1
|
Croce CM, Vaux D, Strasser A, Opferman JT, Czabotar PE, Fesik SW. The BCL-2 protein family: from discovery to drug development. Cell Death Differ 2025:10.1038/s41418-025-01481-z. [PMID: 40204952 DOI: 10.1038/s41418-025-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
The landmark discovery of the BCL-2 gene and then its function marked the identification of inhibition of apoptotic cell death as a crucial novel mechanism driving cancer development and launched the quest to discover the molecular control of apoptosis. This work culminated in the generation of specific inhibitors that are now in clinical use, saving and improving tens of thousands of lives annually. Here, some of the original players of this story, describe the sequence of critical discoveries. The t(14;18) chromosomal translocation, frequently observed in follicular lymphoma, allowed the identification and the cloning of a novel oncogene (BCL-2) juxtaposed to the immunoglobulin heavy chain gene locus (IgH). Of note, BCL-2 acted in a distinct manner as compared to then already known oncogenic proteins like ABL and c-MYC. BCL-2 did not promote cell proliferation but inhibited cell death, as originally shown in growth factor dependent haematopoietic progenitor cell lines (e.g., FDC-P1) and in Eμ-Myc/Eμ-Bcl-2 double transgenic mice. Following a rapid expansion of the BCL-2 protein family, the Abbott Laboratories solved the first structure of BCL-XL and subsequently the BCL-XL/BAK peptide complex, opening the way to understanding the structures of other BCL-2 family members and, finally, to the generation of inhibitors of the different pro-survival BCL-2 proteins, thanks to the efforts of Servier/Norvartis, Genentech/WEHI, AbbVie, Amgen, Prelude and Gilead. Although the BCL-2 inhibitor Venetoclax is in clinical use and inhibitors of BCL-XL and MCL-1 are undergoing clinical trials, several questions remain on whether therapeutic windows can be achieved and what other agents should be used in combination with BH3 mimetics to achieve optimal therapeutic impact for cancer therapy. Finally, the control of the expression of BH3-only proteins and pro-survival BCL-2 family members needs to be better understood as this may identify novel targets for cancer therapy. This story is still not concluded!
Collapse
Affiliation(s)
- Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - David Vaux
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Stephen W Fesik
- Department of Biochemistry, Pharmacology and Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Chen JJ. HRI protein kinase in cytoplasmic heme sensing and mitochondrial stress response: Relevance to hematological and mitochondrial diseases. J Biol Chem 2025; 301:108494. [PMID: 40209956 DOI: 10.1016/j.jbc.2025.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Most iron in humans is bound in heme used as a prosthetic group for hemoglobin. Heme-regulated inhibitor (HRI) is responsible for coordinating heme availability and protein synthesis. Originally characterized in rabbit reticulocyte lysates, HRI was shown in 1976 to phosphorylate the α-subunit of eukaryotic initiation factor 2, revealing a new molecular mechanism for regulating protein synthesis. Since then, HRI research has mostly been focused on the biochemistry of heme inhibition through direct binding and heme sensing in balancing heme and globin synthesis to prevent proteotoxicity in erythroid cells. Beyond inhibiting translation of highly translated mRNAs, eukaryotic initiation factor 2α phosphorylation also selectively increases translation of certain poorly translated mRNAs, notably activating transcription factor 4 mRNA, for reprogramming of gene expression to mitigate stress, known as the integrated stress response (ISR). In recent years, there have been novel mechanistic insights of HRI-ISR in oxidative stress, mitochondrial function, and erythroid differentiation during heme deficiency. Furthermore, HRI-ISR is activated upon mitochondrial stress in several cell types, establishing the bifunctional nature of HRI protein. The role of HRI and ISR in cancer development and vulnerability is also emerging. Excitingly, the UBR4 ubiquitin ligase complex has been demonstrated to silence the HRI-ISR by degradation of activated HRI proteins, suggesting additional regulatory processes. Together, these recent advancements indicate that the HRI-ISR mechanistic axis is a target for new therapies for hematological and mitochondrial diseases as well as oncology. This review covers the historical overview of HRI biology, the biochemical mechanisms of regulating HRI, and the biological impacts of the HRI-ISR pathway in human diseases.
Collapse
Affiliation(s)
- Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
3
|
Steen TV, Espinoza I, Duran C, Casadevall G, Serrano-Hervás E, Cuyàs E, Verdura S, Kemble G, Kaufmann SH, McWilliams R, Osuna S, Billadeau DD, Menendez JA, Lupu R. Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer. Neoplasia 2025; 62:101143. [PMID: 39999714 PMCID: PMC11908614 DOI: 10.1016/j.neo.2025.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Resistance to mitochondrial apoptosis is a major driver of chemoresistance in pancreatic ductal adenocarcinoma (PDAC). However, pharmacological manipulation of the mitochondrial apoptosis threshold in PDAC cells remains an unmet therapeutic goal. We hypothesized that fatty acid synthase inhibitors (FASNis), a family of targeted metabolic therapeutics recently entering the clinic, could lower the apoptotic threshold in chemoresistant PDAC cells and be synergistic with BH3 mimetics that neutralize anti-apoptotic proteins. Computational studies with TVB-3166 and TVB-3664, two analogues of the clinical-grade FASNi TVB-2640 (denifanstat), confirmed their uncompetitive behavior towards NADPH when bound to the FASN ketoacyl reductase domain. The extent of NADPH accumulation, a consequence of FASN inhibition, paralleled the sensitivity of PDAC cells to the apoptotic effects of TVB FASNis in conventional PDAC cell lines that naturally express varying levels of FASN. FASN inhibition dramatically increased the sensitivity of "FASN-high" expressing PDAC cells to the BCL2/BCL-XL/BCL-W inhibitor ABT-263/navitoclax and the BCL2-selective inhibitor ABT-199/venetoclax, both in vitro and in in vivo xenografted tumors. The ability of TVB FASNis to shift the balance of pro- and anti-apoptotic proteins and thereby push PDAC cells closer to the apoptotic threshold was also observed in cell lines developed from patient-derived xenografts (PDXs) representative of the classical (pancreatic) transcriptomic subtype of PDAC. Experiments in PDAC PDXs in vivo confirmed the synergistic antitumor activity of TVB-3664 with navitoclax and venetoclax, independent of the nature of the replication stress signature of patient-derived PDAC cells. The discovery that targeted inhibition of FASN is a metabolic perturbation that sensitizes PDAC cells to BH3 mimetics warrants further investigation to overcome resistance to mitochondrial apoptosis in PDAC patients.
Collapse
Affiliation(s)
- Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ingrid Espinoza
- National Institute of Health, National Heart Lung and Blood Institute (NHLBI), Bethesda, MD 20817, USA; Lung Development and Pediatric Branch (HNH36), Bethesda, MD 20817, USA
| | - Cristina Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Guillem Casadevall
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | | | - Scott H Kaufmann
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Robert McWilliams
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain; ICREA, Barcelona 08010, Spain
| | - Daniel D Billadeau
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain.
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Alcon C, Kovatcheva M, Morales-Sánchez P, López-Polo V, Torres T, Puig S, Lu A, Samitier J, Enrich C, Serrano M, Montero J. HRK downregulation and augmented BCL-xL binding to BAK confer apoptotic protection to therapy-induced senescent melanoma cells. Cell Death Differ 2025; 32:646-656. [PMID: 39627361 PMCID: PMC11982230 DOI: 10.1038/s41418-024-01417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 04/11/2025] Open
Abstract
Senescent cells are commonly detected in tumors after chemo and radiotherapy, leading to a characteristic cellular phenotype that resists apoptotic cell death. In this study, we used multiple melanoma cell lines, molecular markers, and therapies to investigate the key role of the BCL-2 family proteins in the survival of senescent cells. We first used BH3 profiling to assess changes in apoptotic priming upon senescence induction. Unexpectedly, not all cell types analyzed showed a decrease in apoptotic priming, BIM was downregulated, there was variability in BAX expression and BAK remained constant or increased. Therefore, there was not a clear pattern for pro-survival adaptation. Many studies have been devoted to find ways to eliminate senescent cells, leading to one of the most studied senolytic agents: navitoclax, a promiscuous BH3 mimetic that inhibits BCL-2, BCL-xL and BCL-W. While it is known that the BCL-2 family of proteins is commonly upregulated in senescent cells, the complexity of the apoptotic network has not been fully explored. Interestingly, we found distinct protein expression changes always leading to a BCL-xL mediated pro-survival adaptation, as assessed by BH3 profiling. When analyzing potential therapeutic strategies, we observed a stronger senolytic activity in these melanoma cell lines when specifically targeting BCL-xL using A-1331852, navitoclax or the PROTAC BCL-xL degrader DT2216. We found that the sensitizer protein HRK was systematically downregulated when senescence was induced, leading to an increased availability of BCL-xL. Furthermore, we identified that the main apoptotic inhibition was shaped by BCL-xL and BAK binding increase that prevented mitochondrial permeabilization and apoptosis. To our knowledge, this is the first time that the molecular basis for BCL-xL anti-apoptotic adaptation in senescence is described, paving the way for the development of new molecules that either prevent HRK downregulation or displace BCL-xL binding to BAK to be used as senolytics.
Collapse
Affiliation(s)
- Clara Alcon
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Paula Morales-Sánchez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Vanessa López-Polo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Teresa Torres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Susana Puig
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica., Barcelona, Spain
| | - Albert Lu
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Joan Montero
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
5
|
Liu M, Guo J, Liu W, Yang Z, Yu F. Dual Targeting of Aurora-A and Bcl-xL Synergistically Reshapes the Immune Microenvironment and Induces Apoptosis in Breast Cancer. Cancer Sci 2025. [PMID: 40159464 DOI: 10.1111/cas.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
The Aurora-A kinase inhibitor MLN8237 has shown efficacy in clinical trials for advanced breast cancer; however, its use as a monotherapy is limited by significant side effects and modest efficacy. Therefore, combining MLN8237 with other agents at lower doses may provide a viable alternative. In this study, we evaluated the combination of MLN8237 with the BH3 mimetic ABT263 for the treatment of triple-negative breast cancer (TNBC). We found that this combination significantly suppressed tumor growth and metastasis in immunocompetent syngeneic mouse models, whereas its efficacy was attenuated in immunodeficient xenograft models. Mechanistic studies revealed that the combination enhanced anti-tumor immunity by increasing the presence of CD8+ T cells and NK cells, while reducing the number of immunosuppressive cells in the tumor microenvironment. This shift resulted in elevated levels of IFN-γ and granzyme B, which activated the extrinsic apoptotic pathways in cancer cells. Notably, the combination treatment did not affect tumor cell proliferation but promoted apoptosis with minimal toxicity. Furthermore, the synergistic effect of MLN8237 and ABT263 in inducing intrinsic apoptosis was primarily driven by the inhibition of the AKT-Mcl-1 and Bcl-xL survival pathways in cultured tumor cells. Together, these findings support the MLN8237-ABT263 combination as an effective treatment strategy for TNBC, promoting both immune-mediated extrinsic apoptosis and inactivation of Bcl-xL/Mcl-1-dependent intrinsic anti-apoptotic pathways.
Collapse
Affiliation(s)
- Mingxue Liu
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiyong Liu
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenye Yang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fazhi Yu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Singh SR, Bhaskar R, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Mladenov M, Hadzi-Petrushev N, Stojchevski R, Sinha JK, Avtanski D. Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers (Basel) 2025; 17:1082. [PMID: 40227591 PMCID: PMC11988167 DOI: 10.3390/cancers17071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Cancer is complex because of the critical imbalance in genetic regulation as characterized by both the overexpression of oncogenes (OGs), mainly through mutations, amplifications, and translocations, and the inactivation of tumor-suppressor genes (TSGs), which entail the preservation of genomic integrity by inducing apoptosis to counter the malignant growth. Reviewing the intricate molecular interplay between OGs and TSGs draws attention to their cell cycle, apoptosis, and cancer metabolism regulation. In the present review, we discuss seminal discoveries, such as Knudson's two-hit hypothesis, which framed the field's understanding of cancer genetics, leading to the next breakthroughs with next-generation sequencing and epigenetic profiling, revealing novel insights into OG and TSG dysregulation with opportunities for targeted therapy. The key pathways, such as MAPK/ERK, PI3K/AKT/mTOR, and Wnt/β-catenin, are presented in the context of tumor progression. Importantly, we further highlighted the advances in therapeutic strategies, including inhibitors of KRAS and MYC and restoration of TSG function, despite which mechanisms of resistance and tumor heterogeneity pose daunting challenges. A high-level understanding of interactions between OG-TSGs forms the basis for effective, personalized cancer treatment-something to strive for in better clinical outcomes. This synthesis should integrate foundational biology with translation and, in this case, contribute to the ongoing effort against cancer.
Collapse
Affiliation(s)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, India
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
7
|
Martín F, Alcon C, Marín E, Morales-Sánchez P, Manzano-Muñoz A, Díaz S, García M, Samitier J, Lu A, Villanueva A, Reguart N, Teixido C, Montero J. Novel selective strategies targeting the BCL-2 family to enhance clinical efficacy in ALK-rearranged non-small cell lung cancer. Cell Death Dis 2025; 16:194. [PMID: 40113795 PMCID: PMC11926089 DOI: 10.1038/s41419-025-07513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/29/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
ALK (anaplastic lymphoma kinase) rearrangements represent the third most predominant driver oncogene in non-small cell lung cancer (NSCLC). Although ALK inhibitors are the tyrosine kinase inhibitors (TKIs) with the longest survival rates in lung cancer, the complex systemic clinical evaluation and the apoptotic cell death evasion of drug-tolerant persister (DTP) cancer cells may limit their therapeutic response. We found that dynamic BH3 profiling (DBP) presents an excellent predictive capacity to ALK-TKIs, that would facilitate their use in a clinical setting and complementing the readout of standard diagnostic assays. In addition, we revealed novel acute adaptive mechanisms in response to ALK inhibitors in cell lines and patient-derived tumor cells. Consistently, all our cell models confirmed a rapid downregulation of the sensitizer protein NOXA, leading to dependence on the anti-apoptotic protein MCL-1 after treatment with ALK-TKIs. In some cases, the anti-apoptotic protein BCL-xL may contribute equally to this anti-apoptotic response. Importantly, these acute dependencies could be prevented with BH3 mimetics in vitro and in vivo, blocking tumor adaptation to treatment. Finally, we also demonstrated how dual reactivation of PI3K/AKT and MAPK signaling pathways can impair lorlatinib response, which could be overcome with specific inhibitors of both signaling pathways. In conclusion, our findings propose several therapeutic combinations that should be explored in future clinical trials to enhance ALK inhibitors efficacy and improve the clinical response in a broad NSCLC patient population.
Collapse
Affiliation(s)
- Fernando Martín
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Clara Alcon
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Elba Marín
- Division of Medical Oncology, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Unitat funcional de Tumors Toràcics, Hospital Clínic, Barcelona, Spain
| | - Paula Morales-Sánchez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Manzano-Muñoz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Sherley Díaz
- Department of Pathology and CORE Molecular Biology Laboratory, Hospital Clínic, Barcelona, Spain
| | - Mireia García
- Department of Pathology and CORE Molecular Biology Laboratory, Hospital Clínic, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Albert Lu
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Noemí Reguart
- Division of Medical Oncology, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Unitat funcional de Tumors Toràcics, Hospital Clínic, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Cristina Teixido
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Unitat funcional de Tumors Toràcics, Hospital Clínic, Barcelona, Spain
- Department of Pathology and CORE Molecular Biology Laboratory, Hospital Clínic, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Joan Montero
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Koleci N, Wu Y, Wehner NA, Rajak J, Mittapalli VR, Mergner J, Xiao H, Wang J, Wahl M, Bohler S, Aumann K, Häcker G, Ramamoorthy S, Boerries M, Kirschnek S, Erlacher M. Oncogenic and microenvironmental signals drive cell type specific apoptosis resistance in juvenile myelomonocytic leukemia. Cell Death Dis 2025; 16:165. [PMID: 40057493 PMCID: PMC11890777 DOI: 10.1038/s41419-025-07479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Juvenile myelomonocytic leukemia (JMML) is caused by constitutively activated RAS signaling and characterized by increased proliferation and predominant myelomonocytic differentiation of hematopoietic cells. Using MxCre;Ptpn11D61Y/+ mice, which model human JMML, we show that RAS pathway activation affects apoptosis signaling through cell type-dependent regulation of BCL-2 family members. Apoptosis resistance observed in monocytes and granulocytes was mediated by overexpression of the anti-apoptotic and down-regulation of the pro-apoptotic members of the BCL-2 family. Two anti-apoptotic proteins, BCL-XL and MCL-1, were directly regulated by the oncogenic RAS signaling but, in addition, were influenced by microenvironmental signals. While BCL-XL and BCL-2 were required for the survival of monocytes, MCL-1 was essential for neutrophils. Interestingly, stem and progenitor cells expressing the oncogenic PTPN11 mutant showed no increased apoptosis resistance. BCL-XL inhibition was the most effective in killing myeloid cells in vitro but was insufficient to completely resolve myeloproliferation in vivo.
Collapse
Affiliation(s)
- Naile Koleci
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Medicine III, Hematology and Oncology, TUM University Hospital, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Ying Wu
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Niels Anton Wehner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jovana Rajak
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Venugopal Rao Mittapalli
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Hui Xiao
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jun Wang
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Madeleine Wahl
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sheila Bohler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Konrad Aumann
- Department of Pathology, Institute for Clinical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Georg Häcker
- Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site, Freiburg, Germany.
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
9
|
Thai AA, Young RJ, Bressel M, Kelly GL, Sejic N, Tsao SW, Trigos A, Rischin D, Solomon BJ. Characterizing and Targeting of BCL-2 Family Members in Nasopharyngeal Carcinoma. Head Neck 2025; 47:867-877. [PMID: 39474704 DOI: 10.1002/hed.27973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 10/12/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The success of BH3 mimetics in hematological malignancies has spurred interest in their application in solid tumors. We examined the expression of the BCL-2 family of molecules in NPC tumors and cell lines and explored the anticancer efficacy of BH3 mimetics in vitro. METHODS Immunohistochemistry for BCL-2, MCL-1, BCL-xL, and transcriptomic analyses was conducted on NPC tumors. The efficacy of ABT-199, S63845, and ABT-737 were examined as monotherapy and in combination with cisplatin in NPC cell lines. RNA sequencing was performed to identify up and downregulated pathways in sensitive cell lines. RESULTS One hundred and forty-nine EBV-positive NPC and 15 EBV-negative NPC were identified. Expression of BCL-2 was more frequent in EBV-positive NPC. BCL-2, MCL-1, and BCL-xL expression was not prognostic for overall survival. Marked sensitivity was seen with the combination of S63845 and cisplatin in NPC43. CONCLUSION Our study demonstrates the therapeutic potential of combining cisplatin and S63845, which warrants further investigation.
Collapse
Affiliation(s)
- A A Thai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - R J Young
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - M Bressel
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - G L Kelly
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - N Sejic
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - S W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - A Trigos
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - D Rischin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - B J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
10
|
Kannan S, Li Y, Baran N, Yang X, Ghotbaldini S, Zhang Tatarata Q, Yoshimura S, Li Z, Hsiao Y, Balachander S, Andersen CL, Cidado J, Yu J, Jain N, Yang JJ, Konopleva M. Antileukemia efficacy of the dual BCL2/BCL-XL inhibitor AZD0466 in acute lymphoblastic leukemia preclinical models. Blood Adv 2025; 9:473-487. [PMID: 39561378 PMCID: PMC11808622 DOI: 10.1182/bloodadvances.2024013423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024] Open
Abstract
ABSTRACT The upregulation of B-cell lymphoma 2 (BCL2) and B-cell lymphoma-extra large (BCL-XL), 2 proteins in the BCL2 family of proteins, leads to a disproportional expression of prodeath and prosurvival proteins in favor of leukemia survival, tumorigenesis, and chemoresistance. In different subsets of acute lymphoblastic leukemia (ALL), the proportion of these 2 proteins varies, and their potential as therapeutic targets needs detailed characterization. Here, we investigated BCL2 and BCL-XL, the genes that encode BCL2 and BCL-XL, and their expression differences between B-cell acute lymphoblastic leukemia (B-ALL) and T-cell ALL (T-ALL). We also evaluated the therapeutic potential of targeting these proteins with AZD0466, a novel drug-dendrimer conjugate of the BCL2/BCL-XL inhibitor AZD4320, and with BCL2 inhibitor venetoclax (ABT-199). Gene expression and activity analyses supported by the protein expression patterns in ALL cell lines and primary samples demonstrated increased levels of BCL2 expression in B-ALL, with high sensitivity to venetoclax or AZD4320. In contrast, strong BCL-XL expression and sensitivity to dual BCL2/BCL-XL inhibition was observed specifically in T-ALL samples. This observation was confirmed by BH3 profiling, demonstrating BCL2/BCL-XL codependence in T-ALL and BCL2 dependence in B-ALL. In a mouse model of T-ALL, AZD0466 but not venetoclax reduced leukemic burden and prolonged survival without significant toxicities. Our findings therefore suggest that the novel dual BCL2/BCL-XL inhibitor AZD0466 outperforms single BCL2 inhibition by venetoclax in T-ALL. These findings facilitate the translation of dual BCL2/BCL-XL inhibitors into ALL clinical trials, either alone or in combination with standard-of-care chemotherapy and immune therapies.
Collapse
Affiliation(s)
- Sankaranarayanan Kannan
- Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yizhen Li
- Department of Hematology, Children’s Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xu Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sanaz Ghotbaldini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qi Zhang Tatarata
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Satoshi Yoshimura
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zhenhua Li
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - YuChih Hsiao
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | | | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
11
|
Rühl S, Li Z, Srivastava S, Mari L, Guy CS, Yang M, Moldoveanu T, Green DR. Inhibition of BAK-mediated apoptosis by the BH3-only protein BNIP5. Cell Death Differ 2025; 32:320-336. [PMID: 39406920 PMCID: PMC11803101 DOI: 10.1038/s41418-024-01386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
BCL-2 family proteins regulate apoptosis by initiating mitochondrial outer membrane permeabilization (MOMP). Activation of the MOMP effectors BAX and BAK is controlled by the interplay of anti-apoptotic BCL-2 proteins (e.g., MCL-1) and pro-apoptotic BH3-only proteins (e.g., BIM). Using a genome-wide CRISPR-dCas9 transactivation screen we identified BNIP5 as an inhibitor of BAK-, but not BAX-induced apoptosis. BNIP5 blocked BAK activation in different cell types and in response to various cytotoxic therapies. The BH3 domain of BNIP5 was both necessary and sufficient to block BAK activation. Mechanistically, the BH3 domain of BNIP5 acts as a selective BAK activator, but a poor de-repressor of complexes between BAK and pro-survival BCL-2 family proteins. By promoting the binding of activated BAK to MCL-1 or BCL-xL, BNIP5 inhibits apoptosis when BAX is absent. Based on our observations, BNIP5 can act functionally as an anti-apoptotic BH3-only protein.
Collapse
Affiliation(s)
- Sebastian Rühl
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- T3 Pharmaceuticals, Allschwil, Switzerland
| | - Zhenrui Li
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shagun Srivastava
- Department of Biochemistry and Molecular Biology, UAMS College of Medicine, Little Rock, AR, 72205, USA
| | - Luigi Mari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mao Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tudor Moldoveanu
- Department of Biochemistry and Molecular Biology, UAMS College of Medicine, Little Rock, AR, 72205, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Derenzini E, Cignetti A, Tabanelli V, Gottardi D, Gerbino E, Vanazzi A, Sammassimo S, Maraglino AME, Melle F, Motta G, Malengo D, Omodeo Salè E, Bonello L, Pastano R, Pileri S, Carnevale Schianca F, Tarella C. Venetoclax Plus Intensified Chemoimmunotherapy as a Bridge to Allogeneic Stem Cell Transplantation in Richter Syndrome: Report of Two Cases. Hematol Rep 2024; 16:795-803. [PMID: 39728005 PMCID: PMC11728234 DOI: 10.3390/hematolrep16040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Richter syndrome (RS) represents a major unmet need in the lymphoma field, being refractory to chemoimmunotherapy and targeted agents. The BCL-2 inhibitor venetoclax in combination with dose-adjusted EPOCH-R chemoimmunotherapy showed promising efficacy in patients affected by RS. However, responses were not durable, suggesting the need for further treatment optimization. Methods: Here, we report two cases of RS achieving long-term complete remission with intensified chemoimmunotherapy (Rituximab-G-MALL B-ALL/NHL2002 regimen) plus venetoclax induction, followed by haploidentical hematopoietic stem cell transplant (allo-HSCT). Venetoclax was given continuously for 14 consecutive days after every Rituximab-G-MALL cycle in off-label use. An accelerated venetoclax rump-up schedule was used in both patients to reach the maximal dose. Maximal venetoclax dose was 300 mg and 400 mg in patient 1 and patient 2, respectively. Results: The combined treatment was well tolerated, with no major infective complications or non-hematological toxicities. In both patients, immunosuppression was discontinued within day 180 after transplant with no graft-versus-host-disease flares. Both patients are alive and in continuous complete remission after 60 and 72 months following allo-HSCT. Conclusions: This report supports the feasibility of a combination treatment with BCL-2 inhibitors and intensive chemoimmunotherapy as a bridge to allo-HSCT in RS.
Collapse
Affiliation(s)
- Enrico Derenzini
- Oncohematology Division, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (A.V.); (S.S.); (A.M.E.M.); (R.P.); (C.T.)
- Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Alessandro Cignetti
- Hematology and Cell Therapy, A.O. Mauriziano-Umberto I Hospital, Largo Filippo Turati 62, 10128 Turin, Italy; (A.C.); (D.G.)
| | - Valentina Tabanelli
- Division of Haematopathology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (V.T.); (F.M.); (G.M.); (S.P.)
| | - Daniela Gottardi
- Hematology and Cell Therapy, A.O. Mauriziano-Umberto I Hospital, Largo Filippo Turati 62, 10128 Turin, Italy; (A.C.); (D.G.)
| | - Elvira Gerbino
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Anna Vanazzi
- Oncohematology Division, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (A.V.); (S.S.); (A.M.E.M.); (R.P.); (C.T.)
| | - Simona Sammassimo
- Oncohematology Division, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (A.V.); (S.S.); (A.M.E.M.); (R.P.); (C.T.)
| | - Alessio Maria Edoardo Maraglino
- Oncohematology Division, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (A.V.); (S.S.); (A.M.E.M.); (R.P.); (C.T.)
| | - Federica Melle
- Division of Haematopathology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (V.T.); (F.M.); (G.M.); (S.P.)
| | - Giovanna Motta
- Division of Haematopathology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (V.T.); (F.M.); (G.M.); (S.P.)
| | - Daniela Malengo
- Pharmacy, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (D.M.); (E.O.S.)
| | - Emanuela Omodeo Salè
- Pharmacy, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (D.M.); (E.O.S.)
| | - Lisa Bonello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy;
| | - Rocco Pastano
- Oncohematology Division, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (A.V.); (S.S.); (A.M.E.M.); (R.P.); (C.T.)
| | - Stefano Pileri
- Division of Haematopathology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (V.T.); (F.M.); (G.M.); (S.P.)
| | - Fabrizio Carnevale Schianca
- Turin Metropolitan Transplant Center, Hematopoietic Stem Cells Unit, Department of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy;
| | - Corrado Tarella
- Oncohematology Division, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (A.V.); (S.S.); (A.M.E.M.); (R.P.); (C.T.)
| |
Collapse
|
13
|
Fernandez EG, Mai WX, Song K, Bayley NA, Kim J, Zhu H, Pioso M, Young P, Andrasz CL, Cadet D, Liau LM, Li G, Yong WH, Rodriguez FJ, Dixon SJ, Souers AJ, Li JJ, Graeber TG, Cloughesy TF, Nathanson DA. Integrated molecular and functional characterization of the intrinsic apoptotic machinery identifies therapeutic vulnerabilities in glioma. Nat Commun 2024; 15:10089. [PMID: 39572533 PMCID: PMC11582606 DOI: 10.1038/s41467-024-54138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
Genomic profiling often fails to predict therapeutic outcomes in cancer. This failure is, in part, due to a myriad of genetic alterations and the plasticity of cancer signaling networks. Functional profiling, which ascertains signaling dynamics, is an alternative method to anticipate drug responses. It is unclear whether integrating genomic and functional features of solid tumours can provide unique insight into therapeutic vulnerabilities. We perform combined molecular and functional characterization, via BH3 profiling of the intrinsic apoptotic machinery, in glioma patient samples and derivative models. We identify that standard-of-care therapy rapidly rewires apoptotic signaling in a genotype-specific manner, revealing targetable apoptotic vulnerabilities in gliomas containing specific molecular features (e.g., TP53 WT). However, integration of BH3 profiling reveals high mitochondrial priming is also required to induce glioma apoptosis. Accordingly, a machine-learning approach identifies a composite molecular and functional signature that best predicts responses of diverse intracranial glioma models to standard-of-care therapies combined with ABBV-155, a clinical drug targeting intrinsic apoptosis. This work demonstrates how complementary functional and molecular data can robustly predict therapy-induced cell death.
Collapse
Affiliation(s)
- Elizabeth G Fernandez
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Wilson X Mai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kai Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiyoon Kim
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, Los Angeles, California, USA
| | - Henan Zhu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marissa Pioso
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Pauline Young
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Cassidy L Andrasz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles, CA, 90095-7088, USA
| | - Dimitri Cadet
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Linda M Liau
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gang Li
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, Los Angeles, California, USA
| | - William H Yong
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fausto J Rodriguez
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Andrew J Souers
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Jingyi Jessica Li
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, 90095-7088, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095-1766, USA
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095-1554, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Metabolomics Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy F Cloughesy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Yapryntseva MA, Zhivotovsky B, Gogvadze V. Permeabilization of the outer mitochondrial membrane: Mechanisms and consequences. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167317. [PMID: 38909847 DOI: 10.1016/j.bbadis.2024.167317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Permeabilization of the outer mitochondrial membrane is а physiological process that can allow certain molecules to pass through it, such as low molecular weight solutes required for cellular respiration. This process is also important for the development of various modes of cell death. Depending on the severity of this process, cells can die by autophagy, apoptosis, or necrosis/necroptosis. Distinct types of pores can be opened at the outer mitochondrial membrane depending on physiological or pathological stimuli, and different mechanisms can be activated in order to open these pores. In this comprehensive review, all these types of permeabilization, the mechanisms of their activation, and their role in various diseases are discussed.
Collapse
Affiliation(s)
- Maria A Yapryntseva
- Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Vladimir Gogvadze
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
15
|
Cuyàs E, Pedarra S, Verdura S, Pardo MA, Espin Garcia R, Serrano-Hervás E, Llop-Hernández À, Teixidor E, Bosch-Barrera J, López-Bonet E, Martin-Castillo B, Lupu R, Pujana MA, Sardanyès J, Alarcón T, Menendez JA. Fatty acid synthase (FASN) is a tumor-cell-intrinsic metabolic checkpoint restricting T-cell immunity. Cell Death Discov 2024; 10:417. [PMID: 39349429 PMCID: PMC11442875 DOI: 10.1038/s41420-024-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024] Open
Abstract
Fatty acid synthase (FASN)-catalyzed endogenous lipogenesis is a hallmark of cancer metabolism. However, whether FASN is an intrinsic mechanism of tumor cell defense against T cell immunity remains unexplored. To test this hypothesis, here we combined bioinformatic analysis of the FASN-related immune cell landscape, real-time assessment of cell-based immunotherapy efficacy in CRISPR/Cas9-based FASN gene knockout (FASN KO) cell models, and mathematical and mechanistic evaluation of FASN-driven immunoresistance. FASN expression negatively correlates with infiltrating immune cells associated with cancer suppression, cytolytic activity signatures, and HLA-I expression. Cancer cells engineered to carry a loss-of-function mutation in FASN exhibit an enhanced cytolytic response and an accelerated extinction kinetics upon interaction with cytokine-activated T cells. Depletion of FASN results in reduced carrying capacity, accompanied by the suppression of mitochondrial OXPHOS and strong downregulation of electron transport chain complexes. Targeted FASN depletion primes cancer cells for mitochondrial apoptosis as it synergizes with BCL-2/BCL-XL-targeting BH3 mimetics to render cancer cells more susceptible to T-cell-mediated killing. FASN depletion prevents adaptive induction of PD-L1 in response to interferon-gamma and reduces constitutive overexpression of PD-L1 by abolishing PD-L1 post-translational palmitoylation. FASN is a novel tumor cell-intrinsic metabolic checkpoint that restricts T cell immunity and may be exploited to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Stefano Pedarra
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Miguel Angel Pardo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roderic Espin Garcia
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Eduard Teixidor
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071, Girona, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007, Girona, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Unit of Clinical Research, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Sardanyès
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Tomás Alarcón
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
- ICREA, 08010, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain.
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
| |
Collapse
|
16
|
Zareei S, Khorsand B, Dantism A, Zareei N, Asgharzadeh F, Zahraee SS, Mashreghi Kashan S, Hekmatirad S, Amini S, Ghasemi F, Moradnia M, Vaghf A, Hemmatpour A, Hourfar H, Niknia S, Johari A, Salimi F, Fariborzi N, Shojaei Z, Asiaei E, Shabani H. PeptiHub: a curated repository of precisely annotated cancer-related peptides with advanced utilities for peptide exploration and discovery. Database (Oxford) 2024; 2024:baae092. [PMID: 39308247 PMCID: PMC11417155 DOI: 10.1093/database/baae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
Peptihub (https://bioinformaticscollege.ir/peptihub/) is a meticulously curated repository of cancer-related peptides (CRPs) that have been documented in scientific literature. A diverse collection of CRPs is included in the PeptiHub, showcasing a spectrum of effects and activities. While some peptides demonstrated significant anticancer efficacy, others exhibited no discernible impact, and some even possessed alternative non-drug functionalities, including drug carrier or carcinogenic attributes. Presently, Peptihub houses 874 CRPs, subjected to evaluation across 10 distinct organism categories, 26 organs, and 438 cell lines. Each entry in the database is accompanied by easily accessible 3D conformations, obtained either experimentally or through predictive methodology. Users are provided with three search frameworks offering basic, advanced, and BLAST sequence search options. Furthermore, precise annotations of peptides enable users to explore CRPs based on their specific activities (anticancer, no effect, insignificant effect, carcinogen, and others) and their effectiveness (rate and IC50) under cancer conditions, specifically within individual organs. This unique property facilitates the construction of robust training and testing datasets. Additionally, PeptiHub offers 1141 features with the convenience of selecting the most pertinent features to address their specific research questions. Features include aaindex1 (in six main subcategories: alpha propensities, beta propensity, composition indices, hydrophobicity, physicochemical properties, and other properties), amino acid composition (Amino acid Composition and Dipeptide Composition), and Grouped Amino Acid Composition (Grouped amino acid composition, Grouped dipeptide composition, and Conjoint triad) categories. These utilities not only speed up machine learning-based peptide design but also facilitate peptide classification. Database URL: https://bioinformaticscollege.ir/peptihub/.
Collapse
Affiliation(s)
- Sara Zareei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, South Mofateh Ave. , Tehran 15719-14911, Iran
| | - Babak Khorsand
- Department of Neurology, University of California, 200 S. Manchester Ave., Suite 206 Orange, Irvine, CA 92868-4280, USA
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square , Mashhad 9177948974, Iran
| | - Alireza Dantism
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AlAhmad HWY, Tehran 14115-111, Iran
| | - Neda Zareei
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Str, Shiraz 7193711351, Iran
| | - Fereshteh Asgharzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi Sq., Mashhad 9177948564, Iran
| | - Shadi Shams Zahraee
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Dr. Shahriari Sq., Tehran 1983969411, Iran
| | - Samane Mashreghi Kashan
- Department of Medicinal Biotechnology, Faculty of Advanced Technology in Medicine, Golestan University of Medical Sciences, Shast Kola Road, Gorgan 4918936316, Iran
| | - Shirin Hekmatirad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, 16 Azar Ave, Tehran 1416753955, Iran
| | - Shila Amini
- Department of Genetics, Faculty of Advanced Science and Technology, Medical Sciences Branch, Islamic Azad University, Shariati St., Tehran 19395/1495, Iran
| | - Fatemeh Ghasemi
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square , Mashhad 9177948974, Iran
| | - Maryam Moradnia
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund BOX 117,221 00, Sweden
| | - Atena Vaghf
- Department of Medical Biotechnology, Faculty of Advanced Technologies, Shahrekord University of Medical Science, Kashani BLVD., Shahrekord 8815713471, Iran
| | - Anahid Hemmatpour
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Aalam Sq., Yazd 8915173149, Iran
| | - Hamdam Hourfar
- Bioprocess Engineering Research Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran-Karaj HWY, Tehran 14965/161, Iran
| | - Soudabeh Niknia
- Department of Biology, Kavian Institute of Higher Education, Elahiyeh Blv., Mashhad 91863-74915, Iran
| | - Ali Johari
- Department of Biology, Kavian Institute of Higher Education, Elahiyeh Blv., Mashhad 91863-74915, Iran
| | - Fatemeh Salimi
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Taq-e Bostan, Kermanshah 6714414971, Iran
| | - Neda Fariborzi
- Department of Biology and Biotechnology, Faculty of Molecular Biology and Genetics, University of Pavia, S.da Nuova, Pavia 65, 27100, Italy
| | - Zohreh Shojaei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, South Mofateh Ave. , Tehran 15719-14911, Iran
| | - Elaheh Asiaei
- Systems Biotechnology Research Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran-Karaj HWY., Tehran 14965/161, Iran
| | - Hossein Shabani
- Department of Biology, Faculty of Biosciences, Tehran North Branch, Islamic Azad University, Vafadar Blv., Tehran 1651153311, Iran
| |
Collapse
|
17
|
Shenoy TN, Abdul Salam AA. Therapeutic potential of dietary bioactive compounds against anti-apoptotic Bcl-2 proteins in breast cancer. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39257284 DOI: 10.1080/10408398.2024.2398636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Breast cancer remains a leading cause of cancer-related mortality among women worldwide. One of its defining features is resistance to apoptosis, driven by aberrant expression of apoptosis-related proteins, notably the overexpression of anti-apoptotic Bcl-2 proteins. These proteins enable breast cancer cells to evade apoptosis and develop resistance to chemotherapy, underscoring their critical role as therapeutic targets. Diet plays a significant role in breast cancer risk, potentially escalating or inhibiting cancer development. Recognizing the limitations of current treatments, extensive research is focused on exploring bioactive compounds derived from natural sources such as plants, fruits, vegetables, and spices. These compounds are valued for their ability to exert potent anticancer effects with minimal toxicity and side effects. While literature extensively covers the effects of various dietary compounds in inducing apoptosis in cancer cells, comprehensive information specifically on how dietary bioactive compounds modulate anti-apoptotic Bcl-2 protein expression in breast cancer is limited. This review aims to provide a comprehensive understanding of the interaction between Bcl-2 proteins and caspases in the regulation of apoptosis, as well as the impact of dietary bioactive compounds on the modulation of anti-apoptotic Bcl-2 in breast cancer. It further explores how these interactions influence breast cancer progression and treatment outcomes.
Collapse
Affiliation(s)
- Thripthi Nagesh Shenoy
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
18
|
Galla MS, Kale NB, Sharma A, Hajare A, Godugu C, Shankaraiah N. Development of chromone-thiazolidine-2,4-dione Knoevenagel conjugates as apoptosis inducing agents. Bioorg Med Chem Lett 2024; 109:129853. [PMID: 38909705 DOI: 10.1016/j.bmcl.2024.129853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Overexpression of Bcl-2 protein is a predominant hallmark of disturbed apoptotic pathway in most of the cancers. Herein, chromone-linked thiazolidinediones were designed and synthesized to target Bcl-2 for regulating anti-apoptotic proteins. The study on in vitro cancer cell lines revealed the presence of compounds 8a, 8k, 8l, and 8n, which were found to have good to moderate anti-proliferative activity (with an IC50 concentration less than 10 µM). Among them, 8l depicted the highest cytotoxicity on the A549 cell line with an IC50 of 6.1 ± 0.02 µM. Aberrantly, the compounds displayed less toxicity towards human embryonic kidney HEK cells underlining its selectivity. The DCFDA study revealed a gradual increase in the ROS generation of 8l, followed by its quantification by flow analysis. Similarly, the studies including DAPI, AO/EtBr and Annexin-V binding clearly elucidated the DNA damage, membrane integrity prospects, and insights for early and late apoptotic phases. Markedly, the Bcl-2-FITC anti-body study revealed that compound 8l reduced the expression of anti-apoptotic proteins by 79.1 % compared to the control at 9 µM concentration. In addition, the molecular docking study provided the impending scope of these hybrids, showing promising interaction with the Mcl-1 target (member of the Bcl-2 family) with comparable binding affinities.
Collapse
Affiliation(s)
- Mary Sravani Galla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Nandini B Kale
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Aditya Hajare
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
19
|
Cvetanović Kljakić A, Ocvirk M, Rutnik K, Košir IJ, Pavlić B, Mašković P, Mašković J, Teslić N, Stupar A, Uba AI, Zengin G. Exploring the composition and potential uses of four hops varieties through different extraction techniques. Food Chem 2024; 447:138910. [PMID: 38479143 DOI: 10.1016/j.foodchem.2024.138910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Hydrophilic, lipophilic extracts and essential oil of four hops varieties from Slovenia were examined in this study. Lipophilic extracts were obtained by supercritical extraction (SFE), while for hydrophilic extracts ultrasound and microwave extraction were employed. Essential oils were isolated by the hydrodistillation process. The lipophilic composition of essential oils and lipophilic extracts was determined by GC-MS analysis. Monoterpenes and sesquiterpene hydrocarbons were the most abundant class of compounds in oils (62.27-79.65 %), with myrcene being the most abundant constituent. Limonene and trans-caryophyllene were two terpenes determined in all essential oils while only trans-caryophyllene was detected in SFE samples. Antioxidant, antimicrobial, and cytotoxic activity, determined by applying in vitro assays, was more influenced by extraction technique than by varieties. Molecular docking was carried out to gain insight into the potential cancer protein targets BCL-2 and MMP9, whereby humulene epoxide II displayed good binding configuration within the cavities of the two proteins.
Collapse
Affiliation(s)
| | - Miha Ocvirk
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, 3310 Žalec, Slovenia
| | - Ksenija Rutnik
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, 3310 Žalec, Slovenia
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, 3310 Žalec, Slovenia
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Pavle Mašković
- University of Kragujevac, Faculty of Agriculture, Cara Dušana 34, Čačak, Serbia
| | - Jelena Mašković
- University of Kragujevac, Faculty of Agriculture, Cara Dušana 34, Čačak, Serbia
| | - Nemanja Teslić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Alena Stupar
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Istanbul, Turkey
| |
Collapse
|
20
|
Korell F, Olson M, Salas-Benito D, Leick MB, Larson RC, Bouffard A, Silva H, Gasparetto A, Berger TR, Kann MC, Mergen M, Kienka T, Wehrli M, Haradhvala NJ, Bailey SR, Letai A, Maus MV. Comparative analysis of Bcl-2 family protein overexpression in CAR T cells alone and in combination with BH3 mimetics. Sci Transl Med 2024; 16:eadk7640. [PMID: 38838132 PMCID: PMC11737343 DOI: 10.1126/scitranslmed.adk7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types. We found that Bcl-xL and Bcl-2 overexpression in CAR T cells bearing a 4-1BB costimulatory domain resulted in increased expansion and antitumor activity, reduced exhaustion, and decreased apoptotic priming. In addition, CAR T cells expressing either Bcl-xL or a venetoclax-resistant Bcl-2 variant led to enhanced antitumor efficacy and survival in murine xenograft models of lymphoma and leukemia in the presence or absence of the BH3 mimetic venetoclax, a clinically approved BH3 mimetic. In this setting, Bcl-xL overexpression had stronger effects than overexpression of Bcl-2 or the Bcl-2(G101V) variant. These findings suggest that CAR T cells could be optimally engineered by overexpressing Bcl-xL to enhance their persistence while opening a therapeutic window for combination with BH3 mimetics to prime tumors for apoptosis.
Collapse
Affiliation(s)
- Felix Korell
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Michael Olson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Diego Salas-Benito
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Mark B. Leick
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Rebecca C. Larson
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Amanda Bouffard
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Harrison Silva
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Alessandro Gasparetto
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Trisha R. Berger
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Michael C. Kann
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Markus Mergen
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Tamina Kienka
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Marc Wehrli
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Nicholas J. Haradhvala
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Stefanie R. Bailey
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Marcela V. Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
21
|
Kopparapu P, Löhr CV, Pearce MC, Tyavanagimatt S, Nakshatri H, Kolluri SK. Small Molecule Functional Converter of B-Cell Lymphoma-2 (Bcl-2) Suppresses Breast Cancer Lung Metastasis. ACS Pharmacol Transl Sci 2024; 7:1302-1309. [PMID: 38751629 PMCID: PMC11091964 DOI: 10.1021/acsptsci.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 05/18/2024]
Abstract
The B-cell lymphoma-2 (Bcl-2) family of proteins plays a vital role in tumorigenesis. Cancer cells utilize the expression of Bcl-2 to evade therapy and develop resistance. Bcl-2 overexpression also causes cancer cells to be more invasive and metastatic. About 80% of cancer deaths are due to metastases, and yet targeted therapies for metastatic cancers are scarce. We discovered a small molecule, BFC1103, which changes the conformation of Bcl-2 to convert the antiapoptotic protein to a proapoptotic protein. BFC1103-induced apoptosis is dependent on the expression levels of Bcl-2, with higher levels causing more apoptosis. BFC1103 suppressed the growth of breast cancer lung metastasis. BFC1103 has the potential for further optimization and development for clinical testing in metastatic cancers that express Bcl-2. This study demonstrates a new approach to target Bcl-2 using a small molecule, BFC1103, to suppress metastatic disease.
Collapse
Affiliation(s)
- Prasad
R. Kopparapu
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
| | - Christiane V. Löhr
- Department
of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331-4801, United States
| | - Martin C. Pearce
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
| | - Shanthakumar Tyavanagimatt
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
| | - Harikrishna Nakshatri
- Department
of Surgery, Indiana University School of
Medicine, Indianapolis, Indiana 46202-3082, United States
| | - Siva K. Kolluri
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
- Linus
Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
22
|
Kaplan Ö, Gök MK, Pekmez M, Erden Tayhan S, Özgümüş S, Gökçe İ, Arda N. Development of recombinant protein-based nanoparticle systems for inducing tumor cell apoptosis: In vitro evaluation of their cytotoxic and apoptotic effects on cancer cells. J Drug Deliv Sci Technol 2024; 95:105565. [DOI: 10.1016/j.jddst.2024.105565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Samia S, Sandeep Chary P, Khan O, Kumar Mehra N. Recent trends and advances in novel formulations as an armament in Bcl-2/Bax targeted breast cancer. Int J Pharm 2024; 653:123889. [PMID: 38346605 DOI: 10.1016/j.ijpharm.2024.123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Breast cancer (BC) remains a significant health burden worldwide, necessitating the development of innovative therapeutic strategies. The B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2 and Bax, play a crucial role in regulating apoptosis and thus are promising targets for BC therapy. We focus on the recent advancements in novel formulations that specifically target Bcl-2/Bax pathway to combat BC. It provides an overview on biological functions of Bcl-2/Bax in apoptosis regulation, emphasizing their significance in pathogenesis and progression of the disease while covering the numerous therapeutic approaches aimed at modulating the Bcl-2/Bax pathway, including small-molecule inhibitors, peptides, gene-based therapies and other repurposed drugs harboured onto cutting-edge technologies and nanocarrier systems employed to enhance the targeted delivery of Bcl-2/Bax inhibitors tumor cells. These advanced formulations aim to improve therapeutic efficacy, minimize off-target effects, and overcome drug resistance, offering promising prospects in its treatment. In conclusion, it illuminates the diverse and evolving landscape of novel formulations as an essential armament in targeting these proteins while bridging and unravelling the obscurity of Bcl-2/Bax pathway-targeted drug delivery systems which are presently in their nascent stages of exploration for BC therapy which can benefit researchers, clinicians, and pharmaceutical scientists.
Collapse
Affiliation(s)
- Shaikh Samia
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
24
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
25
|
Rodríguez-Medina C, Stuckey R, Bilbao-Sieyro C, Gómez-Casares MT. Biomarkers of Response to Venetoclax Therapy in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:1421. [PMID: 38338698 PMCID: PMC10855565 DOI: 10.3390/ijms25031421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Recent progress in the use of massive sequencing technologies has greatly enhanced our understanding of acute myeloid leukemia (AML) pathology. This knowledge has in turn driven the development of targeted therapies, such as venetoclax, a BCL-2 inhibitor approved for use in combination with azacitidine, decitabine, or low-dose cytarabine for the treatment of newly diagnosed adult patients with AML who are not eligible for intensive chemotherapy. However, a significant number of AML patients still face the challenge of disease relapse. In this review, we will explore biomarkers that may predict disease progression in patients receiving venetoclax-based therapy, considering both clinical factors and genetic changes. Despite the many advances, we conclude that the identification of molecular profiles for AML patients who will respond optimally to venetoclax therapy remains an unmet clinical need.
Collapse
Affiliation(s)
- Carlos Rodríguez-Medina
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (C.R.-M.); (R.S.); (C.B.-S.)
| | - Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (C.R.-M.); (R.S.); (C.B.-S.)
| | - Cristina Bilbao-Sieyro
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (C.R.-M.); (R.S.); (C.B.-S.)
- Morphology Department, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - María Teresa Gómez-Casares
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain; (C.R.-M.); (R.S.); (C.B.-S.)
- Department of Medical Sciences, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
26
|
Afzali M, Sadat Shandiz SA, Keshtmand Z. Preparation of biogenic silver chloride nanoparticles from microalgae Spirulina Platensis extract: anticancer properties in MDA-MB231 breast cancer cells. Mol Biol Rep 2024; 51:62. [PMID: 38170277 DOI: 10.1007/s11033-023-08970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Breast carcinoma is the second leading cause of cancer related-deaths among women. Given its high incidence and mortality rates, searching for innovative treatments represents a formidable challenge within the medical and pharmaceutical industries. This study delves into the preparation, characterization, and anticancer properties of silver chloride nanoparticles (AgCLNPs) as a novel therapeutic approach for breast cancer cells, employing a biological synthesis method. METHODS This investigation, utilized spirulina platensis extract to synthesize silver chloride nanoparticles (AgCLNPs-SP). The formation, size, and structure of the nanoparticles were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), X-ray crystallography (XRD), and Energy-dispersive X-ray spectroscopy (EDS) analysis. Additionally, the apoptotic and anticancer properties of AgCLNPs-SP were thoroughly examined. RESULTS The results, revealed AgCLNPs-SP to exhibit a spherical, morphology with a size range of 40-70 nm, primarily silver and chlorine. The dose-dependent response of AgCLNP-SP against MDA-MB231 cells was ascertained using the MTT Assay, with an IC50 value of 34 µg/mL. Furthermore, the Annexin V-FITC/ PI apoptosis assay demonstrated a significant proportion of early apoptosis (43.67%) in MDA-MB231 cells. This apoptosis process was substantiated by up-regulation in mRNA expression levels of P53, CAD, and Bax genes, alongside a down-regulation of the of bcl2 gene expression. Additionally, an augmented production of reactive oxygen species (ROS), cell cycle analysis, Hoechst staining assay, and evaluated levels of Caspase - 3, -8 and - 9 were observed in AgCLNPs-SP-treated MDA_MB231 cancer cells. CONCLUSIONS In conclusion, the results suggest that AgCLNPs-SP may be a promising agent for treating breast cancer.
Collapse
Affiliation(s)
- Mahsa Afzali
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Wu Y, Zehnle PMA, Rajak J, Koleci N, Andrieux G, Gallego-Villar L, Aumann K, Boerries M, Niemeyer CM, Flotho C, Bohler S, Erlacher M. BH3 mimetics and azacitidine show synergistic effects on juvenile myelomonocytic leukemia. Leukemia 2024; 38:136-148. [PMID: 37945692 PMCID: PMC10776398 DOI: 10.1038/s41375-023-02079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive hematopoietic disorder of infancy and early childhood driven by constitutively active RAS signaling and characterized by abnormal proliferation of the granulocytic-monocytic blood cell lineage. Most JMML patients require hematopoietic stem cell transplantation for cure, but the risk of relapse is high for some JMML subtypes. Azacitidine was shown to effectively reduce leukemic burden in a subset of JMML patients. However, variable response rates to azacitidine and the risk of drug resistance highlight the need for novel therapeutic approaches. Since RAS signaling is known to interfere with the intrinsic apoptosis pathway, we combined various BH3 mimetic drugs with azacitidine in our previously established patient-derived xenograft model. We demonstrate that JMML cells require both MCL-1 and BCL-XL for survival, and that these proteins can be effectively targeted by azacitidine and BH3 mimetic combination treatment. In vivo azacitidine acts via downregulation of antiapoptotic MCL-1 and upregulation of proapoptotic BH3-only. The combination of azacitidine with BCL-XL inhibition was superior to BCL-2 inhibition in eliminating JMML cells. Our findings emphasize the need to develop clinically applicable MCL-1 or BCL-XL inhibitors in order to enable novel combination therapies in JMML refractory to standard therapy.
Collapse
Affiliation(s)
- Ying Wu
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Patricia M A Zehnle
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jovana Rajak
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Naile Koleci
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lorena Gallego-Villar
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Konrad Aumann
- University Medical Center Freiburg, Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sheila Bohler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
28
|
Zaza M, Rashed MH, Elrefaey H, Hassan MH, Abo-Salem OM, El-Sayed ESM. PRIMA-1 synergizes olaparib-induced cell death in p53 mutant triple negative human breast cancer cell line via restoring p53 function, arresting cell cycle, and inducing apoptosis. Can J Physiol Pharmacol 2024; 102:55-68. [PMID: 37818839 DOI: 10.1139/cjpp-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This study concerned with assessing the effect of restoring p53 using PRIMA-1 on the anti-cancer activity of olaparib against TP53-mutant triple negative breast cancer (TNBC) cells and exploring the optimum synergistic concentrations and the underlying mechanism. Human BC cell lines, MDA-MB-231 with mutated TP53 gene, and MCF-7 with wild-type TP53 gene were treated with olaparib and/or PRIMA-1. The IC50 value for olaparib was significantly decreased by PRIMA-1 in MDA-MB-231 cells compared to MCF-7 cells. Contrary to MCF-7 cells, co-treatment with olaparib and PRIMA-1 had a synergistic anti-proliferative effect in MDA-MB-231 at all tested concentrations with the best synergistic combination at 45 and 8.5 µM, respectively, and furthermore PRIMA-1 enhanced olaparib-induced apoptosis. This synergistic apoptotic effect was associated with a significant boost in mRNA expression of TP53 gene, cell cycle arrest at G2/M phase, modulation of BRCA-1, BAX and Bcl2 proteins expressions, and induction of active caspase-3. These results present a clue for the utility of combined olaparib and PRIMA-1 in treatment of TP53-mutant TNBC invitro. PRIMA-1 triggers olaparib-induced MDA-MB-231 cell death in a synergistic manner via restoring TP53, decreasing BRCA-1 expression, cell cycle arrest, and enhancement of apoptosis via p53/BAX/Bcl2/caspase 3 pathway.
Collapse
Affiliation(s)
- Mohamed Zaza
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
| | - Mohammed H Rashed
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham Elrefaey
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Osama M Abo-Salem
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - El-Sayed M El-Sayed
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
29
|
Liu G, Zhang X, Zhang N, Xiao H, Chen X, Ma L. Detecting Double Expression Status in Primary Central Nervous System Lymphoma Using Multiparametric MRI Based Machine Learning. J Magn Reson Imaging 2024; 59:231-239. [PMID: 37199225 DOI: 10.1002/jmri.28782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Double expression lymphoma (DEL) is a subtype of primary central nervous system lymphoma (PCNSL) that often has a poor prognosis. Currently, there are limited noninvasive ways to detect protein expression. PURPOSE To detect DEL in PCNSL using multiparametric MRI-based machine learning. STUDY TYPE Retrospective. POPULATION Forty PCNSL patients were enrolled in the study among whom 17 were DEL (9 males and 8 females, 61.29 ± 14.14 years) and 23 were non-DEL (14 males and 9 females, 55.57 ± 14.16 years) with 59 lesions (28 DEL and 31 non-DEL). FIELD STRENGTH/SEQUENCE ADC map derived from DWI (b = 0/1000 s/mm2 ), fast spin echo T2WI, T2FLAIR, and contrast-enhanced T1 weighted imaging (T1CE) were collected at 3.0 T. ASSESSMENT Two raters manually segmented lesions by ITK-SNAP on ADC, T2WI, T2FLAIR and T1CE. A total of 2234 radiomics features from the tumor segmentation area were extracted. The t-test was conducted to filter the features, and elastic net regression algorithm combined with recursive feature elimination was used to calculate the essential features. Finally, 12 groups with combinations of different sequences were fitted to 6 classifiers, and the optimal models were selected. STATISTICAL TESTS Continuous variables were assessed by the t-test, while categorical variables were assessed by the non-parametric test. Interclass correlation coefficient tested variables' consistency. Sensitivity, specificity, accuracy F1-score, and area under the curve (AUC) were used to evaluate model performance. RESULTS DEL status could be identified to varying degrees with 72 models based on radiomics, and model performance could be improved by combining different sequences and classifiers. Both SVMlinear and logistic regression (LR) combined with four sequence group had similar largest AUCmean (0.92 ± 0.09 vs. 0.92 ± 0.05), and SVMlinear was considered as the optimal model in this study since the F1-score of SVMlinear (0.88) was higher than that of LR (0.83). DATA CONCLUSION Multiparametric MRI-based machine learning is promising in DEL detection. EVIDENCE LEVEL 4 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Guoli Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xinyue Zhang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Nan Zhang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Huafeng Xiao
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xinjing Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Lin Ma
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Afzal M, Alarifi A, Abduh NAY, Ayub A, Muddassir M. Identification of anti-cancer organometallic compounds by inhibition of BCL-2/Bax interactions. Comput Biol Med 2023; 167:107657. [PMID: 37931525 DOI: 10.1016/j.compbiomed.2023.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Apoptosis is regulated by the BCL-2 family, which includes the anti-apoptotic and pro-apoptotic proteins (Bax, Bok, Bak, etc.). These proteins often interact in dimers and act as apoptotic switches. Anti-apoptotic proteins, such as BCL-2, block the functions of these pro-apoptotic proteins. The pro-apoptotic and anti-apoptotic protein-protein interactions must be inhibited to prevent tumor cells from escaping apoptosis. This method has been used to develop anticancer drugs by inhibiting BCL-2 with both natural and synthetic compounds. Metal-containing compounds were used as pharmaceuticals for human cancer patients for a long time, and cisplatin was the first candidate of this class. Drug design, however, needs to pay more attention to metal complexes. We have studied the X-ray crystal structure of the BCL-2 protein in detail and identified the hydrophobic nature of the site with two less solvent-accessible sites. Based on the hydrophobic nature of the compounds, 74 organometallic compounds with X-ray crystallographically characterized bioactivity (including anticancer activity) were selected from the Cambridge crystallographic database. For testing, molecular docking was used to determine which compound was most effective against the BCL-2 protein. Organometallic compounds (benzene)-chloro-(1-{[(9H-fluoren-2-yl)imino]methyl}naphthalen-2-olato)-ruthenium (2), (1-((1,1'-biphenyl)-4-yl)-2,3,4,5-tetramethylcyclopentadienyl)-chloro-(4,4'-dimethyl-2,2'-bipyridine)-rhodium hexafluorophosphate (37), (μ-1,1'-(butane-1,4-diyl)bis(3-oxy-2-methylpyridin-4(1H)-one))-dichloro-bis(pentamethyl-cyclopentadienyl)-di-rhodium tetrahydrate (46), (μ-1,1'-(butane-1,4-diyl)bis(3-oxy-2-methylpyridin-4(1H)-one))-dichloro-bis(pentamethyl-cyclopentadienyl)-di-iridium (47) etc are found to be important compounds in this study. The capability of different types of complex interactions was identified using Hirshfeld surface analysis of the complexes. A NCI plot was conducted to understand the nature of the interaction between complex amino acids and active-site amino acids. A DFT study was conducted to examine the stability and chemical reactivity of the selected complexes. Using this study, one suitable hydrophobic lead anti-cancer organometallic pharmaceutical was found that binds at the less solvent-accessible hydrophobic site of BCL-2.
Collapse
Affiliation(s)
- Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naaser A Y Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Arusha Ayub
- Department of Medicine and Health Sciences, University of Georgia, P.O. Box-0171, Tbilisi, Georgia
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
31
|
Beltrán-Visiedo M, Jiménez-Alduán N, Díez R, Cuenca M, Benedi A, Serrano-Del Valle A, Azaceta G, Palomera L, Peperzak V, Anel A, Naval J, Marzo I. Dinaciclib synergizes with BH3 mimetics targeting BCL-2 and BCL-X L in multiple myeloma cell lines partially dependent on MCL-1 and in plasma cells from patients. Mol Oncol 2023; 17:2507-2525. [PMID: 37704591 DOI: 10.1002/1878-0261.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
A better understanding of multiple myeloma (MM) biology has led to the development of novel therapies. However, MM is still an incurable disease and new pharmacological strategies are needed. Dinaciclib, a multiple cyclin-dependent kinase (CDK) inhibitor, which inhibits CDK1, 2, 5 and 9, displays significant antimyeloma activity as found in phase II clinical trials. In this study, we have explored the mechanism of dinaciclib-induced death and evaluated its enhancement by different BH3 mimetics in MM cell lines as well as in plasma cells from MM patients. Our results indicate a synergistic effect of dinaciclib-based combinations with B-cell lymphoma 2 or B-cell lymphoma extra-large inhibitors, especially in MM cell lines with partial dependence on myeloid cell leukemia sequence 1 (MCL-1). Simultaneous treatment with dinaciclib and BH3 mimetics ABT-199 or A-1155463 additionally showed a synergistic effect in plasma cells from MM patients, ex vivo. Altered MM cytogenetics did not affect dinaciclib response ex vivo, alone or in combined treatment, suggesting that these combinations could be a suitable therapeutic option for patients bearing cytogenetic alterations and poor prognosis. This work also opens the possibility to explore cyclin-dependent kinase 9 inhibition as a targeted therapy in MM patients overexpressing or with high dependence on MCL-1.
Collapse
Affiliation(s)
| | | | - Rosana Díez
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
- Hematology Service, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Marta Cuenca
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Andrea Benedi
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| | | | - Gemma Azaceta
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Luis Palomera
- Hematology Service, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- HCU-Lozano Blesa-Hematology Research Group, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| | - Isabel Marzo
- Apoptosis, Immunity & Cancer Group, IIS Aragón, University of Zaragoza, Spain
| |
Collapse
|
32
|
Gupta SRR, Mittal P, Kundu B, Singh A, Singh IK. Silibinin: an inhibitor for a high-expressed BCL-2A1/BFL1 protein, linked with poor prognosis in breast cancer. J Biomol Struct Dyn 2023; 42:12122-12132. [PMID: 37837418 DOI: 10.1080/07391102.2023.2268176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Breast cancer (BC) accounts for 30% of all diagnosed cases of cancer in women and remains a leading cause of cancer-related deaths among women worldwide. The current study looks for a protein from the anti-apoptotic/pro-survival BCL-2 family whose overexpression reduces survivability in BC patients and a potential inhibitor for the protein. We found BCL-2A1/BFL1 protein with high expression linked to low survivability in BC. The protein shows prognosis in 8 out of 29 categories, whereas no other family member manifests this property. Out of 7379 compounds, three small molecules (CHEMBL9509, CHEMBL2104550 and CHEMBL3545011) form an H-bond with BCL-2A1/BFL1 protein's unique residue Cys55. Of the three small molecules, we found CHEMBL9509 (Silibinin) to be a potent inhibitor. The compound forms a stable H-bond with the residue Cys55 with the lowest binding energy compared to the other two compounds. It remains stable in the BH3 binding region for more than 100 ns, whereas the other two detach from the region. Additionally, the compound is found to be better than Venetoclax and Nematoclax. We firmly believe in the compound CHEMBL9509 potency to halt BC's progression by inhibiting the BCL-2A1/BFL1 protein, increasing patients' survivability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shradheya R R Gupta
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pooja Mittal
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
| | - Bishwajit Kundu
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi (South Campus), New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
- Institute of Eminence, Delhi School of Public Health, University of Delhi, Delhi, India
| |
Collapse
|
33
|
Colville A, Liu JY, Rodriguez-Mateo C, Thomas S, Ishak HD, Zhou R, Klein JDD, Morgens DW, Goshayeshi A, Salvi JS, Yao D, Spees K, Dixon SJ, Liu C, Rhee JW, Lai C, Wu JC, Bassik MC, Rando TA. Death-seq identifies regulators of cell death and senolytic therapies. Cell Metab 2023; 35:1814-1829.e6. [PMID: 37699398 PMCID: PMC10597643 DOI: 10.1016/j.cmet.2023.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.
Collapse
Affiliation(s)
- Alex Colville
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jie-Yu Liu
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cristina Rodriguez-Mateo
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samantha Thomas
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather D Ishak
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronghao Zhou
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julian D D Klein
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Armon Goshayeshi
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jayesh S Salvi
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - June-Wha Rhee
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Celine Lai
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Thomas A Rando
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
34
|
Xiao S, Qin D, Hou X, Tian L, Yu Y, Zhang R, Lyu H, Guo D, Chen XZ, Zhou C, Tang J. Cellular senescence: a double-edged sword in cancer therapy. Front Oncol 2023; 13:1189015. [PMID: 37771436 PMCID: PMC10522834 DOI: 10.3389/fonc.2023.1189015] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past few decades, cellular senescence has been identified in cancer patients undergoing chemotherapy and radiotherapy. Senescent cells are generally characterized by permanent cell cycle arrest as a response to endogenous and exogenous stresses. In addition to exiting the cell cycle process, cellular senescence also triggers profound phenotypic changes such as senescence-associated secretory phenotype (SASP), autophagy modulation, or metabolic reprograming. Consequently, cellular senescence is often considered as a tumor-suppressive mechanism that permanently arrests cells at risk of malignant transformation. However, accumulating evidence shows that therapy-induced senescence can promote epithelial-mesenchymal transition and tumorigenesis in neighboring cells, as well as re-entry into the cell cycle and activation of cancer stem cells, thereby promoting cancer cell survival. Therefore, it is particularly important to rapidly eliminate therapy-induced senescent cells in patients with cancer. Here we review the hallmarks of cellular senescence and the relationship between cellular senescence and cancer. We also discuss several pathways to induce senescence in tumor therapy, as well as strategies to eliminate senescent cells after cancer treatment. We believe that exploiting the intersection between cellular senescence and tumor cells is an important means to defeat tumors.
Collapse
Affiliation(s)
- Shuai Xiao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dongmin Qin
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Xueyang Hou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Lingli Tian
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yeping Yu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
35
|
Merati A, Kotian S, Acton A, Placzek W, Smithberger E, Shelton AK, Miller CR, Stern JL. Glioma Stem Cells Are Sensitized to BCL-2 Family Inhibition by Compromising Histone Deacetylases. Int J Mol Sci 2023; 24:13688. [PMID: 37761989 PMCID: PMC10530722 DOI: 10.3390/ijms241813688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) remains an incurable disease with an extremely high five-year recurrence rate. We studied apoptosis in glioma stem cells (GSCs) in response to HDAC inhibition (HDACi) combined with MEK1/2 inhibition (MEKi) or BCL-2 family inhibitors. MEKi effectively combined with HDACi to suppress growth, induce cell cycle defects, and apoptosis, as well as to rescue the expression of the pro-apoptotic BH3-only proteins BIM and BMF. A RNAseq analysis of GSCs revealed that HDACi repressed the pro-survival BCL-2 family genes MCL1 and BCL-XL. We therefore replaced MEKi with BCL-2 family inhibitors and observed enhanced apoptosis. Conversely, a ligand for the cancer stem cell receptor CD44 led to reductions in BMF, BIM, and apoptosis. Our data strongly support further testing of HDACi in combination with MEKi or BCL-2 family inhibitors in glioma.
Collapse
Affiliation(s)
- Aran Merati
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Spandana Kotian
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexus Acton
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erin Smithberger
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abigail K. Shelton
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - C. Ryan Miller
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josh L. Stern
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Birmingham, AL 35294, USA
| |
Collapse
|
36
|
Kurt-Celep İ, Zengin G, Uba AI, Caprioli G, Mustafa AM, Angeloni S, Cakilcioglu U, Guler O, Kaplan A, Sharmeen J, Mahomoodally MF. Unraveling the chemical profile, antioxidant, enzyme inhibitory, cytotoxic potential of different extracts from Astragalus caraganae. Arch Pharm (Weinheim) 2023; 356:e2300263. [PMID: 37434089 DOI: 10.1002/ardp.202300263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Six extracts (water, ethanol, ethanol-water, ethyl acetate, dichloromethane, and n-hexane) of Astragalus caraganae were studied for their biological activities and bioactive contents. Based on high-performance liquid chromatography-mass spectrometry (HPLC-MS), the ethanol-water extract yielded the highest total bioactive content (4242.90 µg g-1 ), followed by the ethanol and water extracts (3721.24 and 3661.37 µg g-1 , respectively), while the least total bioactive content was yielded by the hexane extract, followed by the dichloromethane and ethyl acetate extracts (47.44, 274.68, and 688.89 µg g-1 , respectively). Rutin, p-coumaric, chlorogenic, isoquercitrin, and delphindin-3,5-diglucoside were among the major components. Unlike the dichloromethane extracts, all the other extracts showed radical scavenging ability in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay (8.73-52.11 mg Trolox equivalent [TE]/g), while all extracts displayed scavenging property in the 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assay (16.18-282.74 mg TE/g). The extracts showed antiacetylcholinesterase (1.27-2.73 mg galantamine equivalent [GALAE]/g), antibutyrylcholinesterase (0.20-5.57 mg GALAE/g) and antityrosinase (9.37-63.56 mg kojic acid equivalent [KAE]/g) effects. The molecular mechanism of the H2 O2 -induced oxidative stress pathway was aimed to be elucidated by applying ethanol, ethanol/water and water extracts at 200 µg/mL concentration to human dermal cells (HDFs). A. caraganae in HDF cells had neither a cytotoxic nor genotoxic effect but could have a cytostatic effect in increasing concentrations. The findings have allowed a better insight into the pharmacological potential of the plant, with respect to their chemical entities and bioactive contents, as well as extraction solvents and their polarity.
Collapse
Affiliation(s)
- İnci Kurt-Celep
- Faculty of Pharmacy, Department of Pharmacognosy, Ataşehir, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdullahi I Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | | | | | | | - Ugur Cakilcioglu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Turkey
| | - Osman Guler
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Turkey
| | - Alevcan Kaplan
- Sason Vocational School, Batman University, Batman, Turkey
| | - Jugreet Sharmeen
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Mohamad F Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
37
|
Niyogi U, Jara CP, Carlson MA. Treatment of aged wound healing models with FGF2 and ABT-737 reduces the senescent cell population and increases wound closure rate. Wound Repair Regen 2023; 31:613-626. [PMID: 37462279 DOI: 10.1111/wrr.13106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/28/2023]
Abstract
Delayed tissue repair in the aged presents a major socio-economic and clinical problem. Age-associated delay in wound healing can be attributed to multiple factors, including an increased presence of senescent cells persisting in the wound. Although the transient presence of senescent cells is physiologic during the resolution phase of normal healing, increased senescent cell accumulation with age can negatively impact tissue repair. The objective of the study was to test interventional strategies that could mitigate the negative effect of senescent cell accumulation and possibly improve the age-associated delay in wound healing. We utilised a 3D in vitro senescent fibroblast populated collagen matrix (FPCM) to study cellular events associated with senescence and delayed healing. Senescent fibroblasts showed an increase in anti-apoptotic B-cell lymphoma 2 (BCL-2) family proteins. We hypothesized that reducing the senescent cell population and promoting non-senescent cell functionality would mitigate the negative effect of senescence and improve healing kinetics. BCL-2 inhibition and mitogen stimulation (FGF2) improved healing in the in vitro senescent models. These results were confirmed with an ex vivo human skin biopsy model. These data suggested that modulation of the senescent cell population with soluble factors improved the healing outcome in our in vitro and ex vivo healing models.
Collapse
Affiliation(s)
- Upasana Niyogi
- Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Carlos Poblete Jara
- Department of Vascular Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Surgery Department, Omaha VA Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
38
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Chowdhury I, Dashi G, Keskitalo S. CMGC Kinases in Health and Cancer. Cancers (Basel) 2023; 15:3838. [PMID: 37568654 PMCID: PMC10417348 DOI: 10.3390/cancers15153838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
CMGC kinases, encompassing cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDC-like kinases (CLKs), play pivotal roles in cellular signaling pathways, including cell cycle regulation, proliferation, differentiation, apoptosis, and gene expression regulation. The dysregulation and aberrant activation of these kinases have been implicated in cancer development and progression, making them attractive therapeutic targets. In recent years, kinase inhibitors targeting CMGC kinases, such as CDK4/6 inhibitors and BRAF/MEK inhibitors, have demonstrated clinical success in treating specific cancer types. However, challenges remain, including resistance to kinase inhibitors, off-target effects, and the need for better patient stratification. This review provides a comprehensive overview of the importance of CMGC kinases in cancer biology, their involvement in cellular signaling pathways, protein-protein interactions, and the current state of kinase inhibitors targeting these kinases. Furthermore, we discuss the challenges and future perspectives in targeting CMGC kinases for cancer therapy, including potential strategies to overcome resistance, the development of more selective inhibitors, and novel therapeutic approaches, such as targeting protein-protein interactions, exploiting synthetic lethality, and the evolution of omics in the study of the human kinome. As our understanding of the molecular mechanisms and protein-protein interactions involving CMGC kinases expands, so too will the opportunities for the development of more selective and effective therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Iftekhar Chowdhury
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
40
|
Zhang B, Liu Q, Li J, Hu Y, Zhao X, Huang P, Li S, Wang Y. Venetoclax plus cyclophosphamide and cytarabine as induction regimen for adult acute myeloid leukemia. Front Oncol 2023; 13:1193874. [PMID: 37274294 PMCID: PMC10235496 DOI: 10.3389/fonc.2023.1193874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Background The efficacy of induction chemotherapy (IC) for acute myeloid leukemia (AML) has improved significantly with the application of targeting drugs. Our previous study showed that a 4-day IC regimen of cyclophosphamide (CTX) and Ara-C [CA (4 + 3)] achieved similar complete remission (CR) rate (80%) compared with the traditional 7-day regimen, and the survival rate appeared to be better. Methods In this pilot study, we further shortened the CA regimen to 3 days, added low-dose venetoclax (VEN, 200 mg/day) (VCA), and reported the efficacy and safety here. Results Twenty-five newly diagnosed adult AML patients were enrolled in this study and evaluated for the remission rate after one cycle of the VCA regimen. The CR/Cri was 92%, and all these patients had undetectable minimal residual disease (MRD-). The estimated overall survival at 12 months was 79.3%. The median time for both platelet recovery and absolute neutrophil count recovery was 16 days, faster than that of traditional IC. Compared with the previous CA (4 + 3) regimen, a higher CR rate (92% vs. 80%, P < 0.01) and a deeper degree of remission (CRMRD- rate, 92% vs. 45%, P < 0.01) were found in the VCA group. Conclusions This study showed that the 3-day CTX and Ara-C regimen is highly effective in newly diagnosed AML patients, and the addition of VEN to the CA regimen achieves higher and deeper one-course remission.
Collapse
Affiliation(s)
- Baohang Zhang
- National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qingguo Liu
- National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Junfan Li
- National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yimin Hu
- National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xin Zhao
- National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Pingping Huang
- National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shangzhu Li
- National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying Wang
- National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
41
|
Ji Y, Li J, Xiao S, Kwan HY, Bian Z, Chu CC. Optimization of amino acid-based poly(ester urea urethane) nanoparticles for the systemic delivery of gambogic acid for treating triple negative breast cancer. Biomater Sci 2023. [PMID: 37144899 DOI: 10.1039/d3bm00128h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amino acid-based poly(ester urea urethane) (AA-PEUU) is developed from amino acid-based ester urea building blocks interconnected with urethane blocks functionalized with poly(ethylene glycol) (PEG). Each functional block consists of structural design features that could impact the properties and performances of AA-PEUU as a nanocarrier for the systemic delivery of gambogic acid (GA). The multifunctional AA-PEUU structure provides broad tunability to enable the optimization of nanocarriers. The study investigates the structure-property relationship by fine-tuning the structure of AA-PEUU, including the amino acid type, hydrocarbons, the ratio of functional building blocks, and PEGylation, to identify the nanoparticle candidate with optimized delivery performances. Compared to free GA, the optimized PEUU nanocarrier improves the intratumoral distribution of GA by more than 9-fold, which significantly enhances the bioavailability and persistence of GA after intravenous administration. In an MDA-MB-231 xenograft mouse model, GA delivered by the optimized AA-PEUU nanocarrier exhibits significant tumor inhibition, apoptosis induction, and the anti-angiogenesis effect. The study demonstrates the potency of engineering AA-PEUU nanocarriers with tailor-designed structures and versatile tunability for the systemic delivery of therapeutics in the treatment of triple negative breast tumor.
Collapse
Affiliation(s)
- Ying Ji
- Institute of Textiles and Clothing, School of Fashion and Textiles, Research Institute for Intelligent Wearable Systems, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong SAR.
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shilin Xiao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR
| | - Chih-Chang Chu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
42
|
Aid Z, Robert E, Lopez CK, Bourgoin M, Boudia F, Le Mene M, Riviere J, Baille M, Benbarche S, Renou L, Fagnan A, Thirant C, Federici L, Touchard L, Lecluse Y, Jetten A, Geoerger B, Lapillonne H, Solary E, Gaudry M, Meshinchi S, Pflumio F, Auberger P, Lobry C, Petit A, Jacquel A, Mercher T. High caspase 3 and vulnerability to dual BCL2 family inhibition define ETO2::GLIS2 pediatric leukemia. Leukemia 2023; 37:571-579. [PMID: 36585521 PMCID: PMC10583253 DOI: 10.1038/s41375-022-01800-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Pediatric acute myeloid leukemia expressing the ETO2::GLIS2 fusion oncogene is associated with dismal prognosis. Previous studies have shown that ETO2::GLIS2 can efficiently induce leukemia development associated with strong transcriptional changes but those amenable to pharmacological targeting remained to be identified. By studying an inducible ETO2::GLIS2 cellular model, we uncovered that de novo ETO2::GLIS2 expression in human cells led to increased CASP3 transcription, CASP3 activation, and cell death. Patient-derived ETO2::GLIS2+ leukemic cells expressed both high CASP3 and high BCL2. While BCL2 inhibition partly inhibited ETO2::GLIS2+ leukemic cell proliferation, BH3 profiling revealed that it also sensitized these cells to MCL1 inhibition indicating a functional redundancy between BCL2 and MCL1. We further show that combined inhibition of BCL2 and MCL1 is mandatory to abrogate disease progression using in vivo patient-derived xenograft models. These data reveal that a transcriptional consequence of ETO2::GLIS2 expression includes a positive regulation of the pro-apoptotic CASP3 and associates with a vulnerability to combined targeting of two BCL2 family members providing a novel therapeutic perspective for this aggressive pediatric AML subgroup.
Collapse
Affiliation(s)
- Zakia Aid
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Elie Robert
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Cécile K Lopez
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France.
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France.
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Maxence Bourgoin
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France
| | - Fabien Boudia
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Melchior Le Mene
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Julie Riviere
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Marie Baille
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Salima Benbarche
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
| | - Laurent Renou
- Unité de Recherche (UMR)-E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, 92260, France
| | - Alexandre Fagnan
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Laetitia Federici
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Laure Touchard
- Unité Mixte de Service - Analyse Moléculaire Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Yann Lecluse
- Unité Mixte de Service - Analyse Moléculaire Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Anton Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Pediatric and Adolescent Oncology Department, INSERM U1015, Université Paris Saclay, 94800, Villejuif, France
| | - Hélène Lapillonne
- Pediatric Hematology and Oncology Department, Armand Trousseau Hospital, AP-HP, Sorbonne University, UMRS_938, CONECT-AML, 75012, Paris, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Muriel Gaudry
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Françoise Pflumio
- Unité de Recherche (UMR)-E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, 92260, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France
| | - Patrick Auberger
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, 75010, Paris, France
| | - Arnaud Petit
- Gustave Roussy Cancer Campus, Pediatric and Adolescent Oncology Department, INSERM U1015, Université Paris Saclay, 94800, Villejuif, France
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Arnaud Jacquel
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France.
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France.
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France.
| |
Collapse
|
43
|
Tabti K, Baammi S, Sbai A, Maghat H, Lakhlifi T, Bouachrine M. Molecular modeling study of pyrrolidine derivatives as novel myeloid cell leukemia-1 inhibitors through combined 3D-QSAR, molecular docking, ADME/Tox and MD simulation techniques. J Biomol Struct Dyn 2023; 41:13798-13814. [PMID: 36841617 DOI: 10.1080/07391102.2023.2183032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
A series of pyrrolidine derivatives have been used to study the main structural requirements for designing novel Mcl-1 inhibitors. For this purpose, three models CoMSIA, CoMFA and HQSAR were generated using QSAR molecular modeling techniques. The statistical results of the CoMFA (Q2 = 0.689; R = 0.999; R2pred = 0.986), CoMSIA (Q2 = 0.614; R2 = 0.923; R2pred = 0.815) and HQSAR (Q2= 0.603; R2 = 0.662; R2pred = 0.743) models showed good stability and predictability. The results of the models were presented as contours and colored fragments indicating the favorable and unfavorable contribution to the inhibitory activity of Mcl-1. Based on the obtained results, four new compounds were designed with more potent predicted pIC50 inhibitory activity. The ADME/Tox results and the pharmacokinetic properties revealed that these four compounds are orally bioavailable and show good permeability. In addition the four compounds showing non-inhibitors of CYP3A4 and CYP2D6 with the exception of Pred03. At the level of toxicity profile, the compounds Pred01, Pred02 and Pred03 showed interesting results and showed no AMES toxicity, no hERG inhibition and no skin sensitization. Molecular docking results were used to uncover the mode of interaction between the ligand and key residues of protein binding site. Molecular docking results were supported by molecular simulation and binding free energy estimation (MMPBSA). These results demonstrate the stability of the analyzed compounds in the target protein binding site during a 100 ns trajectory. Finally, all these results create a strong lead to develop promising new Pyrrolidine-based inhibitors against Mcl-1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kamal Tabti
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| | - Hamid Maghat
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
- High School of Technology Khenifra, Sultan Moulay Sliman University, Benimellal, Morocco
| |
Collapse
|
44
|
Grissenberger S, Sturtzel C, Wenninger-Weinzierl A, Radic-Sarikas B, Scheuringer E, Bierbaumer L, Etienne V, Némati F, Pascoal S, Tötzl M, Tomazou EM, Metzelder M, Putz EM, Decaudin D, Delattre O, Surdez D, Kovar H, Halbritter F, Distel M. High-content drug screening in zebrafish xenografts reveals high efficacy of dual MCL-1/BCL-X L inhibition against Ewing sarcoma. Cancer Lett 2023; 554:216028. [PMID: 36462556 DOI: 10.1016/j.canlet.2022.216028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Ewing sarcoma is a pediatric bone and soft tissue cancer with an urgent need for new therapies to improve disease outcome. To identify effective drugs, phenotypic drug screening has proven to be a powerful method, but achievable throughput in mouse xenografts, the preclinical Ewing sarcoma standard model, is limited. Here, we explored the use of xenografts in zebrafish for high-throughput drug screening to discover new combination therapies for Ewing sarcoma. We subjected xenografts in zebrafish larvae to high-content imaging and subsequent automated tumor size analysis to screen single agents and compound combinations. We identified three drug combinations effective against Ewing sarcoma cells: Irinotecan combined with either an MCL-1 or an BCL-XL inhibitor and in particular dual inhibition of the anti-apoptotic proteins MCL-1 and BCL-XL, which efficiently eradicated tumor cells in zebrafish xenografts. We confirmed enhanced efficacy of dual MCL-1/BCL-XL inhibition compared to single agents in a mouse PDX model. In conclusion, high-content screening of small compounds on Ewing sarcoma zebrafish xenografts identified dual MCL-1/BCL-XL targeting as a specific vulnerability and promising therapeutic strategy for Ewing sarcoma, which warrants further investigation towards clinical application.
Collapse
Affiliation(s)
| | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Andrea Wenninger-Weinzierl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Branka Radic-Sarikas
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Department of Pediatric Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva Scheuringer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Lisa Bierbaumer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Vesnie Etienne
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Fariba Némati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Susana Pascoal
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Marcus Tötzl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Eleni M Tomazou
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Martin Metzelder
- Department of Pediatric Surgery, Medical University of Vienna, Vienna, Austria
| | - Eva M Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France; Department of Medical Oncology, Institut Curie Research Centre, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France; Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Heinrich Kovar
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Dept. Pediatrics, Medical University Vienna, Vienna, Austria
| | | | - Martin Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria.
| |
Collapse
|
45
|
Kaufmann T, Simon HU. Pharmacological Induction of Granulocyte Cell Death as Therapeutic Strategy. Annu Rev Pharmacol Toxicol 2023; 63:231-247. [PMID: 36028226 DOI: 10.1146/annurev-pharmtox-051921-115130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apoptosis is central for the maintenance of health. In the immune system, apoptosis guarantees proper development of immune cells and shutdown of immune reactions by the coordinated elimination of activated immune cells. Limitation of the life span of granulocytes is important, as overactivation of these cells is associated with chronic inflammation and collateral tissue damage. Consequently, targeted induction of granulocyte apoptosis may be beneficial in the course of respective immune disorders. Anti-inflammatory drugs such as glucocorticoids and monoclonal antibodies against IL-5Rα exert their function in part by triggering eosinophil apoptosis. Agonistic antibodies targeting Siglec-8 or death receptors are tested (pre)clinically. Moreover, a new class of inhibitors targeting antiapoptotic BCL-2 proteins shows great promise for anticancer treatments. Because of their specificity and tolerable side effects, these so-called BH3 mimetics may be worthwhile to evaluate in inflammatory disorders. Here, we review past and recent data on pharmacological apoptosis induction of granulocytes and highlight respective therapeutic potential.
Collapse
Affiliation(s)
- Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland; ,
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; , .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
46
|
Bcl-2 pathway inhibition in solid tumors: a review of clinical trials. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1554-1578. [PMID: 36639602 DOI: 10.1007/s12094-022-03070-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
Due to their key role in the pathogenesis of cancer through the regulation of apoptosis, the B-cell leukemia/lymphoma-2 (BCL-2) family proteins have been an attractive target for cancer therapy for the past decades. Throughout the years, many Bcl-2 family inhibitors have been developed, with Venetoclax being now successfully used in treating hematological malignancies. Although their effectiveness in the treatment of solid tumors is yet to be established, some preclinical evidence indicates their possible clinical application. This review aims to summarize current data from completed clinical trials that used Bcl-2 protein family inhibitors as monotherapy or in combination with other agents for the treatment of solid malignancies. We managed to include clinical trials of various phases which analyze the pharmacokinetics and pharmacodynamics of the drugs, as well as the effectiveness and adverse effects. Active and recruiting clinical trials are also briefly presented and future prospects and challenges are discussed.
Collapse
|
47
|
Najafi V, Yoosefian M, Hassani Z. Development of venetoclax performance using its new derivatives on BCL-2 protein inhibition. Cell Biochem Funct 2023; 41:58-66. [PMID: 36259104 DOI: 10.1002/cbf.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023]
Abstract
Cancer cells are resistant to apoptosis and this is one of the most obvious symptoms of cancer in humans. One of the most exciting strategies for treating cancer is to design regulators that increase cell death and stop cell growth. Members of the BCL-2 family of proteins play an important role in the regulation of apoptosis. In this study, an attempt was made to improve the performance of one of the anticancer drugs by designing new analogs of venetoclax (VNT). For this purpose, molecular docking studies were performed to determine the best binding state of VNT and its newly designed derivatives at the protein-binding site to estimate the binding energy. The best analog in terms of free energy was VNT-12 with the lowest energy (-12.15 kcal/mol). Finally, to investigate the inhibitory effect of the compounds on BCL-2 protein, molecular dynamics simulation was used, and by performing the relevant analyses during the simulation, it was observed that the newly designed ligand had better performance in inhibiting BCL-2 protein compared to VNT.
Collapse
Affiliation(s)
- Vahideh Najafi
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Hassani
- Department of New Materials, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
48
|
White E. Apoptosis, autophagy, and cancer: the critical role Genes & Development played in paradigm shifts. Genes Dev 2023; 37:59-62. [PMID: 37061957 PMCID: PMC10046429 DOI: 10.1101/gad.350443.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Affiliation(s)
- Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA; Ludwig Institute for Cancer Research, Princeton University, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
49
|
Faraji N, Arab SS, Doustmohammadi A, Daly NL, Khosroushahi AY. ApInAPDB: a database of apoptosis-inducing anticancer peptides. Sci Rep 2022; 12:21341. [PMID: 36494486 PMCID: PMC9734560 DOI: 10.1038/s41598-022-25530-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
ApInAPDB (Apoptosis-Inducing Anticancer Peptides Database) consists of 818 apoptosis-inducing anticancer peptides which are manually collected from research articles. The database provides scholars with peptide related information such as function, binding target and affinity, IC50 and etc. In addition, GRAVY (grand average of hydropathy), net charge at pH 7, hydrophobicity and other physicochemical properties are calculated and presented. Another category of information are structural information includes 3D modeling, secondary structure prediction and descriptors for QSAR (quantitative structure-activity relationship) modeling. In order to facilitate the browsing process, three types of user-friendly searching tools are provided: top categories browser, simple search and advanced search. Overall ApInAPDB as the first database presenting apoptosis-inducing anticancer peptides can be useful in the field of peptide design and especially cancer therapy. Researchers can freely access the database at http://bioinf.modares.ac.ir/software/ApInAPDB/ .
Collapse
Affiliation(s)
- Naser Faraji
- grid.412888.f0000 0001 2174 8913Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Shahriar Arab
- grid.412266.50000 0001 1781 3962Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Doustmohammadi
- grid.412266.50000 0001 1781 3962Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Norelle L. Daly
- grid.1011.10000 0004 0474 1797Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD Australia
| | - Ahmad Yari Khosroushahi
- grid.412888.f0000 0001 2174 8913Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Manzano-Muñoz A, Yeste J, Ortega MA, Martín F, López A, Rosell J, Castro S, Serrano C, Samitier J, Ramón-Azcón J, Montero J. Microfluidic-based dynamic BH3 profiling predicts anticancer treatment efficacy. NPJ Precis Oncol 2022; 6:90. [PMID: 36456699 PMCID: PMC9715649 DOI: 10.1038/s41698-022-00333-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022] Open
Abstract
Precision medicine is starting to incorporate functional assays to evaluate anticancer agents on patient-isolated tissues or cells to select for the most effective. Among these new technologies, dynamic BH3 profiling (DBP) has emerged and extensively been used to predict treatment efficacy in different types of cancer. DBP uses synthetic BH3 peptides to measure early apoptotic events ('priming') and anticipate therapy-induced cell death leading to tumor elimination. This predictive functional assay presents multiple advantages but a critical limitation: the cell number requirement, that limits drug screening on patient samples, especially in solid tumors. To solve this problem, we developed an innovative microfluidic-based DBP (µDBP) device that overcomes tissue limitations on primary samples. We used microfluidic chips to generate a gradient of BIM BH3 peptide, compared it with the standard flow cytometry based DBP, and tested different anticancer treatments. We first examined this new technology's predictive capacity using gastrointestinal stromal tumor (GIST) cell lines, by comparing imatinib sensitive and resistant cells, and we could detect differences in apoptotic priming and anticipate cytotoxicity. We then validated µDBP on a refractory GIST patient sample and identified that the combination of dactolisib and venetoclax increased apoptotic priming. In summary, this new technology could represent an important advance for precision medicine by providing a fast, easy-to-use and scalable microfluidic device to perform DBP in situ as a routine assay to identify the best treatment for cancer patients.
Collapse
Grants
- Ramon y Cajal Programme, Ministerio de Economia y Competitividad grant RYC-2015-18357. (JM) Ministerio de Ciencia, Innovación y Universidades grant RTI2018-094533-A-I00 (JM) CELLEX foundation (JM, AM). Beca Trienal Fundación Mari Paz Jiménez Casado (JM)
- Fundación Cellex (Cellex Foundation)
- Networking Biomedical Research Center (CIBER). CIBER is an initiative funded by the VI National R & D &i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and the Instituto de Salud Carlos III (RD16/0006/0012), with the support of the European Regional Development Fund (JS). Generalitat de Catalunya. CERCA Programme 2017-SGR-1079 (JR-A, JS)
- European Research Council, grant ERC-StG-DAMOC 714317 (JR-A) European Research Council, H2020 EU framework FET-open BLOC 863037 (JR-A) Spanish Ministry of Economy and Competitiveness, "Severo Ochoa" Program for Centers of Excellence in R&D SEV-2020-2023 (JR-A) Generalitat de Catalunya. CERCA Programme 2017-SGR-1079 (JR-A, JS) Fundación Bancaria "la Caixa"- Obra Social "la Caixa" (project IBEC-La Caixa Health Ageing) (JR-A)
Collapse
Affiliation(s)
- Albert Manzano-Muñoz
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - José Yeste
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - María A Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vitala Technologies, Barcelona, Spain
| | - Fernando Martín
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Anna López
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jordi Rosell
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Castro
- Surgical Oncology Division, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institució Catalana de Reserca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010, Barcelona, Spain
| | - Joan Montero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain.
| |
Collapse
|