1
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2025; 38:338-370. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Kaur R, Kaushik D, Bansal V, Sharma A, Kumar M. Unrevealing the potential of macroalgae Porphyra sp. (nori) in food, pharmaceutics and health sector. J Food Sci 2025; 90:e70110. [PMID: 40111034 DOI: 10.1111/1750-3841.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Porphyra sp. (nori), a species of red seaweed, has garnered attention for its rich nutritional profile and diverse bioactive compounds. This review synthesizes current research on Porphyra nori, focusing on its composition, bioactive components, health benefits, and potential applications in functional foods and therapeutics. Key bioactives identified include polysaccharides, peptides, phenolics, and vitamins, each contributing to antioxidant, anti-inflammatory, and anticancer properties and also modulating the immune responses, supporting cardiovascular health, and influencing metabolic pathways. Furthermore, it serves as a valuable source of vitamin B12 and plays a crucial function in the synthesis of DNA, the generation of red blood cells, and the cognitive development of the neurological system. It reduces dependence on animal-derived sources for vitamin B12, whereas innovations in cultivation and processing methods significantly improve its absorption and market potential. Future research directions include elucidating molecular mechanisms, optimizing extraction methods, and exploring synergistic effects with other foods or pharmaceuticals. Porphyra nori emerges as a promising source of bioactive compounds, poised to contribute to personalized nutrition and preventive healthcare strategies.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Vikas Bansal
- Department of Food Technology, School of Engineering and Technology, Jaipur National University, Jaipur, Rajasthan, India
| | - Avinash Sharma
- Department of Biotechnology, Graphic Era (deemed to be University), Dehradun, Uttarakhand, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Mei X, Liu G, Chen G, Zhang Y, Xue C, Chang Y. Structural Determination and Functional Residues Analysis of a CBM99 Family Carbohydrate-Binding Module Targeting Porphyran. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4764-4769. [PMID: 39908185 DOI: 10.1021/acs.jafc.4c09912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Porphyran is a bioactive polysaccharide extensively distributed in algae of the genus Porphyra. Carbohydrate-binding modules (CBMs) are independent domains often found in carbohydrate-active enzymes that function to bind carbohydrates and have various applications. Only one porphyran-binding CBM has been hitherto structurally characterized. The founding member (FvCBM99) of the CBM99 family was previously shown to exhibit a specific binding capacity to the primary constituent units of porphyran. In this study, the structure of FvCBM99 was determined at 1.75 Å resolution by X-ray crystallography. The protein adopts an overall β-sandwich fold with two antiparallel β-sheets comprising 7 β-strands. Site-directed mutagenesis analysis confirmed that residues W44, W49, K83, R87, and W93 are indispensable for the interaction of FvCBM99 with porphyran. The work delivers the first structural insights into the CBM99 family, which can guide the practical applications of FvCBM99 and promote the future discovery and characterization of porphyran-binding proteins.
Collapse
Affiliation(s)
- Xuanwei Mei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guangning Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
4
|
Kim BS, Im JH, Yoon YS, Kim H, Cho JY, Ham JR, Heo YJ, Lee HI. Analysis of Nutritional Composition and Flavor Patterns by Variety ( Porphyra dentata and Porphyra yezoensis) in Dried Laver from Jeonnam, Korea. Foods 2025; 14:335. [PMID: 39941929 PMCID: PMC11817125 DOI: 10.3390/foods14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
This study analyzed 192 samples of Porphyra dentata (P-dent) and 201 samples of Porphyra yezoensis (P-yezo) from Jeonnam in Korea. Principal component analysis (PCA) and correlation analysis were conducted to establish a nutritional component dataset for laver. The analysis revealed that P-dent had higher moisture and weight but lower protein content than P-yezo. Ca, Mg, and Fe levels were higher in P-dent, while P, Na, and Zn levels were higher in P-yezo. Fatty acids composition analysis indicated that P-dent contained higher levels of linoleic acid, while P-yezo exhibited higher levels of oleic acid and eicosapentaenoic acid (EPA). P-yezo had significantly higher levels of chlorophyll and carotenoids compared to P-dent. Conversely, P-dent exhibited higher L* and b* color values, resulting in a brighter, more yellowish appearance. Sensory analysis indicated that P-yezo was more intense in saltiness and umami, whereas P-dent had higher sourness and sweetness. The principal component analysis (PCA) results showed a clear distinction between P-dent and P-yezo, and 184 correlations among factors (nutrients, characteristics, etc.) were identified. These results contribute to a new database for evaluating the quality of Jeonnam laver.
Collapse
Affiliation(s)
- Bo-Seop Kim
- Food and Nutrition Department, Sunchon National University, Suncheon-si 57922, Republic of Korea; (B.-S.K.); (J.-H.I.); (Y.-J.H.)
- Mokpo Marin Food-Industry Research Center, Mokpo-si 58621, Republic of Korea; (Y.-S.Y.); (H.K.); (J.-R.H.)
| | - Ju-Hye Im
- Food and Nutrition Department, Sunchon National University, Suncheon-si 57922, Republic of Korea; (B.-S.K.); (J.-H.I.); (Y.-J.H.)
| | - Young-Seung Yoon
- Mokpo Marin Food-Industry Research Center, Mokpo-si 58621, Republic of Korea; (Y.-S.Y.); (H.K.); (J.-R.H.)
| | - Hyunggyun Kim
- Mokpo Marin Food-Industry Research Center, Mokpo-si 58621, Republic of Korea; (Y.-S.Y.); (H.K.); (J.-R.H.)
| | - Jeong-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Ju-Ri Ham
- Mokpo Marin Food-Industry Research Center, Mokpo-si 58621, Republic of Korea; (Y.-S.Y.); (H.K.); (J.-R.H.)
| | - Yu-Jin Heo
- Food and Nutrition Department, Sunchon National University, Suncheon-si 57922, Republic of Korea; (B.-S.K.); (J.-H.I.); (Y.-J.H.)
| | - Hae-In Lee
- Food and Nutrition Department, Sunchon National University, Suncheon-si 57922, Republic of Korea; (B.-S.K.); (J.-H.I.); (Y.-J.H.)
| |
Collapse
|
5
|
Han G, Xu Y, Li J, Li K, Xu X, Gao X, Zhao Y, Jiang H, Mao X. Hypoglycemic peptide preparation from Bacillus subtilis fermented with Pyropia: Identification, molecular docking, and in vivo confirmation. Food Chem 2025; 463:141096. [PMID: 39241416 DOI: 10.1016/j.foodchem.2024.141096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Hypoglycemic foods have attracted increasing research interest. This study prepared a hypoglycemic product from Bacillus subtilis fermented with Pyropia (PBP), which has promising industrial potential, and elucidated its hypoglycemic mechanism. The aqueous PBP solution was orange, with protein as the main functional component. In vivo experiments demonstrated that PBP could increase insulin secretion and inhibit α-glucosidase activity, resulting in a hypoglycemic effect superior to that of acarbose at the same dose. Molecular docking revealed that the peptides APPVDID, GPPDSPY, PPSSPRP, and SPPPPPA from PBP could inhibit both α-glucosidase and dipeptidyl peptidase-IV (DPP-IV) activities. Pro residues promoted PBP peptide binding to the hydrophobic pocket S1 of DPP-IV. Additionally, PBP reduced inflammation and promoted the growth of beneficial gut bacteria (Prevotellaceae_UCG_003, Lachnospiraceae_UCG_001). This study presents a novel approach for the high-value utilization of Pyropia and a new option for the production of hypoglycemic functional foods and medicines.
Collapse
Affiliation(s)
- Guixin Han
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China; Jingye (Qingdao) Biotechnology Co. Ltd., Qingdao, Shandong Province 266109, PR China
| | - Yuxian Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China; Jingye (Qingdao) Biotechnology Co. Ltd., Qingdao, Shandong Province 266109, PR China
| | - Jiayu Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| | - Ke Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| | - Xinxing Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| | - Yuanhui Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China.
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China.
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266404, PR China
| |
Collapse
|
6
|
Guo YS, Gong S, Xie SM, Chen AZ, Jin HY, Liu J, Wang Q, Kang S, Li P, Wei F, Zuo TT, Ma SC. Mass Spectrometry-Based Metabolomics Investigation on Two Different Seaweeds Under Arsenic Exposure. Foods 2024; 13:4055. [PMID: 39766997 PMCID: PMC11675553 DOI: 10.3390/foods13244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Arsenic is a common toxic heavy metal contaminant that is widely present in the ocean, and seaweeds have a strong ability to concentrate arsenic, posing a potential risk to human health. This study first analyzed the arsenic content in two different seaweeds and then used an innovative method to categorize the seaweeds into low-arsenic and high-arsenic groups based on their arsenic exposure levels. Finally, a non-targeted metabolomic analysis based on mass spectrometry was conducted on seaweed from different arsenic exposure groups. The results indicated that as the arsenic concentration increased in the seaweeds, linolenic acid, tyrosine, pheophorbide a, riboflavin, and phenylalanine were upregulated, while arachidonic acid, eicosapentaenoic acid (EPA), betaine, and oleamide were downregulated. The following four key metabolic pathways involving unsaturated fatty acids and amino acids were identified: isoquinoline alkaloid biosynthesis, tyrosine metabolism, phenylalanine metabolism, and riboflavin metabolism. The identification of biomarkers and the characterization of key metabolic pathways will aid in the selection and breeding of low-arsenic-accumulating seaweed varieties, providing insights into the metabolic and detoxification mechanisms of arsenic in seaweeds.
Collapse
Affiliation(s)
- Yuan-sheng Guo
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Shuo Gong
- School of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Si-min Xie
- Guangzhou Institute for Drug Control, Key Laboratory for Quality Evaluation of Chinese Patent Medicine, National Medical Products Administration, Guangzhou 510160, China;
| | - An-zhen Chen
- Qingdao Institute for Food and Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao 266073, China;
| | - Hong-yu Jin
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Jing Liu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Qi Wang
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Shuai Kang
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Ping Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Feng Wei
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Tian-tian Zuo
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Shuang-cheng Ma
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| |
Collapse
|
7
|
Tian L, Wu L, Zhong XF, Ma LH, Du GY. Genome-Wide Characterization of ABC Transporter Genes and Expression Profiles in Red Macroalga Pyropia yezoensis Expose to Low-Temperature. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1179-1193. [PMID: 39269589 DOI: 10.1007/s10126-024-10355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024]
Abstract
Pyropia yezoensis is an important economic macroalga widely cultivated in the East Asia countries of China, Korea, and Japan. The ATP-binding cassette (ABC) transporter gene family is one of the largest transporter families in all forms of life involved in various biological processes. The characteristics of ABC transporter genes in P. yezoensis (PyABC) and their functions in stress resistance, however, remain largely unknown. In this study, PyABCs were identified and characterized their expression patterns under low-temperature stress. A total of 48 PyABCs transporters were identified and divided into eight subfamilies, which are mostly predicted as membrane-binding proteins. The cis-elements of phytohormone and low-temperature response were distinguished in promoter sequences of PyABCs. Transcriptome analysis showed that PyABCs are involved in response to low-temperature stress. Among them, 12 PyABCs were significantly up-regulated after 24 h of exposure to low temperature (2 °C). Further quantitative RT-PCR analysis corroborated the highest expression happened at 24 for detected genes of PyABCC8, PyABCF3, and PyABCI1, extraordinarily for PyABCF3, and followed by decreased expression at 48 h. The expression of PyABCI1 was generally low in all tested strains. Whereas, in a strain of P. yezoensis with lower tolerance to low temperature, the expression was observed higher in PyABCC1, PyABCC8, and remarkably high in PyABCF3. This study provided valuable information on ABC gene families in P. yezoensis and their functional characteristics, especially on low-temperature resistance, and would help to understand the adaptive mechanisms of P. yezoensis to adverse environments.
Collapse
Affiliation(s)
- Lin Tian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Lan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xue-Feng Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Li-Hong Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Guo-Ying Du
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
8
|
Lemos MFL. Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Mar Drugs 2024; 22:481. [PMID: 39590761 PMCID: PMC11595546 DOI: 10.3390/md22110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The quest for sustainable space exploration and colonization is a challenge in its infancy, which faces scarcity of resources and an inhospitable environment. In recent years, advancements in space biotechnology have emerged as potential solutions to the hurdles of prolonged space habitation. Taking cues from the oceans, this review focuses on the sundry types of marine organisms and marine-derived chemicals that have the potential of sustaining life beyond planet Earth. It addresses how marine life, including algae, invertebrates, and microorganisms, may be useful in bioregenerative life support systems, food production, pharmaceuticals, radiation shielding, energy sources, materials, and other applications in space habitats. With the considerable and still unexplored potential of Earth's oceans that can be employed in developing space colonization, we allow ourselves to dream of the future where people can expand to other planets, not only surviving but prospering. Implementing the blend of marine and space sciences is a giant leap toward fulfilling man's age-long desire of conquering and colonizing space, making it the final frontier.
Collapse
Affiliation(s)
- Marco F L Lemos
- MARE-Marine and Environmental Sciences Centre, ARNET-Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
9
|
Eladl SN, Elnabawy AM, Eltanahy EG. Recent biotechnological applications of value-added bioactive compounds from microalgae and seaweeds. BOTANICAL STUDIES 2024; 65:28. [PMID: 39312045 PMCID: PMC11420431 DOI: 10.1186/s40529-024-00434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Microalgae and seaweed have been consumed as food for several decades to combat starvation and food shortages worldwide. The most famous edible microalgae species are Nostoc, Spirulina, and Aphanizomenon, in addition to seaweeds, which are used in traditional medicine and food, such as Nori, which is one of the most popular foods containing Pyropia alga as a major ingredient. Recently, many applications use algae-derived polysaccharides such as agar, alginate, carrageenan, cellulose, fucoidan, mannan, laminarin, ulvan, and xylan as gelling agents in food, pharmaceuticals, and cosmetics industries. Moreover, pigments (carotenoids particularly astaxanthins, chlorophylls, and phycobilins), minerals, vitamins, polyunsaturated fatty acids, peptides, proteins, polyphenols, and diterpenes compounds are accumulated under specific cultivation and stress conditions in the algal cells to be harvested and their biomass used as a feedstock for the relevant industries and applications. No less critical is the use of algae in bioremediation, thus contributing significantly to environmental sustainability.This review will explore and discuss the various applications of microalgae and seaweeds, emphasising their role in bioremediation, recent products with algal added-value compounds that are now on the market, and novel under-developing applications such as bioplastics and nanoparticle production. Nonetheless, special attention is also drawn towards the limitations of these applications and the technologies applied, and how they may be overcome.
Collapse
Affiliation(s)
- Salma N Eladl
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Aya M Elnabawy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eladl G Eltanahy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
10
|
Yang Y, Lin H, Fu X. Fermentation of Pyropia spp. seaweed: a comprehensive review on processing conditions, biological activities and potential applications in the food industry. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39225599 DOI: 10.1080/10408398.2024.2400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pyropia spp. seaweeds are delicious and nutritious red algae widely consumed for a long history. However, due to the non-digestibility of cell wall components by the human intestinal tract, the bioaccessibility of the intracellular bioactive compounds is low. The current industrial processing of Pyropia spp. food by drying and roasting cannot break down the cell wall; however, studies indicate that fermentation of Pyropia spp. by food-derived microorganisms is an efficient processing method to solve this problem. This paper reviews research on the fermentation of Pyropia spp., including the manufacturing process, alterations in chemical composition, flavor properties, bioactivities, and mechanisms. Furthermore, the limitations and opportunities for developing Pyropia spp. fermentation food are explored. Studies demonstrated that key metabolites of fermented Pyropia spp. were degraded polysaccharides, released phenolic compounds and flavonoids, and formed amino acids, which possessed bioactivities such as antioxidant, anti-glycation, anti-diabetic, lipid metabolism regulation beneficial to human health. The increased bioactivities implied the promoted bioaccessibility of intracellular components. Notably, fermentation positively contributed to the safety of Pyropia spp. food. In conclusion, benefits in nutrition, flavor, bioactivity, and safety suggest that fermentation technology has a promising future for application in Pyropia spp. food industry.
Collapse
Affiliation(s)
- Yuling Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaoting Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Andonova V, Nikolova K, Iliev I, Georgieva S, Petkova N, Feizi-Dehnayebi M, Nikolova S, Gerasimova A. Spectral Characteristics, In Silico Perspectives, Density Functional Theory (DFT), and Therapeutic Potential of Green-Extracted Phycocyanin from Spirulina. Int J Mol Sci 2024; 25:9170. [PMID: 39273119 PMCID: PMC11394851 DOI: 10.3390/ijms25179170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Phycocyanin (PC) is a naturally occurring green pigment in Spirulina. It was extracted by ultrasonic extraction using green technology, and its structure was studied using IR- and NMR-spectroscopy. Spectral data confirmed the PC structure. This study also involves an in silico assessment of the diverse applications of green pigment PC. Utilizing QSAR, PreADME/T, SwissADME, and Pro-Tox, this study explores the safety profile, pharmacokinetics, and potential targets of PC. QSAR analysis reveals a favorable safety profile, with the parent structure and most metabolites showing no binding to DNA or proteins. PreADME/T indicates low skin permeability, excellent intestinal absorption, and medium permeability, supporting oral administration. Distribution analysis suggests moderate plasma protein binding and cautious blood-brain barrier permeability, guiding formulation strategies. Metabolism assessments highlight interactions with key cytochrome P450 enzymes, influencing drug interactions. Target prediction analysis unveils potential targets, suggesting diverse therapeutic effects, including cardiovascular benefits, anti-inflammatory activities, neuroprotection, and immune modulation. Based on the in silico analysis, PC holds promise for various applications due to its safety, bioavailability, and potential therapeutic benefits. Experimental validation is crucial to elucidate precise molecular mechanisms, ensuring safe and effective utilization in therapeutic and dietary contexts. DFT calculations, including geometry optimization, MEP analysis, HOMO-LUMO energy surface, and quantum reactivity parameters of the PC compound, were obtained using the B3LYP/6-311G(d,p) level. This integrated approach contributes to a comprehensive understanding of PC's pharmacological profile and informs future research directions.
Collapse
Affiliation(s)
- Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Ivelin Iliev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Svetlana Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Mehran Feizi-Dehnayebi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran P.O. Box 19938-93973, Iran
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv Paisii Hilendarski, 4000 Plovdiv, Bulgaria
| | - Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| |
Collapse
|
12
|
Xu N, Xu K, Xu Y, Ji D, Wang W, Xie C. Interactions between nitrogen and phosphorus modulate the food quality of the marine crop Pyropia haitanensis (T. J. Chang & B. F. Zheng) N. Kikuchi & M. Miyata (Porphyra haitanensis). Food Chem 2024; 448:138973. [PMID: 38522292 DOI: 10.1016/j.foodchem.2024.138973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
The quality of Pyropia haitanensis (T. J. Chang & B. F. Zheng) N. Kikuchi & M. Miyata (Porphyra haitanensis) is directly affected by nutrient availability. However, the molecular mechanism underlying the synergistic regulatory effects of nitrogen (N) and phosphorus (P) availability on P. haitanensis quality is unknown. Here, we performed physiological and multi-omics analyses to reveal the combined effects of N and P on P. haitanensis quality. The pigments accumulated under high N because of increases in N metabolism and porphyrin metabolism, ultimately resulting in intensely colored thalli. High N also promoted amino acid metabolism and inosine 5'-mononucleotide (IMP) synthesis, but inhibited carbohydrates accumulation. This resulted in increased amino acid, IMP and decreased agaro-carrageenan and cellulose contents, thereby improving the nutritional value and taste. Furthermore, high P promoted carbon metabolism and amino acid metabolism.This study provided the basis for elucidating the mechanism behind N and P regulating the seaweed quality.
Collapse
Affiliation(s)
- Ningning Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Ningde, China.
| |
Collapse
|
13
|
Patil V, Sun L, Mohite V, Liang J, Wang D, Gao Y, Chen C. Effect of benthic and planktonic diatoms on the growth and biochemical composition of the commercial macroalga Pyropia haitanensis. MARINE POLLUTION BULLETIN 2024; 203:116411. [PMID: 38733890 DOI: 10.1016/j.marpolbul.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This study delves into how two ecotypes of diatom affect the Pyropia haitanensis, a valuable and commercial red macroalga. We co-cultivated P. haitanensis with a planktonic diatom Skeletonema costatum and benthic diatom Navicula climacospheniae. The results showed that benthic diatom significantly hindered P. haitanensis growth, while planktonic ones had no major impact. The macroalga restrained planktonic diatom growth but did not affect benthic diatom. Photosynthetic pigments of macroalga, except chlorophyll, were higher, indicating stress when exposed to diatoms. Microscopic images revealed dense benthic diatom attachment, potentially stressing thalli due to limited light and EPS secretion. Total carbohydrate slightly decreased in both diatom treatments, while total protein significantly decreased with increasing benthic diatom densities. In summary, benthic diatom notably influenced P. haitanensis growth, pigments, and total protein levels. This study sheds light on the interaction between microalgal ecotypes and commercial macroalga P. haitanensis, which is crucial for its economic significance.
Collapse
Affiliation(s)
- Vishal Patil
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Lin Sun
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Vitthal Mohite
- Department of Zoology, Thakur College of Science and Commerce, Kandivali (E), Mumbai 400101, India
| | - Junrong Liang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Dazhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yahui Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| | - Changping Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of Environment and Ecology/School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
14
|
Chen Y, Zhu Z, Ye Y, Li Q, Yang T, Guan C, Liu F. Comprehensive Evaluation of the Physicochemical Attributes, Antioxidant Capacity, and pH-Responsive Behavior of Starch Films Enhanced by Laver Incorporation. Foods 2024; 13:1600. [PMID: 38890829 PMCID: PMC11171868 DOI: 10.3390/foods13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Herein, a new starch film incorporating laver was developed to address issues related to inadequate water resistance and suboptimal preservation quality in food packaging. The integration of laver into starch film formulations offers a compelling avenue for creating biodegradable, active, and smart food packaging. Scanning electron microscope (SEM) analysis revealed that the starch film with a laver concentration of 70% exhibited a uniformly flat microstructure, as expected. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of intermolecular interactions and hydrogen bonding between the starch and laver. Viscoelastic tests demonstrated the superior film-forming performance of the starch/laver composite films. Moreover, it was found that the most favorable concentration of incorporated laver was 10%. Specifically, the S7-3 film emerged as a promising candidate for food packaging applications, boasting the highest contact angle (CA) value of 114.98 ± 1.28°, the lowest water solubility (WS) value of 15.38%, and a reduced water vapor transmission rate (WVTR) value of 2.52 g/m2 × h. Additionally, the S3-7 film displayed an extraordinary tensile strength of 32.47 MPa, an elongation at break of 19.04%, and a Young's modulus of 606.83 MPa. Furthermore, the starch/laver composite films exhibited outstanding UV-blocking capabilities, exceptional pH-responsive behavior, and significant antioxidant activity, underscoring their potential for packaging applications with laver integration.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmacy, Hainan Medical University, Haikou 571199, China;
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (Y.Y.); (Q.L.); (C.G.)
| | - Zhu Zhu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (Y.Y.); (Q.L.); (C.G.)
| | - Yunyue Ye
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (Y.Y.); (Q.L.); (C.G.)
| | - Qi Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (Y.Y.); (Q.L.); (C.G.)
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou 571199, China;
| | - Chengran Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.Z.); (Y.Y.); (Q.L.); (C.G.)
- Jiangsu Dairy Biotechnology Engineering Research Center, Yangzhou 225127, China
| | - Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
15
|
Lee H, Han T, Park J. Purified Pyropia yezoensis Pigment Extract-Based Tandem Dye Synthesis. Mar Drugs 2024; 22:197. [PMID: 38786588 PMCID: PMC11122725 DOI: 10.3390/md22050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Red phycoerythrin (R-PE) is a highly valuable protein found in an edible seaweed, Pyropia yezoensis. It is used extensively in biotechnological applications due to its strong fluorescence and stability in diverse environments. However, the current methods for extracting and purifying R-PE are costly and unsustainable. The aim of the present study was to enhance the financial viability of the process by improving the extraction and purification of R-PE from dried P. yezoensis and to further enhance R-PE value by incorporating it into a tandem dye for molecular biology applications. A combination of ultrafiltration, ion exchange chromatography, and gel filtration yielded concentrated (1 mg·mL-1) R-PE at 99% purity. Using purified PE and Cyanine5 (Cy5), an organic tandem dye, phycoerythrin-Cy5 (PE-Cy5), was subsequently established. In comparison to a commercially available tandem dye, PE-Cy5 exhibited 202.3% stronger fluorescence, rendering it suitable for imaging and analyzes that require high sensitivity, enhanced signal-to-noise ratio, broad dynamic range, or shorter exposure times to minimize potential damage to samples. The techno-economic analysis confirmed the financial feasibility of the innovative technique for the extraction and purification of R-PE and PE-Cy5 production.
Collapse
Affiliation(s)
- Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Taejun Han
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Ghent, Belgium
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Ghent, Belgium
- Centre for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| |
Collapse
|
16
|
Gomes-Dias JS, Teixeira-Guedes CI, Teixeira JA, Rocha CMR. Red seaweed biorefinery: The influence of sequential extractions on the functional properties of extracted agars and porphyrans. Int J Biol Macromol 2024; 257:128479. [PMID: 38040161 DOI: 10.1016/j.ijbiomac.2023.128479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Red seaweeds are exploited for their hydrocolloids, but other fractions are usually overlooked. In a novel approach, this study aimed to evaluate cold-water (CWE), ethanolic (EE), and alkaline (SE) extractions, alone and in sequence, to simultaneously: i) decrease the hydrocolloid extraction waste (valorizing bioactive side-streams and/or increasing extraction yield); and ii) increase the hydrocolloids' texturizing properties. It is the first time these extractions' synergetic and/or antagonistic effects will be accessed. For Porphyra dioica, a combination of CWE and EE was optimal: a positive influence on the melting temperature (increasing 5 °C to 74 °C) and sulphate content (a 3-fold reduction to 5 %) was observed, compared to a direct porphyran extraction. The same was observed for Gracilaria vermiculophyla, recovering two additional bioactive fractions without impacting the hydrocolloid's extraction (agar with 220 g/cm2 gelling strength and 14 % yield was obtained). The sequential use of CWE, EE, and SE was the most beneficial in Gelidium corneum processing: it enhanced agar's texturizing capacity (reaching 1150 g/cm2, a 1.5-fold increase when compared to a direct extraction), without affecting its 22 % yield or over 88 % purity. Ultimately, these findings clarified the effects of cascading biorefinery approaches from red seaweeds and their pertinence.
Collapse
Affiliation(s)
- Joana S Gomes-Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | | | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Portugal
| | - Cristina M R Rocha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Portugal.
| |
Collapse
|
17
|
Yang SM, Kim JS, Kim E, Kim HY. Rapid and Simultaneous Authentication of Six Laver Species Using Capillary Electrophoresis-Based Multiplex PCR. Foods 2024; 13:363. [PMID: 38338499 PMCID: PMC10855616 DOI: 10.3390/foods13030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Lavers are typically consumed in dried or seasoned forms. However, commercially processed lavers can lead to seafood fraud because it is impossible to authenticate the original species based on morphological characteristics alone. In this study, we developed a capillary electrophoresis-based multiplex polymerase chain reaction (PCR) to authenticate six different laver species. The species-specific primer sets to target the chloroplast rbcL or rbcS genes were newly designed. We successfully established both singleplex and multiplex conditions, which resulted in specific amplicons for each species (N. dentata, 274 bp; N. yezoensis, 211 bp; N. seriata, 195 bp; N. tenera, 169 bp; N. haitanensis, 127 bp; P. suborbiculata, 117 bp). Moreover, the assays were sensitive enough to detect DNA ranging from 10 to 0.1 pg of DNA. The optimized capillary electrophoresis-based multiplex PCR was successfully applied to 40 commercial laver products. In addition to detecting the laver species as stated on the commercial label, the assay discovered cases where less expensive species were mixed in. With its advantageous properties, such as short amplicon size, high specificity, and superior sensitivity, this assay could be used for the authentication of the six laver species.
Collapse
Affiliation(s)
| | | | | | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-M.Y.); (J.-S.K.); (E.K.)
| |
Collapse
|
18
|
Mei X, Zhang Y, Liu G, Shen J, Han J, Xue C, Xiao H, Chang Y. Characterization of a novel carbohydrate-binding module specifically binding to the major structural units of porphyran. Int J Biol Macromol 2023; 253:127106. [PMID: 37769778 DOI: 10.1016/j.ijbiomac.2023.127106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Porphyran is a promising bioactive polysaccharide majorly composed of 4-linked α-l-galactopyranose-6-sulfate (L6S) and 3-linked β-d-galactopyranose (G) disaccharide repeating units. Carbohydrate-binding modules (CBMs) have been verified to be essential tools for investigating polysaccharides. However, no confirmed CBM binding to porphyran has been hitherto reported. In this study, an unknown domain with a predicted β-sandwich fold from a potential GH86 porphyranase was discovered, and further recombinantly expressed. The CBM protein (named FvCBM99) presented a desired specificity for porphyran tetrasaccharide with an affinity constant of 1.9 × 10-4 M, while it could not bind to agarose tetrasaccharide. The sequence novelty and well-defined function of FvCBM99 and its homologs reveal a new CBM family, CBM99. Besides, the application potential of FvCBM99 in in situ visualization of porphyran was demonstrated. The discovery of FvCBM99 provides a favorable tool for future studies of porphyran.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jin Han
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| |
Collapse
|
19
|
Adarshan S, Sree VSS, Muthuramalingam P, Nambiar KS, Sevanan M, Satish L, Venkidasamy B, Jeelani PG, Shin H. Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. PLANTS (BASEL, SWITZERLAND) 2023; 13:113. [PMID: 38202421 PMCID: PMC10780804 DOI: 10.3390/plants13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.
Collapse
Affiliation(s)
- Sivakumar Adarshan
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Vairavel Sivaranjani Sivani Sree
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Krishnanjana S Nambiar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR—Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India;
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Peerzada Gh Jeelani
- Department of Biotechnology, Microbiology & Bioinformatics, National College Trichy, Tiruchirapalli 620001, Tamil Nadu, India;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| |
Collapse
|
20
|
Khairinisa MA, Latarissa IR, Athaya NS, Charlie V, Musyaffa HA, Prasedya ES, Puspitasari IM. Potential Application of Marine Algae and Their Bioactive Metabolites in Brain Disease Treatment: Pharmacognosy and Pharmacology Insights for Therapeutic Advances. Brain Sci 2023; 13:1686. [PMID: 38137134 PMCID: PMC10741471 DOI: 10.3390/brainsci13121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Seaweeds, also known as edible marine algae, are an abundant source of phytosterols, carotenoids, and polysaccharides, among other bioactive substances. Studies conducted in the past few decades have demonstrated that substances derived from seaweed may be able to pass through the blood-brain barrier and act as neuroprotectants. According to preliminary clinical research, seaweed may also help prevent or lessen the symptoms of cerebrovascular illnesses by reducing mental fatigue, preventing endothelial damage to the vascular wall of brain vessels, and regulating internal pressure. They have the ability to control neurotransmitter levels, lessen neuroinflammation, lessen oxidative stress, and prevent the development of amyloid plaques. This review aims to understand the application potential of marine algae and their influence on brain development, highlighting the nutritional value of this "superfood" and providing current knowledge on the molecular mechanisms in the brain associated with their dietary introduction.
Collapse
Affiliation(s)
- Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
- Centre of Excellence in Pharmaceutical Care Innovation, Padjadjaran University, Sumedang 45363, Indonesia
| | - Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Nadiyah Salma Athaya
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Vandie Charlie
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Hanif Azhar Musyaffa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Eka Sunarwidhi Prasedya
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia;
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83126, Indonesia
| | - Irma Melyani Puspitasari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
- Centre of Excellence in Pharmaceutical Care Innovation, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
21
|
Kim TH, Heo SY, Han JS, Jung WK. Anti-inflammatory effect of polydeoxyribonucleotides (PDRN) extracted from red alga (Porphyra sp.) (Ps-PDRN) in RAW 264.7 macrophages stimulated with Escherichia coli lipopolysaccharides: A comparative study with commercial PDRN. Cell Biochem Funct 2023; 41:889-897. [PMID: 37589166 DOI: 10.1002/cbf.3840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Polydeoxyribonucleotide (PDRN) is a DNA-derived drug extracted from the sperm cells of Oncorhynchus mykiss or O. keta. PDRN exhibits wound healing and anti-inflammatory activities by activating adenosine A2A receptor and salvage pathways. However, commercial PDRN products (e.g., Placentex, Rejuvenex, and HiDr) have limitations as they are exclusively extracted O. mykiss and O. keta, which are expensive and can only be used as extraction sources during a specific period when their sperm cells are activated. Therefore, this study aimed to extract PDRN from Porphyra sp. (Ps-PDRN) and investigate whether it has anti-inflammatory activity through a comparative study with commercial product. The results indicated that Ps-PDRN had an anti-inflammatory effect on Escherichia coli lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophages. It inhibited nitric oxide production and inducible nitric oxygen synthase protein expression by suppressing phosphorylation of p38 and ERK, without cytotoxicity. Furthermore, Ps-PDRN promoted cell proliferation and collagen production in human dermal fibroblast. In conclusion, our study confirms that Ps-PDRN exhibits both anti-inflammatory and cell proliferative effects. These results indicated that Ps-PDRN has the potential as a bioactive drug for tissue engineering.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - Ji Sung Han
- All In One GENETECH, Busan, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine-Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
22
|
Sun Y, Cui Y, Wang R, Ma J, Sun H, Cheng L, Yang R. The Hydrolysis of Pigment-Protein Phycoerythrin by Bromelain Enhances the Color Stability. Foods 2023; 12:2574. [PMID: 37444311 DOI: 10.3390/foods12132574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Phycoerythrin (PE) is a natural protein-pigment complex with a strong pink color, but it is sensitive to thermal and light variations. In this study, PE was extracted from Porphyra haitanensis in a yield of 0.2% (w/w). The phycoerythrin hydrolysates (PEH) (3-10 kDa) were prepared by enzymatic hydrolysis of PE with bromelain (8000 U/g) at 47 °C for 30 min, with a degree of hydrolysis (DH) of 11.57 ± 0.39% and a color degradation rate of 7.98 ± 0.39%. The physicochemical properties of PEH were evaluated. The UV and fluorescence spectra indicated that bromelain changed the microenvironment around phycoerythrobilin (PEB). The infrared spectrum revealed that the bromelain hydrolysis increased the α-helix content of PEH. The scanning electron microscope showed that bromelain destroyed the dense and smooth structure of PE, resulting in irregular porous structures. The radical scavenging activities of DPPH and ABTS of PEH were increased relative to that of PE (p < 0.05). The thermal (50-80 °C)-, UV (0.5-3 h)-, visible light irradiation (2-8 h)-, and metal ion exposing stabilities of PEH were significantly improved (p < 0.05). This study provides a potential scheme for overcoming the sensitivity of PE to thermal and light variations and facilitates PEH as a natural colorant ingredient in food and pigment applications.
Collapse
Affiliation(s)
- Yifei Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuanmeng Cui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruhua Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haili Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Veličković L, Simović A, Gligorijević N, Thureau A, Obradović M, Vasović T, Sotiroudis G, Zoumpanioti M, Brûlet A, Ćirković Veličković T, Combet S, Nikolić M, Minić S. Exploring and strengthening the potential of R-phycocyanin from Nori flakes as a food colourant. Food Chem 2023; 426:136669. [PMID: 37352716 DOI: 10.1016/j.foodchem.2023.136669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
This study aimed to purify, characterise and stabilise the natural food colourant, R-phycocyanin (R-PC), from the red algae Porphyra spp. (Nori). We purified R-PC from dried Nori flakes with a high purity ratio (A618/A280 ≥ 3.4) in native form (α-helix content 53%). SAXS measurements revealed that R-PC is trimeric ((αβ)3) in solution. The thermal denaturation of α-helix revealed one transition (Tm at 52 °C), while the pH stability study showed R-PC is stable in the pH range 4-8. The thermal treatment of R-PC at 60 °C has detrimental and irreversible effects on R-PC colour and antioxidant capacity (22 % of residual capacity). However, immobilisation of R-PC within calcium alginate beads completely preserves R-PC colour and mainly retains its antioxidant ability (78 % of residual capacity). Results give new insights into the stability of R-PC and preservation of its purple colour and bioactivity by encapsulation in calcium alginate beads.
Collapse
Affiliation(s)
- Luka Veličković
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Ana Simović
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Nikola Gligorijević
- University of Belgrade - Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Aurélien Thureau
- SWING Beamline, Synchrotron SOLEIL, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France.
| | - Milica Obradović
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Tamara Vasović
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Georgios Sotiroudis
- National Hellenic Research Foundation (NHRF), Institute of Chemical Biology, 48 Vassileos Constantinou Ave., Athens 11635, Greece.
| | - Maria Zoumpanioti
- National Hellenic Research Foundation (NHRF), Institute of Chemical Biology, 48 Vassileos Constantinou Ave., Athens 11635, Greece.
| | - Annie Brûlet
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France.
| | - Tanja Ćirković Veličković
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium; Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia.
| | - Sophie Combet
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France.
| | - Milan Nikolić
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Simeon Minić
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
24
|
Lee H, Park DH, Kim EJ, Choi MJ. Freshness Analysis of Raw Laver ( Pyropia yenzoensis) Conserved under Supercooling Conditions. Foods 2023; 12:foods12030510. [PMID: 36766039 PMCID: PMC9913910 DOI: 10.3390/foods12030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Freezing raw laver is unsuitable for the laver industry due to process characteristics and economic problems. Therefore, this study attempted to investigate supercooled storage to extend the storage period without freezing, rather than refrigeration. To compare and analyze the storage ability of supercooling, the experiment was performed under refrigeration (5 °C), constant supercooling (CS, -2 °C), stepwise supercooling (SS, -2 °C), and freezing (-18 °C) conditions for 15 days, and the physicochemical changes according to the treatment and period were investigated. All SS samples, which were designed for stable supercooling, were kept in a supercooled state for 15 days. Two samples among the twelve total subjected to CS were frozen. At 9 days, the drip losses of the CS and SS samples were 6.32% and 6.48%, respectively, which was two times lower than that of refrigeration and three times lower than that of the frozen samples. The VBN of the refrigerated samples was 108.33 mg/100 g at 6 days, which exceeded the decomposition criterion. Simultaneously, the VBN of the other treatments was under the decomposition criterion of 30 mg/100 g. However, the VBN of both supercooling samples at 15 days increased to higher than the decomposition criterion. Regarding appearance, the refrigerated samples showed tissue destruction at 9 days, but tissue destruction of the CS and CC samples was observed at 15 days, and tissue destruction of the frozen samples was not observed until 15 days. Consequently, supercooling did not maintain quality for longer periods than freezing, but it did extend the shelf life more than refrigeration, and effectively preserved the quality for a short period.
Collapse
Affiliation(s)
- Hyeonbo Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Hyeon Park
- Kimchi Industry Promotion Division, Practical Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Eun Jeong Kim
- Refrigerator Research of Engineering Division, Home Appliance and Air Solution Company, LG Electronics, Changwon 51533, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-3048
| |
Collapse
|
25
|
Che S, Du G, Zhong X, Mo Z, Wang Z, Mao Y. Quantification of Photosynthetic Pigments in Neopyropia yezoensis Using Hyperspectral Imagery. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0012. [PMID: 37040513 PMCID: PMC10076050 DOI: 10.34133/plantphenomics.0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 06/19/2023]
Abstract
Phycobilisomes and chlorophyll-a (Chla) play important roles in the photosynthetic physiology of red macroalgae and serve as the primary light-harvesting antennae and reaction center for photosystem II. Neopyropia is an economically important red macroalga widely cultivated in East Asian countries. The contents and ratios of 3 main phycobiliproteins and Chla are visible traits to evaluate its commercial quality. The traditional analytical methods used for measuring these components have several limitations. Therefore, a high-throughput, nondestructive, optical method based on hyperspectral imaging technology was developed for phenotyping the pigments phycoerythrin (PE), phycocyanin (PC), allophycocyanin (APC), and Chla in Neopyropia thalli in this study. The average spectra from the region of interest were collected at wavelengths ranging from 400 to 1000 nm using a hyperspectral camera. Following different preprocessing methods, 2 machine learning methods, partial least squares regression (PLSR) and support vector machine regression (SVR), were performed to establish the best prediction models for PE, PC, APC, and Chla contents. The prediction results showed that the PLSR model performed the best for PE (R Test 2 = 0.96, MAPE = 8.31%, RPD = 5.21) and the SVR model performed the best for PC (R Test 2 = 0.94, MAPE = 7.18%, RPD = 4.16) and APC (R Test 2 = 0.84, MAPE = 18.25%, RPD = 2.53). Two models (PLSR and SVR) performed almost the same for Chla (PLSR: R Test 2 = 0.92, MAPE = 12.77%, RPD = 3.61; SVR: R Test 2 = 0.93, MAPE = 13.51%, RPD =3.60). Further validation of the optimal models was performed using field-collected samples, and the result demonstrated satisfactory robustness and accuracy. The distribution of PE, PC, APC, and Chla contents within a thallus was visualized according to the optimal prediction models. The results showed that hyperspectral imaging technology was effective for fast, accurate, and noninvasive phenotyping of the PE, PC, APC, and Chla contents of Neopyropia in situ. This could benefit the efficiency of macroalgae breeding, phenomics research, and other related applications.
Collapse
Affiliation(s)
- Shuai Che
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Guoying Du
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuefeng Zhong
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhendong Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572002, China
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572025, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266073, China
| |
Collapse
|
26
|
Phenolic compounds of “blue food” Porphyra haitanensis: Chemical fingerprints, antioxidant activities, and in vitro antiproliferative activities against HepG2 cells. Food Res Int 2022; 162:112139. [DOI: 10.1016/j.foodres.2022.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/19/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
|
27
|
Porphyra tenera Protects against PM2.5-Induced Cognitive Dysfunction with the Regulation of Gut Function. Mar Drugs 2022; 20:md20070439. [PMID: 35877732 PMCID: PMC9324924 DOI: 10.3390/md20070439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
To evaluate the biological effects of Porphyra tenera (P. tenera), we tried to confirm the possibility that the intake of P. tenera could modulate cognitive and intestinal functions in PM2.5-induced cognitive decline mice. P. tenera attenuated PM2.5-induced learning and memory impairment through antioxidant and anti-inflammatory effects by regulating the mitochondrial function and TLR-initiated NF-κB signaling. In addition, P. tenera effectively alleviated Aβ production/tau phosphorylation by inhibiting the JNK phosphorylation. Also, the bioactive constituents of P. tenera determined the sulfated galactan, mycosporine-like amino acids (MAAs), and chlorophyll derivatives. Moreover, the bioactive compounds of P. tenera by gut fermentation protected against gut dysbiosis and intestinal tight junction damage with a decrease in inflammatory response and short-chain fatty acid production. Based on these results, our findings suggest that P. tenera with sulfated galactan and MAAs is a potential material for cognitive function improvement.
Collapse
|
28
|
Cheng X, Jiang J, Li C, Xue C, Kong B, Chang Y, Tang Q. The compound enzymatic hydrolysate of Neoporphyra haitanensis improved hyperglycemia and regulated the gut microbiome in high-fat diet-fed mice. Food Funct 2022; 13:6777-6791. [PMID: 35667104 DOI: 10.1039/d2fo00055e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously found that the combination of protease and a novel β-porphyranase Por16A_Wf may contribute to the deep-processing of laver. The purpose of the present study is to assess the hypoglycemic effect of the compound enzymatic hydrolysate (CEH) of Neoporphyra haitanensis. Thus, biochemical indexes related to diet-induced hyperglycemia were mainly detected using hematoxylin and eosin (H&E) staining, fluorescence quantitative PCR, and ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS). Then 16s rRNA gene sequencing was performed to analyze the effects of CEH on the gut microbiome in high-fat diet (HFD)-fed mice. The results suggested that CEH reduced the blood glucose level and alleviated insulin resistance. Possibly because CEH repressed intestinal α-glucosidase activity, inhibiting key enzymes (G6Pase and PEPCK) related to hepatic gluconeogenesis, and increased the expression of the enzyme (GLUT4) involved in peripheral glucose uptake. As potential indicators of hyperglycemia, total bile acids in the feces were reversed to the control levels after CEH intervention. Particularly, CEH decreased the content of tauro-α-muricholic acid (TαMCA) and ω-muricholic acid (ωMCA). Furthermore, CEH promoted the proliferation of beneficial bacteria (e.g. Parabacteroides), which may play a role in glycemic control. CEH also regulated the KEGG pathways associated with glycometabolism, such as "fructose and mannose metabolism". In summary, CEH supplementation has favorable effects on improving glucose metabolism and regulating the gut microbiome in HFD-fed mice. CEH has potential to be applied in the development of functional foods.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Jiali Jiang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Biao Kong
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
29
|
Sinurat E, Fransiska D, Utomo BSB, Subaryono, Nurhayati, Sihono. Characteristics of Nori-Like Product Prepared from Seaweeds Growing in Indonesia. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2077677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ellya Sinurat
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| | - Dina Fransiska
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| | | | - Subaryono
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| | - Nurhayati
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| | - Sihono
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta, Indonesia
| |
Collapse
|
30
|
Ge M, Shen J, Liu C, Xia W, Xu Y. Effect of acidification and thermal treatment on quality characteristics of high‐moisture laver (
Porphyra
spp.). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengmeng Ge
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Jiandong Shen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Cikun Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
31
|
Preparation of rice paper enriched with laver (Pyropia sp.) and tapioca starch with process optimization using response surface methodology. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Fu M, Cao S, Li J, Zhao S, Liu J, Zhuang M, Qin Y, Gao S, Sun Y, Kim JK, Zhang J, He P. Controlling the main source of green tides in the Yellow Sea through the method of biological competition. MARINE POLLUTION BULLETIN 2022; 177:113561. [PMID: 35305372 DOI: 10.1016/j.marpolbul.2022.113561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Macroalgal blooms have become a serious threat to public health, fisheries, ecosystems, and global economies. Since 2007, in the Yellow Sea, China, Ulva green tides have occurred for 15 consecutive years. However, effective control methods are limited. Ulva prolifera attached to Neopyropia aquaculture rafts are believed to be the main source of blooms, therefore eliminating Ulva from rafts could effectively prevent and control blooms. We investigated this phenomenon and showed that macroalgae germination was significantly inhibited by dried Neopyropia yezoensis at concentrations of 1.2, 2.4, and 4.8 g DW-1. Also, the inhibitory effects of dried N. yezoensis toward U. prolifera gametes at 2.4 and 4.8 g DW-1 were >90% at day 21. N. yezoensis culture filtrates and thalli were also used to determine dose-dependent inhibition effects on U. prolifera gamete germination. Both were potent and significantly inhibited germination at 1.75-7 g FW-1; the inhibitory effect 7 g FW-1 was >90% at day 21. As N. yezoensis thalli exhibited high inhibitory effects in laboratory experiments, we also performed field studies. N. yezoensis on ropes displayed high inhibitory effects on Ulva attachment and growth. Thus N. yezoensis powder, culture filtrates, and thalli displayed strong inhibitory effects on U. prolifera gametes, suggesting N. yezoensis attachment to ropes could be used to control green tides at the source.
Collapse
Affiliation(s)
- Meilin Fu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shichao Cao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jingshi Li
- College of Marine Resources & Environment, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Minmin Zhuang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yutao Qin
- East China Sea Environmental Monitoring Center, State Oceanic Administration, Shanghai 201306, China
| | - Song Gao
- North China Sea Marine Forecasting Center, State Oceanic Administrator, Qingdao 266033, China
| | - Yuqing Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jang Kyun Kim
- Department of Marine Science, School of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
33
|
Choi SY, Lee SY, Kim HG, Jeong JC, Batara DC, Kim SH, Cho JY. Shinorine and porphyra-334 isolated from laver (Porphyra dentata) inhibit adipogenesis in 3T3-L1 cells. Food Sci Biotechnol 2022; 31:617-625. [PMID: 35529689 PMCID: PMC9033900 DOI: 10.1007/s10068-022-01055-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) such as shinorine and porphyra-334 from Porphyra spp. are bioactive compounds with strong photoprotective and antioxidant properties. In this study, the anti-adipogenic effect of shinorine and porphyra-334 was examined in vitro utilizing 3T3-L1 preadipocytes. Shinorine and porphyra-334 were extracted from laver (Porphyra dentata) 50% methanolic (MeOH) extract of and their structures were elucidated by MS and NMR spectroscopy. Both compounds had no cytotoxic effect in 3T3-L1 cells (< 200 μg/mL) and inhibited the accumulation of lipid droplets in 3T3-L1 mature adipocytes in a dose-dependent manner (0.1 and 1.0 μM). Interestingly, both compounds had also significantly reduced the expression of adipogenic-related genes such as peroxisome proliferator-activated receptor γ2 (PPARγ2), CCAAT/enhancer-binding protein α (C/EBPα), adiponectin, and leptin in 3T3-L1 cells. The findings suggest that shinorine and porphyra-334 have the potential to inhibit adipogenesis in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Su-Young Choi
- Department of Animal Science, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| | - Su Yeon Lee
- Department of Food Science and Technology, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| | - Hyung Gyun Kim
- Mokpo Marine Food-Industry Research Center, Mokpo, 58621 Republic of Korea
| | - Jae Cheon Jeong
- Mokpo Marine Food-Industry Research Center, Mokpo, 58621 Republic of Korea
| | - Don Carlo Batara
- Department of Animal Science, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| | - Sung-Hak Kim
- Department of Animal Science, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, 77 Yongbongro, Gwangju, 61186 Republic of Korea
| |
Collapse
|
34
|
Photosynthetic Protein-Based Edible Quality Formation in Various Porphyra dentata Harvests Determined by Label-Free Proteomics Analysis. Cells 2022; 11:cells11071136. [PMID: 35406700 PMCID: PMC8997503 DOI: 10.3390/cells11071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
The influence of harvest time on the photosynthetic protein quality of the red alga Porphyra dentata was determined using label-free proteomics. Of 2716 differentially abundant proteins that were identified in this study, 478 were upregulated and 374 were downregulated. The top enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) pathways were metabolic processes and biosynthetic pathways such as photosynthesis, light harvesting, and carbon fixation in photosynthetic organisms. Nine important photosynthetic proteins were screened. Correlations among their expression levels were contrasted and verified by western blotting. PSII D1 and 44-kDa protein levels increased with later harvest time and increased light exposure. Specific photoprotective protein expression accelerated P. dentata growth and development. Biological processes such as photosynthesis and carbon cycling increased carbohydrate metabolism and decreased the total protein content. The results of the present study provide a scientific basis for the optimization of the culture and harvest of P. dentata.
Collapse
|
35
|
Jung H, Yoon WB, Matsukawa S. Effect of moisture uptake on the texture of dried laver Porphyra. (Nori) studied by mechanical characterization and NMR measurements. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Wang X, Liu J, Geng L, Yang Y, Wu N, Zhang Q, Wang J. Effects of Pyropia yezoensis enzymatic hydrolysate on the growth and immune regulation of the zebrafish. FISH & SHELLFISH IMMUNOLOGY 2022; 122:21-28. [PMID: 35091026 DOI: 10.1016/j.fsi.2022.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The supplemental effect of Pyropia yezoensis enzymatic hydrolysate (PYE) in fish diet was evaluated in zebrafish (Danio rerio) model. A basal diet supplemented with PYE at 0, 0.1, 1.0 and 2.0% were fed to one-month old zebrafish for 6 weeks, its growth performance and immunity index were evaluated. The increase in weight gain was significantly higher when supplementary 1% PYE which shows a positive effect on growth performance of zebrafish. In addition, crude protein content of fish body was increased in all PYE supplemental groups. The innate immune responses and activity of digestive enzymes in zebrafish were enhanced with dietary supplementation of PYE additives. Compared with the control group, lysozyme (LYZ) and interleukin-10 (IL-10) content in zebrafish intestines were up-regulated in groups fed with 0.1% and 1% PYE. The mRNA expression levels of LYZ and IL-10 in zebrafish intestines were consistent with ELISA results. The content of tumor necrosis factor (TNF-α) reduced in 1% and 2% PYE groups. Furthermore, PYE down-regulated the relative abundance of pathogenic bacteria (Aeromonadaceae) and up-regulated the relative abundance of fish probiotics (Brevibacillus) in intestinal flora. The findings in this study indicated that PYE supplementation in diet could promote growth, improve immunity and regulate intestinal flora, which made PYE considered as an potential aquatic additive.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Qing Dao agricultural university, Qingdao, 266109, PR China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, PR China
| | - Yue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, PR China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, PR China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, PR China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, PR China.
| |
Collapse
|
37
|
Impact of time and temperature on the physicochemical, microbiological, and nutraceutical properties of laver kombucha (Porphyra dentata) during fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Simovic A, Combet S, Cirkovic Velickovic T, Nikolic M, Minic S. Probing the stability of the food colourant R-phycoerythrin from dried Nori flakes. Food Chem 2021; 374:131780. [PMID: 34894468 DOI: 10.1016/j.foodchem.2021.131780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
This study aimed to characterise the stability of R-phycoerythrin (R-PE), a vivid natural colourant with emerging potential for application in the food industry. High-quality (A560/A280 ≥ 5), native (α-helix content 75%) R-PE was purified from commercial dried Nori (Porphyra sp.) flakes. Thermal unfolding revealed two transitions (at 56 and 72 °C), ascribed to different protein subunits. Contrary to elevated temperature, high-pressure (HP) treatment showed significant advantages: The R-PE unfolding was partly reversible and the colour bleaching was minimal. Binding of Cu2+ (6.3 × 105 M-1) and Zn2+ (1.7 × 103 M-1) influenced conformational changes in the protein tetrapyrrole chromophore without affecting R-PE structure and stability (colour). The results give new insights into the stability of R-PE suggesting its usefulness for the replacement of toxic synthetic dyes. Preservation of the red colour of R-PE could be considered in fortified food and beverages by HP processing. R-PE may act as a biosensor for Cu2+ in aquatic systems.
Collapse
Affiliation(s)
- Ana Simovic
- Centre of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | - Sophie Combet
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France
| | - Tanja Cirkovic Velickovic
- Centre of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Faculty of Chemistry, Belgrade, Serbia; Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea; Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Milan Nikolic
- Centre of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Faculty of Chemistry, Belgrade, Serbia.
| | - Simeon Minic
- Centre of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Faculty of Chemistry, Belgrade, Serbia; Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
39
|
Ashok T, Puttam H, Tarnate VCA, Jhaveri S, Avanthika C, Trejo Treviño AG, Sl S, Ahmed NT. Role of Vitamin B12 and Folate in Metabolic Syndrome. Cureus 2021; 13:e18521. [PMID: 34754676 PMCID: PMC8569690 DOI: 10.7759/cureus.18521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MS) is a collection of pathological metabolic conditions that includes insulin resistance, central or abdominal obesity, dyslipidemia, and hypertension. It affects large populations worldwide, and its prevalence is rising exponentially. There is no specific mechanism that leads to the development of MS. Proposed hypotheses range from visceral adiposity being a key factor to an increase in very-low-density lipoprotein and fatty acid synthesis as the primary cause of MS. Numerous pharmaceutical therapies are widely available in the market for the treatment of the individual components of MS. The relationship between MS and vitamin B complex supplementation, specifically folic acid and vitamin B12, has been a subject of investigation worldwide, with several trials reporting a positive impact with vitamin supplementation on MS. In this study, an all-language literature search was conducted on Medline, Cochrane, Embase, and Google Scholar till September 2021. The following search strings and Medical Subject Headings (MeSH) terms were used: “Vitamin B12,” “Folate,” “Metabolic Syndrome,” and “Insulin Resistance.” We explored the literature on MS for its epidemiology, pathophysiology, newer treatment options, with a special focus on the effectiveness of supplementation with vitamins B9 and B12. According to the literature, vitamin B12 and folate supplementation, along with a host of novel therapies, has a considerable positive impact on MS. These findings must be kept in mind while designing newer treatment protocols in the future.
Collapse
Affiliation(s)
- Tejaswini Ashok
- Internal Medicine, Jagadguru Sri Shivarathreeshwara Medical College, Mysore, IND
| | - Harivarsha Puttam
- Internal Medicine, Employees' State Insurance Corporation Medical College and Hospital, Hyderabad, IND
| | | | - Sharan Jhaveri
- Internal Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Chaithanya Avanthika
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubli, IND.,Pediatrics, Karnataka Institute of Medical Sciences, Hubli, IND
| | | | - Sandeep Sl
- Internal Medicine, SRM Medical College Hospital & Research Centre, Kattankulathur, IND
| | - Nazia T Ahmed
- Medicine, Shahabuddin Medical College and Hospital, Dhaka, BGD
| |
Collapse
|
40
|
Li X, Sun X, Gao L, Xu J, Gao G. Effects of periodical dehydration on biomass yield and biochemical composition of the edible red alga Pyropia yezoensis grown at different salinities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Che S, Du G, Wang N, He K, Mo Z, Sun B, Chen Y, Cao Y, Wang J, Mao Y. Biomass estimation of cultivated red algae Pyropia using unmanned aerial platform based multispectral imaging. PLANT METHODS 2021; 17:12. [PMID: 33541365 PMCID: PMC7863433 DOI: 10.1186/s13007-021-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pyropia is an economically advantageous genus of red macroalgae, which has been cultivated in the coastal areas of East Asia for over 300 years. Realizing estimation of macroalgae biomass in a high-throughput way would great benefit their cultivation management and research on breeding and phenomics. However, the conventional method is labour-intensive, time-consuming, manually destructive, and prone to human error. Nowadays, high-throughput phenotyping using unmanned aerial vehicle (UAV)-based spectral imaging is widely used for terrestrial crops, grassland, and forest, but no such application in marine aquaculture has been reported. RESULTS In this study, multispectral images of cultivated Pyropia yezoensis were taken using a UAV system in the north of Haizhou Bay in the midwestern coast of Yellow Sea. The exposure period of P. yezoensis was utilized to prevent the significant shielding effect of seawater on the reflectance spectrum. The vegetation indices of normalized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI) and normalized difference of red edge (NDRE) were derived and indicated no significant difference between the time that P. yezoensis was completely exposed to the air and 1 h later. The regression models of the vegetation indices and P. yezoensis biomass per unit area were established and validated. The quadratic model of DVI (Biomass = - 5.550DVI2 + 105.410DVI + 7.530) showed more accuracy than the other index or indices combination, with the highest coefficient of determination (R2), root mean square error (RMSE), and relative estimated accuracy (Ac) values of 0.925, 8.06, and 74.93%, respectively. The regression model was further validated by consistently predicting the biomass with a high R2 value of 0.918, RMSE of 8.80, and Ac of 82.25%. CONCLUSIONS This study suggests that the biomass of Pyropia can be effectively estimated using UAV-based spectral imaging with high accuracy and consistency. It also implied that multispectral aerial imaging is potential to assist digital management and phenomics research on cultivated macroalgae in a high-throughput way.
Collapse
Affiliation(s)
- Shuai Che
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Guoying Du
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Ning Wang
- Xi’ an Ecotech Spectral Imaging and Eco-drone Remote Sensing Research Center Co., Ltd., Xi’ an, 710000 People’s Republic of China
| | - Kun He
- Xi’ an Ecotech Spectral Imaging and Eco-drone Remote Sensing Research Center Co., Ltd., Xi’ an, 710000 People’s Republic of China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Bin Sun
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Yu Chen
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Yifei Cao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 People’s Republic of China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000 People’s Republic of China
| |
Collapse
|
42
|
Porphyran and oligo-porphyran originating from red algae Porphyra: Preparation, biological activities, and potential applications. Food Chem 2021; 349:129209. [PMID: 33588184 DOI: 10.1016/j.foodchem.2021.129209] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Porphyra is one of the most economically important red algae in the world. The functional components extracted from Porphyra such as porphyrans, proteins, lipids, and minerals have strong physiological activities. Porphyran, a sulfated galactan, is composed of alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked β-d-galactopyranose (G). Porphyran and oligo-porphyran have a series of pharmacological and biological functions, such as antioxidation, anticancer, antiaging, antiallergic, immunomodulatory, hypoglycaemic, and hypolipidemic effects. Thus, red algae Porphyra-derived porphyran and oligo-porphyran have various potential applications in food, medicine, and cosmetic fields. For better application, this review introduces and summarizes the structure and source of porphyran as well as the preparation methods, biological activities, and potential applications of porphyran and oligo-porphyran. Moreover, the future research directions and emphasis of porphyran and oligo-porphyran preparation as well as their functional activities and applications are highlighted and prospected.
Collapse
|
43
|
Ishihara K, Seko T, Oyamada C, Kunitake H, Muraoka T. Synergistic effect of dietary glycerol galactoside and porphyran from nori on cecal immunoglobulin A levels in mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kenji Ishihara
- Research Center for Biochemistry and Food Technology, National Research Institute of Fisheries Science
| | - Takuya Seko
- Research Center for Biochemistry and Food Technology, National Research Institute of Fisheries Science
| | - Chiaki Oyamada
- Research Center for Biochemistry and Food Technology, National Research Institute of Fisheries Science
| | - Hiromi Kunitake
- Food Science Research Division, Kumamoto Prefectural Fisheries Research Center
| | - Toshihiko Muraoka
- Food Science Research Division, Kumamoto Prefectural Fisheries Research Center
| |
Collapse
|
44
|
Patil V, Abate R, Wu W, Zhang J, Lin H, Chen C, Liang J, Sun L, Li X, Li Y, Gao Y. Allelopathic inhibitory effect of the macroalga Pyropia haitanensis (Rhodophyta) on harmful bloom-forming Pseudo-nitzschia species. MARINE POLLUTION BULLETIN 2020; 161:111752. [PMID: 33091839 DOI: 10.1016/j.marpolbul.2020.111752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The blooms of harmful microalgae represent a prominent threat to fisheries, public health, and economies throughout the world. Recent studies have shown that certain macroalgae release allelochemicals that can inhibit the growth of bloom-forming microalgae. In this study, we found that the macroalga Pyropia haitanensis significantly inhibited growth of the harmful bloom-forming microalgae Pseudo-nitzschia pungens and Pseudo-nitzschia multiseries. The inhibitory-effect of the live thali of P. haitanensis was highest, followed by that of dry powder, water-soluble extract, and culture medium filtrate. The Pseudo-nitzschia species died 96 h after exposure to 5-10 g fresh-weight L-1 of P. haitanensis live thalli. Furthermore, an aqueous extract of P. haitanensis suppressed the growth of P. pungens and P. multiseries, thereby indicating that P. haitanensis contains stable allelopathic substances that cause the observed inhibitory-effects. On the basis of these findings, we conclude that the macroalga P. haitanensis would have potential utility in controlling the blooms of Pseudo-nitzschia species.
Collapse
Affiliation(s)
- Vishal Patil
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Rediat Abate
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Weiwei Wu
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Jiawei Zhang
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Huina Lin
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Changping Chen
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Junrong Liang
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Lin Sun
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Xuesong Li
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Yang Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yahui Gao
- School of Life Sciences and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
45
|
García-Poza S, Leandro A, Cotas C, Cotas J, Marques JC, Pereira L, Gonçalves AMM. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6528. [PMID: 32911710 PMCID: PMC7560192 DOI: 10.3390/ijerph17186528] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Seaweeds (marine macroalgae) are autotrophic organisms capable of producing many compounds of interest. For a long time, seaweeds have been seen as a great nutritional resource, primarily in Asian countries to later gain importance in Europe and South America, as well as in North America and Australia. It has been reported that edible seaweeds are rich in proteins, lipids and dietary fibers. Moreover, they have plenty of bioactive molecules that can be applied in nutraceutical, pharmaceutical and cosmetic areas. There are historical registers of harvest and cultivation of seaweeds but with the increment of the studies of seaweeds and their valuable compounds, their aquaculture has increased. The methodology of cultivation varies from onshore to offshore. Seaweeds can also be part of integrated multi-trophic aquaculture (IMTA), which has great opportunities but is also very challenging to the farmers. This multidisciplinary field applied to the seaweed aquaculture is very promising to improve the methods and techniques; this area is developed under the denominated industry 4.0.
Collapse
Affiliation(s)
- Sara García-Poza
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Carla Cotas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (S.G.-P.); (A.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
46
|
Zhang Y, Chang Y, Shen J, Mei X, Xue C. Characterization of a Novel Porphyranase Accommodating Methyl-galactoses at Its Subsites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7032-7039. [PMID: 32520542 DOI: 10.1021/acs.jafc.0c02404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porphyran is the major polysaccharide of laver and mainly composed of 3-linked β-d-galactopyranose (G) and 4-linked α-l-galactopyranose-6-sulfate (L6S) units. Structural heterogeneity of porphyran highly originates from the natural methylation on the O-6 position of G units (GMe). Here, a GH16 porphyranase Por16C_Wf was cloned from a porphyran-related polysaccharide utilization locus of Wenyingzhuangia fucanilytica and expressed in Escherichia coli. It hydrolyzed porphyran in a random endo-acting manner. Using a glycomics strategy combining liquid chromatography-mass spectrometry and glycoinformatics, the subsite specificity was clarified. Por16C_Wf accommodated both G and GMe at subsites -1 and +2. This is the first report on the sequence of porphyranases hydrolyzing consecutive methyl-porphyranobiose moieties, which shed light on the diversity in subsite specificity of porphyranases. Por16C_Wf was the first characterized enzyme in subfamily 14 of the GH16 family. The defined and novel activity of Por16C_Wf implied that it could serve as a favorable tool in the full degradation and structural investigation of porphyran.
Collapse
Affiliation(s)
- Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
47
|
Effects of Porphyra tenera Supplementation on the Immune System: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Nutrients 2020; 12:nu12061642. [PMID: 32498269 PMCID: PMC7352330 DOI: 10.3390/nu12061642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: The purpose of this study was to determine if Porphyra tenera extract (PTE) has immune-enhancing effects and is safe in healthy adults. Methods: Subjects who met the inclusion criteria (3 × 103 ≤ peripheral blood leukocyte level ≥ 8 × 103 cells/µL) were recruited for this study. Enrolled subjects (n = 120) were randomly assigned to either the PTE group (n = 60) and were given 2.5 g/day of PTE (as PTE) in capsule form or the placebo group (n = 60) and were given crystal cellulose capsules with the identical appearance, weight, and flavor as the PTE capsules for 8 weeks. Outcomes were assessed based on measuring natural killer (NK) cell activity, cytokines level, and upper respiratory infection (URI), and safety parameters were assessed at baseline and 8 weeks. Results: Compared with baseline, NK cell activity (%) increased for all effector cell-to-target cell ratios in the PTE group after 8 weeks; however, changes were not observed in the placebo group (p < 0.10). Subgroup analysis of 101 subjects without URI showed that NK cell activity in the PTE group tended to increase for all effector cell/target cell (E:T) ratios (E:T = 12.5:1 p = 0.068; E:T = 25:1 p = 0.036; E:T = 50:1 p = 0.081) compared with the placebo group. A significant difference between the two groups was observed for the E:T = 25:1 ratio, which increased from 20.3 ± 12.0% at baseline to 23.2 ± 12.4% after 8 weeks in the PTE group (p = 0.036). A significant difference was not observed in cytokine between the two groups. Conclusion: PTE supplementation appears to enhance immune function by improving NK cell activity without adverse effects in healthy adults.
Collapse
|
48
|
Feng Z, Zhang T, Wang J, Huang W, Wang R, Xu J, Fu G, Gao G. Spatio-temporal features of microplastics pollution in macroalgae growing in an important mariculture area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137490. [PMID: 32143099 DOI: 10.1016/j.scitotenv.2020.137490] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Macroalgae are being consumed by a growing number of people as functional food. Therefore, they are intensively cultivated to meet the rising demand. Mariculture is a potential source of microplastics (MPs). However, as a potential source of microplastics, little is known regarding the MPs pollution in macroalgae of open sea macriculture. Here we investigated the MPs characteristics in macroalgae in three sections of Haizhou Bay, an important mariculture area in China, during Pyropia culture (Pyropia yezoensis) and non-culture periods (Ulva prolifera, Sargassum horneri, Cladophora sp., Undaria pinnatifida, Ulva pertusa). It was found that P. yezoensis during the culture period had higher MPs abundance (0.17 ± 0.08 particles g-1fresh weight) than other macroalgae (0.12 ± 0.09 particles g-1 fresh weight) during the non-culture period, particularly for the nearshore sections. There were more fiber MPs in P. yezoensis (90.43%) in culture period compared to macroalgae (84.46%) in non-culture period. Highly similar spectrum of plastics in culture gears and macroalgae was verified. Pyropia culture gears released about 1, 037 tons plastics into the environment annually and the MPs abundances in seawater during the culture and non-culture periods were 1.04 ± 0.32 and 1.86 ± 0.49 particles L-1, respectively. The gap of MPs abundance between the two periods can be attributed to the tremendous trapping by massive biomass of P. yezoensis during the culture period and the continuous plastic release during the non-culture period. This study indicates that culture gears of macroalgae could be an important MPs source and the MPs can be transferred to human by edible macroalgae, and meanwhile macroalgae may be ideal biomonitors for MPs pollution in seawater due to their unbiased trapping and immovability.
Collapse
Affiliation(s)
- Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Tao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaxuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Rui Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guanghui Fu
- Lianyungang Oceanic and Fishery Development Center, Lianyungang Oceanic and Fishery Bureau, Lianyungang 222005, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
49
|
Geng L, Wang J, Zhang Z, Yue Y, Zhang Q. Structure and Bioactivities of Porphyrans and Oligoporphyrans. Curr Pharm Des 2020; 25:1163-1171. [PMID: 31208306 DOI: 10.2174/1381612825666190430111725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/19/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Pyropia (Porphyra), commonly known as nori or laver, is an important food source in many parts of the world. Edible dried Pyropia contains numerous nutrients and biofunctional components, including proteins, vitamins, eicosapentaenoic acid, minerals, carotenoids, mycosporine-like amino acids, and carbohydrate, and one of the compounds which we are interested in is porphyran, a sulfated polysaccharide comprising the hot-water-soluble portion of Pyropia cell walls. Researchers have performed a large number of in-depth studies on the biological activity and potential therapeutic applications of porphyrans and oligoporphyrans. METHODS This mini review aims to provide comprehensive and update overview on the source, extraction, structure, biological activities and structure-activity relationships of porphyrans and oligoporphyrans based on the studies in the past 30 years which were included in Web of Science. RESULTS The structure of porphyran has been basically determined given that its straight chain is relatively simple, and the skeleton structure has been described. The extraction methods were simplified continuously, but different extraction methods and post- processing methods still had great influence on the structure and composition of porphyran, so there was no standardized extraction process which can achieve quality control until now. In order to obtain oligoporphyrans, there are a variety of degradation methods, including chemical method, physical method and enzymatic method, but it is worth mentioning that specific degradation enzyme is still unavailable. Studies on the biological and pharmacology properties include antioxidant, anti-tumor, anti-inflammatory, immunomodulation, anti-cardiovascular and cerebrovascular diseases and drug delivery. CONCLUSION Owing to the therapeutic potential and drug delivery applications, porphyran and oligoporphyrans are expected to be further developed as a medicine against human diseases, as well as a supplement in cosmetics and health products.
Collapse
Affiliation(s)
- Lihua Geng
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Jing Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Zhongshan Zhang
- Department of Pharmacology, Huzhou University, Huzhou 313000, China
| | - Yang Yue
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Quanbin Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| |
Collapse
|
50
|
Banach JL, Hoek‐van den Hil EF, Fels‐Klerx HJ. Food safety hazards in the European seaweed chain. Compr Rev Food Sci Food Saf 2020; 19:332-364. [DOI: 10.1111/1541-4337.12523] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/19/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Affiliation(s)
- J. L. Banach
- Wageningen Food Safety ResearchWageningen University and Research Wageningen The Netherlands
| | - E. F. Hoek‐van den Hil
- Wageningen Food Safety ResearchWageningen University and Research Wageningen The Netherlands
| | - H. J. Fels‐Klerx
- Wageningen Food Safety ResearchWageningen University and Research Wageningen The Netherlands
| |
Collapse
|