1
|
Hua L, Gao Y, Guo S, Zhu H, Yao Y, Wang B, Fang J, Sun H, Xu F, Zhao H. Urinary Metabolites of Polycyclic Aromatic Hydrocarbons of Rural Population in Northwestern China: Oxidative Stress and Health Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7758-7769. [PMID: 38669205 DOI: 10.1021/acs.est.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure is suspected to be linked to oxidative damage. Herein, ten PAH human exposure biomarkers [hydroxylated PAH metabolites (OH-PAHs)] and five oxidative stress biomarkers (OSBs) were detected in urine samples collected from participants living in a rural area (n = 181) in Northwestern China. The median molar concentration of ΣOH-PAHs in urine was 47.0 pmol mL-1. The 2-hydroxynaphthalene (2-OHNap; median: 2.21 ng mL-1) was the dominant OH-PAH. The risk assessment of PAH exposure found that hazard index (HI) values were <1, indicating that the PAH exposure of rural people in Jingyuan would not generate significant cumulative risks. Smokers (median: 0.033) obtained higher HI values than nonsmokers (median: 0.015, p < 0.01), suggesting that smokers face a higher health risk from PAH exposure than nonsmokers. Pearson correlation and multivariate linear regression analysis revealed that ΣOH-PAH concentrations were significant factors in increasing the oxidative damage to deoxyribonucleic acid (DNA) (8-hydroxy-2'-deoxyguanosine, 8-OHdG), ribonucleic acid (RNA) (8-oxo-7,8-dihydroguanine, 8-oxoGua), and protein (o, o'-dityrosine, diY) (p < 0.05). Among all PAH metabolites, only 1-hydroxypyrene (1-OHPyr) could positively affect the expression of all five OSBs (p < 0.05), suggesting that urinary 1-OHPyr might be a reliable biomarker for PAH exposure and a useful indicator for assessing the impacts of PAH exposure on oxidative stress. This study is focused on the relation between PAH exposure and oxidative damage and lays a foundation for the study of the health effect mechanism of PAHs.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Yafei Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fuliu Xu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
3
|
Kelty J, Kovalchuk N, Uwimana E, Yin L, Ding X, Van Winkle L. In vitro airway models from mice, rhesus macaques, and humans maintain species differences in xenobiotic metabolism and cellular responses to naphthalene. Am J Physiol Lung Cell Mol Physiol 2022; 323:L308-L328. [PMID: 35853015 PMCID: PMC9423729 DOI: 10.1152/ajplung.00349.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
The translational value of high-throughput toxicity testing will depend on pharmacokinetic validation. Yet, popular in vitro airway epithelia models were optimized for structure and mucociliary function without considering the bioactivation or detoxification capabilities of lung-specific enzymes. This study evaluated xenobiotic metabolism maintenance within differentiated air-liquid interface (ALI) airway epithelial cell cultures (human bronchial; human, rhesus, and mouse tracheal), isolated airway epithelial cells (human, rhesus, and mouse tracheal; rhesus bronchial), and ex vivo microdissected airways (rhesus and mouse) by measuring gene expression, glutathione content, and naphthalene metabolism. Glutathione levels and detoxification gene transcripts were measured after 1-h exposure to 80 µM naphthalene (a bioactivated toxicant) or reactive naphthoquinone metabolites. Glutathione and glutathione-related enzyme transcript levels were maintained in ALI cultures from all species relative to source tissues, while cytochrome P450 monooxygenase gene expression declined. Notable species differences among the models included a 40-fold lower total glutathione content for mouse ALI trachea cells relative to human and rhesus; a higher rate of naphthalene metabolism in mouse ALI cultures for naphthalene-glutathione formation (100-fold over rhesus) and naphthalene-dihydrodiol production (10-fold over human); and opposite effects of 1,2-naphthoquinone exposure in some models-glutathione was depleted in rhesus tissue but rose in mouse ALI samples. The responses of an immortalized bronchial cell line to naphthalene and naphthoquinones were inconsistent with those of human ALI cultures. These findings of preserved species differences and the altered balance of phase I and phase II xenobiotic metabolism among the characterized in vitro models should be considered for future pulmonary toxicity testing.
Collapse
Affiliation(s)
- Jacklyn Kelty
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Respiratory Biology and Medicine, School of Veterinary Medicine and Center for Health and the Environment, University of California at Davis, Davis, California
| | - Nataliia Kovalchuk
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Eric Uwimana
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Lei Yin
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Xinxin Ding
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Laura Van Winkle
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Respiratory Biology and Medicine, School of Veterinary Medicine and Center for Health and the Environment, University of California at Davis, Davis, California
| |
Collapse
|
4
|
Zhou J, Zhang X, Li Y, Feng S, Zhang Q, Wang W. Endocrine-disrupting metabolic activation of 2-nitrofluorene catalyzed by human cytochrome P450 1A1: A QM/MM approach. ENVIRONMENT INTERNATIONAL 2022; 166:107355. [PMID: 35751956 DOI: 10.1016/j.envint.2022.107355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Nitropolycyclic aromatic hydrocarbons (NPAHs) present one of the most important airborne pollutants. Recent studies have shown that one of the most abundant NPAHs, 2-Nitrofluorene (NF), was supposed to be converted to endocrine-disrupting metabolites by cytochrome P450 1A1 (CYP1A1) in human cells. However, the mechanism is still largely unexplored. Here the metabolic activation and transformation mechanism of NF catalyzed by CYP1A1 were systematically studied with the aid of Molecular Dynamics, Density Functional Theory and Quantum Mechanics/Molecular Mechanics techniques. We evidence that CYP1A1 can activate NF through two elementary processes: (i) electrophilic addition (12.4 kcal·mol-1) or hydrogen abstraction (38.2 kcal·mol-1) and (ii) epoxidation (5.9 and 8.7 kcal·mol-1) or NIH shift (12.5 and 14.9 kcal·mol-1) or proton shuttle (12.1 kcal·mol-1). Electrophilic addition was found to be the rate-determining step while epoxidation rather than NIH shift or proton shuttle is the more feasible pathway after electrophilic addition. Metabolites 6,7-epoxide-2-nitrofluorene and 7,8-epoxide-2-nitrofluorene were identified as the major epoxidation products. Epoxides are unstable and easy to react with hydrated hydrogen ions and hydroxyls to produce endocrine disrupter 7-hydroxy-2-nitrofluorene. Toxic analysis shows that some of the metabolites are more toxic to model aquatic organisms (e.g. Green algea) than NF. Binding affinity analysis to human sex hormone binding globulin reveals that NF metabolites all have endocrine-disrupting potential. This study provides a comprehensive understanding on the biotransformation process of NF and may aid future studies on various NPAHs activation catalyzed by human P450 enzyme.
Collapse
Affiliation(s)
- Junhua Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Shanshan Feng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
5
|
Zhang R, Li P, Zhang R, Shi X, Li Y, Zhang Q, Wang W. Computational study on the detoxifying mechanism of DDT metabolized by cytochrome P450 enzymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125457. [PMID: 33652222 DOI: 10.1016/j.jhazmat.2021.125457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Predicting the detoxifying mechanism and potential toxic derivatives of xenobiotic substances is significant for risk assessment. The present study delineated the detoxifying mechanism of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene (DDT) metabolized by human P450 enzymes using a combination of molecular dynamic (MD), quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT). This study highlights that DDT can be metabolized by P450 enzymes through the hydrogen abstraction and electrophilic addition mechanism, and the main derivatives are epoxides (2,3-oxide-DDT and 3,4-oxide-DDT), DDE and dicofol. The epoxides are unstable and the C-O bond cleavage easily occurs by the reaction with hydronium ion or hydroxyl radicals, yielding endocrine disruptor hydroxylated DDT. The eco-toxicity evaluation indicates that the derivatives of DDT are less toxic than DDT, and the solubility increase of the derivatives can accelerate their excretion from the body. The study can provide an understanding of the biotransformation of DDT by the P450 enzymes in human livers.
Collapse
Affiliation(s)
- Ruiming Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Pengfei Li
- Shandong Academy for Environmental Planning, Jinan 250014, PR China
| | - Ruiying Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xiangli Shi
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
6
|
Bartilotti M, Beluomini MA, Boldrin Zanoni MV. Using an Electrochemical MIP Sensor for Selective Determination of 1‐Naphthol in Oilfield Produced Water. ELECTROANAL 2021. [DOI: 10.1002/elan.202060545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mariana Bartilotti
- National Institute of Alternative Technologies for Detection Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM) São Paulo State University (UNESP) 55 Prof. Francisco Degni St. Araraquara 14800-060 São Paulo State Brazil
- Analytical Chemistry Department Institute of Chemistry São Paulo State University (UNESP) 55 Prof. Francisco Degni St. Araraquara 14800-060 São Paulo State Brazil
| | - Maísa Azevedo Beluomini
- National Institute of Alternative Technologies for Detection Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM) São Paulo State University (UNESP) 55 Prof. Francisco Degni St. Araraquara 14800-060 São Paulo State Brazil
- Analytical Chemistry Department Institute of Chemistry São Paulo State University (UNESP) 55 Prof. Francisco Degni St. Araraquara 14800-060 São Paulo State Brazil
| | - Maria Valnice Boldrin Zanoni
- National Institute of Alternative Technologies for Detection Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM) São Paulo State University (UNESP) 55 Prof. Francisco Degni St. Araraquara 14800-060 São Paulo State Brazil
- Analytical Chemistry Department Institute of Chemistry São Paulo State University (UNESP) 55 Prof. Francisco Degni St. Araraquara 14800-060 São Paulo State Brazil
| |
Collapse
|
7
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
8
|
Chylenski P, Bissaro B, Sørlie M, Røhr ÅK, Várnai A, Horn SJ, Eijsink VG. Lytic Polysaccharide Monooxygenases in Enzymatic Processing of Lignocellulosic Biomass. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00246] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Piotr Chylenski
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Åsmund K. Røhr
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Svein J. Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Vincent G.H. Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
9
|
Bao L, Liu W, Li Y, Wang X, Xu F, Yang Z, Yue Y, Zuo C, Zhang Q, Wang W. Carcinogenic Metabolic Activation Process of Naphthalene by the Cytochrome P450 Enzyme 1B1: A Computational Study. Chem Res Toxicol 2019; 32:603-612. [PMID: 30794404 DOI: 10.1021/acs.chemrestox.8b00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic activation and transformation of naphthalene by the cytochrome P450 enzyme (CYP 1B1) plays an important role in its potential carcinogenicity. The process has been explored by a quantum mechanics/molecular mechanics (QM/MM) computational method. Molecular dynamic simulations were performed to explore the interaction between naphthalene and CYP 1B1. Naphthalene involves α- and β-carbon, the electrophilic addition of which would result in different reaction pathways. Our computational results show that both additions on α- and β-carbon can generate naphthalene 1,2-oxide. The activation barrier for the addition on β-carbon is higher than that for the α-carbon by 2.6 kcal·mol-1, which is possibly caused by the proximity between β-carbon and the iron-oxo group of Cpd I in the system. We also found that naphthalene 1,2-oxide is unstable and the O-C bond cleavage easily occurs via cellular hydronium ion, hydroxyl radical/anion; then it will convert to the potential ultimate carcinogen 1,2-naphthoquinone. The results demonstrate and inform a detailed process of generating naphthalene 1,2-oxide and new predictions for its conversion.
Collapse
Affiliation(s)
- Lei Bao
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Wen Liu
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Yanwei Li
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Xueyu Wang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Fei Xu
- Shenzhen Research Institute of Shandong University , Shenzhen 518057 , People's Republic of China
| | - Zhongyue Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Yue Yue
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Chenpeng Zuo
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Qingzhu Zhang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Wenxing Wang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| |
Collapse
|
10
|
Miura T, Uehara S, Nakazato M, Kusama T, Toda A, Kamiya Y, Murayama N, Shimizu M, Suemizu H, Yamazaki H. Human plasma and liver concentrations of styrene estimated by combining a simple physiologically based pharmacokinetic model with rodent data. J Toxicol Sci 2019; 44:543-548. [DOI: 10.2131/jts.44.543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | | | | | - Akiko Toda
- Shin Nippon Biomedical Laboratories, Ltd
| | | | | | | | | | | |
Collapse
|
11
|
Sugahara S, Fukuhara K, Tokunaga Y, Tsutsumi S, Ueda Y, Ono M, Kurogi K, Sakakibara Y, Suiko M, Liu MC, Yasuda S. Radical scavenging effects of 1-naphthol, 2-naphthol, and their sulfate-conjugates. J Toxicol Sci 2018. [DOI: 10.2131/jts.43.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Kumiko Fukuhara
- Department of Bioscience, School of Agriculture, Tokai University
| | | | | | - Yuto Ueda
- Graduate School of Bioscience, Tokai University
| | - Masateru Ono
- Graduate School of Bioscience, Tokai University
- Department of Bioscience, School of Agriculture, Tokai University
- Graduate School of Agriculture, Tokai University
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy, The University of Toledo
| | - Shin Yasuda
- Graduate School of Bioscience, Tokai University
- Department of Bioscience, School of Agriculture, Tokai University
- Graduate School of Agriculture, Tokai University
| |
Collapse
|
12
|
Bart AG, Scott EE. Structural and functional effects of cytochrome b5 interactions with human cytochrome P450 enzymes. J Biol Chem 2017; 292:20818-20833. [PMID: 29079577 DOI: 10.1074/jbc.ra117.000220] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/22/2017] [Indexed: 02/04/2023] Open
Abstract
The small heme-containing protein cytochrome b5 can facilitate, inhibit, or have no effect on cytochrome P450 catalysis, often in a P450-dependent and substrate-dependent manner that is not well understood. Herein, solution NMR was used to identify b5 residues interacting with different human drug-metabolizing P450 enzymes. NMR results revealed that P450 enzymes bound to either b5 α4-5 (CYP2A6 and CYP2E1) or this region and α2-3 (CYP2D6 and CYP3A4) and suggested variation in the affinity for b5 Mutations of key b5 residues suggest not only that different b5 surfaces are responsible for binding different P450 enzymes, but that these different complexes are relevant to the observed effects on P450 catalysis.
Collapse
Affiliation(s)
| | - Emily E Scott
- From the Biophysics Program and .,the Departments of Medicinal Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
13
|
McNally K, Sams C, Loizou GD, Jones K. Evidence for non-linear metabolism at low benzene exposures? A reanalysis of data. Chem Biol Interact 2017; 278:256-268. [PMID: 28899792 DOI: 10.1016/j.cbi.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022]
Abstract
The presence of a high-affinity metabolic pathway for low level benzene exposures of less than one part per million (ppm) has been proposed although a pathway has not been identified. The variation of metabolite molar fractions with increasing air benzene concentrations was suggested as evidence of significantly more efficient benzene metabolism at concentrations <0.1 ppm The evidence for this pathway is predicated on a rich data set from a study of Chinese shoe workers exposed to a wide range of benzene concentrations (not just "low level"). In this work we undertake a further independent re-analysis of this data with a focus on the evidence for an increase in the rate of metabolism of benzene exposures of less than 1 ppm. The analysis dataset consisted of measurements of benzene and toluene from personal air samplers, and measurements of unmetabolised benzene and toluene and five metabolites (phenol hydroquinone, catechol, trans, trans-muconic acid and s-phenylmercapturic acid) from post-shift urine samples for 213 workers with an occupational exposure to benzene (and toluene) and 139 controls. Measurements from control subjects were used to estimate metabolite concentrations resulting from non-occupational sources, including environmental sources of benzene. Data from occupationally exposed subjects were used to estimate metabolite concentrations as a function of benzene exposure. Correction for background (environmental exposure) sources of metabolites was achieved through a comparison of geometric means in occupationally exposed and control populations. The molar fractions of the five metabolites as a function of benzene exposure were computed. A supra-linear relationship between metabolite concentrations and benzene exposure was observed over the range 0.1-10 ppm benzene, however over the range benzene exposures of between 0.1 and 1 ppm only a modest departure from linearity was observed. The molar fractions estimated in this work were near constant over the range 0.1-10 ppm. No evidence of high affinity metabolism at these low level exposures was observed. Our reanalysis brings in to question the appropriateness of the dataset for commenting on low dose exposures and the use of a purely statistical approach to the analysis.
Collapse
Affiliation(s)
- K McNally
- Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JN, UK
| | - C Sams
- Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JN, UK
| | - G D Loizou
- Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JN, UK
| | - K Jones
- Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JN, UK.
| |
Collapse
|
14
|
Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J. Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E667. [PMID: 28635673 PMCID: PMC5486353 DOI: 10.3390/ijerph14060667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/04/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022]
Abstract
Naphthalene and benzene are widely-used volatile organic compounds. The aim of this research was to examine the toxicological effects of naphthalene and benzene against Tribolium castaneum as an animal model. Adult insects were exposed to these aromatic compounds to assess mortality after 4-48 h of exposure. The lethal concentration 50 (LC50) for naphthalene, naphthalin, and benzene were 63.6 µL/L, 20.0 µL/L, and 115.9 µL/L in air, respectively. Real-time polymerase chain reaction (PCR) analysis revealed expression changes in genes related to oxidative stress and metabolism [Glutathione S-Transferase (Gst), and Cytochrome P450 6BQ8 (Cyp6bq8)]; reproduction and metamorphosis [Hormone receptor in 39-like protein (Hr39), Ecdysone receptor: (Ecr), and Chitin synthase 2 (Chs2)]; and neurotransmission [Histamine-gated chloride channel 2 (Hiscl2)] in insects exposed for 4 h to 70.2 µL/L naphthalene. Adults exposed to benzene (80 µL/L; 4 h) overexpressed genes related to neurotransmission [GABA-gated anion channel (Rdl), Hiscl2, and GABA-gated ion channel (Grd)]; reproduction and metamorphosis [Ultraspiracle nuclear receptor (USP), Ecr; and Hr39]; and development (Chs2). The data presented here provides evidence that naphthalene and benzene inhalation are able to induce alterations on reproduction, development, metamorphosis, oxidative stress, metabolism, neurotransmission, and death of the insect.
Collapse
Affiliation(s)
- Nerlis Pajaro-Castro
- Environmental and Computational Chemistry Group, Campus of Zaragocilla, School of Pharmaceutical Sciences, University of Cartagena, Cartagena 130001, Colombia.
- Medical and Pharmaceutical Sciences Group, School of Health Sciences, Department of Medicine, University of Sucre, Sincelejo 700003, Colombia.
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, Campus of Zaragocilla, School of Pharmaceutical Sciences, University of Cartagena, Cartagena 130001, Colombia.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, Campus of Zaragocilla, School of Pharmaceutical Sciences, University of Cartagena, Cartagena 130001, Colombia.
| |
Collapse
|
15
|
Li L, Carratt S, Hartog M, Kovalchik N, Jia K, Wang Y, Zhang QY, Edwards P, Winkle LV, Ding X. Human CYP2A13 and CYP2F1 Mediate Naphthalene Toxicity in the Lung and Nasal Mucosa of CYP2A13/2F1-Humanized Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067004. [PMID: 28599267 PMCID: PMC5743450 DOI: 10.1289/ehp844] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND The potential carcinogenicity of naphthalene (NA), a ubiquitous environmental pollutant, in human respiratory tract is a subject of intense debate. Chief among the uncertainties in risk assessment for NA is whether human lung CYP2A13 and CYP2F1 can mediate NA's respiratory tract toxicity. OBJECTIVES We aimed to assess the in vivo function of CYP2A13 and CYP2F1 in NA bioactivation and NA-induced respiratory tract toxicity in mouse models. METHODS Rates of microsomal NA bioactivation and the effects of an anti-CYP2A antibody were determined for lung and nasal olfactory mucosa (OM) from Cyp2abfgs-null, CYP2A13-humanized, and CYP2A13/2F1-humanized mice. The extent of NA respiratory toxicity was compared among wild-type, Cyp2abfgs-null, and CYP2A13/2F1-humanized mice following inhalation exposure at an occupationally relevant dose (10 ppm for 4 hr). RESULTS In vitro studies indicated that the NA bioactivation activities in OM and lung of the CYP2A13/2F1-humanized mice were primarily contributed by, respectively, CYP2A13 and CYP2F1. CYP2A13/2F1-humanized mice showed greater sensitivity to NA than Cyp2abfgs-null mice, with greater depletion of nonprotein sulfhydryl and occurrence of cytotoxicity (observable by routine histology) in the OM, at 2 or 20 hr after termination of NA exposure, in humanized mice. Focal, rather than gross, lung toxicity was observed in Cyp2abfgs-null and CYP2A13/2F1-humanized mice; however, the extent of NA-induced lung injury (shown as volume fraction of damaged cells) was significantly greater in the terminal bronchioles of CYP2A13/2F1-humanized mice than in Cyp2abfgs-null mice. CONCLUSION CYP2F1 is an active enzyme. Both CYP2A13 and CYP2F1 are active toward NA in the CYP2A13/2F1-humanized mice, where they play significant roles in NA-induced respiratory tract toxicity. https://doi.org/10.1289/EHP844.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Sarah Carratt
- Center for Health and the Environment, University of California, Davis (UC Davis), Davis, California, USA
| | - Matthew Hartog
- College of Nanoscale Science and Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York, USA
| | - Nataliia Kovalchik
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kunzhi Jia
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Yanan Wang
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Patricia Edwards
- Center for Health and the Environment, University of California, Davis (UC Davis), Davis, California, USA
| | - Laura Van Winkle
- Center for Health and the Environment, University of California, Davis (UC Davis), Davis, California, USA
| | - Xinxin Ding
- College of Nanoscale Science and Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York, USA
| |
Collapse
|
16
|
Van Winkle LS, Kelty JS, Plopper CG. Preparation of Specific Compartments of the Lungs for Pathologic and Biochemical Analysis of Toxicologic Responses. ACTA ACUST UNITED AC 2017; 71:24.5.1-24.5.26. [PMID: 28146282 DOI: 10.1002/cptx.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This unit focuses on protocols for assessing microenvironment-specific responses in the thoracic lung tissues. Aspects of the entire respiratory system serve as potential targets for candidate toxicants, but each candidate toxicant may impact distinct sites due to differential distribution of either the toxicant or the target cells. Within the conducting airways, the composition of resident cell populations and the metabolic capabilities of the cell populations vary greatly. Thus, studies of this region of the lung require unique, site-selective methods to clearly define the toxic response. Without site-specific sampling, as described in this chapter, the experimental limit of detection for toxicant effects in conducting airways is weakened because differences unrelated to treatment, but related to location, may dominate the response. The protocols included here allow assessment of toxicological responses in the tracheobronchial airways and the gas exchange area of the lung, with specific application to laboratory mammals. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laura S Van Winkle
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California.,John Muir Institute for the Environment, Center for Health and the Environment, University of California, Davis, California
| | - Jacklyn S Kelty
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California.,John Muir Institute for the Environment, Center for Health and the Environment, University of California, Davis, California
| | - Charles G Plopper
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
17
|
Burkina V, Rasmussen MK, Pilipenko N, Zamaratskaia G. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450. Toxicology 2017; 375:10-27. [DOI: 10.1016/j.tox.2016.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/25/2022]
|
18
|
Heine T, Tucker K, Okonkwo N, Assefa B, Conrad C, Scholtissek A, Schlömann M, Gassner G, Tischler D. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins. Appl Biochem Biotechnol 2016; 181:1590-1610. [PMID: 27830466 DOI: 10.1007/s12010-016-2304-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022]
Abstract
The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s-1. This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.
Collapse
Affiliation(s)
| | | | - Nonye Okonkwo
- San Francisco State University, San Francisco, CA, USA
| | | | | | | | | | | | - Dirk Tischler
- TU Bergakademie Freiberg, Freiberg, Germany.
- San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
19
|
Shimada T, Takenaka S, Murayama N, Yamazaki H, Kim JH, Kim D, Yoshimoto FK, Guengerich FP, Komori M. Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes. Chem Res Toxicol 2016; 28:268-78. [PMID: 25642975 DOI: 10.1021/tx500505y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acenaphthene and acenaphthylene, two known environmental polycyclic aromatic hydrocarbon (PAH)pollutants, were incubated at 50 μM concentrations in a standard reaction mixture with human P450s 2A6, 2A13, 1B1,1A2, 2C9, and 3A4, and the oxidation products were determined using HPLC and LC-MS. HPLC analysis showed that P450 2A6 converted acenaphthene and acenaphthylene to several mono- and dioxygenated products. LC-MS analysis of acenaphthene oxidation by P450s indicated the formation of1-acenaphthenol as a major product, with turnover rates of 6.7,4.5, and 3.6 nmol product formed/min/nmol P450 for P4502A6, 2A13, and 1B1, respectively. Acenaphthylene oxidation by P450 2A6 showed the formation of 1,2-epoxyacenaphthene as a major product (4.4 nmol epoxide formed/min/nmol P450) and also several mono- and dioxygenated products.P450 2A13, 1B1, 1A2, 2C9, and 3A4 formed 1,2-epoxyacenaphthene at rates of 0.18, 5.3 2.4, 0.16, and 3.8 nmol/min/nmol P450, respectively. 1-Acenaphthenol, which induced Type I binding spectra with P450 2A13, was further oxidized by P450 2A13 but not P450 2A6. 1,2-Epoxyacenaphthene induced Type I binding spectra with P450 2A6 and 2A13 (K(s) 1.8 and 0.16 μM,respectively) and was also oxidized to several oxidation products by these P450s. Molecular docking analysis suggested different orientations of acenaphthene, acenaphthylene, 1-acenaphthenol, and 1,2-epoxyacenaphthene in their interactions with P450 2A6a nd 2A13. Neither of these four PAHs induced umu gene expression in a Salmonella typhimurium NM tester strain. These results suggest, for the first time, that acenaphthene and acenaphthylene are oxidized by human P450s 2A6 and 2A13 and other P450s to form several mono- and dioxygenated products. The results are of use in considering the biological and toxicological significance of these environmental PAHs in humans.
Collapse
|
20
|
Shimada T, Takenaka S, Kakimoto K, Murayama N, Lim YR, Kim D, Foroozesh MK, Yamazaki H, Guengerich FP, Komori M. Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6. Chem Res Toxicol 2016; 29:1029-40. [PMID: 27137136 PMCID: PMC5293596 DOI: 10.1021/acs.chemrestox.6b00083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Naphthalene, phenanthrene, biphenyl, and their derivatives having different ethynyl, propynyl, butynyl, and propargyl ether substitutions were examined for their interaction with and oxidation by cytochromes P450 (P450) 2A13 and 2A6. Spectral interaction studies suggested that most of these chemicals interacted with P450 2A13 to induce Type I binding spectra more readily than with P450 2A6. Among the various substituted derivatives examined, 2-ethynylnaphthalene, 2-naphthalene propargyl ether, 3-ethynylphenanthrene, and 4-biphenyl propargyl ether had larger ΔAmax/Ks values in inducing Type I binding spectra with P450 2A13 than their parent compounds. P450 2A13 was found to oxidize naphthalene, phenanthrene, and biphenyl to 1-naphthol, 9-hydroxyphenanthrene, and 2- and/or 4-hydroxybiphenyl, respectively, at much higher rates than P450 2A6. Other human P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, and 3A4 had lower rates of oxidation of naphthalene, phenanthrene, and biphenyl than P450s 2A13 and 2A6. Those alkynylated derivatives that strongly induced Type I binding spectra with P450s 2A13 and 2A6 were extensively oxidized by these enzymes upon analysis with HPLC. Molecular docking studies supported the hypothesis that ligand-interaction energies (U values) obtained with reported crystal structures of P450 2A13 and 2A6 bound to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, indole, pilocarpine, nicotine, and coumarin are of use in understanding the basis of possible molecular interactions of these xenobiotic chemicals with the active sites of P450 2A13 and 2A6 enzymes. In fact, the ligand-interaction energies with P450 2A13 4EJG bound to these chemicals were found to relate to their induction of Type I binding spectra.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Kensaku Kakimoto
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Maryam K. Foroozesh
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
21
|
Bailey LA, Nascarella MA, Kerper LE, Rhomberg LR. Hypothesis-based weight-of-evidence evaluation and risk assessment for naphthalene carcinogenesis. Crit Rev Toxicol 2015; 46:1-42. [PMID: 26202831 PMCID: PMC4732411 DOI: 10.3109/10408444.2015.1061477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022]
Abstract
Inhalation of naphthalene causes olfactory epithelial nasal tumors in rats (but not in mice) and benign lung adenomas in mice (but not in rats). The limited available human data have not identified an association between naphthalene exposure and increased respiratory cancer risk. Assessing naphthalene's carcinogenicity in humans, therefore, depends entirely on experimental evidence from rodents. We evaluated the respiratory carcinogenicity of naphthalene in rodents, and its potential relevance to humans, using our Hypothesis-Based Weight-of-Evidence (HBWoE) approach. We systematically and comparatively reviewed data relevant to key elements in the hypothesized modes of action (MoA) to determine which is best supported by the available data, allowing all of the data from each realm of investigation to inform interpretation of one another. Our analysis supports a mechanism that involves initial metabolism of naphthalene to the epoxide, followed by GSH depletion, cytotoxicity, chronic inflammation, regenerative hyperplasia, and tumor formation, with possible weak genotoxicity from downstream metabolites occurring only at high cytotoxic doses, strongly supporting a non-mutagenic threshold MoA in the rat nose. We also conducted a dose-response analysis, based on the likely MoA, which suggests that the rat nasal MoA is not relevant in human respiratory tissues at typical environmental exposures. Our analysis illustrates how a thorough WoE evaluation can be used to support a MoA, even when a mechanism of action cannot be fully elucidated. A non-mutagenic threshold MoA for naphthalene-induced rat nasal tumors should be considered as a basis to determine human relevance and to guide regulatory and risk-management decisions.
Collapse
|
22
|
Shimada T, Takenaka S, Murayama N, Kramlinger VM, Kim JH, Kim D, Liu J, Foroozesh MK, Yamazaki H, Guengerich FP, Komori M. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica 2015; 46:211-24. [PMID: 26247835 PMCID: PMC5270756 DOI: 10.3109/00498254.2015.1069419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The polycyclic hydrocarbons (PAHs), pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene, were found to induce Type I binding spectra with human cytochrome P450 (P450) 2A13 and were converted to various mono- and di-oxygenated products by this enzyme. 2. Pyrene was first oxidized by P450 2A13 to 1-hydroxypyrene which was further oxidized to di-oxygenated products, i.e. 1,8- and 1,6-dihydroxypyrene. Of five other human P450s examined, P450 1B1 catalyzed pyrene oxidation to 1-hydroxypyrene at a similar rate to P450 2A13 but was less efficient in forming dihydroxypyrenes. P450 2A6, a related human P450 enzyme, which did not show any spectral changes with these four PAHs, showed lower activities in oxidation of these compounds than P450 2A13. 3. 1-Nitropyrene and 1-acetylpyrene were also found to be efficiently oxidized by P450 2A13 to several oxygenated products, based on mass spectrometry analysis. 4. Molecular docking analysis supported preferred orientations of pyrene and its derivatives in the active site of P450 2A13, with lower interaction energies (U values) than observed for P450 2A6 and that several amino acid residues (including Ala-301, Asn-297 and Ala-117) play important roles in directing the orientation of these PAHs in the P450 2A13 active site. In addition, Phe-231 and Gly-329 were found to interact with pyrene to orient this compound in the active site of P450 1B1. 5. These results suggest that P450 2A13 is one of the important enzymes that oxidizes these PAH compounds and may determine how these chemicals are detoxicated and bioactivated in humans.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Valerie M. Kramlinger
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Joo-Hwan Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Maryam K. Foroozesh
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
23
|
Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Substrate Selectivities and Catalytic Activities of Marmoset Liver Cytochrome P450 2A6 Differed from Those of Human P450 2A6. Drug Metab Dispos 2015; 43:969-76. [PMID: 25858611 DOI: 10.1124/dmd.115.063909] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/09/2015] [Indexed: 02/13/2025] Open
Abstract
The common marmoset (Callithrix jacchus), a New World primate species, is potentially a useful animal model for preclinical studies in drug development. However, cytochrome P450 (P450) enzymes have not been fully identified and characterized in marmosets. In this study, we identified P450 2A6 cDNA with the sequence highly identical (91-94%) to human P450 2A6, 2A7, and 2A13 cDNA and cynomolgus monkey P450 2A23, 2A24, and 2A26 cDNA. Among the tissue types examined, marmoset P450 2A6 mRNA was most abundantly expressed in livers where P450 2A6 protein was also detected by immunoblotting. Phylogenetic analysis showed that marmoset P450 2A6 was more closely clustered with human and cynomolgus monkey P450 2As than P450 2As of dog, rat, and mouse (the species also used in drug metabolism). Marmoset P450 2A6 heterologously expressed in Escherichia coli membranes efficiently catalyzed 7-ethoxycoumarin O-deethylation, similar to human P450 2A6 and 2A13 and cynomolgus monkey P450 2A23, 2A24, and 2A26, but much less effectively coumarin 7-hydroxylation, showing some difference as well. Interestingly, marmoset P450 2A6 and cynomolgus monkey P450 2A23 catalyzed phenacetin O-deethylation, which is catalyzed by human P450 1A2 and 2A13, but not by P450 2A6. Marmoset P450 2A6 also exhibited catalytic activity toward testosterone by the multiple sites, but not rat P450 2A-specific testosterone 7α-hydroxylation activity. These results indicated that marmoset P450 2A6 had functional characteristics different from those of human and cynomolgus monkey P450 2As in terms of partially different substrate specificities and catalytic activities, indicating its importance of further studies for P450 2A-dependent drug metabolism in marmosets.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yasuhiro Uno
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Takashi Inoue
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Erika Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| |
Collapse
|
24
|
Kotewong R, Pouyfung P, Duangkaew P, Prasopthum A, Rongnoparut P. Synergy between rhinacanthins from Rhinacanthus nasutus in inhibition against mosquito cytochrome P450 enzymes. Parasitol Res 2015; 114:2567-79. [PMID: 25869958 DOI: 10.1007/s00436-015-4461-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
The cytochrome P450 monooxygenases play a major role in insecticide detoxification and become a target for development of insecticide synergists. In this study, a collection of rhinacanthins (rhinacanthin-D, -E, -G, -N, -Q, and -H/I) purified from Rhinacanthus nasutus, in addition to previously purified rhinacanthin-B and -C, were isolated. These compounds displayed various degrees of inhibition against benzyloxyresorufin-O-debenzylation mediated by CYP6AA3 and CYP6P7 which were implicated in pyrethroid resistance in Anopheles minimus malaria vector. Inhibition modes and kinetics were determined for each of rhinacanthins. Cell-based inhibition assays by rhinacanthins employing 3-(4, 5-dimethylthiazol-2-y-l)-2, 5-diphenyltetrazolium bromide (MTT) cytotoxicity test were explored their synergistic effects with cypermethrin toxicity on CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells. Rhinacanthin-B, -D, -E, -G, and -N exhibited mechanism-based inhibition against CYP6AA3, an indication of irreversible inhibition, while rhinacanthin-B, -D, -G, and -N were mechanism-based inhibitors of CYP6P7. There was structure-function relationship of these rhinacanthins in inhibition effects against both enzymes. In vitro enzymatic inhibition assays revealed that there were synergistic interactions among rhinacanthins, except rhinacanthin-B and -Q, in inhibition against both enzymes. These rhinacanthins exerted synergism with cypermethrin toxicity on Sf9 cells expressing each of the two P450 enzymes via P450 inhibition and in addition could interact in synergy to further increase cypermethrin toxicity. The inhibition potentials, synergy among rhinacanthins in inhibition against the P450 detoxification enzymes, and synergism with cypermethrin toxicity of the R. nasutus constituents of reported herein could be beneficial to implement effective resistance management of mosquito vector control.
Collapse
Affiliation(s)
- Rattanawadee Kotewong
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyatai, Bangkok, 10400, Thailand
| | | | | | | | | |
Collapse
|
25
|
Yamamura Y, Koyama N, Umehara K. Comprehensive kinetic analysis and influence of reaction components for chlorzoxazone 6-hydroxylation in human liver microsomes with CYP antibodies. Xenobiotica 2014; 45:353-60. [DOI: 10.3109/00498254.2014.985760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
De Palma G, Manno M. Metabolic polymorphisms and biomarkers of effect in the biomonitoring of occupational exposure to low-levels of benzene: state of the art. Toxicol Lett 2014; 231:194-204. [PMID: 25447454 DOI: 10.1016/j.toxlet.2014.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
Current levels of occupational exposure to benzene, a genotoxic human carcinogen, in Western countries are reduced by two-three orders of magnitude (from ppm to ppb) as compared to the past. However, as benzene toxicity is strongly dependent on biotransformation and recent evidence underlines a higher efficiency of bio-activation pathways at lower levels of exposure, toxic effects at low doses could be higher than expected, particularly in susceptible individuals. Currently, biological monitoring can allow accurate exposure assessment, relying on sensitive and specific enough biomarkers of internal dose. The availability of similarly reliable biomarkers of early effect or susceptibility could greatly improve the risk assessment process to such an extent that risk could even be assessed at the individual level. As to susceptibility biomarkers, functional genetic polymorphisms of relevant biotransformation enzymes may modulate the risk of adverse effects (NQO1) and the levels of biomarkers of internal dose, in particular S-phenylmercapturic acid (GSTM1, GSTT1, GSTA1). Among biomarkers of early effect, genotoxicity indicators, although sensitive in some cases, are too aspecific for routine use in occupational health surveillance programmes. Currently only the periodical blood cell count seems suitable enough to be applied in the longitudinal monitoring of effects from benzene exposure. Novel biomarkers of early effect are expected from higher collaboration among toxicologists and clinicians, also using advanced "omics" techniques.
Collapse
Affiliation(s)
- G De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Public Health and Human Sciences, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - M Manno
- Department of Public Health, Section of Occupational Medicine and Toxicology, University of Napoli Federico II, Via S. Pansini, 5, 80131 Napoli, Italy
| |
Collapse
|
27
|
Jia K, Li L, Liu Z, Hartog M, Kluetzman K, Zhang QY, Ding X. Generation and characterization of a novel CYP2A13--transgenic mouse model. Drug Metab Dispos 2014; 42:1341-8. [PMID: 24907355 PMCID: PMC4109209 DOI: 10.1124/dmd.114.059188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/03/2014] [Indexed: 11/22/2022] Open
Abstract
CYP2A13, CYP2B6, and CYP2F1 are neighboring cytochrome P450 genes on human chromosome 19, and the enzymes that they encode overlap in substrate specificity. A CYP2A13/2B6/2F1-transgenic mouse, in which CYP2A13 and 2F1 are both expressed in the respiratory tract and CYP2B6 is expressed in the liver, was recently generated. We generated a CYP2A13 (only) transgenic mouse so that the specific activity of CYP2A13 can be determined. The CYP2B6 and CYP2F1 genes in the CYP2A13/2B6/2F1 genomic clone were inactivated via genetic manipulations, and CYP2A13 was kept intact. A CYP2A13 (only) transgenic (2A13-TG) mouse was generated using the engineered construct and then characterized to confirm transgene integrity and determine copy numbers. The 2A13-TG mice were normal in gross morphology, development, and fertility. As in the CYP2A13/2B6/2F1-transgenic mouse, CYP2A13 expression in the 2A13-TG mouse was limited to the respiratory tract; in contrast, CYP2B6 and 2F1 proteins were not detected. Additional studies using the CYP2A13-humanized (2A13-TG/Cyp2abfgs-null) mouse produced by intercrossing between 2A13-TG and Cyp2abfgs-null mice confirmed that the transgenic CYP2A13 is active in the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a lung procarcinogen. The 2A13-TG mouse should be valuable for assessing specific roles of human CYP2A13 in xenobiotic toxicity in the respiratory tract.
Collapse
Affiliation(s)
- Kunzhi Jia
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Lei Li
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Zhihua Liu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Matthew Hartog
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Kerri Kluetzman
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Qing-Yu Zhang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York
| |
Collapse
|
28
|
Hu J, Sheng L, Li L, Zhou X, Xie F, D'Agostino J, Li Y, Ding X. Essential role of the cytochrome P450 enzyme CYP2A5 in olfactory mucosal toxicity of naphthalene. Drug Metab Dispos 2014; 42:23-7. [PMID: 24104196 PMCID: PMC3876791 DOI: 10.1124/dmd.113.054429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022] Open
Abstract
Naphthalene (NA), a ubiquitous environmental pollutant that can cause pulmonary and nasal toxicity in laboratory animals, requires cytochrome P450 (P450)-mediated metabolic activation to cause toxicity. Our recent study using a Cyp2f2-null mouse showed that CYP2F2 plays an essential role in NA-induced lung toxicity, but not in NA-induced nasal toxicity. The aim of this study was to determine whether mouse CYP2A5, abundantly expressed in nasal olfactory mucosa (OM) and the liver, but less in the lung, plays a major role in the bioactivation and toxicity of NA in the OM. We found, by comparing Cyp2a5-null and wild-type (WT) mice, that the loss of CYP2A5 expression led to substantial decreases in rates of NA metabolic activation by OM microsomes. The loss of CYP2A5 did not cause changes in systemic clearance of NA (at 200 mg/kg, i.p.). However, the Cyp2a5-null mice were much more resistant than were WT mice to NA-induced nasal toxicity (although not lung toxicity), when examined at 24 hours after NA dosing (at 200 mg/kg, i.p.), or to NA-induced depletion of total nonprotein sulfhydryl in the OM (although not in the lung), examined at 2 hours after dosing. Thus, mouse CYP2A5 plays an essential role in the bioactivation and toxicity of NA in the OM, but not in the lung. Our findings further illustrate the tissue-specific nature of the role of individual P450 enzymes in xenobiotic toxicity, and provide the basis for a more reliable assessment of the potential risks of NA nasal toxicity in humans.
Collapse
Affiliation(s)
- Jinping Hu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.H., L.S., L.L., X.Z., F.X., J.D., X.D.); and Institute of Materia Medica, Chinese Academy of Medical Sciences & Perking Union Medical College, Beijing, China (J.H., L.S., Y.L.)
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Richtwerte für Naphthalin und Naphthalin-ähnliche Verbindungen in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013. [DOI: 10.1007/s00103-013-1836-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Higuchi R, Fukami T, Nakajima M, Yokoi T. Prilocaine- and lidocaine-induced methemoglobinemia is caused by human carboxylesterase-, CYP2E1-, and CYP3A4-mediated metabolic activation. Drug Metab Dispos 2013; 41:1220-30. [PMID: 23530020 DOI: 10.1124/dmd.113.051714] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Prilocaine and lidocaine are classified as amide-type local anesthetics for which serious adverse effects include methemoglobinemia. Although the hydrolyzed metabolites of prilocaine (o-toluidine) and lidocaine (2,6-xylidine) have been suspected to induce methemoglobinemia, the metabolic enzymes that are involved remain uncharacterized. In the present study, we aimed to identify the human enzymes that are responsible for prilocaine- and lidocaine-induced methemoglobinemia. Our experiments revealed that prilocaine was hydrolyzed by recombinant human carboxylesterase (CES) 1A and CES2, whereas lidocaine was hydrolyzed by only human CES1A. When the parent compounds (prilocaine and lidocaine) were incubated with human liver microsomes (HLM), methemoglobin (Met-Hb) formation was lower than when the hydrolyzed metabolites were incubated with HLM. In addition, Met-Hb formation when prilocaine and o-toluidine were incubated with HLM was higher than that when lidocaine and 2,6-xylidine were incubated with HLM. Incubation with diisopropyl fluorophosphate and bis-(4-nitrophenyl) phosphate, which are general inhibitors of CES, significantly decreased Met-Hb formation when prilocaine and lidocaine were incubated with HLM. An anti-CYP3A4 antibody further decreased the residual formation of Met-Hb. Met-Hb formation after the incubation of o-toluidine and 2,6-xylidine with HLM was only markedly decreased by incubation with an anti-CYP2E1 antibody. o-Toluidine and 2,6-xylidine were further metabolized by CYP2E1 to 4- and 6-hydroxy-o-toluidine and 4-hydroxy-2,6-xylidine, respectively, and these metabolites were shown to more efficiently induce Met-Hb formation than the parent compounds. Collectively, we found that the metabolites produced by human CES-, CYP2E1-, and CYP3A4-mediated metabolism were involved in prilocaine- and lidocaine-induced methemoglobinemia.
Collapse
Affiliation(s)
- Ryota Higuchi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | |
Collapse
|
31
|
Morris JB. Nasal dosimetry of inspired naphthalene vapor in the male and female B6C3F1 mouse. Toxicology 2013; 309:66-72. [PMID: 23619605 DOI: 10.1016/j.tox.2013.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/28/2013] [Accepted: 04/12/2013] [Indexed: 11/29/2022]
Abstract
Naphthalene vapor is a nasal cytotoxicant in the rat and mouse but is a nasal carcinogen in only the rat. Inhalation dosimetry is a critical aspect of the inhalation toxicology of inspired vapors and may contribute to the species differences in the nasal response. To define the nasal dosimetry of naphthalene in the B6C3F1 male and female mouse, uptake of naphthalene vapor was measured in the surgically isolated upper respiratory tract (URT) at inspiratory flow rates of 25 or 50 ml/min. Uptake was measured at multiple concentrations (0.5, 3, 10, 30 ppm) in controls and mice treated with the cytochrome P450 inhibitor 5-phenyl-1-pentyne. In both sexes, URT uptake efficiency was strongly concentration dependent averaging 90% at 0.5 ppm compared to 50% at 30 ppm (25 ml/min flow rate), indicating saturable processes were involved. Both uptake efficiency and the concentration dependence of uptake were significantly diminished by 5-phenyl-1-pentyne indicating inspired naphthalene vapor is extensively metabolized in the mouse nose with saturation of metabolism occurring at the higher concentrations. A hybrid computational fluid dynamic physiologically based pharmacokinetic model was developed for nasal dosimetry. This model accurately predicted the observed URT uptake efficiencies. Overall, the high URT uptake efficiency of naphthalene in the mouse nose indicates the absence of a tumorigenic response is not attributable to low delivered dose rates in this species.
Collapse
Affiliation(s)
- John B Morris
- Toxicology Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 N. Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
32
|
Buckpitt A, Morin D, Murphy S, Edwards P, Van Winkle L. Kinetics of naphthalene metabolism in target and non-target tissues of rodents and in nasal and airway microsomes from the Rhesus monkey. Toxicol Appl Pharmacol 2013; 270:97-105. [PMID: 23602890 DOI: 10.1016/j.taap.2013.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/29/2013] [Accepted: 04/11/2013] [Indexed: 01/09/2023]
Abstract
Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent Km, Vmax, and catalytic efficiency (Vmax/Km) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar Km and Vmax appeared to metabolize naphthalene. The rank order of Vmax (rat olfactory epithelium>mouse olfactory epithelium>murine airways>>rat airways) correlated well with tissue susceptibility to naphthalene. The Vmax in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies.
Collapse
Affiliation(s)
- Alan Buckpitt
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
33
|
Sun L, Fan X. Expression of cytochrome P450 2A13 in human non-small cell lung cancer and its clinical significance. J Biomed Res 2013; 27:202-7. [PMID: 23720675 PMCID: PMC3664726 DOI: 10.7555/jbr.27.20120019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/11/2012] [Accepted: 01/13/2013] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is one of the most important causes of cancer-related mortality worldwide. Human cytochrome P450 2A13 enzyme (CYP2A13) is predominantly expressed in the respiratory tract and could catalyze various carcinogens. In this study, we quantified CYP2A13 expression in non-small cell lung cancer (NSCLC) tissues and examined the relation between CYP2A13 and clinicopathologic factors. Thirty-five paired lung cancer and normal tissues were studied for the expression of the CYP2A13 gene by using real-time PCR and Western blotting assays. We also investigated the relationship between CYP2A13 expression and clinicopathologic factors such as age, gender, histology and lymph node status in tumor tissues. SPSS (17.0) statistical software was applied for data analysis. The real-time PCR results showed that there was no significant difference in the CYP2A13 mRNA transcript levels between tumor and paired normal tissues in the 35 samples and in 12 paired squamous cell carcinomas. In adenocarcinoma, the expression of CYP2A13 mRNA in tumor tissues was 12.5% of that in adjacent tissues (P < 0.05) and it was not associated with age, gender, histology and lymph node status of the patients. The amounts of CYP2A13 proteins detected by Western blotting assays correlated well with those of the corresponding mRNAs. In conclusion, the expression of CYP2A13 was downregulated in lung adenocarcinoma. CYP2A13 may be involved in the development and progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Li Sun
- Department of Histology and Embryology, College of Basic Medicine of Guilin Medicial University, Guilin, Guangxi 541004, China
| | | |
Collapse
|
34
|
Shimada T, Murayama N, Yamazaki H, Tanaka K, Takenaka S, Komori M, Kim D, Guengerich FP. Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450 2A13 and 2A6. Chem Res Toxicol 2013; 26:529-37. [PMID: 23432465 DOI: 10.1021/tx3004906] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human cytochrome P450 (P450) 2A13 was found to interact with several polycyclic aromatic hydrocarbons (PAHs) to produce Type I binding spectra, including acenaphthene, acenaphthylene, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, and 1-nitropyrene. P450 2A6 also interacted with acenaphthene and acenaphthylene, but not with fluoranthene, fluoranthene-2,3-diol, or 1-nitropyrene. P450 1B1 is well-known to oxidize many carcinogenic PAHs, and we found that several PAHs (i.e., 7,12-dimethylbenz[a]anthracene, 7,12-dimethylbenz[a]anthracene-5,6-diol, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, 5-methylchrysene, benz[a]pyrene-4,5-diol, benzo[a]pyrene-7,8-diol, 1-nitropyrene, 2-aminoanthracene, 2-aminofluorene, and 2-acetylaminofluorene) interacted with P450 1B1, producing Reverse Type I binding spectra. Metabolic activation of PAHs and aryl- and heterocyclic amines to genotoxic products was examined in Salmonella typhimurium NM2009, and we found that P450 2A13 and 2A6 (as well as P450 1B1) were able to activate several of these procarcinogens. The former two enzymes were particularly active in catalyzing 2-aminofluorene and 2-aminoanthracene activation, and molecular docking simulations supported the results with these procarcinogens, in terms of binding in the active sites of P450 2A13 and 2A6. These results suggest that P450 2A enzymes, as well as P450 Family 1 enzymes including P450 1B1, are major enzymes involved in activating PAHs and aryl- and heterocyclic amines, as well as tobacco-related nitrosamines.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shimada T, Kim D, Murayama N, Tanaka K, Takenaka S, Nagy LD, Folkman LM, Foroozesh MK, Komori M, Yamazaki H, Guengerich FP. Binding of diverse environmental chemicals with human cytochromes P450 2A13, 2A6, and 1B1 and enzyme inhibition. Chem Res Toxicol 2013; 26:517-28. [PMID: 23432429 DOI: 10.1021/tx300492j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A total of 68 chemicals including derivatives of naphthalene, phenanthrene, fluoranthene, pyrene, biphenyl, and flavone were examined for their abilities to interact with human P450s 2A13 and 2A6. Fifty-one of these 68 chemicals induced stronger Type I binding spectra (iron low- to high-spin state shift) with P450 2A13 than those seen with P450 2A6, i.e., the spectral binding intensities (ΔAmax/Ks ratio) determined with these chemicals were always higher for P450 2A13. In addition, benzo[c]phenanthrene, fluoranthene, 2,3-dihydroxy-2,3-dihydrofluoranthene, pyrene, 1-hydroxypyrene, 1-nitropyrene, 1-acetylpyrene, 2-acetylpyrene, 2,5,2',5'-tetrachlorobiphenyl, 7-hydroxyflavone, chrysin, and galangin were found to induce a Type I spectral change only with P450 2A13. Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2'-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2'-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. On the basis of the intensities of the spectral changes and inhibition of P450 2A13, we classified the 68 chemicals into eight groups based on the order of affinities for these chemicals and inhibition of P450 2A13. The metabolism of chemicals by P450 2A13 during the assays explained why some of the chemicals that bound well were poor inhibitors of P450 2A13. Finally, we compared the 68 chemicals for their abilities to induce Type I spectral changes of P450 2A13 with the Reverse Type I binding spectra observed with P450 1B1: 45 chemicals interacted with both P450s 2A13 and 1B1, indicating that the two enzymes have some similarty of structural features regarding these chemicals. Molecular docking analyses suggest similarities at the active sites of these P450 enzymes. These results indicate that P450 2A13, as well as Family 1 P450 enzymes, is able to catalyze many detoxication and activation reactions with chemicals of environmental interest.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ueng YF, Chen CC, Yamazaki H, Kiyotani K, Chang YP, Lo WS, Li DT, Tsai PL. Mechanism-based inhibition of CYP1A1 and CYP3A4 by the furanocoumarin chalepensin. Drug Metab Pharmacokinet 2012; 28:229-38. [PMID: 23257392 DOI: 10.2133/dmpk.dmpk-12-rg-113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cytochrome P450 (P450, CYP) 2A6 inhibitor chalepensin was found to inhibit human CYP1A1, CYP1A2, CYP2A13, CYP2C9, CYP2D6, CYP2E1, and CYP3A4 to different extents. CYP1A1 and CYP3A4 underwent pronounced mechanism-based inactivation by chalepensin and had the smallest IC50 ratios of inhibition with NADPH-fortified pre-incubation (IC50(+)) to that without pre-incubation (IC50(-)). CYP2E1 had the least susceptibility to mechanism-based inactivation. This inactivation of CYP1A1 and CYP3A4 exhibited time-dependence, led to a loss of spectrophotometrically detected P450, and could not be fully recovered by dialysis. Pre-incubation with chalepensin did not affect NADPH-P450 reductase activity. Cytosol-supported glutathione conjugation protected CYP3A4 but not CYP1A1 against the inactivation by chalepensin. Cytosolic decomposition of chalepensin may contribute partially to the protection. The high epoxidation activities of CYP1A1, CYP2A6, and CYP3A4 were in agreement with their pronounced susceptibilities to mechanism-based inactivation by chalepensin. Considering both the IC50 values and inactivation kinetic parameters, the threshold concentrations of chalepensin for potential drug interactions through inhibition of CYP2A6 and CYP3A4 were estimated to be consistently low. These results demonstrate that chalepensin inhibits multiple P450s and that epoxidation activity is crucial for the potential drug interaction through mechanism-based inhibition.
Collapse
Affiliation(s)
- Yune-Fang Ueng
- Laboratory of Drug Metabolism, National Research Institute of Chinese Medicine, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Guo Y, Zhu LR, Lu G, Wang H, Hong JY. Selective expression of CYP2A13 in human pancreatic α-islet cells. Drug Metab Dispos 2012; 40:1878-82. [PMID: 22798551 PMCID: PMC3463827 DOI: 10.1124/dmd.112.046359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/13/2012] [Indexed: 11/22/2022] Open
Abstract
Exposure to cigarette smoke is an etiological factor of human pancreatic cancer and has been associated with an increased risk of pancreatic diseases, including pancreatitis and diabetes. The toxicants in cigarette smoke can reach pancreatic tissue, and most of the toxicants require cytochrome P450 (P450)-mediated metabolic activation to exert their toxicity. Among all the human P450 enzymes, CYP2A13 is the most efficient enzyme in the metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a major tobacco-specific toxicant and a suspected human carcinogen. It also metabolically activates 4-aminobiphenyl, another toxicant in cigarette smoke. Immunohistochemical analysis in this study demonstrated that CYP2A13 was selectively expressed in the islets but not in the exocrine portion of adult human pancreas. Further study using dual immunofluorescence labeling technique showed that CYP2A13 protein was mainly expressed in the α-islet but not in β-islet cells. The selective expression of CYP2A13 in human pancreatic α-islet cells suggests that these islet cells could be damaged by the toxicants existing in cigarette smoke through CYP2A13-mediated in situ metabolic activation. Our result provides a mechanistic insight for human pancreatic diseases that have been associated with cigarette smoke exposure.
Collapse
Affiliation(s)
- Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Donghu Road 185#, Wuhan, Hubei Province, 430071, China.
| | | | | | | | | |
Collapse
|
38
|
Stephens ES, Walsh AA, Scott EE. Evaluation of inhibition selectivity for human cytochrome P450 2A enzymes. Drug Metab Dispos 2012; 40:1797-802. [PMID: 22696418 PMCID: PMC3422547 DOI: 10.1124/dmd.112.045161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/13/2012] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (P450) enzymes are mixed-function oxidases that catalyze the metabolism of xenobiotics and endogenous biochemicals. Selective inhibitors are needed to accurately distinguish the contributions of individual P450 enzymes in the metabolism of drugs and the activation of procarcinogens in human tissues, but very frequently these enzymes have substantial overlapping selectivity. We evaluated a chemically diverse set of nine previously identified CYP2A6 inhibitors to determine which are able to discriminate between human CYP2A enzymes CYP2A6 and the 94%-identical CYP2A13 enzyme. Inhibitor binding to recombinant purified enzyme was evaluated, and affinities were determined. K(i) values were determined for inhibition of p-nitrophenol 2-hydroxylation, a reaction accomplished by CYP2A13 and CYP2A6 with more similar catalytic efficiencies (k(cat)/K(m) 0.19 and 0.12 μM⁻¹ · min⁻¹, respectively) than hydroxylation of the classic substrate coumarin (0.11 and 0.53 μM⁻¹ · min⁻¹, respectively). Of the nine compounds assayed, only tranylcypromine and (R)-(+)-menthofuran had a greater than 10-fold preference for CYP2A6 inhibition versus CYP2A13 inhibition. Most compounds evaluated [tryptamine, 4-dimethylaminobenzaldehyde, phenethyl isothiocyanate, β-nicotyrine, (S)-nicotine, and pilocarpine] demonstrated only moderate or no preference for inhibition of one CYP2A enzyme over the other. However, 8-methoxypsoralen has a 6-fold lower K(i) for CYP2A13 than for CYP2A6. This information is useful to inform reinterpretation of previous data with these inhibitors and to guide future studies seeking to determine which human CYP2A enzyme is responsible for the in vivo metabolism of compounds in human tissues expressing both enzymes.
Collapse
Affiliation(s)
- Eva S Stephens
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA
| | | | | |
Collapse
|
39
|
Chiang HC, Wang CK, Tsou TC. Differential distribution of CYP2A6 and CYP2A13 in the human respiratory tract. Respiration 2012; 84:319-26. [PMID: 22890016 DOI: 10.1159/000339591] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/16/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Human CYP2A6 and CYP2A13 play important roles in metabolic activation of many pulmonary carcinogens and thus their expression and distribution may determine the pulmonary susceptibility to metabolically activated carcinogens and the following lung cancer development. Because of the 93.5% of amino acid identity between CYP2A6 and CYP2A13, generation of antibodies specific to CYP2A6 or CYP2A13 has limited immunohistochemical (IHC) analysis of CYP2A6 and CYP2A13 levels in the respiratory tract. OBJECTIVES This study aimed to determine the differential distribution of CYP2A6 and CYP2A13 in human respiratory tissue with IHC analysis. METHODS With computer-aided protein sequence analyses, candidate epitopes of 15 amino acids in the C-terminal domains of CYP2A6 and CYP2A13 were selected for antibody generation. Specificity of these two antibodies was confirmed with immunoblot and immunofluorescence analyses. With these two selective antibodies, the differential distribution of CYP2A6 and CYP2A13 in human respiratory tissues, including tracheae, bronchi, bronchioles and alveoli, was determined. RESULTS IHC results showed that both CYP2A6 and CYP2A13 were markedly expressed in epithelial cells of tracheae and bronchi and that only CYP2A6 was detected in bronchiolar epithelial cells of peripheral lungs. A limitation of the present study is the cross-reactivity of our CYP2A6 antibody to the functional inactive CYP2A7. CONCLUSIONS The differential distribution patterns of CYP2A6 and CYP2A13 in the respiratory tract are of importance in considering the pulmonary susceptibility to carcinogens and the following lung cancer development.
Collapse
Affiliation(s)
- Huai-chih Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
40
|
Abstract
Considerable support exists for the roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are pro-carcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on the metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s--1A1, 1A2, 1B1, 2A6, 2E1, and 3A4--accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, interindividual variations, and risk assessment.
Collapse
|
41
|
Wei Y, Wu H, Li L, Liu Z, Zhou X, Zhang QY, Weng Y, D'Agostino J, Ling G, Zhang X, Kluetzman K, Yao Y, Ding X. Generation and characterization of a CYP2A13/2B6/2F1-transgenic mouse model. Drug Metab Dispos 2012; 40:1144-50. [PMID: 22397853 PMCID: PMC3362791 DOI: 10.1124/dmd.112.044826] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/05/2012] [Indexed: 02/02/2023] Open
Abstract
CYP2A13, CYP2B6, and CYP2F1, which are encoded by neighboring cytochrome P450 genes on human chromosome 19, are active in the metabolic activation of many drugs, respiratory toxicants, and chemical carcinogens. To facilitate studies on the regulation and function of these human genes, we have generated a CYP2A13/2B6/2F1-transgenic (TG) mouse model (all *1 alleles). Homozygous transgenic mice are normal with respect to gross morphological features, development, and fertility. The tissue distribution of transgenic mRNA expression agreed well with the known respiratory tract-selective expression of CYP2A13 and CYP2F1 and hepatic expression of CYP2B6 in humans. CYP2A13 protein was detected through immunoblot analyses in the nasal mucosa (NM) (∼100 pmol/mg of microsomal protein; similar to the level of mouse CYP2A5) and the lung (∼0.2 pmol/mg of microsomal protein) but not in the liver of the TG mice. CYP2F1 protein, which could not be separated from mouse CYP2F2 in immunoblot analyses, was readily detected in the NM and lung but not the liver of TG/Cyp2f2-null mice, at levels 10- and 40-fold, respectively, lower than that of mouse CYP2F2 in the TG mice. CYP2B6 protein was detected in the liver (∼0.2 pmol/mg of microsomal protein) but not the NM or lung (with a detection limit of 0.04 pmol/mg of microsomal protein) of the TG mice. At least one transgenic protein (CYP2A13) seems to be active, because the NM of the TG mice had greater in vitro and in vivo activities in bioactivation of a CYP2A13 substrate, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a lung carcinogen), than did the NM of wild-type mice.
Collapse
Affiliation(s)
- Yuan Wei
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
DeVore NM, Meneely KM, Bart AG, Stephens ES, Battaile KP, Scott EE. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine. FEBS J 2011; 279:1621-31. [PMID: 22051186 DOI: 10.1111/j.1742-4658.2011.08412.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human xenobiotic-metabolizing cytochrome P450 (CYP) enzymes can each bind and monooxygenate a diverse set of substrates, including drugs, often producing a variety of metabolites. Additionally, a single ligand can interact with multiple CYP enzymes, but often the protein structural similarities and differences that mediate such overlapping selectivity are not well understood. Even though the CYP superfamily has a highly canonical global protein fold, there are large variations in the active site size, topology, and conformational flexibility. We have determined how a related set of three human CYP enzymes bind and interact with a common inhibitor, the muscarinic receptor agonist drug pilocarpine. Pilocarpine binds and inhibits the hepatic CYP2A6 and respiratory CYP2A13 enzymes much more efficiently than the hepatic CYP2E1 enzyme. To elucidate key residues involved in pilocarpine binding, crystal structures of CYP2A6 (2.4 Å), CYP2A13 (3.0 Å), CYP2E1 (2.35 Å), and the CYP2A6 mutant enzyme, CYP2A6 I208S/I300F/G301A/S369G (2.1 Å) have been determined with pilocarpine in the active site. In all four structures, pilocarpine coordinates to the heme iron, but comparisons reveal how individual residues lining the active sites of these three distinct human enzymes interact differently with the inhibitor pilocarpine.
Collapse
Affiliation(s)
- Natasha M DeVore
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | |
Collapse
|
43
|
Li L, Wei Y, Van Winkle L, Zhang QY, Zhou X, Hu J, Xie F, Kluetzman K, Ding X. Generation and characterization of a Cyp2f2-null mouse and studies on the role of CYP2F2 in naphthalene-induced toxicity in the lung and nasal olfactory mucosa. J Pharmacol Exp Ther 2011; 339:62-71. [PMID: 21730012 PMCID: PMC3186285 DOI: 10.1124/jpet.111.184671] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/23/2011] [Indexed: 11/22/2022] Open
Abstract
The CYP2F enzymes, abundantly expressed in the respiratory tract, are active toward many xenobiotic compounds, including naphthalene (NA). However, the precise roles of these enzymes in tissue-selective chemical toxicity have been difficult to resolve. A Cyp2f2-null mouse was generated in this study by disrupting the Cyp2f2 fourth exon. Homozygous Cyp2f2-null mice, which had no CYP2F2 expression and showed no changes in the expression of other P450 genes examined, were viable and fertile and had no in utero lethality or developmental deficits. The loss of CYP2F2 expression led to substantial decreases in the in vitro catalytic efficiency of microsomal NA epoxygenases in lung (up to ~160-fold), liver (~3-fold), and nasal olfactory mucosa (OM; up to ~16-fold), and significant decreases in rates of systemic NA (300 mg/kg i.p.) clearance. The Cyp2f2-null mice were largely resistant to NA-induced cytotoxicity, when examined at 24 h after NA dosing (at 300 mg/kg i.p.), and to NA-induced depletion of total nonprotein sulfhydryl (NPSH), examined at 2 h after dosing, in the lungs. In contrast, the loss of CYP2F2 expression did not alleviate NA-induced NPSH depletion or tissue toxicity in the OM. Mouse CYP2F2 clearly plays an essential role in the bioactivation and toxicity of NA in the lung but not in the OM. The Cyp2f2-null mouse should be valuable for studies on the role of CYP2F2 in the metabolism and toxicity of numerous other xenobiotic compounds and for future production of a CYP2F1-humanized mouse.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shimada T, Murayama N, Tanaka K, Takenaka S, Guengerich FP, Yamazaki H, Komori M. Spectral modification and catalytic inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2A6, and 2A13 by four chemopreventive organoselenium compounds. Chem Res Toxicol 2011; 24:1327-37. [PMID: 21732699 PMCID: PMC3156385 DOI: 10.1021/tx200218u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several organoselenium compounds including benzyl selenocyanate (BSC), 1,2-phenylenebis(methylene)selenocyanate (o-XSC), 1,3-phenylenebis(methylene)selenocyanate (m-XSC), and 1,4-phenylenebis(methylene)selenocyanate (p-XSC) have been shown to prevent cancers caused by polycyclic aromatic hydrocarbons (PAHs) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in experimental animals; these chemical carcinogens are activated by human P450 1 and 2A family enzymes, respectively, to carcinogenic metabolites. In this study, we examined whether these selenium compounds interact with and inhibit human P450 1 and 2A enzymes in vitro. Four organoselenium compounds induced reverse Type I binding spectra with P450 1A1, 1A2, and 1B1 and Type I binding spectra with P450 2A6 and 2A13. The spectral dissociation constants (K(s)) for the interaction of P450 1B1 with these chemicals were 3.6-5.7 μM; the values were lower than those with seen with P450 1A1 (19-30 μM) or 1A2 (6.3-13 μM). The K(s) values for Type I binding of P450 2A13 with m-XSC and BSC were both 0.20 μM; the values were very low compared to those for the interaction of P450 2A6 with m-XSC (5.7 μM) and BSC (2.0 μM). Four selenium compounds directly inhibited 7-ethoxyresorufin O-deethylation activities catalyzed by P450 1A1, 1A2, and 1B1 with IC(50) values <1.0 μM, except for the inhibition of P450 1A2 by BSC (1.3 μM). Coumarin 7-hydroxylation activities of P450 2A13 were more inhibited by four selenium compounds than those of P450 2A6, with IC(50) values of 0.22-1.4 μM for P450 2A13 and 2.4-6.2 μM for P450 2A6. Molecular docking studies of the interaction of four organoselenium compounds with human P450 enzymes suggest that these chemicals can be docked into the active sites of these human P450 enzymes and that the sites of the selenocyanate functional groups of these chemicals differ between the P450 1 and 2A family enzymes.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Katsuhiro Tanaka
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
45
|
Xu Y, Shen Z, Shen J, Liu G, Li W, Tang Y. Computational insights into the different catalytic activities of CYP2A13 and CYP2A6 on NNK. J Mol Graph Model 2011; 30:1-9. [PMID: 21680215 DOI: 10.1016/j.jmgm.2011.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 02/06/2023]
Abstract
The human cytochrome P450 2A13 (CYP2A13) and P450 2A6 (CYP2A6) are 94% identical in amino acid sequence, but they metabolize many substrates with different efficiencies. Previous experimental results have shown that CYP2A13 exhibited catalytic activity that was more than 300-fold higher than CYP2A6 toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a carcinogen present in tobacco products. At present, however, the structural determinants accounting for the differential catalytic activities of these two isozymes toward NNK remain unclear. In the present study, molecular docking combined with molecular dynamics simulation and binding free energy calculation was performed to investigate the above issue. The results demonstrate that NNK was able to form a hydrogen bond with Asn297 in either CYP2A13 or CYP2A6. The hydrogen-bond acceptor was the pyridine nitrogen of NNK in the CYP2A13 complex, but it changed to the carbonyl oxygen in the CYP2A6 complex. NNK interacted with the residues in helix I and the K-β2 loop in CYP2A13, whereas it preferred to contact with the phenylalanine cluster in CYP2A6. The residues in helix I and the K-β2 loop of CYP2A13 played a vital role in keeping NNK in a more stable binding state. The binding free energies calculated by MM-GBSA were in agreement with the experimental results.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
46
|
Miura T, Kumagai Y. Immunochemical method to detect proteins that undergo selective modification by 1,2-naphthoquinone derived from naphthalene through metabolic activation. J Toxicol Sci 2011; 35:843-52. [PMID: 21139334 DOI: 10.2131/jts.35.843] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Naphthalene undergoes biotransformation by a variety of enzymes to yield 1,2-naphthoquinone (1,2-NQ), a reactive metabolite that binds covalently to proteins. Because this covalent modification is thought to account for naphthalene toxicity, a procedure to detect 1,2-NQ bound to macromolecules is required. In this study, we prepared a polyclonal antibody against 1,2-NQ and examined the specificities of the antibody for various aromatic structures and for the regiochemistry of the quinone functionality. Western blot analysis revealed that the antibody prepared against 1,2-NQ recognized the naphthalene moiety with the ortho-dicarbonyl group, but not with the para-dicarbonyl group; in addition, little cross-reactivity of ortho-quinones with different numbers of aromatic rings (n = 1, 3, 4, 5, 6) was seen. Dot blot and Western blot analyses with the polyclonal antibody enabled quantitative determination of the formation of protein-bound 1,2-NQ during the metabolic activation of naphthalene. The present method can be expected to applicable for the identification of the molecular targets of 1,2-NQ derived from naphthalene in cells and tissues.
Collapse
Affiliation(s)
- Takashi Miura
- Doctoral Program in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
47
|
Jin M, Arya P, Patel K, Singh B, Silverstein PS, Bhat HK, Kumar A, Kumar S. Effect of alcohol on drug efflux protein and drug metabolic enzymes in U937 macrophages. Alcohol Clin Exp Res 2011; 35:132-9. [PMID: 21039635 PMCID: PMC3058808 DOI: 10.1111/j.1530-0277.2010.01330.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND ATP-binding cassette (ABC) proteins and cytochrome P450 (CYP) enzymes regulate the bioavailability of HIV-1 antiretroviral therapeutic drugs, non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs). They are also involved in regulating, and responding to, oxidative stress in various tissues and organs including liver. This study is designed to assess the effect of alcohol on the ABCC1 and CYP enzymes involved in the metabolism of NNRTIs and PIs (CYP2B6, CYP2D6, and CYP3A4) and oxidative stress (CYP1A1, CYP2A6, and CYP2E1) in U937 macrophages. The U937 cell line has been utilized as an in vitro model of human macrophages. METHODS The expression levels of the ABCC1 and CYP enzymes in U937 macrophages were characterized in terms of mRNA quantification, protein analysis, and assays for functional activity. In addition, oxidative stress was monitored by measuring the activities of oxidative stress marker enzymes and production of reactive oxygen species (ROS). RESULTS The order of mRNA expression in U937 macrophages was ABCC1 ∼ CYP2A6 > CYP3A4 ∼ CYP2E1 ∼ CYP1A1 > CYP2D6 > CYP2B6. Alcohol (100 mM) increased the mRNA levels of ABCC1 and CYP2A6 (200%), CYP2B6 and CYP3A4 (150%), and CYP2E1 (400%) compared with the control. Alcohol caused significant upregulation of ABCC1, CYP2A6, CYP2E1, and CYP3A4 proteins (50 to 85%) and showed >50% increase in the specific activity of CYP2A6 and CYP3A4 in U937 macrophages. Furthermore, alcohol increased the production of ROS and significantly enhanced the activity of oxidative stress marker enzymes, superoxide dismutase, and catalase in U937 macrophages. CONCLUSIONS Our study showed that alcohol causes increases in the genetic and functional expressions of ABCC1 and CYP enzymes in U937 macrophages. This study has clinical implications in alcoholic HIV-1 individuals, because alcohol consumption is reported to reduce the therapeutic efficacy of NNRTIs and PIs and increases oxidative stress.
Collapse
Affiliation(s)
- Mengyao Jin
- University of Missouri-Kansas City, 64108, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rhomberg LR, Bailey LA, Goodman JE. Hypothesis-based weight of evidence: A tool for evaluating and communicating uncertainties and inconsistencies in the large body of evidence in proposing a carcinogenic mode of action—naphthalene as an example. Crit Rev Toxicol 2010; 40:671-96. [PMID: 20722583 DOI: 10.3109/10408444.2010.499504] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
DeStefano-Shields C, Morin D, Buckpitt A. Formation of covalently bound protein adducts from the cytotoxicant naphthalene in nasal epithelium: species comparisons. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:647-52. [PMID: 20435546 PMCID: PMC2866680 DOI: 10.1289/ehp.0901333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/07/2009] [Indexed: 05/06/2023]
Abstract
BACKGROUND Naphthalene is a volatile hydrocarbon that causes dose-, species-, and cell type-dependent cytotoxicity after acute exposure and hyperplasia/neoplasia after lifetime exposures in rodents. Toxicity depends on metabolic activation, and reactive metabolite binding correlates with tissue and site susceptibility. OBJECTIVES We compared proteins adducted in nasal epithelium from rats and rhesus macaques in vitro. METHODS Adducted proteins recovered from incubations of nasal epithelium and 14C-naphthalene were separated by two-dimensional (2D) gel electrophoresis and imaged to register radioactive proteins. We identified proteins visualized by silver staining on complementary non-radioactive gels by peptide mass mapping. RESULTS The levels of reactive metabolite binding in incubations of rhesus ethmo-turbinates and maxillo-turbinates are similar to those in incubations of target tissues, including rat septal/-olfactory regions and murine dissected airway incubations. We identified 40 adducted spots from 2D gel separations of rat olfactory epithelial proteins; 22 of these were non-redundant. In monkeys, we identified 19 spots by mass spectrometry, yielding three non-redundant identifications. Structural proteins (actin/tubulin) were prominent targets in both species. CONCLUSIONS In this study we identified potential target proteins that may serve as markers closely associated with toxicity. The large differences in previously reported rates of naphthalene metabolism to water-soluble metabolites in dissected airways from mice and monkeys are not reflected in similar differences in covalent adduct formation in the nose. This raises concerns that downstream metabolic/biochemical events are very similar between the rat, a known target for naphthalene toxicity and tumorigenicity, and the rhesus macaque, a species similar to the human.
Collapse
Affiliation(s)
| | | | - Alan Buckpitt
- Address correspondence to A. Buckpitt, Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 USA. Telephone: (530) 752-7674. Fax: (530) 752-4698. E-mail:
| |
Collapse
|
50
|
Fukami T, Nakajima M, Matsumoto I, Zen Y, Oda M, Yokoi T. Immunohistochemical analysis of CYP2A13 in various types of human lung cancers. Cancer Sci 2010; 101:1024-8. [PMID: 20180810 PMCID: PMC11158637 DOI: 10.1111/j.1349-7006.2009.01482.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human CYP2A13, which is expressed in the respiratory tract, is the most efficient enzyme for the metabolic activation of tobacco-specific nitrosamines such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The relevance of CYP2A13 in carcinogenicity and toxicity in the respiratory tract has been suggested, but the expression of CYP2A13 protein in lung cancer tissues remains to be determined. We first prepared a mouse monoclonal antibody against human CYP2A13. The antibody showed no cross reactivity with the other CYP isoforms including CYP2A6. Using the specific antibody, we performed immunohistochemical analysis for human lung carcinomas. In adenocarcinomas (n = 15), all specimens were positive for the staining and five samples showed strong staining. In squamous cell carcinomas (n = 15) and large cell carcinomas (n = 15), each 14 samples were positive for the staining and two and three samples showed strong staining, respectively. In small cell carcinoma samples (n = 15), eight samples were negative for the staining and five samples showed weak or moderate staining. In conclusion, we first found that the expression of CYP2A13 was markedly increased in non-small cell lung carcinomas. The high expression might be associated with the tumor development and progression in non-small cell lung carcinomas.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|