1
|
Chidambaram H, Chinnathambi S. G-Protein Coupled Receptors and Tau-different Roles in Alzheimer’s Disease. Neuroscience 2020; 438:198-214. [DOI: 10.1016/j.neuroscience.2020.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/14/2023]
|
2
|
Serrano GE, Shprecher D, Callan M, Cutler B, Glass M, Zhang N, Walker J, Intorcia A, Adler CH, Shill HA, Driver-Dunckley E, Mehta SH, Belden CM, Zamrini E, Sue LI, Vargas D, Beach TG. Cardiac sympathetic denervation and synucleinopathy in Alzheimer's disease with brain Lewy body disease. Brain Commun 2020; 2:fcaa004. [PMID: 32064463 PMCID: PMC7008146 DOI: 10.1093/braincomms/fcaa004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
Comorbid Lewy body pathology is very common in Alzheimer’s disease and may confound clinical trial design, yet there is no in vivo test to identify patients with this. Tissue (and/or radioligand imaging) studies have shown cardiac sympathetic denervation in Parkinson’s disease and dementia with Lewy bodies, but this has not been explored in Alzheimer’s subjects with Lewy bodies not meeting dementia with Lewy bodies clinicopathological criteria. To determine if Alzheimer’s disease with Lewy bodies subjects show sympathetic cardiac denervation, we analysed epicardial and myocardial tissue from autopsy-confirmed cases using tyrosine hydroxylase and neurofilament immunostaining. Comparison of tyrosine hydroxylase fibre density in 19 subjects with Alzheimer’s disease/dementia with Lewy bodies, 20 Alzheimer’s disease with Lewy bodies, 12 Alzheimer’s disease subjects without Lewy body disease, 19 Parkinson’s disease, 30 incidental Lewy body disease and 22 cognitively normal without Alzheimer’s disease or Lewy body disease indicated a significant group difference (P < 0.01; Kruskal–Wallis analysis of variance) and subsequent pair-wise Mann–Whitney U tests showed that Parkinson’s disease (P < 0.05) and Alzheimer’s disease/dementia with Lewy bodies (P < 0.01) subjects, but not Alzheimer’s disease with Lewy bodies subjects, had significantly reduced tyrosine hydroxylase fibre density as compared with cognitively normal. Both Parkinson’s disease and Alzheimer’s disease/dementia with Lewy bodies subjects also showed significant epicardial losses of neurofilament protein-immunoreactive nerve fibre densities within the fibre bundles as compared with cognitively normal subjects (P < 0.01) and both groups showed high pathologic alpha-synuclein densities (P < 0.0001). Cardiac alpha-synuclein densities correlated significantly with brain alpha-synuclein (P < 0.001), while cardiac tyrosine hydroxylase and neurofilament immunoreactive nerve fibre densities were negatively correlated with the densities of both brain and cardiac alpha-synuclein, as well as Unified Parkinson’s Disease Rating Scale scores (P < 0.05). The clear separation of Alzheimer’s disease/dementia with Lewy bodies subjects from Alzheimer’s disease and cognitively normal, based on cardiac tyrosine hydroxylase fibre density, is the first report of a statistically significant difference between these groups. Our data do not show significant sympathetic cardiac denervation in Alzheimer’s disease with Lewy bodies, but strongly confirm that cardiac nuclear imaging with a noradrenergic radioligand is worthy of further study as a potential means to separate Alzheimer’s disease from Alzheimer’s disease/dementia with Lewy bodies during life.
Collapse
Affiliation(s)
- Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - David Shprecher
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Michael Callan
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Brett Cutler
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Michael Glass
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Nan Zhang
- Section of Biostatistics, Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Jessica Walker
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Anthony Intorcia
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Holly A Shill
- Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Erika Driver-Dunckley
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Shyamal H Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Christine M Belden
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Edward Zamrini
- Cleo Roberts Center, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Lucia I Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Daisy Vargas
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| |
Collapse
|
3
|
Wang X, Bosonea AM, Fernandez-Patron C. Metalloproteinases: key and common mediators of multiple GPCRs and candidate therapeutic targets in models of hypertensive cardiac disease. ACTA ACUST UNITED AC 2012; 9:e103-e108. [PMID: 24976848 DOI: 10.1016/j.ddmod.2012.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertensive cardiac disease remains a major cause of death worldwide because its typically complex etiology renders current treatments ineffective. Primary causative factors include environmental stressors, genetic predisposition and metabolic morbidities such as obesity and diabetes. These factors all trigger a systemic pathological production of agonists of G-protein-coupled receptors (GPCRs). When produced in excess, GPCR agonists transactivate many metalloproteinases, which relay agonist signaling. Here we review evidence supporting a global therapeutic concept for treatment of hypertensive cardiac disease with complex or unknown etiology by targeting common mediators of multiple GPCRs such as metalloproteinases and their downstream effectors.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Biochemistry, School of Translational Medicine and the Cardiovascular Research Group, University of Alberta, Edmonton, AB, Canada
| | - Ana-Maria Bosonea
- Department of Biochemistry, School of Translational Medicine and the Cardiovascular Research Group, University of Alberta, Edmonton, AB, Canada
| | - Carlos Fernandez-Patron
- Department of Biochemistry, School of Translational Medicine and the Cardiovascular Research Group, University of Alberta, Edmonton, AB, Canada ; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Vella LJ, Cappai R. Identification of a novel amyloid precursor protein processing pathway that generates secreted N-terminal fragments. FASEB J 2012; 26:2930-40. [PMID: 22490781 DOI: 10.1096/fj.11-200295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The proteolytic processing of the amyloid precursor protein (APP) into the β-amyloid (Aβ) peptide is a central event in AD. While the pathway that generates Aβ is well described, many questions remain concerning general APP metabolism and its metabolites. It is becoming clear that the amino-terminal region of APP can be processed to release small N-terminal fragments (NTFs). The purpose of this study was to investigate the occurrence and generation of APP NTFs in vivo and in cell culture (SH-SY5Y) in order to delineate the cellular pathways implicated in their generation. We were able to detect 17- to 28-kDa APP NTFs in human and mouse brain tissue that are distinct from N-APP fragments previously reported. We show that the 17- to 28-kDa APP NTFs were highly expressed in mice from the age of 2 wk to adulthood. SH-SY5Y studies indicate the generation of APP NTFs involves a novel APP processing pathway, regulated by protein kinase C, but independent of α-secretase or β-secretase 1 (BACE) activity. These results identify a novel, developmentally regulated APP processing pathway that may play an important role in the physiological function of APP.
Collapse
Affiliation(s)
- Laura J Vella
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
5
|
Abstract
Proteolytic enzymes constitute around 2% of the human genome and are involved in all stages of cell and organism development from fertilization through to cell death. In the human genome the major classes of peptidases are represented by cysteine-, serine- and metalloenzymes, which possess a wide spectrum of substrate specificity and physiological functions. The identification of many novel peptidases from genome sequencing programmes has suggested potential new therapeutic targets. In addition, several well characterised peptidases were recently shown to possess new and unexpected biological roles in neuroinflammation, cancer and angiogenesis, cardiovascular diseases and neurodegeneration. This chapter will briefly characterize the main classes of metallopeptidases and their roles in health and disease. Particular attention will be paid to the angiotensin-converting enzyme (ACE), neprilysin (NEP) and adamalysin (ADAM) families of proteases and their pathophysiological roles with a particular emphasis on cancer and neurodegeneration. The roles and mechanisms of protein shedding which primarily involve the ADAMs family of metallopeptidases will be explained using amyloid protein precursor (APP) processing cascades as a well characterized example. The therapeutic significance of modulating (activating or inhibiting) metallopeptidase activity will be a particular focus of this chapter.
Collapse
|
6
|
Abstract
The Alzheimer's disease (AD)-associated amyloid-β protein precursor (AβPP) is cleaved by α-, β-, and presenilin (PS)/γ-secretases through sequential regulated proteolysis. These proteolytic events control the generation of the pathogenic amyloid-β (Aβ) peptide, which excessively accumulates in the brains of individuals afflicted by AD. A growing number of additional proteins cleaved by PS/γ-secretase continue to be discovered. Similarly to AβPP, most of these proteins are type-I transmembrane proteins involved in vital signaling functions regulating cell fate, adhesion, migration, neurite outgrowth, or synaptogenesis. All the identified proteins share common structural features, which are typical for their proteolysis. The consequences of the PS/γ-secretase-mediated cleavage on the function of many of these proteins are largely unknown. Here, we review the current literature on the proteolytic processing mediated by the versatile PS/γ-secretase complex. We begin by discussing the steps of AβPP processing and PS/γ-secretase complex composition and localization, which give clues to how and where the processing of other PS/γ-secretase substrates may take place. Then we summarize the typical features of PS/γ-secretase-mediated protein processing. Finally, we recapitulate the current knowledge on the possible physiological function of PS/γ-secretase-mediated cleavage of specific substrate proteins.
Collapse
Affiliation(s)
- Annakaisa Haapasalo
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.
| | | |
Collapse
|
7
|
Henriques AG, Vieira SI, Crespo-López ME, Guiomar de Oliveira MA, da Cruz e Silva EF, da Cruz e Silva OA. Intracellular sAPP retention in response to Aβ is mapped to cytoskeleton-associated structures. J Neurosci Res 2009; 87:1449-61. [DOI: 10.1002/jnr.21959] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Klein DM, Felsenstein KM, Brenneman DE. Cathepsins B and L differentially regulate amyloid precursor protein processing. J Pharmacol Exp Ther 2009; 328:813-21. [PMID: 19064719 DOI: 10.1124/jpet.108.147082] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that cathepsins control amyloid beta (Abeta) levels in chromaffin cells via a regulated secretory pathway. In the present study, this concept was extended to investigations in primary hippocampal neurons to test whether Abeta release was coregulated by cathepsins and electrical activity, proposed components of a regulated secretory pathway. Inhibition of cathepsin B (catB) activity with CA074Me or attenuation of catB expression through small interfering RNA produced decreases in Abeta release, similar to levels produced with suppression of beta-site APP-cleaving enzyme 1 (BACE1) expression. To test whether the catB-dependent release of Abeta was linked to ongoing electrical activity, neurons were treated with tetrodotoxin (TTX) and CA074Me. These comparisons demonstrated no additivity between decreases in Abeta release produced by TTX and CA074Me. In contrast, pharmacological inhibition of cathepsin L (catL) selectively elevated Abeta42 levels but not Abeta40 or total Abeta. Mechanistic studies measuring C-terminal fragments of amyloid precursor protein (APP) suggested that catL elevated alpha-secretase activity, thereby suppressing Abeta42 levels. The mechanism of catB-mediated regulation of Abeta release remains unclear but may involve elevation of beta-secretase. In summary, these studies provide evidence for a significant alternative pathway for APP processing that involves catB and activity-dependent release of Abeta in a regulated secretory pathway for primary neurons.
Collapse
Affiliation(s)
- Donna M Klein
- Drug Discovery, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, Spring House, Pennsylvania, USA.
| | | | | |
Collapse
|
9
|
The difference in gliosis induced by β-amyloid and Tau treatments in astrocyte cultures derived from senescence accelerated and normal mouse strains. Biogerontology 2009; 10:695-710. [DOI: 10.1007/s10522-009-9217-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 02/03/2009] [Indexed: 12/27/2022]
|
10
|
Wiley JC, Smith EA, Hudson MP, Ladiges WC, Bothwell M. Fe65 Stimulates Proteolytic Liberation of the β-Amyloid Precursor Protein Intracellular Domain. J Biol Chem 2007; 282:33313-33325. [PMID: 17855370 DOI: 10.1074/jbc.m706024200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-amyloid precursor protein (APP)-binding protein Fe65 is involved in APP nuclear signaling and several steps in APP proteolytic processing. In this study, we show that Fe65 stimulates gamma-secretase-mediated liberation of the APP intracellular domain (AICD). The mechanism of Fe65-mediated stimulation of AICD formation appears to be through enhanced production of the carboxyl-terminal fragment substrates of gamma-secretase and direct stimulation of processing by gamma-secretase. The stimulatory capacity of Fe65 is isoform-dependent, as the non-neuronal and a2 isoforms promote APP processing more effectively than the exon 9 inclusive neuronal form of Fe65. Intriguingly, Fe65 stimulation of AICD production appears to be inversely related to pathogenic beta-amyloid production as the Fe65 isoforms profoundly stimulate AICD production and simultaneously decrease Abeta42 production. Despite the capacity of Fe65 to stimulate gamma-secretase-mediated APP proteolysis, it does not rescue the loss of proteolytic function associated with the presenilin-1 familial Alzheimer disease mutations. These data suggest that Fe65 regulation of APP proteolysis may be integrally associated with its nuclear signaling function, as all antecedent proteolytic steps prior to release of Fe65 from the membrane are fostered by the APP-Fe65 interaction.
Collapse
Affiliation(s)
- Jesse C Wiley
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195
| | - Elise A Smith
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195
| | - Mark P Hudson
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, 98195
| | - Warren C Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195
| | - Mark Bothwell
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
11
|
Liron T, Seraya CB, Ish-Shalom M, Souroujon MC, Neumann D. Overexpression of amyloid precursor protein reduces epsilon protein kinase C levels. Neuroscience 2007; 146:152-9. [PMID: 17321053 DOI: 10.1016/j.neuroscience.2007.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 12/12/2006] [Accepted: 01/07/2007] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by extracellular deposits of amyloid beta peptide (Abeta), a peptide that is generated upon proteolytic cleavage of amyloid precursor protein (APP). The events leading to the development of AD and their sequence are not yet fully understood. Protein kinase C (PKC) has been suggested to have a significant role in controlling neuronal degeneration and in the aberrant signal transduction taking place in AD. Several studies document a deficit in PKC levels and activity in brains of AD patients when compared with those of normal controls. Such a decrease in PKC could have serious implications since certain PKC isozymes were shown to drive the APP proteolytic cleavage into a non-amyloidogenic pathway. Reduced levels of distinct PKC isozymes could thus contribute to driving APP processing toward an amyloidogenic pathway. The direct cause for the down-regulation of PKC in AD brains is still unknown. In that respect, we tested in this study whether APP may play a role in PKC reduction. We show in three different cell lines (CHO, COS and BOSC) that overexpression of APP leads to decreased PKC levels. This decrease was found to be specific for the epsilon PKC isozyme whereas the levels of delta, alpha and conventional PKC remained unchanged. Furthermore, we observed this decrease for both active, membrane-associated and inactive, cytosolic epsilon PKC. APP-driven decrease in epsilon PKC is most likely mediated by a factor in the culture medium, since transfer of medium from cultured cells overexpressing APP to naïve, non-overexpressing cells, has also led to the selective decrease in epsilon PKC levels. Taken together, our results suggest that APP expression levels may play a role in the decrease of epsilon PKC levels in AD brains and could thus affect the responsiveness of AD brain tissues to growth factors and neurotransmitters.
Collapse
Affiliation(s)
- T Liron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
12
|
Tsakadze NL, Sithu SD, Sen U, English WR, Murphy G, D'Souza SE. Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J Biol Chem 2005; 281:3157-64. [PMID: 16332693 DOI: 10.1074/jbc.m510797200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ectodomain shedding has emerged as an important regulatory step in the function of transmembrane proteins. Intercellular adhesion molecule-1 (ICAM-1), an adhesion receptor that mediates inflammatory and immune responses, undergoes shedding in the presence of inflammatory mediators and phorbol 12-myristate 13-acetate (PMA). The shedding of ICAM-1 in ICAM-1-transfected 293 cells upon PMA stimulation and in endothelial cells upon tumor necrosis factor-alpha stimulation was blocked by metalloproteinase inhibitors, whereas serine protease inhibitors were ineffective. p-Aminophenylmercuric acetate, a mercuric compound that is known to activate matrix metalloproteinases, up-regulated ICAM-1 shedding. TIMP-3 (but not TIMP-1 or -2) effectively blocked cleavage. This profile suggests the involvement of the ADAM family of proteases in the cleavage of ICAM-1. The introduction of enzymatically active tumor necrosis factor-alpha-converting enzyme (TACE) into ICAM-1-expressing cells up-regulated cleavage. Small interfering RNA directed against TACE blocked ICAM-1 cleavage. ICAM-1 transfected into TACE-/- fibroblasts did not show increased shedding over constitutive levels in the presence of PMA, whereas cleavage did occur in ICAM-1-transfected TACE+/+ cells. These results indicate that ICAM-1 shedding is mediated by TACE. Blocking the shedding of ICAM-1 altered the cell adhesive function, as ICAM-1-mediated cell adhesion was up-regulated in the presence of TACE small interfering RNA and TIMP-3, but not TIMP-1. However, cleavage was found to occur at multiple sites within the stalk domain of ICAM-1, and numerous point mutations within the region did not affect cleavage, indicating that TACE-mediated cleavage of ICAM-1 may not be sequence-specific.
Collapse
Affiliation(s)
- Nina L Tsakadze
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | | | |
Collapse
|
13
|
Carey RM, Balcz BA, Lopez-Coviella I, Slack BE. Inhibition of dynamin-dependent endocytosis increases shedding of the amyloid precursor protein ectodomain and reduces generation of amyloid beta protein. BMC Cell Biol 2005; 6:30. [PMID: 16095541 PMCID: PMC1208872 DOI: 10.1186/1471-2121-6-30] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 08/11/2005] [Indexed: 11/13/2022] Open
Abstract
Background The amyloid precursor protein (APP) is transported via the secretory pathway to the cell surface, where it may be cleaved within its ectodomain by α-secretase, or internalized within clathrin-coated vesicles. An alternative proteolytic pathway occurs within the endocytic compartment, where the sequential action of β- and γ-secretases generates the amyloid β protein (Aβ). In this study, we investigated the effects of modulators of endocytosis on APP processing. Results Human embryonic kidney cells were transfected with a dominant negative mutant of dynamin I, an important mediator of clathrin-dependent endocytosis, and APP proteolysis was analyzed. Overexpression of the mutant dynamin (dyn I K44A) resulted in increased shedding of the APP ectodomain (sAPPα), accumulation of the C-terminal α-secretase product C83, and a reduction in the release of Aβ. Levels of mature APP on the cell surface were increased in cells expressing dyn I K44A, and internalization of surface-immunolabeled APP, assessed by fluorescence microscopy, was inhibited. Dynamin is a substrate for protein kinase C (PKC), and it was hypothesized that activators of PKC, which are known to stimulate α-secretase-mediated cleavage of APP, might exert their effects by inhibiting dynamin-dependent endocytosis. However, the internalization of surface-biotinylated APP was unaffected by treatment of cells with phorbol 12-myristate 13-acetate in the presence of the α-secretase inhibitor TAPI-1. Conclusion The results indicate that APP is internalized by a dynamin-dependent process, and suggest that alterations in the activity of proteins that mediate endocytosis might lead to significant changes in Aβ production.
Collapse
Affiliation(s)
- Robyn M Carey
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 715 Albany Street, Rm. L808, Boston MA 02118, USA
| | - Brigitte A Balcz
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 715 Albany Street, Rm. L808, Boston MA 02118, USA
- Gemeinnützige Salzburger Landeskliniken Betriebsgesellschaft mbH, Universitätsklinik für Innere Medizin III, Paracelsus Medizinische Privatuniversität, Müllner Hauptstrasse 48, A-5020 Salzburg, Austria
| | - Ignacio Lopez-Coviella
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 715 Albany Street, Rm. L808, Boston MA 02118, USA
| | - Barbara E Slack
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 715 Albany Street, Rm. L808, Boston MA 02118, USA
| |
Collapse
|
14
|
Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem 2004; 280:7377-87. [PMID: 15591071 DOI: 10.1074/jbc.m409071200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of the neurotoxic peptide beta-amyloid, which is produced by proteolysis of amyloid precursor protein (APP). APP is a large membrane-bound copper-binding protein that is essential in maintaining synaptic function and may play a role in synaptogenesis. beta-Amyloid has been shown to contribute to the oxidative stress that accompanies AD. Later stages of AD are characterized by neuronal apoptosis. However, the biochemical function of APP and the mechanism of the toxicity of beta-amyloid are still unclear. In this study, we show that both beta-amyloid and APP can oxidize cholesterol to form 7beta-hydroxycholesterol, a proapoptotic oxysterol that was neurotoxic at nanomolar concentrations. 7beta-Hydroxycholesterol inhibited secretion of soluble APP from cultured rat hippocampal H19-7/IGF-IR neuronal cells and inhibited tumor necrosis factor-alpha-converting enzyme alpha-secretase activity but had no effect on beta-site APP-cleaving enzyme 1 activity. 7beta-Hydroxycholesterol was also a potent inhibitor of alpha-protein kinase C, with a K(i) of approximately 0.2 nm. The rate of reaction between cholesterol and beta-amyloid was comparable to the rates of cholesterol-metabolizing enzymes (k(cat) = 0.211 min(-)1). The rate of production of 7beta-hydroxycholesterol by APP was approximately 200 times lower than by beta-amyloid. Oxidation of cholesterol was accompanied by stoichiometric production of hydrogen peroxide and required divalent copper. The results suggest that a function of APP may be to produce low levels of 7-hydroxycholesterol. Higher levels produced by beta-amyloid could contribute to the oxidative stress and cell loss observed in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
15
|
Angulo E, Casadó V, Mallol J, Canela EI, Viñals F, Ferrer I, Lluis C, Franco R. A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 2004; 13:440-51. [PMID: 14655750 PMCID: PMC8095992 DOI: 10.1111/j.1750-3639.2003.tb00475.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Immunostaining of adenosine receptors in the hippocampus and cerebral cortex from necropsies of Alzheimer disease (AD) patients shows that there is a change in the pattern of expression and a redistribution of receptors in these brain areas when compared with samples from controls. Adenosine A1 receptor (A1R) immunoreactivity was found in degenerating neurons with neurofibrillary tangles and in dystrophic neurites of senile plaques. A high degree of colocalization for A1R and betaA4 amyloid in senile plaques and for A1R and tau in neurons with tau deposition, but without tangles, was seen. Additionally, adenosine A2A receptors, located mainly in striatal neurons in controls, appeared in glial cells in the hippocampus and cerebral cortex of patients. On comparing similar samples from controls and patients, no significant change was evident for metabotropic glutamate receptors. In the human neuroblastoma SH-SY5Y cell line, agonists for A1R led to a dose-dependent increase in the production of soluble forms of amyloid precursor protein in a process mediated by PKC. A1R agonist induced p21 Ras activation and ERK1/2 phosphorylation. Furthermore, activation of A1R led to and ERK-dependent increase of tau phosphorylation and translocation towards the cytoskeleton. These results indicate that adenosine receptors are potential targets for AD.
Collapse
Affiliation(s)
- Ester Angulo
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Vicent Casadó
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Josefa Mallol
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Enric I. Canela
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Francesc Viñals
- Departament de Ciències Fisiològiques II, University of Barcelona, Campus de Bellvitge, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patológica, Hospital Princeps d'Espanya, Hospitalet del Llobregat, Spain
| | - Carmen Lluis
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| | - Rafael Franco
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Spain
| |
Collapse
|
16
|
LaVoie MJ, Selkoe DJ. The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 2003; 278:34427-37. [PMID: 12826675 DOI: 10.1074/jbc.m302659200] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cleavage of Notch by presenilin (PS)/gamma-secretase is a salient example of regulated intramembrane proteolysis, an unusual mechanism of signal transduction. This cleavage is preceded by the binding of protein ligands to the Notch ectodomain, activating its shedding. We hypothesized that the Notch ligands, Delta and Jagged, themselves undergo PS-mediated regulated intramembrane proteolysis. Here, we show that the ectodomain of mammalian Jagged is cleaved by an A disintegrin and metalloprotease (ADAM) 17-like activity in cultured cells and in vivo, similar to the known cleavage of Drosophila Delta by Kuzbanian. The ectodomain shedding of ligand can be stimulated by Notch and yields membrane-tethered C-terminal fragments (CTFs) of Jagged and Delta that accumulate in cells expressing a dominant-negative form of PS or treated with gamma-secretase inhibitors. PS forms stable complexes with Delta and Jagged and with their respective CTFs. PS/gamma-secretase then mediates the cleavage of the latter to release the Delta and Jagged intracellular domains, a portion of which can enter the nucleus. The ligand CTFs compete with an activated form of Notch for cleavage by gamma-secretase and can thus inhibit Notch signaling in vitro. The soluble Jagged intracellular domain can activate gene expression via the transcription factor AP1, and this effect is counteracted by the co-expression of the gamma-secretase-cleaved product of Notch, Notch intracellular domain. We conclude that Delta and Jagged undergo ADAM-mediated ectodomain processing followed by PS-mediated intramembrane proteolysis to release signaling fragments. Thus, Notch and its cognate ligands are processed by the same molecular machinery and may antagonistically regulate each other's signaling.
Collapse
Affiliation(s)
- Matthew J LaVoie
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
17
|
Wang J, Al-Lamki RS, Zhang H, Kirkiles-Smith N, Gaeta ML, Thiru S, Pober JS, Bradley JR. Histamine antagonizes tumor necrosis factor (TNF) signaling by stimulating TNF receptor shedding from the cell surface and Golgi storage pool. J Biol Chem 2003; 278:21751-60. [PMID: 12646554 DOI: 10.1074/jbc.m212662200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF) activates pro-inflammatory functions of vascular endothelial cells (EC) through binding to receptor type 1 (TNFR1) molecules expressed on the cell surface. The majority of TNFR1 molecules are localized to the Golgi apparatus. Soluble forms of TNFR1 (as well as of TNFR2) can be shed from the EC surface and inhibit TNF actions. The relationships among cell surface, Golgi-associated, and shed forms of TNFR1 are unclear. Here we report that histamine causes transient loss of surface TNFR1, TNFR1 shedding, and mobilization of TNFR1 molecules from the Golgi in cultured human EC. The Golgi pool of TNFR1 serves both to replenish cell surface receptors and as a source of shed receptor. Histamine-induced shedding is blocked by TNF-alpha protease inhibitor, an inhibitor of TNF-alpha-converting enzyme, and through the H1 receptor via a MEK-1/p42 and p44 mitogen-activated protein kinase pathway. Cultured EC with histamine-induced surface receptor loss become transiently refractory to TNF. Histamine injection into human skin engrafted on immunodeficient mice similarly caused shedding of TNFR1 and diminished TNF-mediated induction of endothelial adhesion molecules. These results both clarify relationships among TNFR1 populations and reveal a novel anti-inflammatory activity of histamine.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Box 157, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
DeFeudis FV. Effects ofGinkgo biloba extract (EGb 761) on gene expression: Possible relevance to neurological disorders and age-associated cognitive impairment. Drug Dev Res 2003. [DOI: 10.1002/ddr.10151] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Blacker M, Noe MC, Carty TJ, Goodyer CG, LeBlanc AC. Effect of tumor necrosis factor-alpha converting enzyme (TACE) and metalloprotease inhibitor on amyloid precursor protein metabolism in human neurons. J Neurochem 2002; 83:1349-57. [PMID: 12472889 DOI: 10.1046/j.1471-4159.2002.01228.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is implicated in inflammatory processes and much effort is being directed at inhibiting the release of TNF-alpha for treatment of inflammatory conditions. In this context, the drug CP-661,631 has been developed to inhibit the TNF-alpha converting enzyme (TACE). However, TACE is also implicated in amyloid precursor protein secretion. Amyloid precursor protein (APP) undergoes constitutive and regulated secretion by alpha-secretase endoproteolytic cleavage within the amyloid beta peptide (Abeta) domain. Alternative cleavage at the N- and C-terminus of the Abeta domain by beta- and gamma-secretases results in the production of Abeta. In many cellular and in vivo animal models, increased secretion of APP results in a concomitant decrease in the production of Abeta suggesting that the two pathways are intricately linked. However, in human primary neuron cultures, increased APP secretion is not associated with a decrease in total Abeta production. To determine if the use of CP-661,631 may enhance amyloidogenic processing in human brain, we have assessed the effect of CP-661,631 on APP metabolism in primary cultures of human neurons. Our results show that CP-661,631 effectively prevents regulated APP secretion but does not increase total Abeta levels in human primary neuron cultures.
Collapse
Affiliation(s)
- Megan Blacker
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
20
|
Higashino Ki KI, Yokota Y, Ono T, Kamitani S, Arita H, Hanasaki K. Identification of a soluble form phospholipase A2 receptor as a circulating endogenous inhibitor for secretory phospholipase A2. J Biol Chem 2002; 277:13583-8. [PMID: 11830583 DOI: 10.1074/jbc.m108752200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Venomous snakes have various types of phospholipase A(2) inhibitory proteins (PLIs) in their circulatory system to protect them from attack by their own phospholipase A(2)s (PLA(2)s). Here we show the first evidence for the existence of circulating PLI against secretory PLA(2)s (sPLA(2)s) in mammals. In mouse serum, we detected specific binding activities of group IB and X sPLA(2)s, which was in contrast with the absence of binding activities in serum prepared from mice deficient in PLA(2) receptor (PLA(2)R), a type I transmembrane glycoprotein related to the C-type animal lectin family. Western blot analysis after partial purification with group IB sPLA(2) affinity column confirmed the identity of serum sPLA(2)-binding protein as a soluble form of PLA(2)R (sPLA(2)R) that retained all of the extracellular domains of the membrane-bound receptor. Both purified sPLA(2)R and the recombinant soluble receptor having all of the extracellular portions blocked the biological functions of group X sPLA(2), including its potent enzymatic activity and its binding to the membrane-bound receptor. Protease inhibitor tests with PLA(2)R-overexpressing Chinese hamster ovary cells suggested that sPLA(2)R is produced by cleavage of the membrane-bound receptor by metalloproteinases. Thus, sPLA(2)R is the first example of circulating PLI that acts as an endogenous inhibitor for enzymatic activities and receptor-mediated functions of sPLA(2)s in mice.
Collapse
Affiliation(s)
- Ken-ichi Higashino Ki
- Shionogi Research Laboratories, Shionogi & Co., Ltd. 12-4 Sagisu, 5-Chome, Fukushima-ku, Osaka 553-0002, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Daugherty BL, Green SA. Endosomal sorting of amyloid precursor protein-P-selectin chimeras influences secretase processing. Traffic 2001; 2:908-16. [PMID: 11737828 DOI: 10.1034/j.1600-0854.2001.21206.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amyloid beta protein, the major component of the senile plaques in Alzheimer's disease, is generated by secretory and endocytic processing of amyloid precursor protein. Internalized amyloid precursor protein either recycles to the plasma membrane, where alpha-secretase resides, or moves to acidic compartment(s) for beta-secretase exposure. While the trans-Golgi network contains beta-secretase activity, recent examination of the subcellular distribution of this proteinase, called BACE, has led to the suggestion that beta-secretase activity might also reside at the plasma membrane and in endosomes. To examine the role of endocytic compartments in beta-secretase processing of amyloid precursor protein, the wild-type and endosomal sorting mutant P-selectin cytoplasmic domains were used to control movement of amyloid precursor protein through endosomes. Amyloid precursor protein/P-selectin, which is sorted from early to late endosomes, undergoes significantly less alpha-secretase cleavage, and more beta-secretase cleavage, than amyloid precursor protein/P-selectin768A, a mutant that recycles more efficiently to the cell surface. Our results demonstrate that endosomal sorting influences relative exposure of the amyloid precursor protein/P-selectin chimeras to alpha- and beta-secretase activities, and suggest that, because delivery to late endocytic compartments favors beta-secretase processing of amyloid precursor protein, there is likely limited beta-secretase activity in early endosomes or at the cell surface. We propose that the trans-Golgi network may be involved in both secretory and endocytic generation of amyloid beta protein.
Collapse
Affiliation(s)
- B L Daugherty
- Department of Cell Biology, University of Virginia Health System, School of Medicine, PO Box 800732, Charlottesville, VA 22908-0732, USA
| | | |
Collapse
|
22
|
Robert SJ, Zugaza JL, Fischmeister R, Gardier AM, Lezoualc'h F. The human serotonin 5-HT4 receptor regulates secretion of non-amyloidogenic precursor protein. J Biol Chem 2001; 276:44881-8. [PMID: 11584021 DOI: 10.1074/jbc.m109008200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin 5-HT(4) receptor has recently gained a lot of attention for its functional roles in central processes such as memory and cognition. In this study, we show that activation of the human 5-HT(4) (h5-HT(4)) receptor stimulates the secretion of the non-amyloidogenic soluble form of the amyloid precursor protein (sAPPalpha). 5-HT enhanced the level of secreted sAPPalpha in a time- and dose-dependent manner in Chinese hamster ovary cells stably expressing the h5-HT(4(e)) receptor isoform. The increase was inhibited by the selective 5-HT(4) receptor antagonist, GR113808. The 5-HT(4) selective agonists, prucalopride and renzapride, also increased secreted sAPPalpha in IMR32 human neuroblastoma cells. The stimulatory effect of 5-HT was mimicked by forskolin, a direct activator of adenylyl cyclase, and 8-bromo-cAMP, a membrane-permeant cAMP analogue. On the contrary, inhibition of protein kinase A (PKA) by H89 potentiated the 5-HT-induced increase in both secreted and cellular sAPPalpha. This phenomenon involves a novel PKA-independent stimulatory process that overcomes a PKA-dependent inhibitory one. Finally, activation of the h5-HT(4(e)) receptor did not modify extracellular amyloid beta-protein in Chinese hamster ovary cells transfected with the human APP695. Given the neuroprotective and enhancing memory effects of sAPPalpha, our results may open a new avenue for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- S J Robert
- Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Université Paris-Sud, Faculté de Pharmacie, F-92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
23
|
Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-alpha converting enzyme. Biochem J 2001. [PMID: 11463349 DOI: 10.1042/bj3570787] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The amyloid precursor protein (APP) of Alzheimer's disease is a transmembrane protein that is cleaved within its extracellular domain, liberating a soluble N-terminal fragment (sAPP alpha). Putative mediators of this process include three members of the ADAM (a disintegrin and metalloprotease) family, ADAM9, ADAM10 and ADAM17/TACE (tumour necrosis factor-alpha converting enzyme). Tumour necrosis factor-alpha protease inhibitor (TAPI-1), an inhibitor of ADAMs, reduced constitutive and muscarinic receptor-stimulated sAPP alpha release in HEK-293 cells stably expressing M3 muscarinic receptors. However, the former was less sensitive to TAPI-1 (IC(50)=8.09 microM) than the latter (IC(50)=3.61 microM), suggesting that these processes may be mediated by different metalloproteases. Constitutive sAPP alpha release was increased several-fold in cells transiently transfected with TACE, and this increase was proportional to TACE expression. In contrast, muscarinic-receptor-activated sAPP alpha release was not altered in TACE transfectants. TACE-dependent constitutive release of co-transfected APP(695) was inhibited by TAPI-1 with an IC(50) of 0.92 microm, a value significantly lower than the IC(50)s for inhibition of either constitutive or receptor-regulated sAPP alpha shedding mediated by endogenous secretases. The results indicate that TACE is capable of catalysing constitutive alpha-secretory cleavage of APP, but it is likely that additional members of the ADAM family mediate endogenous constitutive and receptor-coupled release of sAPP alpha in HEK-293 cells.
Collapse
|
24
|
Slack BE, Ma LK, Seah CC. Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-alpha converting enzyme. Biochem J 2001; 357:787-94. [PMID: 11463349 PMCID: PMC1222008 DOI: 10.1042/0264-6021:3570787] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The amyloid precursor protein (APP) of Alzheimer's disease is a transmembrane protein that is cleaved within its extracellular domain, liberating a soluble N-terminal fragment (sAPP alpha). Putative mediators of this process include three members of the ADAM (a disintegrin and metalloprotease) family, ADAM9, ADAM10 and ADAM17/TACE (tumour necrosis factor-alpha converting enzyme). Tumour necrosis factor-alpha protease inhibitor (TAPI-1), an inhibitor of ADAMs, reduced constitutive and muscarinic receptor-stimulated sAPP alpha release in HEK-293 cells stably expressing M3 muscarinic receptors. However, the former was less sensitive to TAPI-1 (IC(50)=8.09 microM) than the latter (IC(50)=3.61 microM), suggesting that these processes may be mediated by different metalloproteases. Constitutive sAPP alpha release was increased several-fold in cells transiently transfected with TACE, and this increase was proportional to TACE expression. In contrast, muscarinic-receptor-activated sAPP alpha release was not altered in TACE transfectants. TACE-dependent constitutive release of co-transfected APP(695) was inhibited by TAPI-1 with an IC(50) of 0.92 microm, a value significantly lower than the IC(50)s for inhibition of either constitutive or receptor-regulated sAPP alpha shedding mediated by endogenous secretases. The results indicate that TACE is capable of catalysing constitutive alpha-secretory cleavage of APP, but it is likely that additional members of the ADAM family mediate endogenous constitutive and receptor-coupled release of sAPP alpha in HEK-293 cells.
Collapse
Affiliation(s)
- B E Slack
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 85 East Newton Street, Rm. M1007, Boston, MA 02118, USA.
| | | | | |
Collapse
|