1
|
Karwasra R, Sharma S, Sharma I, Shahid N, Umar T. Diabetology and Nanotechnology: A Compelling Combination. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:4-16. [PMID: 37937555 DOI: 10.2174/0118722105253055231016155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/09/2023]
Abstract
The convergence of diabetology and nanotechnology has emerged as a promising synergy with the potential to revolutionize the management and treatment of diabetes mellitus. Diabetes, a complex metabolic disorder affecting millions worldwide, necessitates innovative approaches to enhance monitoring, diagnosis, and therapeutic interventions. Nanotechnology, a burgeoning field that manipulates materials at the nanoscale, offers unprecedented opportunities to address the challenges posed by diabetes. This abstract explores the multifaceted interface between diabetology and nanotechnology, highlighting key areas of integration. Nanotechnology has paved the way for the development of advanced glucose monitoring systems with enhanced accuracy, sensitivity, and patient convenience. Miniaturized biosensors and implantable devices equipped with nanoscale materials enable continuous and real-time glucose monitoring, empowering individuals with diabetes to make timely and informed decisions about their dietary and insulin management. Furthermore, nanotechnology has facilitated breakthroughs in targeted drug delivery, addressing the limitations of conventional therapies in diabetes treatment. Nano-sized drug carriers can improve bioavailability, enable controlled release, and enhance the selectivity of therapeutic agents, minimizing side effects and optimizing treatment outcomes. Moreover, nanoengineered materials have opened avenues for tissue engineering and regenerative medicine, offering the potential to restore damaged pancreatic islets and insulin-producing cells. The amalgamation of diabetology and nanotechnology also holds promise for early disease detection and prevention. Nanoscale diagnostic tools, such as biomarker-based nanoprobes and lab-onchip devices, offer rapid and accurate detection of diabetes-related biomolecules, enabling timely interventions and reducing the risk of complications. However, this compelling combination also presents challenges that warrant careful consideration. Safety, biocompatibility, regulatory approval, and ethical implications are crucial factors that demand meticulous evaluation during the translation of nanotechnology-based solutions into clinical practice. In conclusion, the integration of diabetology and nanotechnology represents a transformative paradigm that has the potential to reshape the landscape of diabetes management. By harnessing the unique properties of nanoscale materials, researchers and clinicians are poised to usher in an era of personalized and precise diagnostics, therapeutics, and preventive strategies for diabetes mellitus. As advancements in nanotechnology continue to unfold, the journey towards realizing the full potential of this compelling combination remains an exciting frontier in medical science. This review has thoroughly and critically studied the usage of nanomedicine in the diagnosis, monitoring, and management of diabetes and its effects, providing a clear picture of their potential clinical application in the future. This evaluation covers additional numerous clinical trials research and patents that are currently in way in this subject. Thus in the light of this we intended to provide a broad picture of the state of technological development in the area of diabetes management through nanotechnology.
Collapse
Affiliation(s)
- Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Government of India, New Delhi, 110058, India
| | - Shivkant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Isha Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Nida Shahid
- Department of Chemistry, Jamia Milia Islamia University, Jamia Nagar, Okhla, New Delhi, 110025, India
| | - Tarana Umar
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Government of India, New Delhi, 110058, India
| |
Collapse
|
2
|
Verma J, Dahiya S. Nanomaterials for diabetes: diagnosis, detection and delivery. NANOTECHNOLOGY 2024; 35:392001. [PMID: 38990067 DOI: 10.1088/1361-6528/ad5db5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
537 million people worldwide suffer from diabetes mellitus, a problem of glucose management that is related to a number of major health risks, including cardiovascular diseases. There is a need for new, efficient formulations of diabetic medications to address this condition and its related consequences because existing treatments have a number of drawbacks and limits. This encouraged the development of treatment plans to get around some of these restrictions, like low therapeutic drug bioavailability or patients' disobedience to existing therapies. Approaches based on nanotechnology have a lot of promise to enhance the treatment of diabetic patients. In order to manage blood glucose, this review article highlights recent developments and explores the potential applications of different materials (polymeric, ceramic, dendrimers, etc.) as nanocarriers for the delivery of insulin and other antidiabetic medications. Using an injectable and acid-degradable polymeric network produced by the electrostatic interaction of oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, we reviewed a glucose-mediated release approach for the self-regulated delivery of insulin, in which, after a degradable nano-network was subcutaneously injected into type 1 diabetic mice,in vivoexperiments confirmed that these formulations improved glucose management. In addition, a discussion of silica-based nanocarriers, their potential for treating diabetes and controlling blood glucose levels, and an explanation of the role of dendrimers in diabetes treatment have been covered. This is done by utilizing the properties of silica nanoparticles, such as their tuneable particle and pore size, surface chemistry, and biocompatibility. The article summarized the significance of nanomaterials and their uses in the diagnosis and treatment of diabetes overall, illuminating the field's potential and outlining its prospects for the future.
Collapse
Affiliation(s)
- Jaya Verma
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, People's Republic of China
| | - Shakti Dahiya
- Department of Surgery, Divison of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, United States of America
| |
Collapse
|
3
|
Andreadi A, Lodeserto P, Todaro F, Meloni M, Romano M, Minasi A, Bellia A, Lauro D. Nanomedicine in the Treatment of Diabetes. Int J Mol Sci 2024; 25:7028. [PMID: 39000136 PMCID: PMC11241380 DOI: 10.3390/ijms25137028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Nanomedicine could improve the treatment of diabetes by exploiting various therapeutic mechanisms through the use of suitable nanoformulations. For example, glucose-sensitive nanoparticles can release insulin in response to high glucose levels, mimicking the physiological release of insulin. Oral nanoformulations for insulin uptake via the gut represent a long-sought alternative to subcutaneous injections, which cause pain, discomfort, and possible local infection. Nanoparticles containing oligonucleotides can be used in gene therapy and cell therapy to stimulate insulin production in β-cells or β-like cells and modulate the responses of T1DM-associated immune cells. In contrast, viral vectors do not induce immunogenicity. Finally, in diabetic wound healing, local delivery of nanoformulations containing regenerative molecules can stimulate tissue repair and thus provide a valuable tool to treat this diabetic complication. Here, we describe these different approaches to diabetes treatment with nanoformulations and their potential for clinical application.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Pietro Lodeserto
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Federica Todaro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
| | - Marco Meloni
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Maria Romano
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alessandro Minasi
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Alfonso Bellia
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| | - Davide Lauro
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (F.T.); (M.M.); (A.B.); (D.L.)
- Division of Endocrinology and Diabetology, Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy; (M.R.); (A.M.)
| |
Collapse
|
4
|
Smith JA, Yuen BTK, Purtha W, Balolong JM, Phipps JD, Crawford F, Bluestone JA, Kappler JW, Anderson MS. Aire mediates tolerance to insulin through thymic trimming of high-affinity T cell clones. Proc Natl Acad Sci U S A 2024; 121:e2320268121. [PMID: 38709934 PMCID: PMC11098115 DOI: 10.1073/pnas.2320268121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/16/2024] [Indexed: 05/08/2024] Open
Abstract
Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.
Collapse
Affiliation(s)
- Jennifer A. Smith
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Benjamin T. K. Yuen
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Whitney Purtha
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Jared M. Balolong
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Jonah D. Phipps
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| | - Frances Crawford
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO80206
| | - Jeffrey A. Bluestone
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, CA94143
| | - John W. Kappler
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO80206
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Mark S. Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA94143
| |
Collapse
|
5
|
Bi Y, Kong R, Peng Y, Yu H, Zhou Z. Umbilical cord blood and peripheral blood-derived regulatory T cells therapy: Progress in type 1 diabetes. Clin Immunol 2023; 255:109716. [PMID: 37544491 DOI: 10.1016/j.clim.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to β-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
6
|
Corral-Pujol M, Arpa B, Rosell-Mases E, Egia-Mendikute L, Mora C, Stratmann T, Sanchez A, Casanovas A, Esquerda JE, Mauricio D, Vives-Pi M, Verdaguer J. NOD mouse dorsal root ganglia display morphological and gene expression defects before and during autoimmune diabetes development. Front Endocrinol (Lausanne) 2023; 14:1176566. [PMID: 37334284 PMCID: PMC10272810 DOI: 10.3389/fendo.2023.1176566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction During the development of Autoimmune Diabetes (AD) an autoimmune attack against the Peripheral Nervous System occurs. To gain insight into this topic, analyses of Dorsal Root Ganglia (DRG) from Non-Obese Diabetic (NOD) mice were carried out. Methods Histopathological analysis by electron and optical microscopy in DRG samples, and mRNA expression analyzes by the microarray technique in DRG and blood leukocyte samples from NOD and C57BL/6 mice were performed. Results The results showed the formation of cytoplasmic vacuoles in DRG cells early in life that could be related to a neurodegenerative process. In view of these results, mRNA expression analyses were conducted to determine the cause and/or the molecules involved in this suspected disorder. The results showed that DRG cells from NOD mice have alterations in the transcription of a wide range of genes, which explain the previously observed alterations. In addition, differences in the transcription genes in white blood cells were also detected. Discussion Taken together, these results indicate that functional defects are not only seen in beta cells but also in DRG in NOD mice. These results also indicate that these defects are not a consequence of the autoimmune process that takes place in NOD mice and suggest that they may be involved as triggers for its development.
Collapse
Affiliation(s)
- Marta Corral-Pujol
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Berta Arpa
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Estela Rosell-Mases
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Leire Egia-Mendikute
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Conchi Mora
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
| | - Thomas Stratmann
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alex Sanchez
- Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Spain
- Statistics and Bioinformatics Unit, Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Anna Casanovas
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Josep Enric Esquerda
- Patologia Neuromuscular Experimental Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Didac Mauricio
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Faculty of Medicine, Central University of Catalonia, Vic, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute, Badalona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida and IRBLleida, Lleida, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Wu J, Atkins A, Downes M, Wei Z. Vitamin D in Diabetes: Uncovering the Sunshine Hormone's Role in Glucose Metabolism and Beyond. Nutrients 2023; 15:nu15081997. [PMID: 37111216 PMCID: PMC10142687 DOI: 10.3390/nu15081997] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last decades, epidemiology and functional studies have started to reveal a pivotal role of vitamin D in both type 1 and type 2 diabetes pathogenesis. Acting through the vitamin D receptor (VDR), vitamin D regulates insulin secretion in pancreatic islets and insulin sensitivity in multiple peripheral metabolic organs. In vitro studies and both T1D and T2D animal models showed that vitamin D can improve glucose homeostasis by enhancing insulin secretion, reducing inflammation, reducing autoimmunity, preserving beta cell mass, and sensitizing insulin action. Conversely, vitamin D deficiency has been shown relevant in increasing T1D and T2D incidence. While clinical trials testing the hypothesis that vitamin D improves glycemia in T2D have shown conflicting results, subgroup and meta-analyses support the idea that raising serum vitamin D levels may reduce the progression from prediabetes to T2D. In this review, we summarize current knowledge on the molecular mechanisms of vitamin D in insulin secretion, insulin sensitivity, and immunity, as well as the observational and interventional human studies investigating the use of vitamin D as a treatment for diabetes.
Collapse
Affiliation(s)
- Jie Wu
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Annette Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Division of Endocrinology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| |
Collapse
|
8
|
Mao R, Yang M, Yang R, Chen Y, Diao E, Zhang T, Li D, Chang X, Chi Z, Wang Y. Oral delivery of the intracellular domain of the insulinoma-associated protein 2 (IA-2ic) by bacterium-like particles (BLPs) prevents type 1 diabetes mellitus in NOD mice. Drug Deliv 2022; 29:925-936. [PMID: 35311607 PMCID: PMC8942491 DOI: 10.1080/10717544.2022.2053760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Antigen-specific immune tolerance, which possesses great potential in preventing or curing type 1 diabetes mellitus (T1DM), can be induced by oral vaccination with T1DM-related autoantigens. However, direct administration of autoantigens via oral route exhibits a low tolerance-inducing effect as a result of the digestion of protein antigens in the gastrointestinal tract (GIT) and therefore, a large dosage of autoantigens may be needed. In this study, bacterium-like particles (BLPs) made from food-grade lactic acid bacteria were used to deliver the intracellular domain of the insulinoma-associated protein 2 (IA-2ic). For this purpose, BLPs-IA-2ic vaccine in which IA-2ic bound to the surface of BLPs was constructed. BLPs enhanced the stability of the delivered IA-2ic based on the stability analysis in vitro. Oral administration of BLPs-IA-2ic significantly reduced T1DM incidence in NOD mice. The mice fed BLPs-IA-2ic exhibited a significant reduction in insulitis and preserved the ability to secrete insulin. Immunologic analysis showed that oral vaccination with BLPs-IA-2ic induced antigen-specific T cell tolerance. The results revealed that the successful induction of immune tolerance was dependent on the immune deviation (in favor of T helper 2 responses) and CD4+CD25+FoxP3+ regulatory T cells. Hence, oral vaccination with BLPs-IA-2ic shows potential for application in preventing T1DM.
Collapse
Affiliation(s)
- Ruifeng Mao
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Menglan Yang
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Rui Yang
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Yingying Chen
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Enjie Diao
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Tong Zhang
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Dengchao Li
- School of Life Sciences, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Xin Chang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Zhenjing Chi
- Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
10
|
Nigam S, Bishop JO, Hayat H, Quadri T, Hayat H, Wang P. Nanotechnology in Immunotherapy for Type 1 Diabetes: Promising Innovations and Future Advances. Pharmaceutics 2022; 14:644. [PMID: 35336018 PMCID: PMC8955746 DOI: 10.3390/pharmaceutics14030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a chronic condition which affects the glucose metabolism in the body. In lieu of any clinical "cure," the condition is managed through the administration of pharmacological aids, insulin supplements, diet restrictions, exercise, and the like. The conventional clinical prescriptions are limited by their life-long dependency and diminished potency, which in turn hinder the patient's recovery. This necessitated an alteration in approach and has instigated several investigations into other strategies. As Type 1 diabetes (T1D) is known to be an autoimmune disorder, targeting the immune system in activation and/or suppression has shown promise in reducing beta cell loss and improving insulin levels in response to hyperglycemia. Another strategy currently being explored is the use of nanoparticles in the delivery of immunomodulators, insulin, or engineered vaccines to endogenous immune cells. Nanoparticle-assisted targeting of immune cells holds substantial potential for enhanced patient care within T1D clinical settings. Herein, we summarize the knowledge of etiology, clinical scenarios, and the current state of nanoparticle-based immunotherapeutic approaches for Type 1 diabetes. We also discuss the feasibility of translating this approach to clinical practice.
Collapse
Affiliation(s)
- Saumya Nigam
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jack Owen Bishop
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Hanaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
| | - Tahnia Quadri
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
| | - Hasaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; (S.N.); (J.O.B.); (H.H.); (T.Q.); (H.H.)
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Greaves RB, Chen D, Green EA. Thymic B Cells as a New Player in the Type 1 Diabetes Response. Front Immunol 2021; 12:772017. [PMID: 34745148 PMCID: PMC8566354 DOI: 10.3389/fimmu.2021.772017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes (T1d) results from a sustained autoreactive T and B cell response towards insulin-producing β cells in the islets of Langerhans. The autoreactive nature of the condition has led to many investigations addressing the genetic or cellular changes in primary lymphoid tissues that impairs central tolerance- a key process in the deletion of autoreactive T and B cells during their development. For T cells, these studies have largely focused on medullary thymic epithelial cells (mTECs) critical for the effective negative selection of autoreactive T cells in the thymus. Recently, a new cellular player that impacts positively or negatively on the deletion of autoreactive T cells during their development has come to light, thymic B cells. Normally a small population within the thymus of mouse and man, thymic B cells expand in T1d as well as other autoimmune conditions, reside in thymic ectopic germinal centres and secrete autoantibodies that bind selective mTECs precipitating mTEC death. In this review we will discuss the ontogeny, characteristics and functionality of thymic B cells in healthy and autoimmune settings. Furthermore, we explore how in silico approaches may help decipher the complex cellular interplay of thymic B cells with other cells within the thymic microenvironment leading to new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Richard B Greaves
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - Dawei Chen
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - E Allison Green
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
12
|
Parras D, Solé P, Delong T, Santamaría P, Serra P. Recognition of Multiple Hybrid Insulin Peptides by a Single Highly Diabetogenic T-Cell Receptor. Front Immunol 2021; 12:737428. [PMID: 34527002 PMCID: PMC8435627 DOI: 10.3389/fimmu.2021.737428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying the major histocompatibility complex class II (MHCII) type 1 diabetes (T1D) association remain incompletely understood. We have previously shown that thymocytes expressing the highly diabetogenic, I-Ag7-restricted 4.1-T-cell receptor (TCR) are MHCII-promiscuous, and that, in MHCII-heterozygous mice, they sequentially undergo positive and negative selection/Treg deviation by recognizing pro- and anti-diabetogenic MHCII molecules on cortical thymic epithelial cells and medullary hematopoietic antigen-presenting cells (APCs), respectively. Here, we use a novel autoantigen discovery approach to define the antigenic specificity of this TCR in the context of I-Ag7. This was done by screening the ability of random epitope-GS linker-I- A β g 7 chain fusion pools to form agonistic peptide-MHCII complexes on the surface of I- A α d chain-transgenic artificial APCs. Pool deconvolution, I-Ag7-binding register-fixing, TCR contact residue mapping, and alanine scanning mutagenesis resulted in the identification of a 4.1-TCR recognition motif XL(G/A)XEXE(D/E)X that was shared by seven agonistic hybrid insulin peptides (HIPs) resulting from the fusion of several different chromogranin A and/or insulin C fragments, including post-translationally modified variants. These data validate a novel, highly sensitive MHCII-restricted epitope discovery approach for orphan TCRs and suggest thymic selection of autoantigen-promiscuous TCRs as a mechanism for the murine T1D-I-Ag7-association.
Collapse
MESH Headings
- Animals
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CHO Cells
- Coculture Techniques
- Cricetulus
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Epitopes
- HEK293 Cells
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Humans
- Insulin/genetics
- Insulin/immunology
- Insulin/metabolism
- Jurkat Cells
- Mice, Inbred NOD
- Mice, Knockout
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Mice
Collapse
Affiliation(s)
- Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Patricia Solé
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Thomas Delong
- Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS), Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States
| | - Pere Santamaría
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
13
|
Zhu X, Bian F, Zhao Y, Qin Y, Sun X, Zhou L. Combined therapy of adenovirus vector mediated IGF-1 gene with anti-CD20 mAbs exerts potential beneficial role on type 1 diabetes in nonobese diabetic mice. Life Sci 2021:119853. [PMID: 34331973 DOI: 10.1016/j.lfs.2021.119853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
AIMS To assess the protective effects of combined treatment with anti-CD20 monoclonal antibody (mAb) and adenovirus mediated mouse insulin-like growth factor 1 (Adv-mIGF-1) gene on type 1 diabetes (T1D) in nonobese diabetic (NOD) mice at early stage. METHODS To simultaneously restore the proportion of Th cells and block the interaction of B cells, NOD model mice were assigned to four groups which received PBS, Adv-mIGF-1 gene and anti-CD20 mAbs alone or combination, respectively. After 16 weeks of therapeutic intervention, blood samples and pancreatic tissues of mice were measured via the methods of ELISA, RT-PCR, western blotting, H&E staining, TUNEL and immunohistochemistry assays. KEY FINDINGS Chronic combination intervention with Adv-mIGF-1 gene and anti-CD20 mAbs reduced the T1D-related morbidity, promoted the secretion of insulin, controlled the blood glucose levels (BGLs) and alleviated insulitis of experimental mice. In addition, current combination intervention also protected the pancreatic β cells via suppressing the expression of Fas and TNF-α, inhibiting Caspase-3/8 related apoptotic pathway, and activating the Bcl-2-related antiapoptotic pathway. Furthermore, current combination therapy also increased the expression levels of PDX-1 and CK-19 genes, and finally accelerated the proliferation and differentiation of pancreatic β-cells. In addition, combination therapy could also ameliorate the pathological characteristics of diabetic nephropathy in NOD mice. CONCLUSION Combination treatment with Adv-mIGF-1 gene and anti-CD20 mAbs may exert a potential beneficial role on T1D in NOD mice.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China
| | - Fei Bian
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China
| | - Yuchen Zhao
- Department of Mathematics, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Yanyan Qin
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China
| | - Xiang Sun
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China
| | - Lanlan Zhou
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
14
|
Jiang L, Niu W, Zheng Q, Meng G, Chen X, Zhang M, Deng G, Mao Q, Wang L. Identification of an Autoantibody Against ErbB-3-Binding Protein-1 in the Sera of Patients With Chronic Hepatitis B Virus Infection. Front Immunol 2021; 12:640335. [PMID: 34113340 PMCID: PMC8185336 DOI: 10.3389/fimmu.2021.640335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
Background Studies have shown that autoimmune response contributes to chronic hepatitis B (CHB) development. Aim This study aimed to identify autoantibodies in the sera of patients with CHB and to investigate the association of autoimmune response with disease severity in CHB. Methods Proteins from human liver carcinoma cell line HepG2 were separated by two-dimensional electrophoresis. The candidate autoantigens were recognized by serum autoantibodies from Chinese CHB patients. Immunohistochemical staining was performed to determine the hepatic expression of the autoantigen in CHB patients with different inflammatory grades. Enzyme-linked immunosorbent assay (ELISA) was conducted to measure the prevalence and the levels of serum autoantibody in CHB patients with different disease severity. Flow cytometry analysis was carried out to assess the autoreactive T cell response in the peripheral circulation of CHB patients. Results ErbB-3-binding protein-1 (EBP-1) was identified as an autoantigen of serum autoantibodies in CBP patients. EBP-1 protein expression was upregulated in the liver of CHB patients with high-grade hepatic inflammation. The prevalence and levels of serum anti-EBP1 IgG were significantly increased in CHB patients with severe diseases compared with those with mild or moderate diseases, but none was detectable in the healthy controls. EBP-1 peptides induced proinflammatory cytokine expression in CD4+ T cells from CHB patients. Conclusion Our results demonstrate the presence of an autoantibody against EBP-1 in the sera as well as EBP-1-reactive T cells in the peripheral blood of CHB patient. EBP-1-induced autoimmune response is positively associated with the disease severity, suggesting that EBP-1-induced autoimmune response possibly contributes to progressive liver failure.
Collapse
Affiliation(s)
- Li Jiang
- Department of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Niu
- Department of Immunology & Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian Zheng
- Function Center, North Sichuan Medical College, Nanchong, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoling Chen
- Department of Immunology & Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjun Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Immunology & Institute of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
15
|
Balzano-Nogueira L, Ramirez R, Zamkovaya T, Dailey J, Ardissone AN, Chamala S, Serrano-Quílez J, Rubio T, Haller MJ, Concannon P, Atkinson MA, Schatz DA, Triplett EW, Conesa A. Integrative analyses of TEDDY Omics data reveal lipid metabolism abnormalities, increased intracellular ROS and heightened inflammation prior to autoimmunity for type 1 diabetes. Genome Biol 2021; 22:39. [PMID: 33478573 PMCID: PMC7818777 DOI: 10.1186/s13059-021-02262-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The Environmental Determinants of Diabetes in the Young (TEDDY) is a prospective birth cohort designed to study type 1 diabetes (T1D) by following children with high genetic risk. An integrative multi-omics approach was used to evaluate islet autoimmunity etiology, identify disease biomarkers, and understand progression over time. RESULTS We identify a multi-omics signature that was predictive of islet autoimmunity (IA) as early as 1 year before seroconversion. At this time, abnormalities in lipid metabolism, decreased capacity for nutrient absorption, and intracellular ROS accumulation are detected in children progressing towards IA. Additionally, extracellular matrix remodeling, inflammation, cytotoxicity, angiogenesis, and increased activity of antigen-presenting cells are observed, which may contribute to beta cell destruction. Our results indicate that altered molecular homeostasis is present in IA-developing children months before the actual detection of islet autoantibodies, which opens an interesting window of opportunity for therapeutic intervention. CONCLUSIONS The approach employed herein for assessment of the TEDDY cohort showcases the utilization of multi-omics data for the modeling of complex, multifactorial diseases, like T1D.
Collapse
Affiliation(s)
- Leandro Balzano-Nogueira
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Ricardo Ramirez
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Tatyana Zamkovaya
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Jordan Dailey
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Alexandria N Ardissone
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Srikar Chamala
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Joan Serrano-Quílez
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, 46010, Valencia, Spain
| | - Teresa Rubio
- Laboratory of Neurobiology, Prince Felipe Research Center, Valencia, Spain
| | - Michael J Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
- University of Florida Genetics Institute, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA.
- University of Florida Genetics Institute, Gainesville, FL, USA.
| |
Collapse
|
16
|
Giri KR, de Beaurepaire L, Jegou D, Lavy M, Mosser M, Dupont A, Fleurisson R, Dubreil L, Collot M, Van Endert P, Bach JM, Mignot G, Bosch S. Molecular and Functional Diversity of Distinct Subpopulations of the Stressed Insulin-Secreting Cell's Vesiculome. Front Immunol 2020; 11:1814. [PMID: 33101266 PMCID: PMC7556286 DOI: 10.3389/fimmu.2020.01814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Beta cell failure and apoptosis following islet inflammation have been associated with autoimmune type 1 diabetes pathogenesis. As conveyors of biological active material, extracellular vesicles (EV) act as mediators in communication with immune effectors fostering the idea that EV from inflamed beta cells may contribute to autoimmunity. Evidence accumulates that beta exosomes promote diabetogenic responses, but relative contributions of larger vesicles as well as variations in the composition of the beta cell's vesiculome due to environmental changes have not been explored yet. Here, we made side-by-side comparisons of the phenotype and function of apoptotic bodies (AB), microvesicles (MV) and small EV (sEV) isolated from an equal amount of MIN6 beta cells exposed to inflammatory, hypoxic or genotoxic stressors. Under normal conditions, large vesicles represent 93% of the volume, but only 2% of the number of the vesicles. Our data reveal a consistently higher release of AB and sEV and to a lesser extent of MV, exclusively under inflammatory conditions commensurate with a 4-fold increase in the total volume of the vesiculome and enhanced export of immune-stimulatory material including the autoantigen insulin, microRNA, and cytokines. Whilst inflammation does not change the concentration of insulin inside the EV, specific Toll-like receptor-binding microRNA sequences preferentially partition into sEV. Exposure to inflammatory stress engenders drastic increases in the expression of monocyte chemoattractant protein 1 in all EV and of interleukin-27 solely in AB suggesting selective sorting toward EV subspecies. Functional in vitro assays in mouse dendritic cells and macrophages reveal further differences in the aptitude of EV to modulate expression of cytokines and maturation markers. These findings highlight the different quantitative and qualitative imprints of environmental changes in subpopulations of beta EV that may contribute to the spread of inflammation and sustained immune cell recruitment at the inception of the (auto-) immune response.
Collapse
Affiliation(s)
| | | | | | - Margot Lavy
- IECM, ONIRIS, INRAE, USC1383, Nantes, France
| | | | - Aurelien Dupont
- MRic, Biosit, UMS3480 CNRS, University of Rennes 1, Rennes, France
| | | | - Laurence Dubreil
- PAnTher, INRAE, Oniris, Université Bretagne Loire, Nantes, France
| | - Mayeul Collot
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Université de Strasbourg, Illkirch, France
| | - Peter Van Endert
- Université Paris Descartes, Paris, France.,INSERM, U1151, Institut Necker-Enfants Malades, Paris, France
| | | | | | | |
Collapse
|
17
|
Lemmerman LR, Das D, Higuita-Castro N, Mirmira RG, Gallego-Perez D. Nanomedicine-Based Strategies for Diabetes: Diagnostics, Monitoring, and Treatment. Trends Endocrinol Metab 2020; 31:448-458. [PMID: 32396845 PMCID: PMC7987328 DOI: 10.1016/j.tem.2020.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Abstract
Traditional methods for diabetes management require constant and tedious glucose monitoring (GM) and insulin injections, impacting quality of life. The global diabetic population is expected to increase to 439 million, with approximately US$490 billion in healthcare expenditures by 2030, imposing a significant burden on healthcare systems worldwide. Recent advances in nanotechnology have emerged as promising alternative strategies for the management of diabetes. For example, implantable nanosensors are being developed for continuous GM, new nanoparticle (NP)-based imaging approaches that quantify subtle changes in β cell mass can facilitate early diagnosis, and nanotechnology-based insulin delivery methods are being explored as novel therapies. Here, we provide a holistic summary of this rapidly advancing field compiling all aspects pertaining to the management of diabetes.
Collapse
Affiliation(s)
- Luke R Lemmerman
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA
| | - Devleena Das
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA; The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
| | - Raghavendra G Mirmira
- The University of Chicago, Kovler Diabetes Center and the Department of Medicine, Chicago, IL 60637, USA
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA; The Ohio State University, Department of Surgery, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Argente-Pla M, Martínez-Millana A, Del Olmo-García MI, Espí-Reig J, Pérez-Rojas J, Traver-Salcedo V, Merino-Torres JF. Autoimmune Diabetes Recurrence After Pancreas Transplantation: Diagnosis, Management, and Literature Review. Ann Transplant 2019; 24:608-616. [PMID: 31767825 PMCID: PMC6896746 DOI: 10.12659/aot.920106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Pancreas transplantation can be a viable treatment option for patients with type 1 diabetes mellitus (T1DM), especially for those who are candidates for kidney transplantation. T1DM may rarely recur after pancreas transplantation, causing the loss of pancreatic graft. The aim of this study was to describe the prevalence of T1DM recurrence after pancreas transplantation in our series. Material/Methods Eighty-one patients transplanted from 2002 to 2015 were included. Autoantibody testing (GADA and IA-2) was performed before pancreas transplantation and during the follow-up. Results The series includes 48 males and 33 females, mean age 37.4±5.7 years and mean duration of diabetes 25.5±6.5 years. Patients received simultaneous pancreas kidney (SPK) transplantation. After SPK transplantation, 56 patients retained pancreatic graft, 8 patients died, and 17 patients lost their pancreatic graft. T1DM recurrence occurred in 2 of the 81 transplanted patients, yielding a prevalence of 2.5%, with an average time of appearance of 3.3 years after transplant. Pancreatic enzymes were normal in the 2 patients, ruling out pancreatic rejection. T1DM recurrence was confirmed histologically, showing selective lymphoid infiltration of the pancreatic islets. Conclusions T1DM recurrence after pancreas transplantation is infrequent; however, it is one of the causes of pancreatic graft loss that should always be ruled out. Negative autoimmunity prior to transplantation does not ensure that T1DM does not recur.
Collapse
Affiliation(s)
- María Argente-Pla
- Department of Endocrinology and Nutrition, La Fe University and Polytechnic Hospital, Valencia, Spain.,Mixed Research Unit of Endocrinology, Nutrition and Dietetics, La Fe Health Research Institute, Valencia, Spain
| | | | - María Isabel Del Olmo-García
- Department of Endocrinology and Nutrition, La Fe University and Polytechnic Hospital, Valencia, Spain.,Mixed Research Unit of Endocrinology, Nutrition and Dietetics, La Fe Health Research Institute, Valencia, Spain
| | - Jordi Espí-Reig
- Department of Nephrology, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Judith Pérez-Rojas
- Department of Pathological Anatomy, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | - Juan Francisco Merino-Torres
- Department of Endocrinology and Nutrition, La Fe University and Polytechnic Hospital, Valencia, Spain.,Mixed Research Unit of Endocrinology, Nutrition and Dietetics, La Fe Health Research Institute, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
19
|
Zhao WH, Wen X, Qu W, Liu HX, Yan HY, Hou LF, Ping J. Attenuated Tregs increase susceptibility to type 1 diabetes in prenatal nicotine exposed female offspring mice. Toxicol Lett 2019; 315:39-46. [DOI: 10.1016/j.toxlet.2019.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022]
|
20
|
VandenBerg MA, Webber MJ. Biologically Inspired and Chemically Derived Methods for Glucose-Responsive Insulin Therapy. Adv Healthc Mater 2019; 8:e1801466. [PMID: 30605265 DOI: 10.1002/adhm.201801466] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The controlled delivery of therapeutics in a manner responsive to physiological indicators has promise in realizing new therapeutic approaches to combat disease. This approach is especially relevant in the context of diabetes. Natural fluctuations in blood glucose seen in the healthy state, complete with peaks and troughs, are poorly regulated as a result of detrimental production or ineffective signaling of the insulin hormone. While several manifestations of diabetes are treated with regularly administered exogenous insulin, the present standard of care results in suboptimal glycemic management that poorly recreates natural hormone control, leading to long-term instability and a significantly increased risk for secondary health complications. New synthetic technologies that make insulin available only when needed, and at the exact dose required, have been explored under the broad vision of realizing a "fully synthetic pancreas." Yet, many challenges remain to realizing a technology that is appropriately responsive, safe, and well integrated into a manageable routine. Herein, many of the approaches explored thus far to sense physiological blood glucose and elicit response through the release of therapeutic insulin are summarized. The approaches point to a new, autonomous approach to managing diabetes with biomimetic therapy.
Collapse
Affiliation(s)
- Michael A. VandenBerg
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| | - Matthew J. Webber
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| |
Collapse
|
21
|
Suppression of a broad spectrum of liver autoimmune pathologies by single peptide-MHC-based nanomedicines. Nat Commun 2019; 10:2150. [PMID: 31089130 PMCID: PMC6517389 DOI: 10.1038/s41467-019-09893-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/05/2019] [Indexed: 01/28/2023] Open
Abstract
Peptide-major histocompatibility complex class II (pMHCII)-based nanomedicines displaying tissue-specific autoantigenic epitopes can blunt specific autoimmune conditions by re-programming cognate antigen-experienced CD4+ T-cells into disease-suppressing T-regulatory type 1 (TR1) cells. Here, we show that single pMHCII-based nanomedicines displaying epitopes from mitochondrial, endoplasmic reticulum or cytoplasmic antigens associated with primary biliary cholangitis (PBC) or autoimmune hepatitis (AIH) can broadly blunt PBC, AIH and Primary Sclerosing Cholangitis in various murine models in an organ- rather than disease-specific manner, without suppressing general or local immunity against infection or metastatic tumors. Therapeutic activity is associated with cognate TR1 cell formation and expansion, TR1 cell recruitment to the liver and draining lymph nodes, local B-regulatory cell formation and profound suppression of the pro-inflammatory capacity of liver and liver-proximal myeloid dendritic cells and Kupffer cells. Thus, autoreactivity against liver-enriched autoantigens in liver autoimmunity is not disease-specific and can be harnessed to treat various liver autoimmune diseases broadly. Immune response against tissue-specific antigens is a hallmark of autoimmunity. Here the authors show that a single autoantigen-based nanomedicine can ameliorate pathology in a broad range of liver autoimmunity models without impairing host defenses, suggesting organ-wide tolerization.
Collapse
|
22
|
Thirunavukkarasu R, Asirvatham AJ, Chitra A, Jayalakshmi M. SLC30A8 Gene rs13266634 C/T Polymorphism in Children with Type 1 Diabetes in Tamil Nadu, India. J Clin Res Pediatr Endocrinol 2019; 11:55-60. [PMID: 30197307 PMCID: PMC6398198 DOI: 10.4274/jcrpe.galenos.2018.2018.0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/07/2018] [Indexed: 12/01/2022] Open
Abstract
Objective Zinc transporter 8 (ZnT8) is a multi-transmembrane protein situated in the insulin secretory granule of the islets of β-cells and is identified as a novel auto-antigen in type 1 diabetes (T1D). The gene coding for ZnT8, solute carrier family 30 member 8 (SLC30A8) is located on chromosome 8q24.11. This study aimed to identify the association of SLC30A8 rs13266634 C/T gene polymorphism with T1D in a sample of T1D children in Tamil Nadu, India. Methods The family based study was conducted in 121 T1D patients and 214 of their family members as controls. The SLC30A8 gene rs13266634 C/T polymorphism was evaluated by polymerase chain reaction-restriction fragment length polymorphism. Results No significant differences were observed in either allele (odds ratio: 0.92; confidence interval: 0.33-2.58; p=0.88) and genotype (CC: p=0.74; CT: p=0.82; TT: p=0.80) frequencies of rs13266634 C/T between T1D patients and controls. Transmission disequilibrium test has identified over-transmission of mutant T allele from parents to affected children (T: U=9:7) without statistical significance. Metaanalysis on the overall effects of rs13266634 C allele frequency was not different (p=0.10 and Pheterogeneity=0.99) in T1D patients as compared to the controls. Conclusion The present study along with the meta-analysis does not show any substantial association of the rs13266634 C/T polymorphism with T1D development in this population.
Collapse
Affiliation(s)
| | | | - Ayyappan Chitra
- Government Rajaji Hospital, Institute of Child Health and Research Centre, Madurai, India
| | | |
Collapse
|
23
|
Jayasimhan A, Ellis DP, Ziegler AI, Slattery RM. Pancreatic ductal cell antigens are important in the development of invasive insulitis in Non-Obese Diabetic mice. J Neuroimmunol 2019; 327:1-9. [PMID: 30685070 DOI: 10.1016/j.jneuroim.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 01/12/2023]
Abstract
Type 1 Diabetes (T1D) is an autoimmune disease in which insulin producing beta cells of the pancreas are selectively destroyed. Glial Fibrillary Acidic Protein (GFAP) expressed in peri-islet Schwann cells (pSCs) and in the ductal cells of the pancreas is one of the candidate autoantigens for T1D. Immune responses to GFAP expressing cell types precede the islet autoimmunity in Non-Obese Diabetic (NOD) mice. By removing MHC class I from GFAP expressing cell types, we tested the role of autoantigens presented by these cell types in the development of invasive insulitis. Our findings indicate that antigens expressed by pancreatic ductal cells are important in the development of invasive insulitis in NOD mice.
Collapse
Affiliation(s)
- Abhirup Jayasimhan
- Department of Immunology and Pathology, Monash University, Melbourne, Australia.
| | - Darcy P Ellis
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Alexandra I Ziegler
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Robyn M Slattery
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Guerder S, Hassel C, Carrier A. Thymus-specific serine protease, a protease that shapes the CD4 T cell repertoire. Immunogenetics 2018; 71:223-232. [PMID: 30225612 DOI: 10.1007/s00251-018-1078-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
Abstract
The lifespan of T cells is determined by continuous interactions of their T cell receptors (TCR) with self-peptide-MHC (self-pMHC) complexes presented by different subsets of antigen-presenting cells (APC). In the thymus, developing thymocytes are positively selected through recognition of self-pMHC presented by cortical thymic epithelial cells (cTEC). They are subsequently negatively selected by medullary thymic epithelial cells (mTEC) or thymic dendritic cells (DC) presenting self-pMHC complexes. In the periphery, the homeostasis of mature T cells is likewise controlled by the interaction of their TCR with self-pMHC complexes presented by lymph node stromal cells while they may be tolerized by DC presenting tissue-derived self-antigens. To perform these tasks, the different subsets of APC are equipped with distinct combination of antigen processing enzymes and consequently present specific repertoire of self-peptides. Here, we discuss one such antigen processing enzyme, the thymus-specific serine protease (TSSP), which is predominantly expressed by thymic stromal cells. In thymic DC and TEC, TSSP edits the repertoire of peptide presented by class II molecules and thus shapes the CD4 T cell repertoire.
Collapse
Affiliation(s)
- Sylvie Guerder
- INSERM, U1043, 31300, Toulouse, France. .,CNRS, UMR5282, 31300, Toulouse, France. .,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, 31300, Toulouse, France. .,INSERM UMR1043, Centre de Physiopathologie de Toulouse Purpan, CHU Purpan, BP 3028, 31024, Toulouse CEDEX 3, France.
| | - Chervin Hassel
- INSERM, U1043, 31300, Toulouse, France.,CNRS, UMR5282, 31300, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université Toulouse III Paul-Sabatier, 31300, Toulouse, France
| | - Alice Carrier
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
25
|
Tahvili S, Törngren M, Holmberg D, Leanderson T, Ivars F. Paquinimod prevents development of diabetes in the non-obese diabetic (NOD) mouse. PLoS One 2018; 13:e0196598. [PMID: 29742113 PMCID: PMC5942776 DOI: 10.1371/journal.pone.0196598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Quinoline-3-carboxamides (Q compounds) are immunomodulatory compounds that have shown efficacy both in autoimmune disease and cancer. We have in here investigated the impact of one such compound, paquinimod, on the development of diabetes in the NOD mouse model for type I diabetes (T1D). In cohorts of NOD mice treated with paquinimod between weeks 10 to 20 of age and followed up until 40 weeks of age, we observed dose-dependent reduction in incidence of disease as well as delayed onset of disease. Further, in contrast to untreated controls, the majority of NOD mice treated from 15 weeks of age did not develop diabetes at 30 weeks of age. Importantly, these mice displayed significantly less insulitis, which correlated with selectively reduced number of splenic macrophages and splenic Ly6Chi inflammatory monocytes at end point as compared to untreated controls. Collectively, these results demonstrate that paquinimod treatment can significantly inhibit progression of insulitis to T1D in the NOD mouse. We propose that the effect of paquinimod on disease progression may be related to the reduced number of these myeloid cell populations. Our finding also indicates that this compound could be a candidate for clinical development towards diabetes therapy in humans.
Collapse
Affiliation(s)
- Sahar Tahvili
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Dan Holmberg
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Leanderson
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
| | - Fredrik Ivars
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Spanier JA, Sahli NL, Wilson JC, Martinov T, Dileepan T, Burrack AL, Finger EB, Blazar BR, Michels AW, Moran A, Jenkins MK, Fife BT. Increased Effector Memory Insulin-Specific CD4 + T Cells Correlate With Insulin Autoantibodies in Patients With Recent-Onset Type 1 Diabetes. Diabetes 2017; 66:3051-3060. [PMID: 28842400 PMCID: PMC5697953 DOI: 10.2337/db17-0666] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/18/2017] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) results from T cell-mediated destruction of insulin-producing β-cells. Insulin represents a key self-antigen in disease pathogenesis, as recent studies identified proinsulin-responding T cells from inflamed pancreatic islets of organ donors with recent-onset T1D. These cells respond to an insulin B-chain (InsB) epitope presented by the HLA-DQ8 molecule associated with high T1D risk. Understanding insulin-specific T-cell frequency and phenotype in peripheral blood is now critical. We constructed fluorescent InsB10-23:DQ8 tetramers, stained peripheral blood lymphocytes directly ex vivo, and show DQ8+ patients with T1D have increased tetramer+ CD4+ T cells compared with HLA-matched control subjects without diabetes. Patients with a shorter disease duration had higher frequencies of insulin-reactive CD4+ T cells, with most of these cells being antigen experienced. We also demonstrate that the number of insulin tetramer+ effector memory cells is directly correlated with insulin antibody titers, suggesting insulin-specific T- and B-cell interactions. Notably, one of four control subjects with tetramer+ cells was a first-degree relative who had insulin-specific cells with an effector memory phenotype, potentially representing an early marker of T-cell autoimmunity. Our results suggest that studying InsB10-23:DQ8 reactive T-cell frequency and phenotype may provide a biomarker of disease activity in patients with T1D and those at risk.
Collapse
Affiliation(s)
- Justin A Spanier
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Nathanael L Sahli
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Joseph C Wilson
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Thamotharampillai Dileepan
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Adam L Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Erik B Finger
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Aaron W Michels
- Department of Pediatrics and Medicine, University of Colorado, Denver, CO
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
27
|
Censin JC, Nowak C, Cooper N, Bergsten P, Todd JA, Fall T. Childhood adiposity and risk of type 1 diabetes: A Mendelian randomization study. PLoS Med 2017; 14:e1002362. [PMID: 28763444 PMCID: PMC5538636 DOI: 10.1371/journal.pmed.1002362] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The incidence of type 1 diabetes (T1D) is increasing globally. One hypothesis is that increasing childhood obesity rates may explain part of this increase, but, as T1D is rare, intervention studies are challenging to perform. The aim of this study was to assess this hypothesis with a Mendelian randomization approach that uses genetic variants as instrumental variables to test for causal associations. METHODS AND FINDINGS We created a genetic instrument of 23 single nucleotide polymorphisms (SNPs) associated with childhood adiposity in children aged 2-10 years. Summary-level association results for these 23 SNPs with childhood-onset (<17 years) T1D were extracted from a meta-analysis of genome-wide association study with 5,913 T1D cases and 8,828 reference samples. Using inverse-variance weighted Mendelian randomization analysis, we found support for an effect of childhood adiposity on T1D risk (odds ratio 1.32, 95% CI 1.06-1.64 per standard deviation score in body mass index [SDS-BMI]). A sensitivity analysis provided evidence of horizontal pleiotropy bias (p = 0.04) diluting the estimates towards the null. We therefore applied Egger regression and multivariable Mendelian randomization methods to control for this type of bias and found evidence in support of a role of childhood adiposity in T1D (odds ratio in Egger regression, 2.76, 95% CI 1.40-5.44). Limitations of our study include that underlying genes and their mechanisms for most of the genetic variants included in the score are not known. Mendelian randomization requires large sample sizes, and power was limited to provide precise estimates. This research has been conducted using data from the Early Growth Genetics (EGG) Consortium, the Genetic Investigation of Anthropometric Traits (GIANT) Consortium, the Tobacco and Genetics (TAG) Consortium, and the Social Science Genetic Association Consortium (SSGAC), as well as meta-analysis results from a T1D genome-wide association study. CONCLUSIONS This study provides genetic support for a link between childhood adiposity and T1D risk. Together with evidence from observational studies, our findings further emphasize the importance of measures to reduce the global epidemic of childhood obesity and encourage mechanistic studies.
Collapse
Affiliation(s)
- J. C. Censin
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christoph Nowak
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicholas Cooper
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - John A. Todd
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW By necessity, the vast majority of information we have on autoreactive T cells in human type 1 diabetes (T1D) has come from the study of peripheral blood of donors with T1D. It is not clear how representative the peripheral autoreactive T-cell repertoire is of the autoreactive T cells infiltrating the islets in T1D. We will summarize and discuss what is known of the immunohistopathology of insulitis, the T-cell receptor repertoire expressed by islet-infiltrating T cells, and the autoreactivity and function of islet-infiltrating T cells in T1D. RECENT FINDINGS Recovery and analysis of live, islet-infiltrating T cells from the islets of cadaveric donors with T1D revealed a broad repertoire and proinflammatory phenotype of CD4 T-cell autoreactivity to peptide targets from islet proteins, including proinsulin, as well as CD4 T-cell reactivity to a number of post-translationally modified peptides, including peptides with citrullinations and hybrid insulin peptide fusions. Islet-infiltrating CD8 T cells were also derived and required further isolation and characterization. SUMMARY The recovery of live, islet-infiltrating T cells from donors with T1D, reactive with a broad range of known targets and post-translationally modified peptides, allows for the specific functional analysis of islet-infiltrating T cells for the development of antigen-specific immunotherapies.
Collapse
Affiliation(s)
- Sally C Kent
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
29
|
Fousteri G, Ippolito E, Ahmed R, Hamad ARA. Beta-cell Specific Autoantibodies: Are they Just an Indicator of Type 1 Diabetes? Curr Diabetes Rev 2017; 13:322-329. [PMID: 27117244 PMCID: PMC5266674 DOI: 10.2174/1573399812666160427104157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autoantibodies (AAbs) against islet autoantigens (AAgs) are used for type 1 diabetes (T1D) diagnosis and prediction. Islet-specific AAbs usually appear early in life and may fluctuate in terms of number and titer sometimes for over 20 years before T1D develops. Whereas their predictive power is high for pediatric subjects with high genetic risk who rapidly progress to multiple AAb positivity, they are less reliable for children with low genetic risk, single AAb positivity and slow disease progression. OBJECTIVE It is unknown how AAbs develop and whether they are involved in T1D pathogenesis. So far an increase in AAb number seems to only indicate AAg spreading and progression towards clinical T1D. The goal of this review is to shed light on the possible involvement of AAbs in T1D development. METHOD We thoroughly review the current literature and discuss possible mechanisms of AAb development and the roles they may play in disease pathogenesis. RESULTS Genetic and environmental factors instigate changes at the molecular and cellular levels that promote AAb development. Although direct involvement of AAbs in T1D is less clear, autoreactive B cells are clearly involved in various immune and autoimmune responses via antigen presentation, immunoregulation and cytokine production. CONCLUSION Our analysis suggests that understanding the mechanisms that lead to islet-specific AAb development and the diabetogenic processes that autoreactive B cells promote may uncover additional biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Georgia Fousteri
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Address correspondence to: Georgia Fousteri; ; tel: +39 02 2643 3184; Fax: +39 02 2643 7759
| | - Elio Ippolito
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rizwan Ahmed
- Department of Pathology and of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Abdel Rahim A. Hamad
- Department of Pathology and of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
30
|
Yu J, Zhang Y, Bomba H, Gu Z. Stimuli-Responsive Delivery of Therapeutics for Diabetes Treatment. Bioeng Transl Med 2016; 1:323-337. [PMID: 29147685 PMCID: PMC5685194 DOI: 10.1002/btm2.10036] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic therapeutics, including insulin and glucagon-like peptide 1 (GLP-1), are essential for diabetic patients to regulate blood glucose levels. However, conventional treatments that are based on subcutaneous injections are often associated with poor glucose control and a lack of patient compliance. In this review, we focus on the different stimuli-responsive systems to deliver therapeutics for diabetes treatment to improve patient comfort and prevent complications. Specifically, the pH-responsive systems for oral drug delivery are introduced first. Then, the closed-loop glucose-responsive systems are summarized based on different glucose-responsive moieties, including glucose oxidase (GOx), glucose binding protein (GBP), and phenylboronic acid (PBA). Finally, the on-demand delivery systems activated by external remote triggers are also discussed. We conclude by discussing advantages and limitations of current strategies, as well as future opportunities and challenges in this area.
Collapse
Affiliation(s)
- Jicheng Yu
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599
| | - Yuqi Zhang
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599
| | - Hunter Bomba
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
| | - Zhen Gu
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599
- Dept. of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599
| |
Collapse
|
31
|
Moulder R, Lahesmaa R. Early signs of disease in type 1 diabetes. Pediatr Diabetes 2016; 17 Suppl 22:43-8. [PMID: 27411436 DOI: 10.1111/pedi.12329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 01/22/2023] Open
Abstract
As a severe chronic disease with long-term complications, type 1 diabetes (T1D) is a burden to the patients and their families as well as a challenge to the health care system. T1D is a heterogeneous disease with a variety of etiologies and a wide range in the rate of progression to the disease. In order to prevent and treat T1D it would be important to identify measures that could be used to predict and monitor disease progression, as well as to further understand the molecular mechanisms involved. During the past 20 yr since its initiation, the Finnish Diabetes Prediction and Prevention Project (DIPP) has collected longitudinal biological samples from children with a human leukocyte antigen gene-conferred risk of T1D. This large sample collection has provided detailed sample series that enable studies to map the progression from health to disease, as well as the healthy maturation of risk-matched children. The DIPP samples have been used in a large body of research to elucidate the factors involved in the development of T1D. Interestingly, results from recent studies exploiting omics platforms have revealed that signs of the disease process can be detected very early on, even prior to appearance of the first T1D-associated antibodies, which are currently considered the earliest indications of the emerging disease. Identification and validation of multi-modal molecular markers will we hope provide a means to subgroup the heterogeneous group of T1D patients and enable prediction, diagnosis, and monitoring of T1D. Discovery of such markers is important in the design and testing of prevention and therapies for T1D.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| |
Collapse
|
32
|
Doran TM, Sarkar M, Kodadek T. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses. J Am Chem Soc 2016; 138:6076-94. [PMID: 27115249 PMCID: PMC5332222 DOI: 10.1021/jacs.6b02954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Mohosin Sarkar
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Thomas Kodadek
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
33
|
Krishnamurthy B, Selck C, Chee J, Jhala G, Kay TWH. Analysis of antigen specific T cells in diabetes - Lessons from pre-clinical studies and early clinical trials. J Autoimmun 2016; 71:35-43. [PMID: 27083395 DOI: 10.1016/j.jaut.2016.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
Antigen-specific immune tolerance promises to provide safe and effective therapies to prevent type 1 diabetes (T1D). Antigen-specific therapy requires two components: well-defined, clinically relevant autoantigens; and safe approaches to inducing tolerance in T cells specific for these antigens. Proinsulin is a critical autoantigen in both NOD mice, based on knockout mouse studies and induction of immune tolerance to proinsulin preventing disease whereas most antigens cannot, and also in human T1D based on proinsulin-specific T cells being found in the islets of affected individuals and the early appearance of insulin autoantibodies. Effective antigen-specific therapies that prevent T1D in humans have not yet been developed although doubt remains about the best molecular form of the antigen, the dose and the route of administration. Preclinical studies suggest that antigen specific therapy is most useful when administered before onset of autoimmunity but this time-window has not been tested in humans until the recent "pre-point" study. There may be a 'window of opportunity' during the neonatal period when 'vaccine' like administration of proinsulin for a short period may be sufficient to prevent diabetes. After the onset of autoimmunity, naive antigen-specific T cells have differentiated into antigen-experienced memory cells and the immune responses have spread to multiple antigens. Induction of tolerance at this stage becomes more difficult although recent studies have suggested generation of antigen-specific TR1 cells can inhibit memory T cells. Preclinical studies are required to identify additional 'help' that is required to induce tolerance to memory T cells and develop protocols for effective therapy in individuals with established autoimmunity.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Claudia Selck
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Jonathan Chee
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Guarang Jhala
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia.
| |
Collapse
|
34
|
Rahman MJ, Rahir G, Dong MB, Zhao Y, Rodrigues KB, Hotta-Iwamura C, Chen Y, Guerrero A, Tarbell KV. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1. THE JOURNAL OF IMMUNOLOGY 2016; 196:2031-40. [PMID: 26826238 DOI: 10.4049/jimmunol.1501239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022]
Abstract
Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/β receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response.
Collapse
Affiliation(s)
- M Jubayer Rahman
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Gwendoline Rahir
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Matthew B Dong
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Yongge Zhao
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kameron B Rodrigues
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ye Chen
- Bioinformatics and Systems Biology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan Guerrero
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
35
|
Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark Å, Ratner RE, Rewers MJ, Schatz DA, Skyler JS, Sosenko JM, Ziegler AG. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015; 38:1964-74. [PMID: 26404926 PMCID: PMC5321245 DOI: 10.2337/dc15-1419] [Citation(s) in RCA: 691] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insights from prospective, longitudinal studies of individuals at risk for developing type 1 diabetes have demonstrated that the disease is a continuum that progresses sequentially at variable but predictable rates through distinct identifiable stages prior to the onset of symptoms. Stage 1 is defined as the presence of β-cell autoimmunity as evidenced by the presence of two or more islet autoantibodies with normoglycemia and is presymptomatic, stage 2 as the presence of β-cell autoimmunity with dysglycemia and is presymptomatic, and stage 3 as onset of symptomatic disease. Adoption of this staging classification provides a standardized taxonomy for type 1 diabetes and will aid the development of therapies and the design of clinical trials to prevent symptomatic disease, promote precision medicine, and provide a framework for an optimized benefit/risk ratio that will impact regulatory approval, reimbursement, and adoption of interventions in the early stages of type 1 diabetes to prevent symptomatic disease.
Collapse
Affiliation(s)
| | | | - Mark A Atkinson
- UF Diabetes Institute, University of Florida, Gainesville, FL
| | | | - Dana Dabelea
- Colorado School of Public Health, University of Colorado, Denver, CO
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | | | - Kevan C Herold
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Jeffrey P Krischer
- Department of Pediatrics, Pediatric Epidemiology Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Åke Lernmark
- Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | | | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | | | - Jay S Skyler
- Diabetes Research Institute, University of Miami, Miami, FL
| | - Jay M Sosenko
- Diabetes Research Institute, University of Miami, Miami, FL
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| |
Collapse
|
36
|
Serre L, Fazilleau N, Guerder S. Central tolerance spares the private high-avidity CD4(+) T-cell repertoire specific for an islet antigen in NOD mice. Eur J Immunol 2015; 45:1946-56. [PMID: 25884569 DOI: 10.1002/eji.201445290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/17/2015] [Accepted: 04/14/2015] [Indexed: 11/09/2022]
Abstract
Although central tolerance induces the deletion of most autoreactive T cells, some autoreactive T cells escape thymic censorship. Whether potentially harmful autoreactive T cells present distinct TCRαβ features remains unclear. Here, we analyzed the TCRαβ repertoire of CD4(+) T cells specific for the S100β protein, an islet antigen associated with type 1 diabetes. We found that diabetes-resistant NOD mice deficient for thymus specific serine protease (TSSP), a protease that impairs class II antigen presentation by thymic stromal cells, were hyporesponsive to the immunodominant S100β1-15 epitope, as compared to wild-type NOD mice, due to intrathymic negative selection. In both TSSP-deficient and wild-type NOD mice, the TCRαβ repertoire of S100β-specific CD4(+) T cells though diverse showed a specific bias for dominant TCRα rearrangements with limited CDR3α diversity. These dominant TCRα chains were public since they were found in all mice. They were of intermediate- to low-avidity. In contrast, high-avidity T cells expressed unique TCRs specific to each individual (private TCRs) and were only found in wild-type NOD mice. Hence, in NOD mice, the autoreactive CD4(+) T-cell compartment has two major components, a dominant and public low-avidity TCRα repertoire and a private high-avidity CD4(+) T-cell repertoire; the latter is deleted by re-enforced negative selection.
Collapse
Affiliation(s)
- Laurent Serre
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
37
|
Mukherjee G, Chaparro RJ, Schloss J, Smith C, Bando CD, DiLorenzo TP. Glucagon-reactive islet-infiltrating CD8 T cells in NOD mice. Immunology 2015; 144:631-40. [PMID: 25333865 DOI: 10.1111/imm.12415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes is characterized by T-cell-mediated destruction of the insulin-producing β cells in pancreatic islets. A number of islet antigens recognized by CD8 T cells that contribute to disease pathogenesis in non-obese diabetic (NOD) mice have been identified; however, the antigenic specificities of the majority of the islet-infiltrating cells have yet to be determined. The primary goal of the current study was to identify candidate antigens based on the level and specificity of expression of their genes in mouse islets and in the mouse β cell line MIN6. Peptides derived from the candidates were selected based on their predicted ability to bind H-2K(d) and were examined for recognition by islet-infiltrating T cells from NOD mice. Several proteins, including those encoded by Abcc8, Atp2a2, Pcsk2, Peg3 and Scg2, were validated as antigens in this way. Interestingly, islet-infiltrating T cells were also found to recognize peptides derived from proglucagon, whose expression in pancreatic islets is associated with α cells, which are not usually implicated in type 1 diabetes pathogenesis. However, type 1 diabetes patients have been reported to have serum autoantibodies to glucagon, and NOD mouse studies have shown a decrease in α cell mass during disease pathogenesis. Our finding of islet-infiltrating glucagon-specific T cells is consistent with these reports and suggests the possibility of α cell involvement in development and progression of disease.
Collapse
Affiliation(s)
- Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
38
|
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 2015; 14:45-57. [PMID: 25430866 PMCID: PMC4751590 DOI: 10.1038/nrd4477] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology-based approaches hold substantial potential for improving the care of patients with diabetes. Nanoparticles are being developed as imaging contrast agents to assist in the early diagnosis of type 1 diabetes. Glucose nanosensors are being incorporated in implantable devices that enable more accurate and patient-friendly real-time tracking of blood glucose levels, and are also providing the basis for glucose-responsive nanoparticles that better mimic the body's physiological needs for insulin. Finally, nanotechnology is being used in non-invasive approaches to insulin delivery and to engineer more effective vaccine, cell and gene therapies for type 1 diabetes. Here, we analyse the current state of these approaches and discuss key issues for their translation to clinical practice.
Collapse
Affiliation(s)
- Omid Veiseh
- 1] Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [2] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [3] Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts 02115, USA. [4]
| | - Benjamin C Tang
- 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [2] Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts 02115, USA. [3]
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Daniel G Anderson
- 1] Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [2] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [3] Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts 02115, USA. [4] Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. [5] Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert Langer
- 1] Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [2] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA. [3] Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts 02115, USA. [4] Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. [5] Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Nayak DK, Calderon B, Vomund AN, Unanue ER. ZnT8-reactive T cells are weakly pathogenic in NOD mice but can participate in diabetes under inflammatory conditions. Diabetes 2014; 63:3438-48. [PMID: 24812429 PMCID: PMC4171664 DOI: 10.2337/db13-1882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autoantibodies to the islet-specific Zn transporter ZnT8 (Slc30a8), as well as CD4 T cells, have been identified in patients with type 1 diabetes. Here we examined for CD4 T-cell reactivity to ZnT8 epitopes in the NOD mouse. Immunization with a cytoplasmic domain of the protein or with peptides predicted to bind to I-A(g7) resulted in a CD4 T-cell response, indicating a lack of deletional tolerance. However, presentation by intraislet antigen-presenting cells (APC) to the T cells was not detectable in prediabetic mice. Presentation by islet APC was found only in islets of mice with active diabetes. In accordance, a culture assay indicated the weak transfer of ZnT8 reactivity from insulinomas or primary β-cells to APC for presentation to T cells. A T cell directed to one peptide (345-359) resulted in the transfer of diabetes, but only in conditions in which the recipient NOD mice or NOD.Rag1(-/-) mice were subjected to light irradiation. In late diabetic NOD mice, CD4 T cells were found as well as a weak antibody response. We conclude that in NOD mice, ZnT8 is a minor diabetogenic antigen that can participate in diabetes in conditions in which the islet is first made receptive to immunological insults.
Collapse
Affiliation(s)
- Deepak K Nayak
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Boris Calderon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Anthony N Vomund
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
40
|
Wan X, Zaghouani H. Antigen-specific therapy against type 1 diabetes: mechanisms and perspectives. Immunotherapy 2014; 6:155-64. [PMID: 24491089 DOI: 10.2217/imt.13.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes (T1D) is an immune-mediated disease that occurs when the insulin-producing β‑cells of the pancreatic islets are destroyed by an inflammatory process perpetuated by cells of the immune system. The logical approach to suppress T1D is to inactivate or eliminate the lymphocytes responsible for inducing inflammation and targeting the β‑cells. Antigen-specific approaches have been devised and were able to target inflammatory lymphocytes and induce apoptosis or block trafficking to pancreatic islets. Lack of costimulation, expansion of Tregs and bystander suppression are likely mechanisms by which antigen-specific treatments modulate pathogenic T cells. This strategy, however, while prevents the onset of T1D, could not overcome overt T1D, perhaps because of collateral damage to the islet vascular network. Recent developments indicate that donor endothelial stem cell precursors can repair the islets' vascular niche and assist antigen-specific therapy against overt T1D.
Collapse
Affiliation(s)
- Xiaoxiao Wan
- Department of Pathology & Immunology. Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
41
|
Wang J, Nanjundappa RH, Shameli A, Clemente-Casares X, Yamanouchi J, Elliott JF, Slattery R, Serra P, Santamaria P. The cross-priming capacity and direct presentation potential of an autoantigen are separable and inversely related properties. THE JOURNAL OF IMMUNOLOGY 2014; 193:3296-307. [PMID: 25165150 DOI: 10.4049/jimmunol.1401001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated whether a prevalent epitope of the β-cell-specific autoantigen islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP206-214) reaches regional Ag-presentation pathways via unprocessed polypeptide chains, as free IGRP206-214 peptide or via preformed IGRP206-214/K(d) complexes. This was accomplished by expressing bacterial artificial chromosome transgenes encoding wild-type (stable) or ubiquitinated (unstable) forms of IGRP in IGRP-deficient NOD mice carrying MHC class I-deficient β-cells, dendritic cells, or B cells. We investigated the ability of the pancreatic lymph nodes of these mice to prime naive IGRP206-214-reactive CD8(+) T cells in vivo, either in response to spontaneous Ag shedding, or to synchronized forms of β-cell necrosis or apoptosis. When IGRP was made unstable by targeting it for proteasomal degradation within β-cells, the cross-priming, autoimmune-initiating potential of this autoantigen (designated autoantigenicity) was impaired. Yet at the same time, the direct presentation, CTL-targeting potential of IGRP (designated pathogenicity) was enhanced. The appearance of IGRP206-214 in regional Ag-presentation pathways was dissociated from transfer of IGRP206-214 or IGRP206-214/K(d) from β cells to dendritic cells. These results indicate that autoantigenicity and pathogenicity are separable and inversely related properties and suggest that pathogenic autoantigens, capable of efficiently priming CTLs while marking target cells for CTL-induced killing, may have a critical balance of these two properties.
Collapse
Affiliation(s)
- Jinguo Wang
- Julia McFarlane Diabetes Research Centre, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Roopa Hebbandi Nanjundappa
- Julia McFarlane Diabetes Research Centre, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Afshin Shameli
- Julia McFarlane Diabetes Research Centre, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jun Yamanouchi
- Julia McFarlane Diabetes Research Centre, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - John F Elliott
- Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Division of Dermatology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Robyn Slattery
- Department of Immunology, Monash University, Alfred Hospital Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; and
| | - Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain
| |
Collapse
|
42
|
Li M, Ikehara S. Stem cell treatment for type 1 diabetes. Front Cell Dev Biol 2014; 2:9. [PMID: 25364717 PMCID: PMC4206977 DOI: 10.3389/fcell.2014.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a common chronic disease in children, characterized by a loss of β cells, which results in defects in insulin secretion and hyperglycemia. Chronic hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy, and retinopathy. Curative therapies mainly include diet and insulin administration. Although hyperglycemia can be improved by insulin administration, exogenous insulin injection cannot successfully mimic the insulin secretion from normal β cells, which keeps blood glucose levels within the normal range all the time. Islet and pancreas transplantation achieves better glucose control, but there is a lack of organ donors. Cell based therapies have also been attempted to treat T1DM. Stem cells such as embryonic stem cells, induced pluripotent stem cells and tissue stem cells (TSCs) such as bone marrow-, adipose tissue-, and cord blood-derived stem cells, have been shown to generate insulin-producing cells. In this review, we summarize the most-recently available information about T1DM and the use of TSCs to treat T1DM.
Collapse
Affiliation(s)
- Ming Li
- Department of Stem Cell Disorders, Kansai Medical University Hirakata City, Osaka, Japan
| | - Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University Hirakata City, Osaka, Japan
| |
Collapse
|
43
|
Monoclonal antibody blocking the recognition of an insulin peptide-MHC complex modulates type 1 diabetes. Proc Natl Acad Sci U S A 2014; 111:2656-61. [PMID: 24550292 DOI: 10.1073/pnas.1323436111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary autoantigen triggering spontaneous type 1 diabetes mellitus in nonobese diabetic (NOD) mice is insulin. The major T-cell insulin epitope lies within the amino acid 9-23 peptide of the β-chain (B:9-23). This peptide can bind within the peptide binding groove of the NOD MHC class II molecule (MHCII), IA(g7), in multiple positions or "registers." However, the majority of pathogenic CD4 T cells recognize this complex only when the insulin peptide is bound in register 3 (R3). We hypothesized that antibodies reacting specifically with R3 insulin-IA(g7) complexes would inhibit autoimmune diabetes specifically without interfering with recognition of other IA(g7)-presented antigens. To test this hypothesis, we generated a monoclonal antibody (mAb287), which selectively binds to B:9-23 and related variants when presented by IA(g7) in R3, but not other registers. The monoclonal antibody blocks binding of IA(g7)-B:10-23 R3 tetramers to cognate T cells and inhibits T-cell responses to soluble B:9-23 peptides and NOD islets. However, mAb287 has no effect on recognition of other peptides bound to IA(g7) or other MHCII molecules. Intervention with mAb287, but not irrelevant isotype matched antibody, at either early or late stages of disease development, significantly delayed diabetes onset by inhibiting infiltration by not only insulin-specific CD4 T cells, but also by CD4 and CD8 T cells of other specificities. We propose that peptide-MHC-specific monoclonal antibodies can modulate autoimmune disease without the pleiotropic effects of nonselective reagents and, thus, could be applicable to the treatment of multiple T-cell mediated autoimmune disorders.
Collapse
|
44
|
Lee CN, Lew AM, Wu L. The potential role of dendritic cells in the therapy of Type 1 diabetes. Immunotherapy 2014; 5:591-606. [PMID: 23725283 DOI: 10.2217/imt.13.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is the result of T-cell mediated autoimmune destruction of pancreatic islet β-cells. The two current treatments for T1D are based on insulin or islet-cell replacement rather than the pathogenesis of T1D and remain problematic. Islet/pancreas transplantation does not cater for the majority of sufferers due to the lack of supply of organs and the need for continuous immunosuppression regimens. The mainstay treatment is insulin replacement, but this is disruptive to lifestyle and does not protect against severe long-term complications. An early vaccination and long-term restoration of immune tolerance to self-antigens in T1D patients (reversing the immunopathogenesis of the disease) would be preferable. Dendritic cells (DCs) are potent APCs and play an important role in inducing and maintaining immune tolerance. Targeting DCs through different DC surface molecules shows effective modulation of immune responses. Their feasibility for immunotherapy to prolong transplant survival and cancer immunotherapy has been demonstrated. Therefore, DCs could potentially be used in the treatment of autoimmune diseases. This review summarizes new insights into DCs as a potential therapeutic target for the treatment of T1D.
Collapse
Affiliation(s)
- Chin-Nien Lee
- Molecular Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | | | | |
Collapse
|
45
|
Xu D, Prasad S, Miller SD. Inducing immune tolerance: a focus on Type 1 diabetes mellitus. ACTA ACUST UNITED AC 2013; 3:415-426. [PMID: 24505231 DOI: 10.2217/dmt.13.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tolerogenic strategies that specifically target diabetogenic immune cells in the absence of complications of immunosuppression are the desired treatment for the prevention or even reversal of Type 1 diabetes (T1D). Antigen (Ag)-based therapies must not only suppress disease-initiating diabetogenic T cells that are already activated, but, more importantly, prevent activation of naive auto-Ag-specific T cells that may become autoreactive through epitope spreading as a result of Ag liberation from damaged islet cells. Therefore, identification of auto-Ags relevant to T1D initiation and progression is critical to the design of effective Ag-specific therapies. Animal models of T1D have been successfully employed to identify potential diabetogenic Ags, and have further facilitated translation of Ag-specific tolerance strategies into human clinical trials. In this review, we highlight important advances using animal models in Ag-specific T1D immunotherapies, and the application of the preclinical findings to human subjects. We provide an up-to-date overview of the strengths and weaknesses of various tolerance-inducing strategies, including infusion of soluble Ags/peptides by various routes of delivery, genetic vaccinations, cell- and inert particle-based tolerogenic approaches, and various other strategies that target distinct tolerance-inducing pathways.
Collapse
Affiliation(s)
- Dan Xu
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Suchitra Prasad
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
46
|
Jeker LT, Bour-Jordan H, Bluestone JA. Breakdown in peripheral tolerance in type 1 diabetes in mice and humans. Cold Spring Harb Perspect Med 2013; 2:a007807. [PMID: 22393537 DOI: 10.1101/cshperspect.a007807] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 1 Diabetes (T1D), also called juvenile diabetes because of its classically early onset, is considered an autoimmune disease targeting the insulin-producing β cells in the pancreatic islets of Langerhans. T1D reflects a loss of tolerance to tissue self-antigens caused by defects in both central tolerance, which aims at eliminating potentially autoreactive lymphocytes developing in the thymus, and peripheral tolerance, which normally controls autoreactive T cells that escaped the thymus. Like in other autoimmune diseases, the mechanisms leading to T1D are multifactorial and depend on a complex combination of genetic, epigenetic, molecular, and cellular elements that result in the breakdown of peripheral tolerance. In this article, we discuss the contribution of these factors in the development of the autoimmune response targeting pancreatic islets in T1D and the therapeutic strategies currently being explored to correct these defects.
Collapse
Affiliation(s)
- Lukas T Jeker
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
47
|
Clemente-Casares X, Tsai S, Huang C, Santamaria P. Antigen-specific therapeutic approaches in Type 1 diabetes. Cold Spring Harb Perspect Med 2013; 2:a007773. [PMID: 22355799 DOI: 10.1101/cshperspect.a007773] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of strategies capable of specifically curbing pathogenic autoimmune responses in a disease- and organ-specific manner without impairing foreign or tumor antigen-specific immune responses represents a long sought-after goal in autoimmune disease research. Unfortunately, our current understanding of the intricate details of the different autoimmune diseases that affect mankind, including type 1 diabetes, is rudimentary. As a result, progress in the development of the so-called "antigen-specific" therapies for autoimmunity has been slow and fraught with limitations that interfere with bench-to-bedside translation. Absent or incomplete understanding of mechanisms of action and lack of adequate immunological biomarkers, for example, preclude the rational design of effective drug development programs. Here, we provide an overview of antigen-specific approaches that have been tested in preclinical models of T1D and, in some cases, human subjects. The evidence suggests that effective translation of these approaches through clinical trials and into patients will continue to meet with failure unless detailed mechanisms of action at the level of the organism are defined.
Collapse
Affiliation(s)
- Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre, University of Calgary, NW Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
48
|
Yang J, James EA, Sanda S, Greenbaum C, Kwok WW. CD4+ T cells recognize diverse epitopes within GAD65: implications for repertoire development and diabetes monitoring. Immunology 2013; 138:269-79. [PMID: 23228173 DOI: 10.1111/imm.12034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/17/2012] [Accepted: 10/24/2012] [Indexed: 12/25/2022] Open
Abstract
Type 1 diabetes is associated with T-cell responses to β-cell antigens such as GAD65. Single T-cell epitopes have been investigated for immune monitoring with some success, but multiple epitopes may be required to fully characterize responses in all subjects. We used a systematic approach to examine the diversity of the GAD65-specific T-cell repertoire in subjects with DRB1*04:01 haplotypes. Using class II tetramers, we observed responses to 15 GAD65 epitopes, including five novel epitopes. The majority were confirmed to be processed and presented. Upon stimulation with peptides, GAD-specific responses were equally broad in subjects with diabetes and healthy controls in the presence or absence of CD25(+) T cells, suggesting that a susceptible HLA is sufficient to generate a potentially autoreactive repertoire. Without depleting CD25(+) cells, GAD(113-132) and GAD(265-284) responses were significantly stronger in subjects with diabetes. Although nearly every individual responded to at least one GAD65 epitope, most were seen in less than half of the subjects tested, suggesting that multiple epitopes are recommended for immune monitoring.
Collapse
Affiliation(s)
- Junbao Yang
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
49
|
Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy. Immunol Cell Biol 2013; 91:350-9. [PMID: 23528729 DOI: 10.1038/icb.2013.9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles (NPs) coated with β-cell-specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low-avidity T-cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen-loaded antigen-presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a 'resonance'-like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T-cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency-dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (≥1.6-fold) in the NP-dependent expansion rate of autoregulatory T-cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ≥8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC-NP-based therapies.
Collapse
|
50
|
Morgan MAJ, Muller PSS, Mould A, Newland SA, Nichols J, Robertson EJ, Cooke A, Bikoff EK. The nonconventional MHC class II molecule DM governs diabetes susceptibility in NOD mice. PLoS One 2013; 8:e56738. [PMID: 23418596 PMCID: PMC3572069 DOI: 10.1371/journal.pone.0056738] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/14/2013] [Indexed: 12/30/2022] Open
Abstract
The spontaneous destruction of insulin producing pancreatic beta cells in non-obese diabetic (NOD) mice provides a valuable model of type 1 diabetes. As in humans, disease susceptibility is controlled by the classical MHC class II genes that guide CD4+ T cell responses to self and foreign antigens. It has long been suspected that the dedicated class II chaperone designated HLA-DM in humans or H-2M in mice also makes an important contribution, but due to tight linkage within the MHC, a possible role played by DM peptide editing has not been previously tested by conventional genetic approaches. Here we exploited newly established germ-line competent NOD ES cells to engineer a loss of function allele. DM deficient NOD mice display defective class II peptide occupancy and surface expression, and are completely protected against type 1 diabetes. Interestingly the mutation results in increased proportional representation of CD4+Foxp3+ regulatory T cells and the absence of pathogenic CD4+ T effectors. Overall, this striking phenotype establishes that DM-mediated peptide selection plays an essential role in the development of autoimmune diabetes in NOD mice.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Blotting, Western
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Embryonic Stem Cells/immunology
- Embryonic Stem Cells/metabolism
- Female
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Genetic Predisposition to Disease/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Microscopy, Confocal
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Marc A. J. Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Pari S. S. Muller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Arne Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Stephen A. Newland
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|