological study, mRNA vaccines are coupled with immunologic adjuvant and various delivery strategies. Except for sequence optimization, the assistance of mRNA-delivering strategies is another method to stabilize mRNAs and improve their efficacy. The understanding of increasing the antigen reactiveness gains insight into mRNA-induced innate immunity and adaptive immunity without antibody-dependent enhancement activity. Therefore, to address the problem, scientists further exploited carrier-based mRNA vaccines (lipid-based delivery, polymer-based delivery, peptide-based delivery, virus-like replicon particle and cationic nanoemulsion), naked mRNA vaccines and dendritic cells-based mRNA vaccines. The article will discuss the molecular biology of mRNA vaccines and underlying anti-virus and anti-tumor mechanisms, with an introduction of their immunological phenomena, delivery strategies, their importance on Corona Virus Disease 2019 (COVID-19) and related clinical trials against cancer and viral diseases. Finally, we will discuss the challenge of mRNA vaccines against bacterial and parasitic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
27
|
Yilmaz N, Kodama Y, Numata K. Lipid Membrane Interaction of Peptide/DNA Complexes Designed for Gene Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1882-1893. [PMID: 33440939 DOI: 10.1021/acs.langmuir.0c03320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Among gene delivery systems, peptide-based gene carriers have received significant attention because of their selectivity, biocompatibility, and biodegradability. Since cellular membranes function as a barrier toward exogenous molecules, cell-penetrating peptides (CPPs), which are usually cationic and/or amphiphilic, can serve as efficient carriers to deliver cargo into the cytosol. Here, we examined the interactions of carrier peptides and their DNA complexes with lipid membranes using a quartz crystal microbalance (QCM) and high-speed atomic force microscopy (HS-AFM). The carrier peptides are a 12-residue partial presequence of yeast cytochrome c oxidase subunit IV (Cytcox) and BP100, which are a mitochondria-targeting signal peptide and a CPP, respectively. QCM data showed that BP100 has a higher binding affinity than Cytcox to both plasma membrane- and mitochondrial membrane-mimicking lipid bilayers. The DNA complexes with either Cytcox or BP100 exhibited the same tendency. Furthermore, HS-AFM data demonstrated that the DNA complexes of either peptide can disrupt the lipid membranes, forming larger pores in the case of Cytcox. Our results suggest that the binding affinity of the peptide/DNA complex to the plasma membrane is more critical than its membrane disruption ability in enhancing the cellular uptake of DNA.
Collapse
Affiliation(s)
- Neval Yilmaz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Center for Bioscience Research & Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Laboratory for Biomaterial Chemistry, Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S. Limited expression of non-integrating CpG-free plasmid is associated with increased nucleosome enrichment. PLoS One 2020; 15:e0244386. [PMID: 33347482 PMCID: PMC7751972 DOI: 10.1371/journal.pone.0244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
Collapse
Affiliation(s)
- Omar Habib
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Rozita Mohd Sakri
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Nadiah Ghazalli
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
29
|
Li W, Suarato G, Cathcart JM, Sargunas PR, Meng Y. Design, characterization, and intracellular trafficking of biofunctionalized chitosan nanomicelles. Biointerphases 2020; 15:061003. [PMID: 33187397 PMCID: PMC7666618 DOI: 10.1116/6.0000380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
The hydrophobically modified glycol chitosan (HGC) nanomicelle has received increasing attention as a promising platform for the delivery of chemotherapeutic drugs. To improve the tumor selectivity of HGC, here an avidin and biotin functionalization strategy was applied. The hydrodynamic diameter of the biotin-avidin-functionalized HGC (cy5.5-HGC-B4F) was observed to be 104.7 nm, and the surface charge was +3.1 mV. Confocal and structured illumination microscopy showed that at 0.1 mg/ml, cy5.5-HGC-B4F nanomicelles were distributed throughout the cytoplasm of MDA-MB-231 breast cancer cells after 2 h of exposure without significant cytotoxicity. To better understand the intracellular fate of the nanomicelles, entrapment studies were performed and demonstrated that some cy5.5-HGC-B4F nanomicelles were capable of escaping endocytic vesicles, likely via the proton sponge effect. Quantitative analysis of the movements of endosomes in living cells revealed that the addition of HGC greatly enhanced the motility of endosomal compartments, and the nanomicelles were transported by early and late endosomes from cell periphery to the perinuclear region. Our results validate the importance of using live-cell imaging to quantitatively assess the dynamics and mechanisms underlying the complex endocytic pathways of nanosized drug carriers.
Collapse
Affiliation(s)
- Weiyi Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Giulia Suarato
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Jillian M. Cathcart
- Department of Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794
| | - Paul R. Sargunas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Yizhi Meng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
30
|
Rabiee N, Bagherzadeh M, Tavakolizadeh M, Pourjavadi A, Atarod M, Webster TJ. Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1809405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Maryam Tavakolizadeh
- Department of Chemistry, Polymer Research Laboratory, Sharif University of Technology, Tehran, Iran
| | - Ali Pourjavadi
- Department of Chemistry, Polymer Research Laboratory, Sharif University of Technology, Tehran, Iran
| | - Monireh Atarod
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachussetts, USA
| |
Collapse
|
31
|
Patiño Vargas MI, Mesa Cadavid M, Arenas Gómez CM, Diosa Arango J, Restrepo Múnera LM, Becerra Colorado NY. Polyplexes System to Enhance the LL-37 Antimicrobial Peptide Expression in Human Skin Cells. Tissue Eng Part A 2020; 26:400-410. [PMID: 31805827 DOI: 10.1089/ten.tea.2019.0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inefficient autologous tissue recovery in diverse skin injuries increases the susceptibility of patients to infections caused by multiresistant microorganisms, resulting in a high mortality rate. Nonviral transfection is an attractive alternative for these patients, where genetically modified cells incorporated into skin substitutes could release additional antimicrobial agents into the native skin. In this work, we have modulated the conditions of using a nonviral system for transfection of primary human keratinocytes and fibroblasts, consisting of a polymer/plasmid DNA (pDNA) complex called polyplex and its effects on the expression of LL-37 antimicrobial peptide. Linear and branched polyethylenimine (PEI) polymers in different weight concentrations were varied for evaluating the formation and colloidal characteristics of the polyplexes. The PEI/pDNA polyplexes with 19 nitrogen/phosphate ratio are nanometric particles (400 and 250 nm with linear and branched PEI, respectively) exhibiting positive surface (+30 ± 2 mV). Both kinds of polyplexes allowed the expression of a reporter gene and increased the human cathelicidin antimicrobial peptide gene expression in transfected keratinocytes and fibroblasts; however, greater cytotoxicity was observed when polyplexes formed with branched PEI were used. Moreover, cell culture supernatants from transfected cells with linear PEI/pDNA polyplexes showed enhanced antimicrobial activity (decrease of bacterial growth in 95.8%) against a Staphylococcus aureus strain in vitro. The study of the PEI/pDNA polyplexes formation allowed us to develop an improved transfection strategy of skin cells, promoting the production of LL-37 antimicrobial peptide. In the future, this strategy could be used for the construction of skin substitutes to prevent, reduce, or eliminate bacterial infections. Impact statement The results of this study contribute to the understanding of the polyplexes system in the genetic modification of skin cells and its effects on the expression of the LL-37 antimicrobial peptide. In the future, three-dimensional skin substitutes built with these cells could be an efficient way to decrease bacterial growth and prevent the infections in skin wounds.
Collapse
Affiliation(s)
- Maria Isabel Patiño Vargas
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Mónica Mesa Cadavid
- Materials Science Group, Faculty of Exact and Natural Sciences, The University Research Headquarters (SIU), University of Antioquia, Medellín, Colombia
| | - Claudia Marcela Arenas Gómez
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, Massachusetts
| | - Johnatan Diosa Arango
- Materials Science Group, Faculty of Exact and Natural Sciences, The University Research Headquarters (SIU), University of Antioquia, Medellín, Colombia
| | - Luz Marina Restrepo Múnera
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | | |
Collapse
|
32
|
Angelescu DG. Structural behavior of amphiphilic polyion complexes interacting with saturated lipid membranes investigated by coarse-grained molecular dynamic simulations. RSC Adv 2020; 10:39204-39216. [PMID: 35518426 PMCID: PMC9057367 DOI: 10.1039/d0ra06894b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
Neutral polyelectrolyte complexes (PECs) made from an amphiphilic multiblock copolymer of type (AnBn)m and an oppositely charged polyion and interacting with a dipalmitoylphosphatidylcholine (DPPC) lipid membrane.
Collapse
Affiliation(s)
- Daniel G. Angelescu
- Romanian Academy
- “Ilie Murgulescu” Institute of Physical Chemistry
- 060021 Bucharest
- Romania
| |
Collapse
|
33
|
Kim B, Park JH, Sailor MJ. Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903637. [PMID: 31566258 PMCID: PMC6891135 DOI: 10.1002/adma.201903637] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/12/2019] [Indexed: 05/07/2023]
Abstract
With the recent FDA approval of the first siRNA-derived therapeutic, RNA interference (RNAi)-mediated gene therapy is undergoing a transition from research to the clinical space. The primary obstacle to realization of RNAi therapy has been the delivery of oligonucleotide payloads. Therefore, the main aims is to identify and describe key design features needed for nanoscale vehicles to achieve effective delivery of siRNA-mediated gene silencing agents in vivo. The problem is broken into three elements: 1) protection of siRNA from degradation and clearance; 2) selective homing to target cell types; and 3) cytoplasmic release of the siRNA payload by escaping or bypassing endocytic uptake. The in vitro and in vivo gene silencing efficiency values that have been reported in publications over the past decade are quantitatively summarized by material type (lipid, polymer, metal, mesoporous silica, and porous silicon), and the overall trends in research publication and in clinical translation are discussed to reflect on the direction of the RNAi therapeutics field.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
34
|
Kozon D, Mierzejewska J, Kobiela T, Grochowska A, Dudnyk K, Głogowska A, Sobiepanek A, Kuźmińska A, Ciach T, Augustynowicz‐Kopeć E, Jańczewski D. Amphiphilic Polymethyloxazoline–Polyethyleneimine Copolymers: Interaction with Lipid Bilayer and Antibacterial Properties. Macromol Biosci 2019; 19:e1900254. [DOI: 10.1002/mabi.201900254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Dominika Kozon
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00–664 Warsaw Poland
| | - Jolanta Mierzejewska
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00–664 Warsaw Poland
| | - Tomasz Kobiela
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00–664 Warsaw Poland
| | - Agnieszka Grochowska
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00–664 Warsaw Poland
- Department of MicrobiologyNational Tuberculosis and Lung Diseases Research Institute Płocka 26 01–138 Warsaw Poland
| | - Ksenia Dudnyk
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00–664 Warsaw Poland
| | - Agnieszka Głogowska
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00–664 Warsaw Poland
| | - Anna Sobiepanek
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00–664 Warsaw Poland
| | - Aleksandra Kuźmińska
- Faculty of Chemical and Process EngineeringWarsaw University of Technology Waryńskiego 1 00–645 Warsaw Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process EngineeringWarsaw University of Technology Waryńskiego 1 00–645 Warsaw Poland
| | - Ewa Augustynowicz‐Kopeć
- Department of MicrobiologyNational Tuberculosis and Lung Diseases Research Institute Płocka 26 01–138 Warsaw Poland
| | - Dominik Jańczewski
- Faculty of ChemistryWarsaw University of Technology Noakowskiego 3 00–664 Warsaw Poland
| |
Collapse
|
35
|
Liufu C, Li Y, Tu J, Zhang H, Yu J, Wang Y, Huang P, Chen Z. Echogenic PEGylated PEI-Loaded Microbubble As Efficient Gene Delivery System. Int J Nanomedicine 2019; 14:8923-8941. [PMID: 31814720 PMCID: PMC6863126 DOI: 10.2147/ijn.s217338] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are responsible for cancer therapeutic resistance and metastasis. To date, in addition to surgery, chemotherapy, and radiotherapy, gene delivery has emerged as a potential therapeutic modality for ovarian cancer. Efficient and safe targeted gene delivery is complicated due to the tumor heterogeneity barrier. Ultrasound (US)-stimulated microbubbles (MBs) have demonstrated a method of enabling non-invasive targeted gene delivery. PURPOSE The purpose of our study was to show the utility of poly(ethylene glycol)-SS-polyethylenimine-loaded microbubbles (PSP@MB) as an ultrasound theranostic and redox-responsive agent in a gene delivery system. PATIENTS AND METHODS PSP nanoparticles were conjugated to the MB surface through biotin-avidin linkage, increasing the gene-loading efficiency of MB. The significant increase in the release of genes from the PSP@MB complexes was achieved upon ultrasound exposure. The positive surface charge in PSP@MB can condense the plasmid through electrostatic interactions; agarose-gel electrophoresis further confirmed the ability of PSP@MB to condense plasmids. The morphology, particle sizes and zeta potential of PSP@MB were characterized by transmission electron microscopy and dynamic light scattering. RESULTS Laser confocal microscopy showed that the combination of ultrasound with PSP@MB could promote the cellular uptake of plasmids. Plasmids which encode enhanced green fluorescence protein (EGFP) reporter genes or luciferase reporter genes were delivered to CSCs in vitro and to subcutaneous xenografts in vivo via the combination of ultrasound with PSP@MB. Gene transfection efficiency was evaluated by fluorescence microscopy and In Vivo Imaging Systems. This study demonstrated that the combination of ultrasound with PSP@MB can remarkably promote gene delivery to solid tumors as well as diminishing the toxicity towards normal tissues in vivo. The combination of PSP@MB and the use of ultrasound can efficiently enhance accumulation, extravasation and penetration into solid tumors. CONCLUSION Taken together, our study showed that this novel PSP@MB and ultrasound-mediated gene delivery system could efficiently target CSCs.
Collapse
Affiliation(s)
- Chun Liufu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Jiawei Tu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Hui Zhang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Yi Wang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| | - Pintong Huang
- Department of Ultrasound, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Experimental Center, The Liwan Hospital of The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong510000, People’s Republic of China
| |
Collapse
|
36
|
Ribeiro CA, Albuquerque LJ, de Castro CE, Batista BL, de Souza AL, Albuquerque BL, Zilse MS, Bellettini IC, Giacomelli FC. One-pot synthesis of sugar-decorated gold nanoparticles with reduced cytotoxicity and enhanced cellular uptake. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Juanes M, Creese O, Fernández-Trillo P, Montenegro J. Messenger RNA delivery by hydrazone-activated polymers. MEDCHEMCOMM 2019; 10:1138-1144. [PMID: 31391886 PMCID: PMC6640546 DOI: 10.1039/c9md00231f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
The intracellular delivery of DNA and RNA therapeutics requires the assistance of vectors and/or nucleotide modifications to protect the nucleic acids against host nucleases and promote cellular internalization and release. Recently, messenger RNA (mRNA) has attracted much attention due to its transient activity and lack of genome permanent recombination and persistent expression. Therefore, there is a strong interest in the development of conceptually new non-viral vectors with low toxicity that could improve mRNA transfection efficiency. We have recently introduced the potential of polyhydrazones and the importance of the degree of polymerization for the delivery of siRNA and plasmid DNA. Here, we demonstrate that this technology can be easily adapted to the more interesting complexation and delivery inside living cells of mRNA. The polyplexes resulting from the combination of the amphiphilic polyhydrazone were characterized and the transfection efficiency and cell viability were studied for a discrete collection of functionalized polyhydrazones. The results obtained demonstrated the versatility of these polymeric vectors as excellent candidates for the delivery of mRNA and validate the easy adaptability of the technology to more sensitive and therapeutically relevant nucleic acids.
Collapse
Affiliation(s)
- Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Oliver Creese
- School of Chemistry , University of Birmingham , Birmingham B15 2TT , UK .
| | | | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
38
|
Alazzo A, Al-Natour MA, Spriggs K, Stolnik S, Ghaemmaghami A, Kim DH, Alexander C. Investigating the intracellular effects of hyperbranched polycation-DNA complexes on lung cancer cells using LC-MS-based metabolite profiling. Mol Omics 2019; 15:77-87. [PMID: 30706066 DOI: 10.1039/c8mo00139a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cationic polymers have emerged as a promising alternative to viral vectors in gene therapy. They are cheap to scale up, easy to functionalise and are potentially safer than viral vectors, however many are cytotoxic. The large number of polycations, designed to address the toxicity problem, raises a practical need to develop a fast and reliable method for assessing the safety of these materials. In this regard, metabolomics provides a detailed and comprehensive method that can assess the potential toxicity at the cellular and molecular level. Here, we applied metabolomics to investigate the impact of hyperbranched polylysine, hyperbranched polylysine-co-histidine and branched polyethyleneimine polyplexes at sub-toxic concentrations on the metabolic pathways of A459 and H1299 lung carcinoma cell lines. The study revealed that the polyplexes downregulated metabolites associated with glycolysis and the TCA cycle, and induced oxidative stress in both cell lines. The relative changes of the metabolites indicated that the polyplexes of polyethyleneimine and hyperbranched polylysine affected the metabolism much more than the polyplexes of hyperbranched polylysine-co-histidine. This was in line with transfection results, suggesting a correlation between the toxicity and transfection efficiency of these polyplexes. Our work highlights the importance of the metabolomics approach not just to assess the potential toxicity of polyplexes but also to understand the molecular mechanisms underlying any adverse effects, which could help in designing more efficient vectors.
Collapse
Affiliation(s)
- Ali Alazzo
- School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu H, Sun Y, Lang L, Yang T, Zhao X, Cai C, Liu Z, Ding P. Nuclear localization signal peptide enhances transfection efficiency and decreases cytotoxicity of poly(agmatine/N,N'-cystamine-bis-acrylamide)/pDNA complexes. J Cell Biochem 2019; 120:16967-16977. [PMID: 31099062 DOI: 10.1002/jcb.28958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 11/08/2022]
Abstract
At present, nonviral gene vectors develop rapidly, especially cationic polymers. A series of bioreducible poly(amide amine) (PAA) polymers containing guanidino groups have been synthesized by our research team. These novel polymer vectors demonstrated significantly higher transfection efficiency and lower cytotoxicity than polyethylenimine (PEI)-25kDa. However, compared with viral gene vectors, relatively low transfection efficiency, and high cytotoxicity are still critical problems confronting these polymers. In this study, poly(agmatine/N,N'-cystamine-bis-acrylamide) p(AGM-CBA) was selected as a model polymer, nuclear localization signal (NLS) peptide PV7 (PKKKRKV) with good biocompatibility and nuclear localization effect was introduced to investigate its impact on transfection efficiency and cytotoxicity. NLS peptide-mediated in vitro transfection was performed in NIH 3T3 cells by directly incorporating NLS peptide with the complexes of p(AGM-CBA)/pDNA. Meanwhile, the transfection efficiency and cytotoxicity of these complexes were evaluated. The results showed that the transfection efficiency could be increased by 5.7 times under the appropriate proportion, and the cytotoxicity brought by the polymer vector could be significantly reduced.
Collapse
Affiliation(s)
- Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lang Lang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
40
|
Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery. Colloids Surf B Biointerfaces 2019; 175:10-17. [DOI: 10.1016/j.colsurfb.2018.11.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 01/31/2023]
|
41
|
Cook AB, Peltier R, Zhang J, Gurnani P, Tanaka J, Burns JA, Dallmann R, Hartlieb M, Perrier S. Hyperbranched poly(ethylenimine-co-oxazoline) by thiol–yne chemistry for non-viral gene delivery: investigating the role of polymer architecture. Polym Chem 2019. [DOI: 10.1039/c8py01648h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Synthesis of long-chain hyperbranched poly(ethylenimine-co-oxazoline)s by AB2 thiol–yne chemistry is reported, and their application as pDNA transfection agents studied.
Collapse
Affiliation(s)
| | - Raoul Peltier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | - Joji Tanaka
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - James A. Burns
- Syngenta
- Jealott's Hill International Research Centre
- Bracknell
- Berkshire
- UK
| | | | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Warwick Medical School
| |
Collapse
|
42
|
Xu Q, Zhang T, Wang Q, Jiang X, Li A, Li Y, Huang T, Li F, Hu Y, Ling D, Gao J. Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells. Int J Pharm 2018; 552:443-452. [DOI: 10.1016/j.ijpharm.2018.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
43
|
The polyplex, protein corona, cell interplay: Tips and drawbacks. Colloids Surf B Biointerfaces 2018; 168:60-67. [DOI: 10.1016/j.colsurfb.2018.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2017] [Accepted: 01/20/2018] [Indexed: 12/12/2022]
|
44
|
Priegue JM, Lostalé-Seijo I, Crisan D, Granja JR, Fernández-Trillo F, Montenegro J. Different-Length Hydrazone Activated Polymers for Plasmid DNA Condensation and Cellular Transfection. Biomacromolecules 2018; 19:2638-2649. [PMID: 29653048 PMCID: PMC6041776 DOI: 10.1021/acs.biomac.8b00252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/10/2018] [Indexed: 11/29/2022]
Abstract
The recent advances in genetic engineering demand the development of conceptually new methods to prepare and identify efficient vectors for the intracellular delivery of different nucleotide payloads ranging from short single-stranded oligonucleotides to larger plasmid double-stranded circular DNAs. Although many challenges still have to be overcome, polymers hold great potential for intracellular nucleotide delivery and gene therapy. We here develop and apply the postpolymerization modification of polyhydrazide scaffolds, with different degree of polymerization, for the preparation of amphiphilic polymeric vehicles for the intracellular delivery of a circular plasmid DNA. The hydrazone formation reactions with a mixture of cationic and hydrophobic aldehydes proceed in physiologically compatible aqueous conditions, and the resulting amphiphilic polyhydrazones are directly combined with the biological cargo without any purification step. This methodology allowed the preparation of stable polyplexes with a suitable size and zeta potential to achieve an efficient encapsulation and intracellular delivery of the DNA cargo. Simple formulations that performed with efficiencies and cell viabilities comparable to the current gold standard were identified. Furthermore, the internalization mechanism was studied via internalization experiments in the presence of endocytic inhibitors and fluorescence microscopy. The results reported here confirmed that the polyhydrazone functionalization is a suitable strategy for the screening and identification of customized polymeric vehicles for the delivery of different nucleotide cargos.
Collapse
Affiliation(s)
- Juan M. Priegue
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Daniel Crisan
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Juan R. Granja
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | | | - Javier Montenegro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
45
|
Trützschler AK, Bus T, Sahn M, Traeger A, Weber C, Schubert US. The Power of Shielding: Low Toxicity and High Transfection Performance of Cationic Graft Copolymers Containing Poly(2-oxazoline) Side Chains. Biomacromolecules 2018; 19:2759-2771. [PMID: 29791802 DOI: 10.1021/acs.biomac.8b00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show the potential of oligo(2-ethyl-2-oxazoline) (Oxn)-shielded graft copolymers of (2-aminoethyl)-methacrylate and N-methyl-(2-aminoethyl)-methacrylate for pDNA delivery in HEK cells. For the effect of grafting density and side chain length concerning improved transfection properties through the concept of shielding to be investigated, copolymers were synthesized via the macromonomer method using a combination of cationic ring opening polymerization and reversible addition-fragmentation chain transfer polymerization to vary the degree of grafting (DG = 10 and 30%) as well as the side chain degree of polymerization (DP = 5 and 20). Investigations of the polyplex formation, in vitro flow cytometry, and confocal laser scanning microscopy measurements on the copolymer library revealed classical shielding properties of the Ox side chains, including highly reduced cytotoxicity and a partial decrease in transfection efficiency, as also reported for polyethylene glycol shielding. In terms of the transfection efficiency, the best performing copolymers (A- g-Ox5(10) and M- g-Ox5(10)) revealed equal or better performances compared to those of the corresponding homopolymers. In particular, the graft copolymers with low DG and side chain DP transfected well with over 10-fold higher IC50 values. In contrast, a DG of 30% resulted in a loss of transfection efficiency due to missing ability for endosomal release, and a side chain DP of 20 hampered the cellular uptake.
Collapse
Affiliation(s)
- Anne-Kristin Trützschler
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Tanja Bus
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Martin Sahn
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstrasse 10 , 07743 Jena , Germany.,Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| |
Collapse
|
46
|
Co-transfection of star-shaped PDMAEMAs enhance transfection efficiency of protamine/pDNA complexes in the presence of serum. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Batista CCS, Albuquerque LJC, de Araujo I, Albuquerque BL, da Silva FD, Giacomelli FC. Antimicrobial activity of nano-sized silver colloids stabilized by nitrogen-containing polymers: the key influence of the polymer capping. RSC Adv 2018; 8:10873-10882. [PMID: 35541560 PMCID: PMC9078938 DOI: 10.1039/c7ra13597a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/11/2018] [Indexed: 11/24/2022] Open
Abstract
Synthesis of stable silver colloids was achieved using nitrogen-containing polymers acting simultaneously as a reducing and stabilizer agent. The polymers polyethyleneimine (PEI), polyvinylpyrrolidone (PVP) and poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PEO-b-P2VP) were used in the procedures. The influence of the surface chemistry and chemical nature of the stabilizer on the cytotoxicity and antimicrobial properties have been evaluated. The produced nanomaterials were found to be non-toxic up to the highest evaluated concentration (1.00 ppm). Nevertheless, at this very low concentration, the AgNPs stabilized by PVP and PEO-b-P2VP were found to be remarkable biocides against bacteria and fungus. On the other hand, we have surprisingly evidenced negligible antimicrobial activity of AgNPs stabilized by positively charged PEI although both (AgNPs and PEI) materials separately are known for their antimicrobial activity as also evidenced in the current investigation. The evidence is claimed to be related to the blocking of Ag+ kinetic release. Accordingly, the antimicrobial effect of nano-sized silver colloids largely depends on the chemical nature of the polymer coating. Possibly, the outstanding colloid stabilization provided by polyethyleneimine slows down Ag+ release thereby hampering its biological activity whereas the poorer stabilization and good ionic transport property of PVP and PEO-b-P2VP allows much faster ion release and cell damage.
Collapse
Affiliation(s)
- Carin C S Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André Brazil
| | | | - Iris de Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André Brazil
| | - Brunno L Albuquerque
- Departamento de Química, Universidade Federal de Santa Catarina Florianópolis 88040-900 Brazil
| | - Fernanda D da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC Santo André Brazil
| |
Collapse
|
48
|
Almulathanon AAY, Ranucci E, Ferruti P, Garnett MC, Bosquillon C. Comparison of Gene Transfection and Cytotoxicity Mechanisms of Linear Poly(amidoamine) and Branched Poly(ethyleneimine) Polyplexes. Pharm Res 2018. [PMID: 29516282 DOI: 10.1007/s11095-017-2328-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE This study aimed to further explore the mechanisms behind the ability of certain linear polyamidoamines (PAAs) to transfect cells with minimal cytotoxicity. METHODS The transfection efficiency of DNA complexed with a PAA of a molecular weight over 10 kDa or 25 kDa branched polyethyleneimine (BPEI) was compared in A549 cells using a luciferase reporter gene assay. The impact of endo/lysosomal escape on transgene expression was investigated by transfecting cells in presence of bafilomycin A1 or chloroquine. Cytotoxicity caused by the vectors was evaluated by measuring cell metabolic activity, lactate dehydrogenase release, formation of reactive oxygen species and changes in mitochondrial membrane potential. RESULTS The luciferase activity was ~3-fold lower after transfection with PAA polyplexes than with BPEI complexes at the optimal polymer to nucleotide ratio (RU:Nt). However, in contrast to BPEI vectors, PAA polyplexes caused negligible cytotoxic effects. The transfection efficiency of PAA polyplexes was significantly reduced in presence of bafilomycin A1 while chloroquine enhanced or decreased transgene expression depending on the RU:Nt. CONCLUSIONS PAA polyplexes displayed a pH-dependent endo/lysosomal escape which was not associated with cytotoxic events, unlike observed with BPEI polyplexes. This is likely due to their greater interactions with biological membranes at acidic than neutral pH.
Collapse
Affiliation(s)
- Ammar A Y Almulathanon
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.,Pharmacy College,, University of Mosul,, Mosul, Iraq
| | - Elisabetta Ranucci
- Dipartimento di Chimica,, Università degli Studi di Milano, via C. Golgi 19, 20133, Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica,, Università degli Studi di Milano, via C. Golgi 19, 20133, Milan, Italy
| | - Martin C Garnett
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Cynthia Bosquillon
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
49
|
Chen B, Yu L, Li Z, Wu C. Design of Free Triblock Polylysine-b-Polyleucine-b-Polylysine Chains for Gene Delivery. Biomacromolecules 2018; 19:1347-1357. [DOI: 10.1021/acs.biomac.8b00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Baizhu Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Lei Yu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhibo Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- The Hefei National Laboratory of Physical Science at Microscale and Department of Chemical Physics, The University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
50
|
Xiao M, Jasensky J, Foster L, Kuroda K, Chen Z. Monitoring Antimicrobial Mechanisms of Surface-Immobilized Peptides in Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2057-2062. [PMID: 29332402 DOI: 10.1021/acs.langmuir.7b03668] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antimicrobial peptides (AMPs) in free solution can kill bacteria by disrupting bacterial cell membranes. Their modes of action have been extensively studied, and various models ranging from pore formation to carpet-like mechanisms were proposed. Surface-immobilized AMPs have been used as coatings to kill bacteria and as sensors to capture bacteria, but the interaction mechanisms of surface-immobilized AMPs and bacteria are not fully understood. In this research, an analytical platform, sum frequency generation (SFG) microscope, which is composed of an SFG vibrational spectrometer and a fluorescence microscope, was used to probe molecular interactions between surface-immobilized AMPs and bacteria in situ in real time at the solid/liquid interface. SFG probed the molecular structure of surface-immobilized AMPs while interacting with bacteria, and fluorescence images of dead bacteria were monitored as a function of time during the peptide-bacteria interaction. It was believed that upon bacteria contact, the surface-immobilized peptides changed their orientation and killed bacteria. This research demonstrated that the SFG microscope platform can examine the structure and function (bacterial killing) at the same time in the same sample environment, providing in-depth understanding on the structure-activity relationships of surface-immobilized AMPs.
Collapse
Affiliation(s)
- Minyu Xiao
- Department of Chemistry, ‡Macromolecular Science and Engineering Center, and §Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joshua Jasensky
- Department of Chemistry, ‡Macromolecular Science and Engineering Center, and §Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Leanna Foster
- Department of Chemistry, ‡Macromolecular Science and Engineering Center, and §Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Kenichi Kuroda
- Department of Chemistry, ‡Macromolecular Science and Engineering Center, and §Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, ‡Macromolecular Science and Engineering Center, and §Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|