1
|
Feldhof MI, Walber S, Sperzel S, Boye S, Gerling‐Driessen UI, Hartmann L. Site-Specific Polymer-Protein-Polymer Conjugates for the Preparation of Dual Responsive Multilayer Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500531. [PMID: 40035613 PMCID: PMC11983248 DOI: 10.1002/smll.202500531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Protein-polymer-based materials demonstrate high potential in advanced applications. However, controlled combinations of multiple proteins and polymers to obtain multimaterial systems is limited due to the complexity of retaining protein structure and function and achieving high structural control for the polymers simultaneously. Here, the first combination of a rebridging agent and thiol-induced, light-activated controlled radical polymerization (TIRP) is introduced to directly enable site-specific conjugation of two different polymers to native proteins. Specifically, poly(N-isopropyacrylamide) (pNIPAM) is attached to bovine serum albumin (BSA), followed by incorporation of a new rebridging agent, and initiating a second TIRP to introduce a glycopolymer, giving highly defined pNIPAM-BSA-glycopolymer conjugates. Above the lower critical solution temperature (LCST), nanoparticles with a glycopolymer corona are formed. The addition of a glycan-specific lectin leads to the formation of a second protein corona and so-called multilayer nanoparticles. Depending on the sequence of stimuli, the particles can either undergo a step-wise or one-step disassembly. Furthermore, by controlling the ratio of binding/non-binding glycopolymers in the multilayer nanoparticles, either distinct nanoparticles or large clusters can be formed. Thus, dual-responsive multilayered polymer-protein nanoparticles are now accessible with controlled and programmable material properties such as assembly and disassembly while maintaining the protein's native structure and thus function.
Collapse
Affiliation(s)
- Melina I. Feldhof
- Department of Organic and Macromolecular ChemistryHeinrich‐Heine‐University DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Simon Walber
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Str. 31D‐79104Freiburg i.Br.Germany
| | - Sandro Sperzel
- Department of Organic and Macromolecular ChemistryHeinrich‐Heine‐University DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Susanne Boye
- Advanced Macromolecular Structure AnalysisLeibniz‐Institut für Polymerforschung DresdenHohe Str. 601069DresdenGermany
| | - Ulla I.M. Gerling‐Driessen
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Str. 31D‐79104Freiburg i.Br.Germany
| | - Laura Hartmann
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan‐Meier‐Str. 31D‐79104Freiburg i.Br.Germany
| |
Collapse
|
2
|
Han D, Li A, Zhu L, Zhuang C, Zhao Q, Zou Y. Peptide inhibitors targeting Ras and Ras-associated protein-protein interactions. Eur J Med Chem 2024; 279:116878. [PMID: 39326269 DOI: 10.1016/j.ejmech.2024.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Peptides represent attractive molecules for targeting protein-protein interactions, and peptide drug development has made great progress during the last decades. Ras protein, the most promising target in cancer therapy, is one of the major growth drivers in various cancers. Although many small molecule inhibitors have been reported to effectively target Ras protein and some inhibitors (such as MRTX849 and AMG 510) have been translated into clinical application, just a few peptide inhibitors have been reported. Here we summarize different types of peptide inhibitors, including monocyclic peptides, bicyclic peptides, stapled peptides, and proteomimetic inhibitors, developed in recent years; emphasize the limits and achievements; and discuss the outlook and challenges associated with future research in peptide inhibitors. This review aims to provide a reference for the discovery of Ras peptide inhibitors.
Collapse
Affiliation(s)
- Dan Han
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Anpeng Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China; 92805 Military Hospital, Qingdao, PR China
| | - Lie Zhu
- Department of Burn Plastic Surgery, The Second Affiliated Hospital of Second Military Medical University, Shanghai, 200003, PR China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, PR China.
| |
Collapse
|
3
|
Qu Z, Sun Y. Computer-Aided Site-Specific PEGylation of PET Hydrolases for Enhanced PET Degradation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39370989 DOI: 10.1021/acsami.4c12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The enormous accumulation of poly(ethylene terephthalate) (PET) waste has posed a serious threat to the environment and human health, and biodegradation with PET hydrolase (PETase) can be a possible solution. Herein, we propose site-specifically modifying PETase with amphiphilic polymers to improve the enzyme performance at ambient temperature. For this purpose, we devise a computer-aided strategy to prioritize the conjugation site, and polyethylene glycol (PEG) preparations of 0.55 to 10 kDa are site-specifically conjugated to PETase. The most active conjugate PETase-PEG 5k (PETase-5K) shows an increase of melting temperature (3.88 °C) and significantly improves PET degradation performance (3.5- and 3.1-fold increases at 30 and 40 °C, respectively). Experimental investigation and molecular dynamics simulations reveal that the site-specific PEGylation increases the hydrophobic solvent-accessible surface area and the binding capability to the PET surface, thickens the hydration layer, increases the intramolecular hydrogen bonding, reduces the interactions between water and the conjugated enzyme surface, and rigidifies the enzyme structure via hydrogen bonding and hydrophobic interactions between the polymer and the enzyme, thus leading to improved enzymatic performance of PETase-5K. We further validate the versatility of the site-specific PEGylation in one of the most evolved variants of PETase, FAST-PETase, by 1.8-fold improvement in PET degradation at 30 °C. The presented computer-aided site-specific conjugation strategy has opened a new avenue to enhancing PETase performance at ambient temperature, and the contribution of PEGylation to PETase unraveled in this work laid a foundation for the rational engineering of PET hydrolases.
Collapse
Affiliation(s)
- Zhi Qu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Feldhof MI, Sperzel S, Bonda L, Boye S, Braunschweig AB, Gerling-Driessen UIM, Hartmann L. Thiol-selective native grafting from polymerization for the generation of protein-polymer conjugates. Chem Sci 2024; 15:d4sc04818k. [PMID: 39323521 PMCID: PMC11418805 DOI: 10.1039/d4sc04818k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Protein-polymer conjugates combine properties of biopolymers and synthetic polymers, such as specific bioactivity and increased stability, with great benefits for various applications from catalysis to biomedicine. Furthermore, polymer conjugation can mimic important posttranslational modifications of proteins such as glycosylation. There are typically two approaches to create protein-polymer conjugates: the protein is functionalized in advance with an initiator for a grafting-from method or a previously produced polymer is conjugated to the protein via a grafting-to method. In this study, we present a new approach that uses native proteins and allows for direct grafting-from using a thiol-induced, light-activated controlled radical polymerization (TIRP) that is initiated at thiols from specific cysteine residues of the protein. This straightforward method is employed to introduce polymers onto proteins and enzymes without any prior protein modifications, it works in aqueous buffer and maintains the protein's native structure and activity. The resulting protein-polymer conjugates exhibit high molar masses and low dispersities. We demonstrate the versatility of this approach by introducing different types of polymers such as hydrophilic poly(2-hydroxyethyl acrylate) (pHEAA), temperature-responsive poly(N-isopropylacrylamide) (pNIPAM) as well as glycopolymers mimicking the natural protein glycosylation and enabling selective interactions. We present successful combinations of the protein and polymer functions e.g., temperature-induced aggregation leading to an increase in enzyme activity and the introduction of artificial glycosylation inducing specific protein-protein cluster formation and giving straightforward access to glycosurfaces. Based on this straightforward, potentially scalable yet highly controlled synthesis of protein-polymer conjugates, various areas of applications are envisioned ranging from biomedicine to material sciences.
Collapse
Affiliation(s)
- Melina I Feldhof
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Sandro Sperzel
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Lorand Bonda
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Susanne Boye
- Center Macromolecular Structure Analysis, Leibniz-Institut für Polymerforschung Dresden Hohe Str. 6 01069 Dresden Germany
| | - Adam B Braunschweig
- Advanced Science Research Center, Graduate Center, City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- PhD Programs in Chemistry and Biochemistry, Graduate Center, City University of New York 65 5th Avenue New York NY 10016 USA
- Department of Chemistry, Hunter College 695 Park Avenue New York NY 10065 USA
| | - Ulla I M Gerling-Driessen
- Institute for Macromolecular Chemistry, University of Freiburg Stefan-Meier-Str. 31 D-79104 Freiburg i.Br. Germany
| | - Laura Hartmann
- Institute for Macromolecular Chemistry, University of Freiburg Stefan-Meier-Str. 31 D-79104 Freiburg i.Br. Germany
| |
Collapse
|
5
|
Li Z, Song K, Chen Y, Huang Q, You L, Yu L, Chen B, Yuan Z, Xu Y, Su Y, Da L, Zhu X, Dong R. Sequence-encoded bioactive protein-multiblock polymer conjugates via quantitative one-pot iterative living polymerization. Nat Commun 2024; 15:6729. [PMID: 39112493 PMCID: PMC11306232 DOI: 10.1038/s41467-024-51122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Protein therapeutics are essential in treating various diseases, but their inherent biological instability and short circulatory half-lives in vivo pose challenges. Herein, a quantitative one-pot iterative living polymerization technique is reported towards precision control over the molecular structure and monomer sequence of protein-polymer conjugates, aiming to maximize physicochemical properties and biological functions of proteins. Using this quantitative one-pot iterative living polymerization technique, we successfully develop a series of sequence-controlled protein-multiblock polymer conjugates, enhancing their biostability, pharmacokinetics, cellular uptake, and in vivo biodistribution. All-atom molecular dynamics simulations are performed to disclose the definite sequence-function relationship of the bioconjugates, further demonstrating their sequence-encoded cellular uptake behavior and in vivo biodistribution in mice. Overall, this work provides a robust approach for creating precision protein-polymer conjugates with defined sequences and advanced functions as a promising candidate in disease treatment.
Collapse
Affiliation(s)
- Ziying Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Kaiyuan Song
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yu Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qijing Huang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lujia You
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li Yu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Baiyang Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zihang Yuan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqin Xu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Lintai Da
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijiao Dong
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Liu Y, Tian X, Zhang F, Zhang WB. Probing the Topological Effects on Stability Enhancement and Therapeutic Performance of Protein Bioconjugates: Tadpole, Macrocycle versus Figure-of-Eight. Adv Healthc Mater 2024:e2400466. [PMID: 39091049 DOI: 10.1002/adhm.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Chemical topology provides a unique dimension for making therapeutic protein bioconjugates with native structure and intact function, yet the effects of topology remain elusive. Herein, the design, synthesis, and characterization of therapeutic protein bioconjugates in three topologies (i.e., tadpole, macrocycle, and figure-of-eight), are reported. The interferon α2b (IFN) and albumin binding domain (ABD) are selected as the model proteins for bioconjugation and proof-of-concept. The biosynthesis of these topological isoforms is accomplished via direct expression in cells using SpyTag-SpyCatcher chemistry and/or split-intein-mediated ligation for topology diversification. The corresponding topologies are proven with combined techniques of LC-MS, SDS-PAGE, and controlled proteolytic digestion. While the properties of these topological isoforms are similar in most cases, the figure-of-eight-shaped bioconjugate, f8-IFN-ABD, exhibits the best thermal stability and anti-aggregation properties along with prolonged half-life and enhanced tumor retention relative to the tadpole-shaped control, tadp-IFN-ABD, and the macrocyclic control, c-IFN-ABD, showcasing considerable topological effects. The work expands the topological diversity of proteins and demonstrates the potential advantages of leveraging chemical topology for functional benefits beyond multi-function integration in protein therapeutics.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xibao Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Doan VHM, Ly CD, Mondal S, Truong TT, Nguyen TD, Choi J, Lee B, Oh J. Fcg-Former: Identification of Functional Groups in FTIR Spectra Using Enhanced Transformer-Based Model. Anal Chem 2024. [PMID: 39008658 DOI: 10.1021/acs.analchem.4c01622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Deep learning (DL) is becoming more popular as a useful tool in various scientific domains, especially in chemistry applications. In the infrared spectroscopy field, where identifying functional groups in unknown compounds poses a significant challenge, there is a growing need for innovative approaches to streamline and enhance analysis processes. This study introduces a transformative approach leveraging a DL methodology based on transformer attention models. With a data set containing approximately 8677 spectra, our model utilizes self-attention mechanisms to capture complex spectral features and precisely predict 17 functional groups, outperforming conventional architectures in both functional group prediction accuracy and compound-level precision. The success of our approach underscores the potential of transformer-based methodologies in enhancing spectral analysis techniques.
Collapse
Affiliation(s)
- Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Cao Duong Ly
- Research and Development Department, Senior AI Research Engineer, Vision-in Inc., Seoul 08505, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Byeongil Lee
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Ohlabs Corp., Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Van Guyse JFR, Abbasi S, Toh K, Nagorna Z, Li J, Dirisala A, Quader S, Uchida S, Kataoka K. Facile Generation of Heterotelechelic Poly(2-Oxazoline)s Towards Accelerated Exploration of Poly(2-Oxazoline)-Based Nanomedicine. Angew Chem Int Ed Engl 2024; 63:e202404972. [PMID: 38651732 DOI: 10.1002/anie.202404972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Zlata Nagorna
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Junjie Li
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
- Department of Medical, Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 606-0823, Kyoto, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 113-8510, Tokyo, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, 210-0821, Kawasaki, Japan
- Present Adresses: S. A., Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 21231, Baltimore, MD, USA
| |
Collapse
|
10
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
11
|
Ouyang J, Zhang Z, Li J, Wu C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400105. [PMID: 38386281 DOI: 10.1002/anie.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemical modifications of enzymes excel in the realm of enzyme engineering due to its directness, robustness, and efficiency; however, challenges persist in devising versatile and effective strategies. In this study, we introduce a supramolecular modification methodology that amalgamates a supramolecular polymer with Candida antarctica lipase B (CalB) to create supramolecular enzymes (SupEnzyme). This approach features the straightforward preparation of a supramolecular amphiphilic polymer (β-CD@SMA), which was subsequently conjugated to the enzyme, resulting in a SupEnzyme capable of self-assembly into supramolecular nanoparticles. The resulting SupEnzyme nanoparticles can form micron-scale supramolecular aggregates through supramolecular and electrostatic interactions with guest entities, thus enhancing catalyst recycling. Remarkably, these aggregates maintain 80 % activity after seven cycles, outperforming Novozym 435. Additionally, they can effectively initiate photobiocatalytic cascade reactions using guest photocatalysts. As a consequence, our SupEnzyme methodology exhibits noteworthy adaptability in enzyme modification, presenting a versatile platform for various polymer, enzyme, and biocompatible catalyst pairings, with potential applications in the fields of chemistry and biology.
Collapse
Affiliation(s)
- Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Zhenfang Zhang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
12
|
Chidkoksung K, Parakasikron N, Nuanualsuwan S, Khantasup K. Development of a latex agglutination test based on VH antibody fragment for detection of Streptococcus suis serotype 2. PLoS One 2024; 19:e0299691. [PMID: 38568909 PMCID: PMC10990187 DOI: 10.1371/journal.pone.0299691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important porcine pathogen that causes diseases in both swine and human. For rapid SS2 identification, a novel latex agglutination test (LAT) based on heavy-chain variable domain antibody (VH) was developed. Firstly, the soluble 47B3 VH antibody fragment from a phage display library, in which cysteine residues were engineered at the C-terminus, was expressed in Escherichia coli. The purified protein was then gently reduced to form monomeric soluble 47B3 VH subsequently used to coat with latex beads by means of site-specific conjugation. The resulting VH-coated beads gave a good agglutination reaction with SS2. The LAT was able to distinguish S. suis serotype 2 from serotype 1/2, which shares some common sugar residues, and showed no cross-reaction with other serotypes of S. suis or other related bacteria. The detection sensitivity was found to be as high as 1.85x106 cells. The LAT was stable at 4°C for at least six months without loss of activity. To the best of our knowledge, this is the first LAT based on a VH antibody fragment that can be considered as an alternative for conventional antibody-based LAT where VHs are the most favored recombinant antibody.
Collapse
Affiliation(s)
- Kiratika Chidkoksung
- The Medical Microbiology Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nattihda Parakasikron
- The Medical Microbiology Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
| | - Kannika Khantasup
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Kehrein J, Sotriffer C. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomater Sci Eng 2024; 10:51-74. [PMID: 37466304 DOI: 10.1021/acsbiomaterials.3c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.
Collapse
Affiliation(s)
- Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
14
|
Bisht T, Adhikari A, Patil S, Dhoundiyal S. Bioconjugation Techniques for Enhancing Stability and Targeting Efficiency of Protein and Peptide Therapeutics. Curr Protein Pept Sci 2024; 25:226-243. [PMID: 37921168 DOI: 10.2174/0113892037268777231013154850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023]
Abstract
Bioconjugation techniques have emerged as powerful tools for enhancing the stability and targeting efficiency of protein and peptide therapeutics. This review provides a comprehensive analysis of the various bioconjugation strategies employed in the field. The introduction highlights the significance of bioconjugation techniques in addressing stability and targeting challenges associated with protein and peptide-based drugs. Chemical and enzymatic bioconjugation methods are discussed, along with crosslinking strategies for covalent attachment and site-specific conjugation approaches. The role of bioconjugation in improving stability profiles is explored, showcasing case studies that demonstrate successful stability enhancement. Furthermore, bioconjugation techniques for ligand attachment and targeting are presented, accompanied by examples of targeted protein and peptide therapeutics. The review also covers bioconjugation approaches for prolonging circulation and controlled release, focusing on strategies to extend half-life, reduce clearance, and design-controlled release systems. Analytical characterization techniques for bioconjugates, including the evaluation of conjugation efficiency, stability, and assessment of biological activity and targeting efficiency, are thoroughly examined. In vivo considerations and clinical applications of bioconjugated protein and peptide therapeutics, including pharmacokinetic and pharmacodynamic considerations, as well as preclinical and clinical developments, are discussed. Finally, the review concludes with an overview of future perspectives, emphasizing the potential for novel conjugation methods and advanced targeting strategies to further enhance the stability and targeting efficiency of protein and peptide therapeutics.
Collapse
Affiliation(s)
- Tanuja Bisht
- Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand, India
| | - Anupriya Adhikari
- Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand, India
| | - Shivanand Patil
- Department of Pharmacy, Shree Dev Bhoomi Institute of Education, Science and Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand, India
| | - Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
15
|
Yamada T, Ishimaru M, Shoji T, Tomiyasu H, Tochinai R, Taguchi K, Komatsu T. Polyoxazoline-Conjugated l-Asparaginase: An Antibody-Production-Free Therapeutic Agent for Acute Lymphoblastic Leukemia. ACS APPLIED BIO MATERIALS 2023; 6:5789-5797. [PMID: 38047730 DOI: 10.1021/acsabm.3c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
l-asparaginase (ASNase), an enzyme that catalyzes the hydrolysis of l-asparagine into l-aspartic acid, is frequently used as a medication for acute lymphoblastic leukemia (ALL). However, when derived from bacterial sources, this enzyme can elicit side effects, including allergic or hypersensitivity reactions, owing to immune responses. Here, we describe the synthesis of polyoxazoline-conjugated ASNase (POx-ASNase) and investigate its enzyme activity, anticancer efficacy, immunogenicity, and retention in the bloodstream. The water-soluble POx was coupled with surface lysine residues of ASNase using a bifunctional cross-linker. The average number of polymers bound to each enzyme was determined as 10. Although the enzymatic activity of POx-ASNase decreased to 56% of that of native ASNase, its temperature and pH dependencies remained unaltered. Remarkably, the lyophilized powder form of POx-ASNase retained its catalytic ability for 24 months. POx-ASNase demonstrated nearly identical anticancer efficacy compared to naked ASNase against leukemia and lymphoma cells (MOLT-4, CLBL-1, and K562) while displaying no cytotoxicity toward normal cells. Animal experiments conducted using rats revealed that the POx decoration suppressed the generation of anti-ASNase IgM and IgG antibodies with no detection of anti-POx antibodies. The half-life within the bloodstream extended to 34 h, representing a 17-fold increase compared to unmodified ASNase. These findings suggest that POx-ASNase serves as an anticancer therapeutic agent, characterized by the absence of antibody production and notably extended circulation persistence.
Collapse
Affiliation(s)
- Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku 112-8551, Tokyo, Japan
| | - Marika Ishimaru
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku 112-8551, Tokyo, Japan
| | - Takuma Shoji
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku 112-8551, Tokyo, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku 113-8657, Tokyo, Japan
| | - Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku 113-8657, Tokyo, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku 105-8512, Tokyo, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku 112-8551, Tokyo, Japan
| |
Collapse
|
16
|
Shaha C, Sarker B, Mahalanobish SK, Hossain MS, Karmaker S, Saha TK. Kinetics, Equilibrium, and Thermodynamics for Conjugation of Chitosan with Insulin-Mimetic [ meso-Tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadate(IV)(4-) in an Aqueous Solution. ACS OMEGA 2023; 8:41612-41623. [PMID: 37970023 PMCID: PMC10634234 DOI: 10.1021/acsomega.3c05804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
This study investigated the conjugation of chitosan with the insulin-mimetic [meso-tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadate(IV)(4-), VO(tpps), in an aqueous medium as a function of conjugation time, VO(tpps) concentrations, and temperatures. To validate the synthesis of chitosan-VO(tpps) conjugate, UV-visible and Fourier transform infrared spectrophotometric techniques were utilized. Conjugate formation is ascribed to the electrostatic interaction between the NH3+ units of chitosan and the SO3- units of VO(tpps). Chitosan enhances the stability of VO(tpps) in an aqueous medium (pH 2.5). VO(tpps) conjugation with chitosan was best explained by pseudo-second-order kinetic and Langmuir isotherm models based on kinetic and isotherm studies. The Langmuir equation determined that the maximal ability of VO(tpps) conjugated with each gram of chitosan was 39.22 μmol at a solution temperature of 45 °C. Activation energy and thermodynamic studies (Ea: 8.78 kJ/mol, ΔG: -24.52 to -27.55 kJ/mol, ΔS: 204.22 J/(mol K), and ΔH: 37.30 kJ/mol) reveal that conjugation is endothermic and physical in nature. The discharge of VO(tpps) from conjugate was analyzed in freshly prepared 0.1 mol/L phosphate buffer (pH 7.4) at 37 °C. The release of VO(tpps) from the conjugate is a two-phase process best explained by the Higuchi model, according to a kinetic analysis of the release data. Taking into consideration all experimental findings, it is proposed that chitosan can be used to formulate both solid and liquid insulin-mimetic chitosan-VO(tpps) conjugates.
Collapse
Affiliation(s)
- Chironjit
Kumar Shaha
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Veterinary
Drug Residue Analysis Division, Institute
of Food and Radiation Biology, Atomic Energy Research Establishment
(AERE), Gonokbari, Savar, Dhaka 1349, Bangladesh
| | - Bithy Sarker
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Md. Sharif Hossain
- Department
of Biotechnology & Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Subarna Karmaker
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tapan Kumar Saha
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
17
|
Nie J, Sun Y, Cheng X, Wen G, Liu X, Cheng M, Zhao J, Li W. Plant Protein-Peptide Supramolecular Polymers with Reliable Tissue Adhesion for Surgical Sealing. Adv Healthc Mater 2023; 12:e2203301. [PMID: 36960795 DOI: 10.1002/adhm.202203301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/08/2023] [Indexed: 03/25/2023]
Abstract
The fusion of protein science and peptide science opens up new frontiers in creating innovative biomaterials. Herein, a new kind of adhesive soft materials based on a natural occurring plant protein and short peptides via a simple co-assembly route are explored. The hydrophobic zein is supercharged by sodium dodecyl sulfate to form a stable protein colloid, which is intended to interact with charge-complementary short peptides via multivalent ionic and hydrogen bonds, forming adhesive materials at macroscopic level. The adhesion performance of the resulting soft materials can be fine-manipulated by customizing the peptide sequences. The adhesive materials can resist over 78 cmH2 O of bursting pressure, which is high enough to meet the sealing requirements of dural defect. Dural sealing and repairing capability of the protein-peptide biomaterials are further identified in rat and rabbit models. In vitro and in vivo assays demonstrate that the protein-peptide adhesive shows excellent anti-swelling property, low cell cytotoxicity, hemocompatibility, and inflammation response. In particular, the protein-peptide supramolecular biomaterials can in vivo dissociate and degrade within two weeks, which can well match with the time-window of the dural repairing. This work underscores the versatility and availability of the supramolecular toolbox in the easy-to-implement fabrication of protein-peptide biomaterials.
Collapse
Affiliation(s)
- Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Yingchuan Sun
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Guang Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Meng Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Jianwu Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| |
Collapse
|
18
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
19
|
Heredero M, Beloqui A. Enzyme-Polymer Conjugates for Tuning, Enhancing, and Expanding Biocatalytic Activity. Chembiochem 2023; 24:e202200611. [PMID: 36507915 DOI: 10.1002/cbic.202200611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Combining polymers with functional proteins is an approach that has brought several successful stories in the field of biomedicine with PEGylated therapeutic proteins. The latest advances in polymer chemistry have facilitated the expansion of protein-polymer hybrids to other research areas such as biocatalysis. Polymers can impart stability and novel functionalities to the enzyme of interest, thereby improving the catalytic performance of a given reaction. In this review, we have revisited the main methodologies currently used for the synthesis of enzyme-polymer hybrids, unveiling the interplay between the configuration and the composition of the assembled structure and the eventual traits of the hybrid. Finally, the latest advances, such as the assembly of polymer-based chemoenzymatic nanoreactors and the use of deep learning methodologies to achieve the most suitable polymer compositions for catalysis, are discussed.
Collapse
Affiliation(s)
- Marcos Heredero
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Ana Beloqui
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
20
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
21
|
Zhang J, Sui P, Yang W, Shirshin EA, Zheng M, Wei B, Xu C, Wang H. Site-specific modification of N-terminal α-amino groups of succinylated collagen. Int J Biol Macromol 2023; 225:310-317. [PMID: 36356876 DOI: 10.1016/j.ijbiomac.2022.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Polymer based protein engineering provides an attractive strategy to endow novel properties to protein and overcome the inherent limitations of both counterparts. The exquisite control of site and density of attached polymers on the proteins is crucial for the bioactivities and properties of the protein-polymer bioconjugates, but is still a challenge. Collagen is the major structural protein in extracellular matrix of animals. Based on the advancements of polymer-based protein engineering, collagen bioconjugates has been widely fabricated and applied as biomaterials. However, the site-specific synthesis of well-defined collagen-polymer bioconjugates is still not achieved. Herein, a versatile strategy for the specific modification of N-terminal α-amino groups in collagen was developed. Firstly, all reactive amino groups of tropocollagen (collagen with telopeptides) were protected by succinic anhydride. Then, the telopeptides were digested to give the active N-terminal α-amino groups, which were subsequently attached with poly(N-isopropylacrylamide) (PNIPAAm) via "grafting from" method based on the atom transfer radical polymerization (ATRP). The site-specific N-terminal PNIPAAm modified succinylated collagen was prepared and its structure, thermal responsive behaviour, and properties was explored.
Collapse
Affiliation(s)
- Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peishan Sui
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Wendian Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Evgeny A Shirshin
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991 Moscow, Russia
| | - Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Haibo Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Mathieu‐Gaedke M, Böker A, Glebe U. How to Characterize the Protein Structure and Polymer Conformation in Protein‐Polymer Conjugates – a Perspective. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maria Mathieu‐Gaedke
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Ulrich Glebe
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
23
|
Melodia D, Di Pietro Z, Cao C, Stenzel MH, Chapman R. Traceless pH-Sensitive Antibody Conjugation Inspired by Citraconic Anhydride. Biomacromolecules 2022; 23:5322-5329. [PMID: 36395470 DOI: 10.1021/acs.biomac.2c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We introduce a pH-sensitive amide bond, inspired by citraconic anhydride, for the reversible conjugation of polymers to the lysine residues of proteins and antibodies. The pH sensitivity arises from a conformation lock at the end of the polymer, which we introduce by means of a Diels-Alder reaction, that positions a carboxylic acid close to the amide after conjugation occurs. The amide is stable over weeks at pH 7.4 but sensitive to hydrolysis at pH 5.5 and below, returning the amine to its original state. The pH sensitivity can be tuned by positioning secondary amide groups nearby. We use this approach to PEGylate an antibody to human serum albumin at high dilution and demonstrate successful recovery of the activity after hydrolysis at pH 5.5. These results offer a convenient and traceless approach to protein and antibody functionalization.
Collapse
Affiliation(s)
- Daniele Melodia
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Zachary Di Pietro
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Cao
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | | | - Robert Chapman
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
24
|
Church DC, Davis E, Caparco AA, Takiguchi L, Chung YH, Steinmetz NF, Pokorski JK. Polynorbornene-based bioconjugates by aqueous grafting-from ring-opening metathesis polymerization reduce protein immunogenicity. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101067. [PMID: 36816463 PMCID: PMC9933924 DOI: 10.1016/j.xcrp.2022.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein-polymer conjugates (PPCs) improve therapeutic efficacy of proteins and have been widely used for the treatment of various diseases such as cancer, diabetes, and hepatitis. PEGylation is considered as the "gold standard" in bioconjugation, although in practice its clinical applications are becoming limited because of extensive evidence of immunogenicity induced by pre-existing anti-PEG antibodies in patients. Here, optimized reaction conditions for living aqueous grafting-from ring-opening metathesis polymerization (ROMP) are utilized to synthesize water-soluble polynorbornene (PNB)-based PPCs of lysozyme (Lyz-PPCs) and bacteriophage Qβ (Qβ-PPCs) as PEG alternatives. Lyz-PPCs retain nearly 100% bioactivity and Qβ-PPCs exhibit up to 35% decrease in protein immunogenicity. Qβ-PPCs derived from NB-PEG show no reduction in recognition by anti-PEG antibodies while Qβ-PPCs derived from NB-Zwit show >95% reduction as compared with Qβ-PEG. This work demonstrates a new method for PPC synthesis and the utility of grafting from PPCs to evade immune recognition.
Collapse
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Elizabathe Davis
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Adam A. Caparco
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren Takiguchi
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
- Lead contact
| |
Collapse
|
25
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Savin DA, Harris M, Eddy MT. Atomic-Scale View of Protein-PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin-3. Angew Chem Int Ed Engl 2022; 61:e202203784. [PMID: 35922375 PMCID: PMC9529833 DOI: 10.1002/anie.202203784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 07/28/2023]
Abstract
PEGylation is a promising approach to address the central challenge of applying biologics, i.e., lack of protein stability in the demanding environment of the human body. Wider application is hindered by lack of atomic level understanding of protein-PEG interactions, preventing design of conjugates with predicted properties. We deployed an integrative structural and biophysical approach to address this critical challenge with the PEGylated carbohydrate recognition domain of human galectin-3 (Gal3C), a lectin essential for cell adhesion and potential biologic. PEGylation dramatically increased Gal3C thermal stability, forming a stable intermediate and redirecting its unfolding pathway. Structural details revealed by NMR pointed to a potential role of PEG localization facilitated by charged residues. Replacing these residues subtly altered the protein-PEG interface and thermal unfolding behavior, providing insight into rationally designing conjugates while preserving PEGylation benefits.
Collapse
Affiliation(s)
- Amanda Pritzlaff
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Guillaume Ferré
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Emma Mulry
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Ling Lin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Daniel A. Savin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Michael Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Matthew T. Eddy
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
26
|
Liu Y, Bai X, Lyu C, Fang J, Zhang F, Wu WH, Wei W, Zhang WB. Mechano-bioconjugation Strategy Empowering Fusion Protein Therapeutics with Aggregation Resistance, Prolonged Circulation, and Enhanced Antitumor Efficacy. J Am Chem Soc 2022; 144:18387-18396. [PMID: 36178288 DOI: 10.1021/jacs.2c06532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioconjugation is a powerful protein modification strategy to improve protein properties. Herein, we report mechano-bioconjugation as a novel approach to empower fusion protein therapeutics and demonstrate its utility by a protein heterocatenane (cat-IFN-ABD) containing interferon-α2b (IFN) mechanically interlocked with a consensus albumin-binding domain (ABD). The conjugate was selectively synthesized in cellulo following a cascade of post-translational events using a pair of heterodimerizing p53dim variants and two orthogonal split-intein reactions. The catenane topology was proven by combined techniques of LC-MS, SDS-PAGE, SEC, and controlled proteolytic digestion. Not only did cat-IFN-ABD retain activities comparable to those of the wild-type IFN and ABD, the conjugate also exhibited enhanced aggregation resistance and prolonged circulation time over the simple linear and cyclic fusions. Consequently, cat-IFN-ABD potently inhibited tumor growth in the mouse xenograft model. Therefore, mechano-bioconjugation by catenation accomplishes function integration with additional benefits, providing an alternative pathway for developing advanced protein therapeutics.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Xilin Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
27
|
Behera S, Balasubramanian S. Molecular simulations explain the exceptional thermal stability, solvent tolerance and solubility of protein-polymer surfactant bioconjugates in ionic liquids. Phys Chem Chem Phys 2022; 24:21904-21915. [PMID: 36065955 DOI: 10.1039/d2cp02636h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Proteins complexed electrostatically with polymer surfactants constitute a viscous liquid by themselves, called the solvent-free protein liquid (SFPL). A solution of SFPL in a room temperature ionic liquid (PS-IL) offers the protein hyperthermal stability, higher solubility and greater IL tolerance. A generic understanding of these protein-polymer systems is obtained herein through extensive atomistic molecular dynamics simulations of three different enzymes (lipase A, lysozyme and myoglobin) under various conditions. Along with increased intra-protein hydrogen bonding, the surfactant coating around the proteins imparts greater thermal stability, and also aids in screening protein-IL interactions, endowing them IL tolerance. The reduced surface polarity of the protein-polymer bioconjugate and hydrogen bonding between the ethylene glycol groups of the surfactant and the IL cation contribute to the facile solvation of the protein in its PS-IL form. The results presented here rationalize several experimental observations and will aid in the improved design of such hybrid materials for sustainable catalysis.
Collapse
Affiliation(s)
- Sudarshan Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| |
Collapse
|
28
|
Theodorou A, Gounaris D, Voutyritsa E, Andrikopoulos N, Baltzaki CIM, Anastasaki A, Velonia K. Rapid Oxygen-Tolerant Synthesis of Protein-Polymer Bioconjugates via Aqueous Copper-Mediated Polymerization. Biomacromolecules 2022; 23:4241-4253. [PMID: 36067415 DOI: 10.1021/acs.biomac.2c00726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of protein-polymer conjugates usually requires extensive and costly deoxygenation procedures, thus limiting their availability and potential applications. In this work, we report the ultrafast synthesis of polymer-protein bioconjugates in the absence of any external deoxygenation via an aqueous copper-mediated methodology. Within 10 min and in the absence of any external stimulus such as light (which may limit the monomer scope and/or disrupt the secondary structure of the protein), a range of hydrophobic and hydrophilic monomers could be successfully grafted from a BSA macroinitiator, yielding well-defined polymer-protein bioconjugates at quantitative yields. Our approach is compatible with a wide range of monomer classes such as (meth) acrylates, styrene, and acrylamides as well as multiple macroinitiators including BSA, BSA nanoparticles, and beta-galactosidase from Aspergillus oryzae. Notably, the synthesis of challenging protein-polymer-polymer triblock copolymers was also demonstrated, thus significantly expanding the scope of our strategy. Importantly, both lower and higher scale polymerizations (from 0.2 to 35 mL) were possible without compromising the overall efficiency and the final yields. This simple methodology paves the way for a plethora of applications in aqueous solutions without the need of external stimuli or tedious deoxygenation.
Collapse
Affiliation(s)
- Alexis Theodorou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Dimitris Gounaris
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Errika Voutyritsa
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nicholas Andrikopoulos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | | | | | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
29
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Eddy M, Savin DA, Harris M. Atomic‐Scale View of Protein–PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin‐3. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Emma Mulry
- University of Florida Department of Chemistry UNITED STATES
| | - Ling Lin
- University of Florida Department of Chemistry UNITED STATES
| | | | - Matthew Eddy
- University of Florida Chemistry 126 Sisler Hall 32611 Gainesville UNITED STATES
| | | | - Michael Harris
- University of Florida Department of Chemistry UNITED STATES
| |
Collapse
|
30
|
Moncalvo F, Lacroce E, Franzoni G, Altomare A, Fasoli E, Aldini G, Sacchetti A, Cellesi F. Selective Protein Conjugation of Poly(glycerol monomethacrylate) and Poly(polyethylene glycol methacrylate) with Tunable Topology via Reductive Amination with Multifunctional ATRP Initiators for Activity Preservation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filippo Moncalvo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giulia Franzoni
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, 20133 Milan, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
31
|
Chen G, Butani N, Ghosh R. Fast and high-resolution fractionation of positional isomers of a PEGylated protein using membrane chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123292. [DOI: 10.1016/j.jchromb.2022.123292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
|
32
|
Yu H, Feng J, Zhong F, Wu Y. Chemical Modification for the "off-/on" Regulation of Enzyme Activity. Macromol Rapid Commun 2022; 43:e2200195. [PMID: 35482602 DOI: 10.1002/marc.202200195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Abstract
Enzymes with excellent catalytic performance play important roles in living organisms. Advances in strategies for enzyme chemical modification have enabled powerful strategies for exploring and manipulating enzyme functions and activities. Based on the development of chemical enzyme modifications, incorporating external stimuli-responsive features-for example, responsivity to light, voltage, magnetic force, pH, temperature, redox activity, and small molecules-into a target enzyme to turn "on" and "off" its activity has attracted much attention. The ability to precisely control enzyme activity using different approaches would greatly expand the chemical biology toolbox for clarification and detection of signal transduction and in vivo enzyme function and significantly promote enzyme-based disease therapy. This review summarizes the methods available for chemical enzyme modification mainly for the off-/on control of enzyme activity and particularly highlights the recent progress regarding the applications of this strategy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huaibin Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiayi Feng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Ministry of Education Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
33
|
Rose DA, Treacy JW, Yang ZJ, Ko JH, Houk KN, Maynard HD. Self-Immolative Hydroxybenzylamine Linkers for Traceless Protein Modification. J Am Chem Soc 2022; 144:6050-6058. [PMID: 35321547 DOI: 10.1021/jacs.2c01136] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traceless self-immolative linkers are widely used for the reversible modification of proteins and peptides. This article describes a new class of traceless linkers based on ortho- or para-hydroxybenzylamines. The introduction of electron-donating substituents on the aromatic core stabilizes the quinone methide intermediate, thus providing a platform for payload release that can be modulated. To determine the extent to which the electronics affect the rate of release, we prepared a small library of hydroxybenzylamine linkers with varied electronics in the aromatic core, resulting in half-lives ranging from 20 to 144 h. Optimization of the linker design was carried out with mechanistic insights from density functional theory (DFT) and the in silico design of an intramolecular trapping agent through the use of DFT and intramolecular distortion energy calculations. This resulted in the development of a faster self-immolative linker with a half-life of 4.6 h. To demonstrate their effectiveness as traceless linkers for bioconjugation, reversible protein-polyethylene glycol conjugates with a model protein lysozyme were prepared, which had reduced protein activity but recovered ≥94% activity upon traceless release of the polymer. This new class of linkers with tunable release rates expands the traceless linkers toolbox for a variety of bioconjugation applications.
Collapse
Affiliation(s)
- Douglas A Rose
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Zhongyue J Yang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
34
|
Liu Y, Ba F, Liu WQ, Wu C, Li J. Plug-and-Play Functionalization of Protein–Polymer Conjugates for Tunable Catalysis Enabled by Genetically Encoded “Click” Chemistry. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
35
|
Vardaxi A, Kafetzi M, Pispas S. Polymeric Nanostructures Containing Proteins and Peptides for Pharmaceutical Applications. Polymers (Basel) 2022; 14:777. [PMID: 35215689 PMCID: PMC8877994 DOI: 10.3390/polym14040777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Over the last three decades, proteins and peptides have attracted great interest as drugs of choice for combating a broad spectrum of diseases, including diabetes mellitus, cancer, and infectious and neurological diseases. However, the delivery of therapeutic proteins to target sites should take into account the obstacles and limitations related to their intrinsic sensitivity to different environmental conditions, fragile tertiary structures, and short half-life. Polymeric nanostructures have emerged as competent vehicles for protein delivery, as they are multifunctional and can be tailored according to their peculiarities. Thus, the enhanced bioavailability and biocompatibility, the adjustable control of physicochemical features, and the colloidal stability of polymer-based nanostructures further enable either the embedding or conjugation of hydrophobic or hydrophilic bioactive molecules, which are some of the features of paramount importance that they possess and which contribute to their selection as vehicles. The present review aims to discuss the prevalent nanostructures composed of block copolymers from the viewpoint of efficient protein hospitality and administration, as well as the up-to-date scientific publications and anticipated applications of polymeric nanovehicles containing proteins and peptides.
Collapse
Affiliation(s)
| | | | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.V.); (M.K.)
| |
Collapse
|
36
|
Chernikova EV, Kudryavtsev YV. RAFT-Based Polymers for Click Reactions. Polymers (Basel) 2022; 14:570. [PMID: 35160559 PMCID: PMC8838018 DOI: 10.3390/polym14030570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
The parallel development of reversible deactivation radical polymerization and click reaction concepts significantly enriches the toolbox of synthetic polymer chemistry. The synergistic effect of combining these approaches manifests itself in a growth of interest to the design of well-defined functional polymers and their controlled conjugation with biomolecules, drugs, and inorganic surfaces. In this review, we discuss the results obtained with reversible addition-fragmentation chain transfer (RAFT) polymerization and different types of click reactions on low- and high-molar-mass reactants. Our classification of literature sources is based on the typical structure of macromolecules produced by the RAFT technique. The review addresses click reactions, immediate or preceded by a modification of another type, on the leaving and stabilizing groups inherited by a growing macromolecule from the chain transfer agent, as well as on the side groups coming from monomers entering the polymerization process. Architecture and self-assembling properties of the resulting polymers are briefly discussed with regard to their potential functional applications, which include drug delivery, protein recognition, anti-fouling and anti-corrosion coatings, the compatibilization of polymer blends, the modification of fillers to increase their dispersibility in polymer matrices, etc.
Collapse
Affiliation(s)
- Elena V. Chernikova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Yaroslav V. Kudryavtsev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, 119991 Moscow, Russia
| |
Collapse
|
37
|
Ishaqat A, Herrmann A. Polymers Strive for Accuracy: From Sequence-Defined Polymers to mRNA Vaccines against COVID-19 and Polymers in Nucleic Acid Therapeutics. J Am Chem Soc 2021; 143:20529-20545. [PMID: 34841867 DOI: 10.1021/jacs.1c08484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Unquestionably, polymers have influenced the world over the past 100 years. They are now more crucial than ever since the COVID-19 pandemic outbreak. The pandemic paved the way for certain polymers to be in the spotlight, namely sequence-defined polymers such as messenger ribonucleic acid (mRNA), which was the first type of vaccine to be authorized in the U.S. and Europe to protect against the SARS-CoV-2 virus. This rise of mRNA will probably influence scientific research concerning nucleic acids in general and RNA therapeutics in specific. In this Perspective, we highlight the recent trends in sequence-controlled and sequence-defined polymers. Then we discuss mRNA vaccines as an example to illustrate the need of ultimate sequence control to achieve complex functions such as specific activation of the immune system. We briefly present how mRNA vaccines are produced, the importance of modified nucleotides, the characteristic features, and the advantages and challenges associated with this class of vaccines. Finally, we discuss the chances and opportunities for polymer chemistry to provide solutions and contribute to the future progress of RNA-based therapeutics. We highlight two particular roles of polymers in this context. One represents conjugation of polymers to nucleic acids to form biohybrids. The other is concerned with advanced polymer-based carrier systems for nucleic acids. We believe that polymers can help to address present problems of RNA-based therapeutic technologies and impact the field beyond the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aman Ishaqat
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
38
|
Lima LMTR, Araújo TS, Almeida MDS. Unambiguous characterization of
PEGylation
site on human amylin by two‐dimensional nuclear magnetic resonance spectroscopy. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luís Maurício T. R. Lima
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Laboratório de Macromoléculas (LAMAC/DIMAV) Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) Duque de Caxias RJ Brazil
| | - Talita Stelling Araújo
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Protein Advanced Biochemistry, CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Marcius da Silva Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Protein Advanced Biochemistry, CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
39
|
Syntheses of benzhydryl 2-propanoyl-functionalized trithiocarbonates and its use as chain transfer agents in the RAFT polymerization of styrene. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Díaz-Caballero M, Navarro S, Ventura S. Functionalized Prion-Inspired Amyloids for Biosensor Applications. Biomacromolecules 2021; 22:2822-2833. [PMID: 34196531 PMCID: PMC8483438 DOI: 10.1021/acs.biomac.1c00222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Protein
amyloid nanofibers provide a biocompatible platform for
the development of functional nanomaterials. However, the functionalities
generated up to date are still limited. Typical building blocks correspond
to aggregation-prone proteins and peptides, which must be modified
by complex and expensive reactions post-assembly. There is high interest
in researching alternative strategies to tailor amyloid-based nanostructures’
functionality on demand. In the present study, the biotin-streptavidin
system was exploited for this purpose. Prion-inspired heptapeptides
(Ac-NYNYNYN-NH2, Ac-QYQYQYQ-NH2, and Ac-SYSYSYS-NH2) were doped with biotin-conjugated counterparts and assembled
into amyloid-like fibers under mild conditions. The scaffolds’
versatile functionalization was demonstrated by decorating them with
different streptavidin conjugates, including gold nanoparticles, quantum
dots, and enzymes. In particular, they were functionalized with peroxidase
or phosphatase activities using streptavidin conjugated with horseradish
peroxidase and alkaline phosphatase, respectively. Modification of
amyloid-like nanostructures has generally been restricted to the addition
of a single protein moiety. We functionalized the fibrils simultaneously
with glucose oxidase and horseradish peroxidase, coupling these activities
to build up a nanostructured glucose biosensor. Overall, we present
a simple, modular, and multivalent approach for developing amyloid-based
nanomaterials functionalized with any desired combination of chemical
and biological moieties.
Collapse
Affiliation(s)
- Marta Díaz-Caballero
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
41
|
Fucci IJ, Sinha K, Rule GS. Protein Dynamics Is Altered by a High Surface Density of Atomic Transfer Radical Polymerization Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7185-7193. [PMID: 34048258 DOI: 10.1021/acs.langmuir.1c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effect of atomic transfer radical polymerization (ATRP) polymers on the structure and dynamics of a 14.5 kDa RNA binding protein, Rho130, was assessed using NMR. A near-homogeneous sample was generated by optimizing initiator coupling to maximize the number of modified Lys residues. The reactivity of individual Lys residues was correlated with the average solvent accessible surface area from molecular dynamics (MD) simulations and influenced by local interactions. Larger structural changes were seen with the addition of the initiator alone than with polymer growth. Structural changes were localized to the N-terminal helical domain of the protein and MD simulations suggest stabilization of the terminus of one helix by the addition of the ATRP initiator and an initiator-induced change in interhelical angles. Relaxation dispersion shows that polymer addition, but not attachment of the initiator, causes a reduction in the microsecond-millisecond dynamics of the hydrophobic core.
Collapse
Affiliation(s)
- Ian J Fucci
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaustubh Sinha
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
42
|
Kim J, Lee JY, Park HY, Kim H, Kang JH, Kim HJ, Jeong W. Combination of peptides with biological, organic, and inorganic materials for synergistically enhanced diagnostics and therapeutics. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joo‐Young Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Jae Yun Lee
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyunji Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Woo‐Jin Jeong
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| |
Collapse
|
43
|
Kasza G, Stumphauser T, Bisztrán M, Szarka G, Hegedüs I, Nagy E, Iván B. Thermoresponsive Poly( N, N-diethylacrylamide- co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers (Basel) 2021; 13:987. [PMID: 33806995 PMCID: PMC8004754 DOI: 10.3390/polym13060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Responsive (smart, intelligent, adaptive) polymers have been widely explored for a variety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropylacrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, characterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with various comonomer contents and monomer/initiator ratios are reported. It was found that all the investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hysteresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct, one-step reaction, leading to enzyme-polymer nanoparticle (EPNP) with average size of 56.9 nm. This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the enzyme-polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced by conjugation the with P(DEAAm-co-GMA) copolymer.
Collapse
Affiliation(s)
- György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Márk Bisztrán
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Imre Hegedüs
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37–47, H-1094 Budapest, Hungary
| | - Endre Nagy
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| |
Collapse
|
44
|
Peng W, Cai Y, Fanslau L, Vana P. Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem 2021. [DOI: 10.1039/d1py01172c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization is a powerful tool for the precise formation of macromolecular building blocks that can be used for the construction of well-defined nanocomposites.
Collapse
Affiliation(s)
- Wentao Peng
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Yingying Cai
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Luise Fanslau
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Rucco DJ, Barnes BE, Garrison JB, Sumerlin BS, Savin DA. Modular Genetic Code Expansion Platform and PISA Yield Well-Defined Protein-Polymer Assemblies. Biomacromolecules 2020; 21:5077-5085. [DOI: 10.1021/acs.biomac.0c01225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dominic J. Rucco
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brooke E. Barnes
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
46
|
Associative interactions between pullulan and negatively charged bovine serum albumin in physiological saline solutions. Carbohydr Polym 2020; 246:116630. [DOI: 10.1016/j.carbpol.2020.116630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/18/2023]
|
47
|
Tamshen K, Wang Y, Jamieson SM, Perry JK, Maynard HD. Genetic Code Expansion Enables Site-Specific PEGylation of a Human Growth Hormone Receptor Antagonist through Click Chemistry. Bioconjug Chem 2020; 31:2179-2190. [PMID: 32786367 PMCID: PMC8291075 DOI: 10.1021/acs.bioconjchem.0c00365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulation of human growth hormone (GH) signaling has important applications in the remediation of several diseases including acromegaly and cancer. Growth hormone receptor (GHR) antagonists currently provide the most effective means for suppression of GH signaling. However, these small 22 kDa recombinantly engineered GH analogues exhibit short plasma circulation times. To improve clinical viability, between four and six molecules of 5 kDa poly(ethylene glycol) (PEG) are nonspecifically conjugated to the nine amines of the GHR antagonist designated as B2036 in the FDA-approved therapeutic pegvisomant. PEGylation increases the molecular weight of B2036 and considerably extends its circulation time, but also dramatically reduces its bioactivity, contributing to high dosing requirements and increased cost. As an alternative to nonspecific PEGylation, we report the use of genetic code expansion technology to site-specifically incorporate the unnatural amino acid propargyl tyrosine (pglY) into B2036 with the goal of producing site-specific protein-polymer conjugates. Substitution of tyrosine 35 with pglY yielded a B2036 variant containing an alkyne functional group without compromising bioactivity, as verified by a cellular assay. Subsequent conjugation of 5, 10, and 20 kDa azide-containing PEGs via the copper-catalyzed click reaction yielded high purity, site-specific conjugates with >89% conjugation efficiencies. Site-specific attachment of PEG to B2036 is associated with substantially improved in vitro bioactivity values compared to pegvisomant, with an inverse relationship between polymer size and activity observed. Notably, the B2036-20 kDa PEG conjugate has a molecular weight comparable to pegvisomant, while exhibiting a 12.5 fold improvement in half-maximal inhibitory concentration in GHR-expressing Ba/F3 cells (103.3 nM vs 1289 nM). We expect that this straightforward route to achieve site-specific GHR antagonists will be useful for GH signal regulation.
Collapse
Affiliation(s)
- Kyle Tamshen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Yue Wang
- Liggins Institute, University of Auckland, Auckland 1203, New Zealand
| | - Stephen M.F. Jamieson
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland 1203, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1023, New Zealand
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095-1569, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
48
|
Thakor P, Bhavana V, Sharma R, Srivastava S, Singh SB, Mehra NK. Polymer–drug conjugates: recent advances and future perspectives. Drug Discov Today 2020; 25:1718-1726. [DOI: 10.1016/j.drudis.2020.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
|
49
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
50
|
Tomás RMF, Gibson MI. 100th Anniversary of Macromolecular Science Viewpoint: Re-Engineering Cellular Interfaces with Synthetic Macromolecules Using Metabolic Glycan Labeling. ACS Macro Lett 2020; 9:991-1003. [PMID: 32714634 PMCID: PMC7377358 DOI: 10.1021/acsmacrolett.0c00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023]
Abstract
Cell-surface functionality is largely programmed by genetically encoded information through modulation of protein expression levels, including glycosylation enzymes. Genetic tools enable control over protein-based functionality, but are not easily adapted to recruit non-native functionality such as synthetic polymers and nanomaterials to tune biological responses and attach therapeutic or imaging payloads. Similar to how polymer-protein conjugation evolved from nonspecific PEGylation to site-selective bioconjugates, the same evolution is now occurring for polymer-cell conjugation. This Viewpoint discusses the potential of using metabolic glycan labeling to install bio-orthogonal reactive cell-surface anchors for the recruitment of synthetic polymers and nanomaterials to cell surfaces, exploring the expanding therapeutic and diagnostic potential. Comparisons to conventional approaches that target endogenous membrane components, such as hydrophobic, protein coupling and electrostatic conjugation, as well as enzymatic and genetic tools, have been made to highlight the huge potential of this approach in the emerging cellular engineering field.
Collapse
Affiliation(s)
- Ruben M. F. Tomás
- Department of Chemistry and Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department of Chemistry and Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|