1
|
Chen Z, Di X, Chen H, Song S, Chen R, Kou L, Chu M. MEF2C mitigates coronary artery lesions in Kawasaki disease by enhancing endothelial barrier function through KLF2 regulation. Int Immunopharmacol 2025; 148:114030. [PMID: 39826452 DOI: 10.1016/j.intimp.2025.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Coronary artery lesions constitute a significant complication of Kawasaki disease (KD) and represents one of the primary etiologies of acquired cardiovascular disease in pediatric populations. In the present study, we observed a downregulation of MEF2C expression in the whole blood of KD patients and in human coronary artery endothelial cells (HCAECs) during the pathophysiological progression of KD. Furthermore, transcriptomic data analysis, in conjunction with observations from HCAECs stimulated with KD serum, indicates that the downregulation of MEF2C in KD is correlated with increased inflammatory levels and the activation of inflammatory pathways. Overexpression of MEF2C has the potential to mitigate inflammation and apoptosis in HCAECs, whereas MEF2C knockdown exhibits contrary effects. Furthermore, MEF2C overexpression may alleviate inflammation and apoptosis in the coronary endothelium, attenuate abdominal aortic dilation, and prevent the decline of cardiac function in a CAWS-induced KD murine model. Mechanistically, MEF2C overexpression safeguards against KD-induced endothelial barrier disruption and the downregulation of endothelial junction proteins in coronary injury associated with KD. Additionally, through RNA sequencing, we identified that KLF2 might be involved in the MEF2C-mediated protection against coronary endothelial injury. Employing a gene interference methodology, we substantiated that MEF2C mitigates coronary artery injury in KD via KLF2-regulated endothelial barrier protection in HCAECs. These findings suggest that MEF2C could serve as a potential therapeutic target for the prevention and treatment of coronary lesions in KD.
Collapse
Affiliation(s)
- Zhiwei Chen
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyu Di
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Heyan Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shengnan Song
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Maoping Chu
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
2
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Mao A, Li Z, Shi X, Zhang K, Kan H, Geng L, He D. Complement Factor C1q Mediates Vascular Endothelial Dysfunction in STZ-Induced Diabetic Mice. Diabetes 2024; 73:1527-1536. [PMID: 38869460 DOI: 10.2337/db23-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Diabetes is a significant global public health issue with implications for vascular endothelial cells (ECs) dysfunction and the subsequent development and advancement of diabetes complications. This study aims to compare the cellular and molecular properties of the aorta in normal and streptozotocin (STZ)-induced diabetic mice, with a focus on elucidating potential mechanism underlying EC dysfunction. Here, we performed a single-cell RNA sequencing survey of 32,573 cells from the aorta of normal and STZ-induced diabetic mice. We found a compendium of 10 distinct cell types, mainly ECs, smooth muscle cells, fibroblast, pericyte, immune cells, and stromal cells. As the diabetes condition progressed, we observed a subpopulation of aortic ECs that exhibited significantly elevated expression of complement (C) molecule C1qa compared with their healthy counterparts. This increased expression of C1qa was found to induce reactive oxygen species (ROS) production, facilitate EC migration and increased permeability, and impair the vasodilation within the aortic segment of mice. Furthermore, AAV-Tie2-shRNA-C1qa was administered into diabetic mice by tail vein injection, showing that inhibition of C1qa in the endothelium led to a reduction in ROS production, decreased vascular permeability, and improved vasodilation. Collectively, these findings highlight the crucial involvement of C1qa in endothelial dysfunction associated with diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zicheng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoming Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Kan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongxu He
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Li N, Yi Y, Chen J, Huang Y, Peng J, Li Z, Wang Y, Zhang J, Xu C, Liu H, Li J, Liu X. Anthrahydroquinone‑2,6‑disulfonate attenuates PQ‑induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of the PI3K/AKT/eNOS pathway. Int J Mol Med 2024; 54:63. [PMID: 38874017 PMCID: PMC11188976 DOI: 10.3892/ijmm.2024.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
In paraquat (PQ)‑induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone‑2,6‑disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ‑intoxicated Sprague‑Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ‑induced ALI and its related mechanisms. A PQ‑intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF‑α, IL‑1β and IL‑6 were assessed using an ELISA. Transwell and Cell Counting Kit‑8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial‑cadherin, zonula occludens‑1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol‑3‑kinase (PI3K)/protein kinase B (AKT)/endothelial‑type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ‑induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ‑induced ALI.
Collapse
Affiliation(s)
- Nan Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yang Yi
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jun Chen
- Emergency Department of Danzhou People's Hospital, Danzhou, Hainan 571799, P.R. China
| | - Yue Huang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jichao Peng
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhao Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Ying Wang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiadong Zhang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Chaoqun Xu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Haoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jinghua Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Xiaoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
5
|
Guo S, Wang D. Novel insights into the potential applications of stem cells in pulmonary hypertension therapy. Respir Res 2024; 25:237. [PMID: 38849894 PMCID: PMC11162078 DOI: 10.1186/s12931-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Pulmonary hypertension (PH) refers to a group of deadly lung diseases characterized by vascular lesions in the microvasculature and a progressive increase in pulmonary vascular resistance. The prevalence of PH has increased over time. Currently, the treatment options available for PH patients have limited efficacy, and none of them can fundamentally reverse pulmonary vascular remodeling. Stem cells represent an ideal seed with proven efficacy in clinical studies focusing on liver, cardiovascular, and nerve diseases. Since the potential therapeutic effect of mesenchymal stem cells (MSCs) on PH was first reported in 2006, many studies have demonstrated the efficacy of stem cells in PH animal models and suggested that stem cells can help slow the deterioration of lung tissue. Existing PH treatment studies basically focus on the paracrine action of stem cells, including protein regulation, exosome pathway, and cell signaling; however, the specific mechanisms have not yet been clarified. Apoptotic and afunctional pulmonary microvascular endothelial cells (PMVECs) and alveolar epithelial cells (AECs) are two fundamental promoters of PH although they have not been extensively studied by researchers. This review mainly focuses on the supportive communication and interaction between PMVECs and AECs as well as the potential restorative effect of stem cells on their injury. In the future, more studies are needed to prove these effects and explore more radical cures for PH.
Collapse
Affiliation(s)
- Sijia Guo
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Dachun Wang
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
6
|
Zhang H, Liu D, Xu QF, Wei J, Zhao Y, Xu DF, Wang Y, Liu YJ, Zhu XY, Jiang L. Endothelial RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of β-catenin and ILK signaling pathways after inflammatory vascular injury. Int J Biol Macromol 2024; 269:131805. [PMID: 38677673 DOI: 10.1016/j.ijbiomac.2024.131805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for β-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of β-catenin and ILK signaling pathways after inflammatory vascular injury.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Qing-Feng Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Juan Wei
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Ying Zhao
- Department of Anesthesiology, Zhejiang Cancer Hospital, 310022, PR China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, PR China.
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Liu Y, Li H, Pang Y, Li Y, Li S. MiR-202-3p Targets Calm1 and Suppresses Inflammation in a Mouse Model of Acute Respiratory Distress Syndrome. Cell Biochem Biophys 2024; 82:1135-1143. [PMID: 38635101 DOI: 10.1007/s12013-024-01264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is regarded as a type of respiratory failure. Emerging evidence has demonstrated the significant roles of microRNAs in various disorders. Nevertheless, the role of miR-202-3p in ARDS is unclear. Forty male C57BL/6 mice treated with phosphate buffer saline/lipopolysaccharide (PBS/LPS) and administrated with NC/miR-202-3p agomir were divided into four groups. A reverse transcription-quantitative polymerase chain reaction was used to evaluate the level of miR-202-3p, its target genes, and proinflammatory factors. Hematoxylin‑eosin was utilized for histological observation of the lung tissues. The Wet/Dry ratio, myeloperoxidase activity, and total protein concentration in bronchoalveolar lavage fluid were assessed to determine pulmonary edema. Western blotting was used for quantifying protein levels of proinflammatory factors, nuclear factor kappa B (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) signaling-associated proteins. Calmodulin 1 (Calm1) protein expression in murine lung tissues was evaluated by immunohistochemistry. The binding relation between miR-202-3p and Calm1 was assessed by luciferase reporter assay. The results showed that miR-202-3p was lowly expressed in the lung tissues of ARDS mice. Overexpressed miR-202-3p relieved LPS-induced edema, reduced proinflammatory factors, and inactivated NF-κB/NLRP3 signaling in murine lung tissues. Calm1 was targeted by miR-202-3p and displayed a high level of LPS-induced ARDS. In conclusion, miR-202-3p targets Calm1 and suppresses inflammation in LPS-induced ARDS, thereby inhibiting the pathogenesis of ARDS in a mouse model.
Collapse
Affiliation(s)
- Ya Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
8
|
Wang YY, Zhu GQ, Xia K, Zeng HB, He YH, Xie H, Wang ZX, Xu R. Omentin-1 inhibits the development of benign prostatic hyperplasia by attenuating local inflammation. Mol Med 2024; 30:41. [PMID: 38519941 PMCID: PMC10960431 DOI: 10.1186/s10020-024-00805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a prevalent disease affecting elderly men, with chronic inflammation being a critical factor in its development. Omentin-1, also known as intelectin-1 (ITLN-1), is an anti-inflammatory protein primarily found in the epithelial cells of the small intestine. This study aimed to investigate the potential of ITLN-1 in mitigating BPH by modulating local inflammation in the prostate gland. METHODS Our investigation involved two in vivo experimental models. Firstly, ITLN-1 knockout mice (Itln-1-/-) were used to study the absence of ITLN-1 in BPH development. Secondly, a testosterone propionate (TP)-induced BPH mouse model was treated with an ITLN-1 overexpressing adenovirus. We assessed BPH severity using prostate weight index and histological analysis, including H&E staining, immunohistochemistry, and enzyme-linked immunosorbent assay. In vitro, the impact of ITLN-1 on BPH-1 cell proliferation and inflammatory response was evaluated using cell proliferation assays and enzyme-linked immunosorbent assay. RESULTS In vivo, Itln-1-/- mice exhibited elevated prostate weight index, enlarged lumen area, and higher TNF-α levels compared to wild-type littermates. In contrast, ITLN-1 overexpression in TP-induced BPH mice resulted in reduced prostate weight index, lumen area, and TNF-α levels. In vitro studies indicated that ITLN-1 suppressed the proliferation of prostate epithelial cells and reduced TNF-α production in macrophages, suggesting a mechanism involving the inhibition of macrophage-mediated inflammation. CONCLUSION The study demonstrates that ITLN-1 plays a significant role in inhibiting the development of BPH by reducing local inflammation in the prostate gland. These findings highlight the potential of ITLN-1 as a therapeutic target in the management of BPH.
Collapse
Affiliation(s)
- Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Kun Xia
- Department of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750000, Ningxia, China
| | - Hong-Bo Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yun-Hui He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Sena CM. Omentin: A Key Player in Glucose Homeostasis, Atheroprotection, and Anti-Inflammatory Potential for Cardiovascular Health in Obesity and Diabetes. Biomedicines 2024; 12:284. [PMID: 38397886 PMCID: PMC10887037 DOI: 10.3390/biomedicines12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Omentin is an adipokine mainly produced by visceral fat tissue. It has two isoforms, omentin-1 and omentin-2. Omentin-1 is predominantly secreted by visceral adipose tissue, derived specifically from the stromal vascular fraction cells of white adipose tissue (WAT). Levels of omentin-1 are also expressed in other WAT depots, such as epicardial adipose tissue. Omentin-1 exerts several beneficial effects in glucose homeostasis in obesity and diabetes. In addition, research has suggested that omentin-1 may have atheroprotective (protective against the development of atherosclerosis) and anti-inflammatory effects, potentially contributing to cardiovascular health. This review highlights the potential therapeutic targets of omentin-1 in metabolic disorders.
Collapse
Affiliation(s)
- Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Tao M, Yan W, Chen C, Tang M, Zhao X, Feng Q, Fei X, Fu Y. Omentin-1 ameliorates experimental inflammatory bowel disease via Nrf2 activation and redox regulation. Life Sci 2023; 328:121847. [PMID: 37295714 DOI: 10.1016/j.lfs.2023.121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
AIMS Omentin-1 production is decreased in patients with IBD. However, the specific role of Omentin-1 in IBD has not been fully elucidated. This study aimed to investigate the expression and role of Omentin-1 in IBD and the potential mechanisms. MAIN METHODS We collected human serum and colon biopsy samples at the Wuhan Union Hospital. Omentin-1 recombinant protein was injected intraperitoneally in a DSS-induced experimental IBD mouse model. Omentin-1 levels were measured in IBD patients, colitis mice, and LPS-induced HT-29 cells. Omentin-1 and/or a Nrf2 specific inhibitor (ML385) were administered to DSS mice and LPS-induced HT-29 cells. The effects of Omentin-1 on inflammation, intestinal barrier function, Nrf2 pathway, oxidative stress, and NF-κB signaling were detected in vivo and in vitro. KEY FINDINGS Serum Omentin-1 levels were significantly reduced in UC and CD patients compared with controls (173.7 (IQR, 120.1-221.2) ng/ml, 80.8 (43.8-151.8) ng/ml, and 270.7 (220.7-306.5) ng/ml, respectively). The levels of Omentin-1 were also significantly lower in colitis mice and LPS-induced HT-29 cells. Omentin-1 treatment effectively ameliorated inflammation and impaired intestinal barrier, decreased ROS and MDA levels, and increased GSH and SOD production in the DSS-induced colitis mice and LPS-induced HT-29 cells. Mechanically, Omentin-1 repaired the intestinal barrier by activating Nrf2, then improving oxidative stress and inhibiting NF-κB signaling. Furthermore, the interaction between Omentin-1 and Nrf2 was identified. SIGNIFICANCE Omentin-1 activates the Nrf2 pathway to regulate redox balance, ultimately protecting intestinal barrier function and reducing intestinal inflammation. In general, Omentin-1 can be used as a promising therapeutic target for IBD.
Collapse
Affiliation(s)
- Meihui Tao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfan Tang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Feng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshang Fei
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Niemczyk A, Waśkiel-Burnat A, Zaremba M, Czuwara J, Rudnicka L. The profile of adipokines associated with fibrosis and impaired microcirculation in systemic sclerosis. Adv Med Sci 2023; 68:298-305. [PMID: 37696138 DOI: 10.1016/j.advms.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/03/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Adipokines belong to a group of molecules mostly produced by adipose tissue. Abnormalities in the secretion of several adipokines have already implicated to play a pathogenic role in systemic sclerosis (SSc). However, the possible role of numerous molecules still needs to be clarified. The aim of the study was to determine whether the altered level of selected circulating adipokines might correlate with the intensity of fibrosis and vasculopathy in the course of SSc. MATERIALS AND METHODS Serum concentrations of chemerin, adipsin, retinol-binding protein 4, apelin, visfatin, omentin-1, and vaspin were determined with ELISA in the sera of patients with SSc (n = 55) and healthy controls (n = 25). RESULTS The serum concentration of adipsin (p = 0.03) and visfatin (p = 0.04) was significantly increased and the level of retinol-binding protein 4 (p = 0.03) was decreased in diffuse compared to limited cutaneous SSc. Moreover, serum adipsin level correlated positively with the intensity of skin fibrosis measured with the modified Rodnan skin score (r = 0.31, p = 0.02) and was significantly higher in patients with pulmonary arterial hypertension than in those without the condition (p = 0.03). The concentrations of adipsin (p = 0.01) and visfatin (p = 0.04) were significantly increased and the level of apelin (p = 0.02) was decreased in patients with active digital ulcerations compared to individuals without this complication. CONCLUSION Adipsin may be considered a pivotal protein in the development of both fibrosis and impaired microcirculation. Its abnormal concentration reflects the intensity of skin thickening and the presence of pulmonary arterial hypertension. Adipsin, visfatin, and apelin are adipose tissue-derived molecules associated with digital vasculopathy.
Collapse
Affiliation(s)
- Anna Niemczyk
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland.
| | | | - Michał Zaremba
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Ji L, Zhang L, Liang Z, Zhong S, Liu X, Liu Z, Poon WS, Song Y, Chen B, Wang R. Role of omentin-1 in susceptibility to anxiety and depression like behaviors. Mol Cell Endocrinol 2023; 574:111990. [PMID: 37321286 DOI: 10.1016/j.mce.2023.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Neuro-inflammation and blood-brain barrier (BBB) dysfunction are associated with depression. Evidence shows that adipokines enter the brain from the circulation, which regulates depressive behaviors. Omentin-1 is a newly identified adipocytokine that has anti-inflammatory effects, but little is known about its role in neuro-inflammation and mood-relevant behavior. Our results showed omentin-1 knockout mice (Omentin-1-/-) increased susceptibility to anxiety and depressive-like behaviors, which are associated with abnormalities of cerebral blood flow (CBF) and impaired BBB permeability. Moreover, omentin-1 depletion significantly increased hippocampal pro-inflammatory cytokines (IL-1β, TNFα, IL-6), caused microglial activation, inhibited hippocampus neurogenesis, and resulted in autophagy impairment by dysregulating ATG genes. Omentin-1 deficiency also sensitized mice to the behavioral changes induced by lipopolysaccharide (LPS), suggesting that omentin-1 could rescue neuro-inflammation by acting as an anti-depressant. Our in vitro microglia cell culture data confirmed that recombinant omentin-1 suppresses microglial activation and pro-inflammatory cytokine expression induced by LPS. Our study suggests that omentin-1 can be used as a promising therapeutic agent for the prevention or treatment of depression by providing a barrier-promoting effect and an endogenous anti-inflammatory balance to downregulate the proinflammatory cytokines.
Collapse
Affiliation(s)
- Lianru Ji
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China
| | - Lang Zhang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, China; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhi Liang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China
| | - Sufang Zhong
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China
| | - Xiamin Liu
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wai Sang Poon
- The University of Hong Kong, Hong Kong, China; Hong Kong University Shenzhen Hospital, Shen Zhen, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China.
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Rikang Wang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
14
|
Karampela I, Vallianou NG, Tsilingiris D, Christodoulatos GS, Antonakos G, Marinou I, Vogiatzakis E, Armaganidis A, Dalamaga M. Diagnostic and Prognostic Value of Serum Omentin-1 in Sepsis: A Prospective Study in Critically Ill Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050833. [PMID: 37241065 DOI: 10.3390/medicina59050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Omentin-1, also known as intelectin-1, is a novel adipokine with anti-inflammatory activities implicated in inflammatory diseases and sepsis. We aimed to explore serum omentin-1 and its kinetics in critically ill patients early in sepsis and its association with severity and prognosis. Materials and Methods: Serum omentin-1 was determined in 102 critically ill patients with sepsis during the first 48 h from sepsis onset and 1 week later, and in 102 age- and gender-matched healthy controls. The outcome of sepsis at 28 days after enrollment was recorded. Results: Serum omentin-1 at enrollment was significantly higher in patients compared to controls (763.3 ± 249.3 vs. 451.7 ± 122.3 μg/L, p < 0.001) and it further increased 1 week after (950.6 ± 215.5 vs. 763.3 ± 249.3 μg/L, p < 0.001). Patients with septic shock (n = 42) had higher omentin-1 compared to those with sepsis (n = 60) at enrollment (877.9 ± 241.2 vs. 683.1 ± 223.7 μg/L, p < 0.001) and 1 week after (1020.4 ± 224.7 vs. 901.7 ± 196.3 μg/L, p = 0.007). Furthermore, nonsurvivors (n = 30) had higher omentin-1 at sepsis onset (952.1 ± 248.2 vs. 684.6 ± 204.7 μg/L, p < 0.001) and 1 week after (1051.8 ± 242 vs. 908.4 ± 189.8 μg/L, p < 0.01). Patients with sepsis and survivors presented higher kinetics than those with septic shock and nonsurvivors (Δ(omentin-1)% 39.8 ± 35.9% vs. 20.2 ± 23.3%, p = 0.01, and 39.4 ± 34.3% vs. 13.3 ± 18.1%, p < 0.001, respectively). Higher omentin-1 at sepsis onset and 1 week after was an independent predictor of 28-day mortality (HR 2.26, 95% C.I. 1.21-4.19, p = 0.01 and HR: 2.15, 95% C.I. 1.43-3.22, p < 0.001, respectively). Finally, omentin-1 was significantly correlated with the severity scores, the white blood cells, coagulation biomarkers, and CRP, but not procalcitonin and other inflammatory biomarkers. Conclusions: Serum omentin-1 is increased in sepsis, while higher levels and lower kinetics during the first week of sepsis are associated with the severity and 28-day mortality of sepsis. Omentin-1 may be a promising biomarker of sepsis. However, more studies are needed to explore its role in sepsis.
Collapse
Affiliation(s)
- Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natalia G Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Georgios Antonakos
- Laboratory of Clinical Biochemistry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ioanna Marinou
- Laboratory of Microbiology, Sotiria Athens General Hospital, 11527 Athens, Greece
| | | | - Apostolos Armaganidis
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Zhou Y, Zhang Y, Cheng H, Li X, Feng D, Yue S, Xu J, Xie H, Luo Z. Therapeutic Effects of Omentin-1 on Pulmonary Fibrosis by Attenuating Fibroblast Activation via AMP-Activated Protein Kinase Pathway. Biomedicines 2022; 10:2715. [PMID: 36359232 PMCID: PMC9687324 DOI: 10.3390/biomedicines10112715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal age-related chronic lung disease, characterized by progressive scarring of the lungs by activated fibroblasts. The effect of omentin-1 against pulmonary fibrosis and fibroblast activation has not been investigated. The purpose of this experiment is to investigate the role of omentin-1 in bleomycin (BLM)-induced lung fibrosis and its mechanism. Our results showed that the loss of omentin-1 exaggerated lung fibrosis induced by BLM. On the contrary, adenoviral-overexpression of omentin-1 significantly alleviated BLM-induced lung fibrosis both in preventive and therapeutic regimens. Moreover, omentin-1 prevented fibroblast activation determined by a decreased number of S100A4+ (fibroblasts marker) α-SMA+ cells in vivo, and a decreased level of α-SMA expression both in mice primary fibroblasts and human primary fibroblasts induced by TGF-β in vitro. Furthermore, the phosphorylation of AMP-activated protein kinase (p-AMPK) was significantly lower in the fibrotic foci induced by BLM, and the adenoviral-overexpression of omentin-1 significantly increased the p-AMPK level in vivo. Importantly, Compound C, the inhibitor of AMPK, significantly attenuated the protective effect of omentin-1 on BLM-induced lung fibrosis and reversed the effect of omentin-1 on fibroblast activation by TGF-β. Omentin-1 can be a promising therapeutic agent for the prevention and treatment of lung fibrosis.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yunna Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Haipeng Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xiaohong Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianping Xu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha 410008, China
| |
Collapse
|
16
|
Han X. Inhibiting P2Y12 receptor relieves LPS-induced inflammation and endothelial dysfunction. Immun Inflamm Dis 2022; 10:e697. [PMID: 36169256 PMCID: PMC9449590 DOI: 10.1002/iid3.697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is characterized by abnormal inflammatory response without effective therapies. P2Y12 receptor (P2Y12R) plays a vital role in inflammatory response. This study intends to explore whether P2Y12R antagonists can inhibit LPS-induced inflammatory injury of human pulmonary microvascular endothelial cells (HPMVECs) and endothelial cell dysfunction. METHODS Using a cell model of ALI, the role of P2Y12R was investigated in LPS-induced HPMVECs. The expression of P2Y12R was detected by RT-qPCR and Western blot analysis assay and TNF-α, IL-1β, and IL-6 levels were analyzed by RT-qPCR. NO levels were also analyzed through NO kit. The levels of NF-κB p65, P-IκB-α, and IκB-α, as well as p-AKT and eNOS levels were detected by Western blot analysis assay. Wound healing assay was performed to evaluate HPMVECs migration. FITC-dextran was used to evaluate endothelial cell permeability, and the analysis of adherens junction protein VE-cadherin and endothelial cell tight junction proteins ZO-1, Claudin 5 and Occludin expression was performed by RT-qPCR and Western blot analysis assay. RESULTS In vitro, LPS increased the expression levels of P2Y12R and pro-inflammatory mediators (TNF-α, IL-1β, and IL-6), followed by a decrease in HPMVECs migration. In addition, LPS led to an increase in endothelial cell permeability. P2Y12R antagonists Ticagrelor or clopidogrel treatment significantly reversed these effects of LPS. CONCLUSION The inhibitor of P2Y12R was able to decrease inflammatory response, promote migration and improve endothelial cell function and permeability, suggesting a key role of P2Y12R in ALI.
Collapse
Affiliation(s)
- Xiuxia Han
- Medical Department of Shandong University HospitalJinanShandongChina
| |
Collapse
|
17
|
Jafari A, Esmaeilzadeh Z, Khezri MR, Ghasemnejad-Berenji H, Pashapour S, Sadeghpour S, Ghasemnejad-Berenji M. An overview of possible pivotal mechanisms of Genistein as a potential phytochemical against SARS-CoV-2 infection: A hypothesis. J Food Biochem 2022; 46:e14345. [PMID: 35866873 PMCID: PMC9350103 DOI: 10.1111/jfbc.14345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID‐19) pandemic has been caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). It is a global problem that humanity has not yet found a definitive solution for it. In this regard, a global effort has been done to find effective or potential adjuvant therapies in order to fight this infection. Genistein is a small, biologically active phytoestrogen flavonoid that is found in high amounts in soy and plants of the Fabaceae family. This important compound is known due to its anti‐cancer, anti‐inflammatory, and antioxidant effects. Additionally, protective effects of genistein have been reported in different pathological conditions through modulating intracellular pathways such as PI3K, Akt, mTOR, NF‐κB, PPARγ, AMPK, and Nrf2. Scientific evidence suggests that genistein could have a potential role to treat COVID‐19 through its anti‐inflammatory and anti‐oxidant effects. Furthermore, it appears to interfere with intracellular pathways involved in viral entry into the cell. This review provides a basis for further research and development of clinical applications of genistein as a potential alternative therapy to decrease inflammation and oxidative stress in COVID‐19 patients.
Collapse
Affiliation(s)
- Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Sarvin Pashapour
- Department of Pediatrics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
18
|
Kobayashi H, Uchimura K, Ishii T, Takahashi K, Mori K, Tsuchiya K, Furuya F. Intelectin1 ameliorates macrophage activation via inhibiting the nuclear factor kappa B pathway. Endocr J 2022; 69:539-546. [PMID: 34866068 DOI: 10.1507/endocrj.ej21-0438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Inteletin1 (Itln1) is an adipokine that is abundantly expressed in intestine, ovary, and lung. The expression levels of ITLN1 are decreased in the presence of diabetes or obesity, but the mechanisms of its production and function are still controversial. The aim of this study is to elucidate the mechanisms of ITLN1 synthesis and ITLN1-associated macrophage activation. To analyze the effects of high fat and high-carbohydrate diet (HFHCD) on the expression of ITLN1 in the intestine, the mice were fed a HFHCD for 8 weeks. HFHCD feeding enhanced the endoplasmic reticulum (ER)-stress in the intestine and inhibited the expression of Itln1 in the intestinal endocrine cells and lowered circulating ITLN1 levels. In contrast, treatment with a chemical chaperone and reduction of ER-stress restored the expression of Itln1 in the intestine of HFHCD-fed mice. Furthermore, in vitro studies indicated that ITLN1 physically interacts with adiponectin receptor 1 and suppresses lipopolysaccharide-induced mRNA expressions of pro-inflammatory cytokines and phagocytosis activities via inhibition of the nuclear factor kappa B-signaling pathway in macrophages. These results suggest that diet-induced ER-stress decreases circulating ITLN1 via inhibition of its synthesis in the intestine, and a reduction of circulating ITLN1 might enhanced the expression of proinflammatory cytokines and macrophage activation, following exacerbate the chronic inflammation of metabolic syndrome.
Collapse
Affiliation(s)
| | - Kohei Uchimura
- Division of Nephrology, Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Toshihisa Ishii
- Division of Nephrology, Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Kazuya Takahashi
- Division of Nephrology, Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Kentaro Mori
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, MO, U.S.A
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, University of Yamanashi Hospital, Yamanashi, Japan
| | - Fumihiko Furuya
- Division of Nephrology, Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
19
|
Adipose-Derived Circulating Exosomes Promote Protection of the Pulmonary Endothelial Barrier by Inhibiting EndMT and Oxidative Stress through Down-Regulation of the TGF-β Pathway: A Potential Explanation for the Obesity Paradox in ARDS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5475832. [PMID: 35571250 PMCID: PMC9098334 DOI: 10.1155/2022/5475832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
The “obesity paradox in acute respiratory distress syndrome” (ARDS) refers to the phenomenon in which obesity is associated with higher morbidity but lower mortality in patients with ARDS. Endothelial-to-mesenchymal transition (EndMT) represents a key link in the interaction between endothelial disruption and mesenchymal fibrosis under inflammatory and oxidative conditions, which represent the intersectional pathophysiology of ARDS. Adipose tissue is considered to constitute the major source of circulating exosomal microRNAs (miRNAs), which act as genetic forms of adipokines for cell–cell crosstalk. We aimed to demonstrate the regulation and mechanism of adipose-derived exosomes in the obesity paradox in ARDS. High-fat-induced obese mice and lean control mice were subjected to ARDS insult to investigate the effects of obesity on ARDS and microarray analysis was performed to screen for differences in circulating miRNAs. In addition, mice and pulmonary endothelial cells were administered with adipose-derived exosomal miR-122-5p to investigate the underlying molecular mechanisms. We found high-fat diet-induced obesity protected against ARDS in mice by reinforcing endothelial barrier and attenuating fibroproliferation. Circulating exosomes produced in the obese state mediated these protective effects by inhibiting EndMT and oxidative stress. Mechanistically, adipose-derived exosomal miR-122-5p promoted the integrity and function of pulmonary endothelial barrier and alleviated fibrogenesis by suppressing EndMT and oxidative stress through down-regulation of the transforming growth factor β1 (TGF-β1)/TGF-β receptor 1 (TGF-βR1)/Smad2 pathway in vivo and in vitro. In conclusion, adipose-derived circulating exosomal miR-122-5p protects against ARDS by reinforcing pulmonary endothelial barrier through inhibition of EndMT and oxidative stress via down-regulation of the TGF-β pathway, which propose a potential explanation for the obesity paradox in ARDS and indicate promising prospects for adipose-derived exosomes in cell-free therapies for ARDS.
Collapse
|
20
|
Fukatsu M, Ohkawara H, Wang X, Alkebsi L, Furukawa M, Mori H, Fukami M, Fukami SI, Sano T, Takahashi H, Harada-Shirado K, Kimura S, Sugimoto K, Ogawa K, Ikezoe T. The suppressive effects of Mer inhibition on inflammatory responses in the pathogenesis of LPS-induced ALI/ARDS. Sci Signal 2022; 15:eabd2533. [PMID: 35258998 DOI: 10.1126/scisignal.abd2533] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The pathogenesis of sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) has not yet been fully elucidated. Growth arrest-specific 6 (Gas6) has marked effects on hemostasis and reduces inflammation through its interaction with receptor tyrosine kinases of the TAM family: Tyro3, Axl, and Mer. Here, we found that plasma concentrations of Gas6 and soluble Mer were greater in patients with severe sepsis or septic ALI/ARDS compared with those in normal healthy donors. To determine whether the Gas6-Mer axis was critical in the pathogenesis of ALI/ARDS, we investigated the effects of intravenous administration of the selective Mer inhibitor UNC2250 on lipopolysaccharide (LPS)-induced ALI in mouse models subjected to inhalation of LPS. UNC2250 markedly inhibited the infiltration into the lungs of neutrophils and monocytes with increased amounts of Gas6 and Mer proteins, severe lung damage, and increased amounts of reactive oxygen species (ROS) in LPS-induced ALI in mice. In human pulmonary aortic endothelial cells, LPS induced decreases in the amounts of endothelial nitric oxide synthase, thrombomodulin, and vascular endothelial-cadherin, which was blocked by treatment with UNC2250. UNC2250 also inhibited the LPS-dependent increases in cell proliferation and enhanced apoptosis in HL-60 cells, a human neutrophil-like cell line, and RAW264.7 cells, a mouse monocyte/macrophage cell line. These data provide insights into the potential multiple beneficial effects of the Mer inhibitor UNC2250 as a therapeutic reagent to treat inflammatory responses in ALI/ARDS.
Collapse
Affiliation(s)
- Masahiko Fukatsu
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Ohkawara
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Xintao Wang
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Lobna Alkebsi
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Miki Furukawa
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hirotaka Mori
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Miwa Fukami
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Shin-Ichi Fukami
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Takahiro Sano
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | | | - Satoshi Kimura
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Koichi Sugimoto
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuei Ogawa
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
21
|
Fan S, He J, Yang Y, Wang D. Intermedin Reduces Oxidative Stress and Apoptosis in Ventilator-Induced Lung Injury via JAK2/STAT3. Front Pharmacol 2022; 12:817874. [PMID: 35140609 PMCID: PMC8819149 DOI: 10.3389/fphar.2021.817874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
Mechanical ventilation is an effective treatment for acute respiratory distress syndrome (ARDS), which can improve the prognosis of ARDS to a certain extent. However, it may further aggravate lung tissue injury, which is defined as ventilator-induced lung injury (VILI). Intermedin (IMD) belongs to the calcitonin gene-related peptide (CPRP) superfamily. Our previous studies have found that IMD reduces the expression proinflammatory cytokines, down-regulates nuclear translocation and improves the integrity of endothelial barrier in ARDS. However, the effect of IMD on VILI has not been clarified. Oxidative stress imbalance and apoptosis are the main pathophysiological characteristics of VILI. In the current study, we used C57B6/J mice and human pulmonary microvascular endothelial cells (HPMECs) to establish a VILI model to analyze the effects of IMD on VILI and explore its potential mechanism. We found that IMD alleviated lung injury and inflammatory response in VILI, mainly in reducing ROS levels, upregulating SOD content, downregulating MDA content, reducing the expression of Bax and caspase-3, and increasing the expression of Bcl-2. In addition, we also found that IMD played its anti-oxidative stress and anti-apoptotic effects via JAK2/STAT3 signaling. Our study may provide some help for the prevention and treatment of VILI.
Collapse
Affiliation(s)
| | | | - Yanli Yang
- *Correspondence: Yanli Yang, ; Daoxin Wang,
| | | |
Collapse
|
22
|
Kukla M, Menżyk T, Dembiński M, Winiarski M, Garlicki A, Bociąga-Jasik M, Skonieczna M, Hudy D, Maziarz B, Kusnierz-Cabala B, Skladany L, Grgurevic I, Wójcik-Bugajska M, Grodzicki T, Stygar D, Rogula T. Anti-inflammatory adipokines: chemerin, vaspin, omentin concentrations and SARS-CoV-2 outcomes. Sci Rep 2021; 11:21514. [PMID: 34728695 PMCID: PMC8563971 DOI: 10.1038/s41598-021-00928-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with systemic inflammation. A wide range of adipokines activities suggests they influence pathogenesis and infection course. The aim was to assess concentrations of chemerin, omentin, and vaspin among COVID-19 patients with an emphasis on adipokines relationship with COVID-19 severity, concomitant metabolic abnormalities and liver dysfunction. Serum chemerin, omentin and vaspin concentrations were measured in serum collected from 70 COVID-19 patients at the moment of admission to hospital, before any treatment was applied and 20 healthy controls. Serum chemerin and omentin concentrations were significantly decreased in COVID-19 patients compared to healthy volunteers (271.0 vs. 373.0 ng/ml; p < 0.001 and 482.1 vs. 814.3 ng/ml; p = 0.01, respectively). There were no correlations of analyzed adipokines with COVID-19 severity based on the presence of pneumonia, dyspnea, or necessity of Intensive Care Unit hospitalization (ICU). Liver test abnormalities did not influence adipokines levels. Elevated GGT activity was associated with ICU admission, presence of pneumonia and elevated concentrations of CRP, ferritin and interleukin 6. Chemerin and omentin depletion in COVID-19 patients suggests that this adipokines deficiency play influential role in disease pathogenesis. However, there was no relationship between lower adipokines level and frequency of COVID-19 symptoms as well as disease severity. The only predictive factor which could predispose to a more severe COVID-19 course, including the presence of pneumonia and ICU hospitalization, was GGT activity.
Collapse
Affiliation(s)
- Michał Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland.,Department of Endoscopy, University Hospital in Kraków, Cracow, Poland
| | - Tomasz Menżyk
- Department of Internal Medicine, Gastroenterology and Acute Intoxication, Regional Hospital, Tarnów, Poland
| | - Marcin Dembiński
- Department of Endoscopy, University Hospital in Kraków, Cracow, Poland.,2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Marek Winiarski
- Department of Endoscopy, University Hospital in Kraków, Cracow, Poland.,2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksander Garlicki
- Chair of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Monika Bociąga-Jasik
- Chair of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Dorota Hudy
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Barbara Maziarz
- Chair of Clinical BioChemistry, Department of Diagnostics, Faculty of Medicine, Jagiellonian University Medical College, 31-501, Cracow, Poland
| | - Beata Kusnierz-Cabala
- Chair of Clinical BioChemistry, Department of Diagnostics, Faculty of Medicine, Jagiellonian University Medical College, 31-501, Cracow, Poland
| | - Lubomir Skladany
- Department of Internal Medicine and HEGITO (Hepatology, Gastroenterology and Liver Transplantation), F.D. Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Ivica Grgurevic
- Zagreb University School of Medicine, Šalata ul. 2, 10000, Zagreb, Croatia.,Division for Liver Diseases, Department of Gastroenterology, Dubrava University Hospital, Zagreb, Croatia
| | - Małgorzata Wójcik-Bugajska
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Grodzicki
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Dominika Stygar
- Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 40-055, Katowice, Poland.
| | - Tomasz Rogula
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.,1st Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
23
|
Xiao J, Zhang B, Su Z, Liu Y, Shelite TR, Chang Q, Qiu Y, Bei J, Wang P, Bukreyev A, Soong L, Jin Y, Ksiazek T, Gaitas A, Rossi SL, Zhou J, Laposata M, Saito TB, Gong B. Intracellular receptor EPAC regulates von Willebrand factor secretion from endothelial cells in a PI3K-/eNOS-dependent manner during inflammation. J Biol Chem 2021; 297:101315. [PMID: 34678311 PMCID: PMC8526113 DOI: 10.1016/j.jbc.2021.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ben Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas R Shelite
- Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael Laposata
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
24
|
Sever IH, Ozkul B, Erisik Tanriover D, Ozkul O, Elgormus CS, Gur SG, Sogut I, Uyanikgil Y, Cetin EO, Erbas O. Protective effect of oxytocin through its anti-inflammatory and antioxidant role in a model of sepsis-induced acute lung injury: Demonstrated by CT and histological findings. Exp Lung Res 2021; 47:426-435. [PMID: 34665057 DOI: 10.1080/01902148.2021.1992808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Although several studies demonstrate the anti-inflammatory effect of oxytocin in different pathophysiological processes, there are limited data describing the impact of oxytocin on acute respiratory distress syndrome (ARDS). We aimed to elucidate the protective effect of oxytocin in ARDS with histopathological evaluation and radiological imaging in addition to biochemical markers. Fecal intraperitoneal injection procedure (FIP) was performed on 24 of 32 rats included in the study for creating a sepsis model. Rats were randomly assigned into four groups: control group (no procedure was applied, n = 8), untreated septic group [was operated (FIP) and received no treatment, n = 8], placebo group (FIP, treated with 10 ml/kg of saline at once, n = 8), and treated group (FIP, treated with 0.1 mg/kg of oxytocin at once, n = 8). Chest CT was performed for all rats 20 hours after the procedure and density of the lungs were measured manually by using HU. All animals were sacrificed for histopathological examination of lung damage and blood samples were collected for biochemical analysis. Plasma malondialdehyde (MDA), lactic acid (LA), C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL 1-β) levels were significantly increased in the placebo (FIP + saline) and the untreated (FIP) groups, and plasma levels of all biomarkers were reversed by oxytocin. Further, the density of the lung parenchyma (Hounsfield unit) on CT images and the histopathological lung damage score values were closer to the control group in the oxytocin-treated group compared to the placebo group. Our findings suggested that oxytocin could exert anti-inflammatory, antioxidant and protective effects in FIP-induced ARDS.
Collapse
Affiliation(s)
- I H Sever
- Department of Radiology, Demiroğlu Bilim University, Istanbul, Turkey
| | - B Ozkul
- Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - D Erisik Tanriover
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - O Ozkul
- Medical Oncology, Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - C S Elgormus
- Department of Emergency Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - S G Gur
- Department of Radiology, Demiroğlu Bilim University, Istanbul, Turkey
| | - I Sogut
- Department of Biochemistry, Demiroğlu Bilim University, Istanbul, Turkey
| | - Y Uyanikgil
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - E O Cetin
- Department of Pharmaceutical Technology, Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - O Erbas
- Department of Physiology, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
25
|
Zhang L, Ge S, He W, Chen Q, Xu C, Zeng M. Ghrelin protects against lipopolysaccharide-induced acute respiratory distress syndrome through the PI3K/AKT pathway. J Biol Chem 2021; 297:101111. [PMID: 34437900 PMCID: PMC8445891 DOI: 10.1016/j.jbc.2021.101111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Pulmonary endothelial barrier dysfunction is a major pathophysiology observed in acute respiratory distress syndrome (ARDS). Ghrelin, a key regulator of metabolism, has been shown to play protective roles in the respiratory system. However, its effects on lipopolysaccharide (LPS)-induced pulmonary endothelial barrier injury are unknown. In this study, the effects of ghrelin on LPS-induced ARDS and endothelial cell injury were evaluated in vivo and in vitro. In vivo, mice treated with LPS (3 mg/kg intranasal application) were used to establish the ARDS model. Annexin V/propidium iodide apoptosis assay, scratch-wound assay, tube formation assay, transwell permeability assay, and Western blotting experiment were performed to reveal in vitro effects and underlying mechanisms of ghrelin on endothelial barrier function. Our results showed that ghrelin had protective effects on LPS-induced ARDS and endothelial barrier disruption by inhibiting apoptosis, promoting cell migration and tube formation, and activating the PI3K/AKT signaling pathway. Furthermore, ghrelin stabilized LPS-induced endothelial barrier function by decreasing endothelial permeability and increasing the expression of the intercellular junction protein vascular endothelial cadherin. LY294002, a specific inhibitor of the PI3K pathway, reversed the protective effects of ghrelin on the endothelial cell barrier. In conclusion, our findings indicated that ghrelin protected against LPS-induced ARDS by impairing the pulmonary endothelial barrier partly through activating the PI3K/AKT pathway. Thus, ghrelin may be a valuable therapeutic strategy for the prevention or treatment of ARDS.
Collapse
Affiliation(s)
- Lishan Zhang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shanhui Ge
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Metabolic Syndrome: the Influence of Adipokines on the L-Arginine-NO Synthase-Nitric Oxide Signaling Pathway. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metabolic syndrome includes the following symptoms: obesity, hyperlipidemia, hypertension, insulin resistance, and cardiovascular disease. The purpose of this review is to elucidate the role of adipokines in the regulation of the L-arginine-NO-synthas-NO signaling pathway in the pathogenesis of metabolic syndrome. The main questions raised in the review are: how adipokine secretion changes, how the level of their receptors is regulated, and which signaling pathways are involved in the transmission of adipokine signals when coupled to the L-arginine-NO-synthase-NO signaling cascade. Adipokines are peptide hormones that transmit a signal from adipose tissue to targets in the brain, blood vessels, liver, pancreas, muscles, and other tissues. Some adipokines have anti-inflammatory and insulin-sensitive effects: adiponectin, omentin, adipolin, chemerin, progranulin. Others have the negative inflammatory effect in the development ofmetabolic syndrome: visfatin, vaspin, apelin. Adipokines primarily regulate the expression and activity of endothelial NO-synthase. They either activate an enzyme involving 5-AMP protein kinase or Akt kinase, increasing its activity and synthesis of NO in the tissues of healthy patients: adiponectin, adipolin, omentin, or inhibit the activity of eNOS, which leads to a decrease in NO-synthase and suppression of mRNA bioavailability: vaspin, visfatin, apelin in metabolic syndrome, and a decrease in its activity leads to dissociation and endothelial dysfunction. It should be noted that the bioavailability of NO formed by NO-synthase is affected at many levels, including: the expression ofNO-synthase mRNA and its protein; the concentration of L-arginine; the level of cofactors of the reaction; and to detect the maximum activity of endothelial NO-synthase, dimerization of the enzyme is required, posttranslational modifications are important, in particular, phosphorylation of endothelial NO-synthase by serine 1177 with the participation of 5-AMP protein kinase, Akt kinase and other kinases. It should be noted that the participation of adiponectin, omentin, and kemerin in the regulation of the L-arginine-NO-synthase-NO cascade in metabolic syndrom opens up certain opportunities for the development of new approaches for the correction of disorders observed in this disease. The review analyzes the results of research searching in PubMed databases, starting from 2001 and up to 2020 using keywords and adipokine names, more than half of the references of the last 5 years.
Collapse
|
27
|
Buemann B, Marazziti D, Uvnäs-Moberg K. Can intravenous oxytocin infusion counteract hyperinflammation in COVID-19 infected patients? World J Biol Psychiatry 2021; 22:387-398. [PMID: 32914674 DOI: 10.1080/15622975.2020.1814408] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Based on its well-documented anti-inflammatory and restorative properties we propose trials with the natural hormone oxytocin for treatment of hospitalised Covid-19 patients. METHODS We searched for, retrieved, and commented on specific literature regarding multiple functions of oxytocin with a special focus on its modulation of inflammatory, immune, and restorative functions. RESULTS Available data gathered in animals and humans support the anti-inflammatory properties of oxytocin. The multiple anti-inflammatory effects of oxytocin have been demonstrated in vitro and in vivo in various animal models and also in humans in response to intravenous infusion of oxytocin. Furthermore, oxytocin has been documented to activate several types of protective and restorative mechanisms and to exert positive effects on the immune system. CONCLUSIONS In addition, to being anti-inflammatory, it may be hypothesised, that oxytocin may be less suppressive on adaptive immune systems, as compared with glucocorticoids. Finally, by its restorative effects coupled with its anti-stress and healing properties, oxytocin may shorten the recovery period of the Covid-19 patients.
Collapse
Affiliation(s)
| | - Donatella Marazziti
- Department of Experimental and Clinical Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| |
Collapse
|
28
|
Circulating Exosomes From Lipopolysaccharide-Induced Ards Mice Trigger Endoplasmic Reticulum Stress in Lung Tissue. Shock 2021; 54:110-118. [PMID: 32530844 DOI: 10.1097/shk.0000000000001397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with high mortality rate, and few effective therapies have been found in the past 50 years, indicating that the pathogenesis of ARDS remains unclear. Exosomes, a novel cross-communication mechanism, are involved in critical diseases. However, the role of circulating exosomes in the development of ARDS remains poorly understood. METHODS In the present study, naive mice were treated with circulating exosomes from lipopolysaccharide (LPS)-induced ARDS mice or exosome-depleted serum. Histological lung damage, bronchoalveolar lavage fluid (BALF), and endoplasmic reticulum (ER) stress were measured. RESULTS Increased tumor necrosis factor (TNF)-α, interleukin (IL)-6, total cell counts, polymorphonuclear (PMN) leukocyte proportions and myeloperoxidase (MPO) activity in BALF, and increased wet/dry weight ratios and protein concentrations in BALF were found in mice after exosome injection but not in mice treated with exosome-depleted serum. Furthermore, western blot analysis showed that circulating exosomes from ARDS mice upregulated glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) expression and downregulated β-Catenin and VE-cadherin expression in lung tissues. CONCLUSIONS Collectively, these data demonstrate that circulating exosomes from LPS-induced ARDS mice trigger ER stress in lung tissue, facilitating the development of ARDS, at least partly by promoting endothelial dysfunction.
Collapse
|
29
|
Li XX, Yuan R, Wang QQ, Han S, Liu Z, Xu Q, Yang S, Gao H. Rotundic acid reduces LPS-induced acute lung injury in vitro and in vivo through regulating TLR4 dimer. Phytother Res 2021; 35:4485-4498. [PMID: 33977594 DOI: 10.1002/ptr.7152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is a serious clinical disease. Rotundic acid (RA), a natural ingredient isolated from Ilex rotunda Thunb, exhibits multiple pharmacological activities. However, RA's therapeutic effect and mechanism on ALI remain to be elucidated. The present study aimed to further clarify its regulating effects on inflammation in vitro and in vivo. Our results indicated that RA significantly inhibited the overproduction of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). RA decreased ROS production and calcium influx. In addition, RA inhibited the activation of PI3K, MAPK, and NF-κB pathways and enhanced the activity of nuclear factor E2-related factor 2 (Nrf2) signaling. The cellular thermal shift assay and docking results indicated that RA bind to TLR4 to block TLR4 dimerization. Furthermore, RA pretreatment effectively inhibited ear edema induced by xylene and LPS-induced endotoxin death and had a protective effect on LPS-induced ALI. Our findings collectively indicated that RA has anti-inflammatory effects, which may serve as a potential therapeutic option for pulmonary inflammation.
Collapse
Affiliation(s)
- Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Qiongming Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, China
| |
Collapse
|
30
|
Dong Q, Xing W, Li K, Zhou X, Wang S, Zhang H. Tetrahydroxystilbene glycoside improves endothelial dysfunction and hypertension in obese rats: The role of omentin-1. Biochem Pharmacol 2021; 186:114489. [PMID: 33647262 DOI: 10.1016/j.bcp.2021.114489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
RATIONALE Hypertension in obesity has become a major threat for public health. Omentin-1, a novel adipokine, is down-regulated in obesity. Tetrahydroxystilbene glycoside (TSG) is the main ingredient extracted from Polygonum multiflorum Thunb (PMT), a traditional Chinese medicinal herb safely used for protecting cardiovascular systems over bimillennium. This study aims to examine (i) the impact of omentin-1 downregulation on obesity-related hypertension in murine models and the underlying mechanisms; (ii) whether tetrahydroxystilbene glycoside (TSG) improved endothelial dysfunction and obesity-associated hypertension via the increase of omentin-1. METHODS (TSG-treated) male Zucker diabetic fatty (ZDF) rats and omentin-1 knockout (OMT-/-) mice were used. In vitro, human umbilical vein endothelial cells (HUVECs) and mature adipocytes differentiated from human visceral preadipocyte (HPA-v) were maintained in a co-culture system. RESULTS TSG was the main active component of PMT reducing systolic blood pressure and improving endothelial vasodilation. Fortnight-TSG treatment (100 mg/kg/day) increased serum omentin-1 level, also activated Akt/eNOS signaling and enhanced NO bioactivity; decreased expression of NOX2 and p22phox, suppressed production of superoxide and peroxynitrite anion. OMT-/- mice showed elevated blood pressure and impaired endothelial vasorelaxation, whereas hypotensive effect of TSG was blunted. In co-culture system, TSG incubation promoted binding of peroxisome proliferator-activated receptor-γ (PPAR-γ) and Itln-1 promoter in adipocytes, activated Akt/eNOS/NO signaling and attenuated oxidative/nitrative stress in HUVECs. Suppression of Itln-1 with siRNA significantly blocked the protective effect of TSG in vitro. CONCLUSIONS Down-regulation of omentin-1 induces endothelial dysfunction and hypertension in obesity. TSG treatment (at least partially) increases omentin-1 via promoting binding of PPAR-γ and Itln-1 promoter in adipose tissues, subsequently exerts protective effects on endothelial function via activating Akt/eNOS/NO signaling and attenuating oxidative/nitrative stress. These results suggest that TSG could be developed as a promising anti-hypertension agent that protects against endothelial dysfunction and obesity-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Fourth Military Medical University, Xi'an, China; Teaching Experiment Center, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Kaifeng Li
- Teaching Experiment Center, Fourth Military Medical University, Xi'an, China
| | - Xuanxuan Zhou
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| | - Haifeng Zhang
- Teaching Experiment Center, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
31
|
Amaral-Machado L, Oliveira WN, Rodrigues VM, Albuquerque NA, Alencar ÉN, Egito EST. Could natural products modulate early inflammatory responses, preventing acute respiratory distress syndrome in COVID-19-confirmed patients? Biomed Pharmacother 2021; 134:111143. [PMID: 33360048 PMCID: PMC7832252 DOI: 10.1016/j.biopha.2020.111143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ARDS (Acute Respiratory Distress Syndrome) is a severe respiratory syndrome that was recently associated as the main death cause in the COVID-19 pandemic outbreak. Hence, in order to prevent ARDS, the pulmonary function maintenance has been the target of several pharmacological approaches. However, there is a lack of reports regarding the use of effective pharmaceutical active natural products (PANPs) for early treatment and prevention of COVID-19-related ARDS. Therefore, the aim of this work was to conduct a systematic review regarding the PANPs that could be further studied as alternatives to prevent ARDS. Consequently, this work can pave the way to spread the use of PANPs on the prevention of ARDS in COVID-19-confirmed or -suspected patients. METHODS The search strategy included scientific studies published in English from 2015 to 2020 that promoted the elucidation of anti-inflammatory pathways targeting ARDS by in vitro and/or in vivo experiments using PANPs. Then, 74 studies regarding PANPs, able to maintain or improve the pulmonary function, were reported. CONCLUSIONS The PANPs may present different pulmonary anti-inflammatory pathways, wherein (i) reduction/attenuation of pro-inflammatory cytokines, (ii) increase of the anti-inflammatory mediators' levels, (iii) pulmonary edema inhibition and (iv) attenuation of lung injury were the most observed biological effects of such products in in vitro experiments or in clinical studies. Finally, this work highlighted the PANPs with promising potential to be used on respiratory syndromes, allowing their possible use as alternative treatment at the prevention of ARDS in COVID-19-infected or -suspected patients.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | | | | | | | - Éverton N Alencar
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | - Eryvaldo S T Egito
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil; Graduate Program in Health Sciences, UFRN, 59012-570, Natal, RN, Brazil.
| |
Collapse
|
32
|
Leandro A, Queiroz M, Azul L, Seiça R, Sena CM. Omentin: A novel therapeutic approach for the treatment of endothelial dysfunction in type 2 diabetes. Free Radic Biol Med 2021; 162:233-242. [PMID: 33099000 DOI: 10.1016/j.freeradbiomed.2020.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Perivascular adipose tissue (PVAT) locally influences the functioning of blood vessels and promotes vascular complications associated with diabetes and obesity. The aim of this work was to study the impact of omentin-1 on endothelial function and PVAT in a non-obese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats with or without high fat diet. MATERIAL AND METHODS Diabetic GK rats were divided into four groups: 1) control group; 2) group treated with omentin-1; 3) group of GK rats fed a high fat diet (GKHFD) and 4) group of GKHFD treated with omentin-1. Several in vivo parameters such as adiposity and Lee indexes, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. At the vascular level, endothelial dependent and independent relaxation and contraction studies were performed in aortic rings in the absence (PVAT-) or in the presence (PVAT+) of thoracic PVAT. We also evaluated vascular oxidative stress and determined the pro-inflammatory status of PVAT. RESULTS Endothelium-dependent relaxation to acetylcholine, assessed by wire myography, was impaired in GK and GKHFD rats and improved by the omentin-1 treatment. In addition, vascular superoxide production was increased in the vascular wall of diabetic rats, accompanied by reduced nitric oxide bioavailability and significantly improved by omentin treatment. PVAT anti-contractile action found under physiological conditions was lost in type 2 diabetes, and partially recovered with omentin-1 administration. In addition, omentin-1 treatment significantly improved proinflammatory and pro-oxidant PVAT phenotype (decreasing C-reactive protein and nitrotyrosine levels). Furthermore, it was observed an improvement in various systemic and metabolic biochemical parameters of diabetic animals treated for one month with omentin. CONCLUSIONS Omentin-1 ameliorates endothelial dysfunction in type 2 diabetes and presents therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.
Collapse
Affiliation(s)
- Adriana Leandro
- Institute of Physiology, ICBR, Faculty of Medicine, University of Coimbra, Portugal
| | - Marcelo Queiroz
- Institute of Physiology, ICBR, Faculty of Medicine, University of Coimbra, Portugal
| | - Lara Azul
- Institute of Physiology, ICBR, Faculty of Medicine, University of Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, ICBR, Faculty of Medicine, University of Coimbra, Portugal
| | - Cristina M Sena
- Institute of Physiology, ICBR, Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
33
|
Wang T, Liu C, Pan LH, Liu Z, Li CL, Lin JY, He Y, Xiao JY, Wu S, Qin Y, Li Z, Lin F. Inhibition of p38 MAPK Mitigates Lung Ischemia Reperfusion Injury by Reducing Blood-Air Barrier Hyperpermeability. Front Pharmacol 2020; 11:569251. [PMID: 33362540 PMCID: PMC7759682 DOI: 10.3389/fphar.2020.569251] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
Background: Lung ischemia reperfusion injury (LIRI) is a complex pathophysiological process activated by lung transplantation and acute lung injury. The p38 mitogen-activated protein kinase (MAPK) is involved in breakdown of the endothelial barrier during LIRI, but the mechanism is still unclear. Therefore, we investigated the function of p38 MAPK in LIRI in vivo and in vitro. Methods: Sprague–Dawley rats were subjected to ischemia reperfusion with or without pretreatment with a p38 MAPK inhibitor. Lung injury was assessed using hematoxylin and eosin staining, and pulmonary blood–air barrier permeability was evaluated using Evans blue staining. A rat pulmonary microvascular endothelial cell line was infected with lentiviral expressing short hairpin (sh)RNA targeting p38 MAPK and then cells were subjected to oxygen/glucose deprivation and reoxygenation (OGD/R). Markers of endothelial destruction were measured by western blot and immunofluorescence. Results:In vivo LIRI models showed structural changes indicative of lung injury and hyperpermeability of the blood–air barrier. Inhibiting p38 MAPK mitigated these effects. Oxygen/glucose deprivation and reoxygenation promoted hyperpermeability of the endothelial barrier in vitro, but knockdown of p38 MAPK attenuated cell injury; maintained endothelial barrier integrity; and partially reversed injury-induced downregulation of permeability protein AQP1, endothelial protective protein eNOS, and junction proteins ZO-1 and VE-cadherin while downregulating ICAM-1, a protein involved in destroying the endothelial barrier, and ET-1, a protein involved in endothelial dysfunction. Conclusion: Inhibition of p38 MAPK alleviates LIRI by decreasing blood–air hyperpermeability. Blocking p38 MAPK may be an effective treatment against acute lung injury.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chunxia Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ling-Hui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhen Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chang-Long Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jin-Yuan Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yi He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing-Yuan Xiao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siyi Wu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yi Qin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
34
|
Monocyte chemotactic protein-inducing protein 1 negatively regulating asthmatic airway inflammation and mucus hypersecretion involving γ-aminobutyric acid type A receptor signaling pathway in vivo and in vitro. Chin Med J (Engl) 2020; 134:88-97. [PMID: 33009026 PMCID: PMC7862809 DOI: 10.1097/cm9.0000000000001154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mounting evidence, consistent with our previous study, showed that γ-aminobutyric acid type A receptor (GABAAR) played an indispensable role in airway inflammation and mucus hypersecretion in asthma. Monocyte chemotactic protein-inducing protein 1 (MCPIP1) was a key negative regulator of inflammation. Recent studies showed that inflammation was largely suppressed by enhanced MCPIP1 expression in many inflammatory diseases. However, the role and potential mechanism of MCPIP1 in airway inflammation and mucus hypersecretion in asthma were still not well studied. This study was to explore the role of MCPIP1 in asthmatic airway inflammation and mucus hypersecretion in both mice and BEAS-2B cells, and its potential mechanism. METHODS In vivo, mice were sensitized and challenged by ovalbumin (OVA) to induce asthma. Airway inflammation and mucus secretion were analyzed. In vitro, BEAS-2B cells were chosen. Interleukin (IL)-13 was used to stimulate inflammation and mucus hypersecretion in cells. MCPIP1 Lentiviral vector (LA-MCPIP1) and plasmid-MCPIP1 were used to up-regulate MCPIP1 in lung and cells, respectively. MCP-1, thymic stromal lymphopoietin (TSLP), mucin 5AC (MUC5AC), MCPIP1, and GABAARβ2 expressions were measured in both lung and BEAS-2B cells. Immunofluorescence staining was performed to observe the expression of GABAARβ2 in cells. RESULTS MCPIP1 was up-regulated by LA-MCPIP1 (P < 0.001) and plasmid-MCPIP1 (P < 0.001) in lung and cells, respectively. OVA-induced airway inflammation and mucus hypersecretion, OVA-enhanced MCP-1, TSLP, MUC5AC, and GABAARβ2 expressions, and OVA-reduced MCPIP1 were significantly blunted by LA-MCPIP1 in mice (all P < 0.001). IL-13-enhanced MCP-1, TSLP, MUC5AC, and GABAARβ2 expressions, and IL-13-reduced MCPIP1 were markedly abrogated by plasmid-MCPIP1 in BEAS-2B cells (all P < 0.001). CONCLUSION The results of this study suggested that OVA and IL-13-induced airway inflammation and mucus hypersecretion were negatively regulated by MCPIP1 in both lung and BEAS-2B cells, involving GABAAR signaling pathway.
Collapse
|
35
|
Xiao J, Zhang B, Su Z, Liu Y, Shelite TR, Chang Q, Wang P, Bukreyev A, Soong L, Jin Y, Ksiazek T, Gaitas A, Rossi SL, Zhou J, Laposata M, Saito TB, Gong B. EPAC regulates von Willebrand factor secretion from endothelial cells in a PI3K/eNOS-dependent manner during inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32908983 DOI: 10.1101/2020.09.04.282806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coagulopathy is associated with both inflammation and infection, including infection with the novel SARS-CoV-2 (COVID-19). Endothelial cells (ECs) fine tune hemostasis via cAMP-mediated secretion of von Willebrand factor (vWF), which promote the process of clot formation. The e xchange p rotein directly a ctivated by c AMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a key role in stabilizing ECs and suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1 -null mouse model and revealed an increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1 -/- phenotype. EPAC1 regulated TNFα-triggered vWF secretion from human umbilical vein endothelial cells (HUVECs) in a phosphoinositide 3-kinases (PI3K)/endothelial nitric oxide synthase (eNOS)-dependent manner. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro . Our data delineate a novel regulatory role of EPAC1 in vWF secretion and shed light on potential development of new strategies to controlling thrombosis during inflammation. Key Point PI3K/eNOS pathway-mediated, inflammation-triggered vWF secretion is the target of the pharmacological manipulation of the cAMP-EPAC system.
Collapse
|
36
|
Fan S, Qi D, Yu Q, Tang X, Wen X, Wang D, Deng X. Intermedin alleviates the inflammatory response and stabilizes the endothelial barrier in LPS-induced ARDS through the PI3K/Akt/eNOS signaling pathway. Int Immunopharmacol 2020; 88:106951. [PMID: 32892076 DOI: 10.1016/j.intimp.2020.106951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory storms and endothelial barrier dysfunction are the central pathophysiological features of acute respiratory distress syndrome (ARDS). Intermedin (IMD), a member of the calcitonin gene-related peptide (CGRP) family, has been reported to alleviate inflammation and protect endothelial cell (EC) integrity. However, the effects of IMD on ARDS have not been clearly elucidated. In the present study, clinical ARDS data were used to explore the relationship between serum IMD levels and disease severity and prognosis, and we then established a model to predict the possibility of hospital survival. Mouse models of ARDS and LPS-challenged endothelial cells were used to analyze the protective effect and underlying mechanism of IMD. We found that in patients with ARDS, increased serum IMD levels were associated with reduced disease severity and increased rates of hospital survival. IMD alleviated the LPS-induced inflammatory response by decreasing proinflammatory cytokines, NF-κB p65 expression and NF-κB p65 nuclear translocation. In addition, IMD stabilized the endothelial barrier by repairing adherens junctions (AJs), cytoskeleton and capillary leakage. IMD exerted protective effects against ARDS on pulmonary endothelial cells, at least partly, through PI3K/Akt/eNOS signaling, while IMD's anti-inflammation effect was mediated through an eNOS-independent mechanism. Our study may provide new therapeutic insight for ARDS treatment.
Collapse
Affiliation(s)
- Shulei Fan
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Yu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoting Wen
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyu Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
37
|
Up-regulation of miR-146b-3p protects septic mice with acute respiratory distress syndrome by inhibiting PI3K/AKT signaling pathway. J Bioenerg Biomembr 2020; 52:229-236. [PMID: 32488541 PMCID: PMC7266652 DOI: 10.1007/s10863-020-09839-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to explore the role of miR-146b-3p in acute respiratory distress syndrome in septic mice. Ten mice were randomly selected as normal group (n = 10, without any treatment) and 60 septic mice with acute respiratory distress syndrome were divided into model group (n = 10, without any treatment), negative control (NC) mimic group (n = 10, injected with NC mimic), miR-146b-3p mimic group (n = 10, injected with miR-146b-3p mimic), si-NC group (n = 10, injected with PI3Kγ siRNA NC), si-PI3Kγ group (n = 10, injected with PI3Kγ silencing plasmid), and miR-146b-3p mimic + oe-PI3Kγ group (n = 10, injected with miR-146b-3p mimic + PI3Kγ overexpression plasmid). We found that miR-146b-3p negatively regulated PI3Kγ. Compared with normal group, model mice had decreased expression of miR-146b-3p, increased expressions of PI3Kγ, p-AKT, ASC, NLRP3 and Caspase-1 proteins, higher W/D ratio, and more serum IL-1β and IL-18 content (all P < 0.05). All indicators in miR-146b-3p mimic group and si-PI3Kγ group were significantly improved as compared to model group (all P < 0.05). Over-expression of PI3Kγ could weaken the treatment effect of miR-146b-3p mimic in model mice. Therefore, up-regulation of miR-146b-3p can inhibit PI3K/AKT signaling pathway to improve acute respiratory distress syndrome in septic mice.
Collapse
|
38
|
He H, Wu S, Hao J, Wang L, Ai K, Zhu X, Xu R, Zhao X, Wang Y, Zhong Z. Serum omentin-1 level in patients with benign prostatic hyperplasia. BMC Urol 2020; 20:52. [PMID: 32375790 PMCID: PMC7203873 DOI: 10.1186/s12894-020-00623-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
Backgroud To evaluate the relationship between omentin-1 and benign prostatic hyperplasia (BPH). BPH is the most common urological disease in elderly men worldwide. Lower serum omentin-1 levels were reported to be negatively associated with the incidence of inflammation, diabetes, obesity and metabolic syndrome, which all play a role in the development of BPH. To the best of our knowledge, the relationship between omentin-1 and BPH has not been investigated previously. Methods A total of 70 males participated in this study, including forty patients diagnosed with BPH and thirty healthy males. The anthropometric measurements and the biochemical parameters were measured in this study. We evaluated serum omentin-1 levels and the correlation with those data. We also test the gene expression of IL-8, IL-18 in BPH group using the TURP tissues. Results The serum omentin-1 levels were lower in the BPH patients than in the control group (27.95 ± 4.18 versus 32.03 ± 5.46, p < 0.001). The general characteristics and biochemical parameters were investigated, and a negative correlation was found between serum omentin-1 levels and BMI in the BPH group (r = − 0.391, p = 0.013) as well as the whole group (r = − 0.457, p < 0.001). Multiple-factor binary regression analysis revealed that serum omentin-1was a protective factor of BPH development. Furthermore, lower serum omentin-1 levels were associated with higher mRNA expression of IL-8 or IL-18 in the BPH group. Conclusion Omentin-1 may suppress the development of BPH and Lower serum omentin-1 levels in BPH patients might associated with higher prostate volume and higher IL-8 and IL-18 expression levels in their prostatic cells.
Collapse
Affiliation(s)
- Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jun Hao
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Long Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kai Ai
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xuan Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhaohui Zhong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
39
|
Ma X, Liu X, Feng J, Zhang D, Huang L, Li D, Yin L, Li L, Wang XZ. Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability. Inflammation 2020; 42:1901-1912. [PMID: 31273573 DOI: 10.1007/s10753-019-01052-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe acute disease that threatens human health, and few drugs that can effectively treat this disease are available. Fraxin, one of the main active ingredients of Cortex Fraxini, a Chinese herbal medicine, has presented various pharmacological and biological activities. However, the effects of fraxin on ARDS have yet to be reported. In the present study, the protective effect of fraxin in lipopolysaccharide (LPS)-induced ARDS in a mouse model was analyzed. Results from the hematoxylin and eosin staining showed that fraxin might alleviate pathological changes in the lung tissues of mice with ARDS. ELISA and Western blot results revealed that fraxin might inhibit the production of inflammatory factors, namely, IL-6, TNF-α, and IL-1β, and the activation of NF-κB and MAPK signaling pathways in the lungs. Thus, the inflammatory responses were reduced. Fraxin might inhibit the increase in reactive oxygen species (ROS) and malondialdehyde (MDA), a product of lipid peroxidation in lung tissues. Fraxin might increase the superoxide dismutase (SOD) activity to avoid oxidative damage. Vascular permeability was also assessed through Evans blue dye tissue extravasation and fluorescein isothiocyanate-labeled albumin (FITC-albumin) leakage. Fraxin might inhibit the increase in pulmonary vascular permeability and relieve pulmonary edema. Fraxin was also related to the inhibition of the increase in matrix metalloproteinase-9, which is a glycocalyx-degrading enzyme, and the relief of damages to the endothelial glycocalyx. Thus, fraxin elicited protective effects on mice with LPS-induced ARDS and might be used as a drug to cure ARDS induced by Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| | - Jiali Feng
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Dong Zhang
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Dongxiao Li
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.,Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| | - Liang Yin
- Department of Immunology, the School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lan Li
- Department of Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Xiao-Zhi Wang
- Department of Respirator Medicine and Intensive Care Unit, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong Province, China
| |
Collapse
|
40
|
Yu Q, Wang D, Wen X, Tang X, Qi D, He J, Zhao Y, Deng W, Zhu T. Adipose-derived exosomes protect the pulmonary endothelial barrier in ventilator-induced lung injury by inhibiting the TRPV4/Ca 2+ signaling pathway. Am J Physiol Lung Cell Mol Physiol 2020; 318:L723-L741. [PMID: 32073873 PMCID: PMC7191475 DOI: 10.1152/ajplung.00255.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mechanical ventilation (MV) is the main supportive treatment of acute respiratory distress syndrome (ARDS), but it may lead to ventilator-induced lung injury (VILI). Large epidemiological studies have found that obesity was associated with lower mortality in mechanically ventilated patients with acute lung injury, which is known as “obesity paradox.” However, the effects of obesity on VILI are unknown. In the present study, wild-type mice were fed a high-fat diet (HFD) and ventilated with high tidal volume to investigate the effects of obesity on VILI in vivo, and pulmonary microvascular endothelial cells (PMVECs) were subjected to 18% cyclic stretching (CS) to further investigate its underlying mechanism in vitro. We found that HFD protects mice from VILI by alleviating the pulmonary endothelial barrier injury and inflammatory responses in mice. Adipose-derived exosomes can regulate distant tissues as novel adipokines, providing a new mechanism for cell-cell interactions. We extracted three adipose-derived exosomes, including HFD mouse serum exosome (S-Exo), adipose tissue exosome (AT-Exo), and adipose-derived stem cell exosome (ADSC-Exo), and further explored their effects on MV or 18% CS-induced VILI in vivo and in vitro. Administration of three exosomes protected against VILI by suppressing pulmonary endothelial barrier hyperpermeability, repairing the expression of adherens junctions, and alleviating inflammatory response in vivo and in vitro, accompanied by transient receptor potential vanilloid 4 (TRPV4)/Ca2+ pathway inhibition. Collectively, these data indicated that HFD-induced obesity plays a protective role in VILI by alleviating the pulmonary endothelial barrier injury and inflammatory response via adipose-derived exosomes, at least partially, through inhibiting the TRPV4/Ca2+ pathway.
Collapse
Affiliation(s)
- Qian Yu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoting Wen
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Liu F, Fang S, Liu X, Li J, Wang X, Cui J, Chen T, Li Z, Yang F, Tian J, Li H, Yin L, Yu B. Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PPARδ signaling pathway. Biochem Pharmacol 2020; 174:113830. [PMID: 32001235 DOI: 10.1016/j.bcp.2020.113830] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
High glucose-induced endothelial dysfunction is a critical initiating factor in the development of diabetic vascular complications. Omentin-1 has been regarded as a novel biomarker of endothelial function in subjects with type-2 diabetes (T2D); however, it is unclear whether omentin-1 has any direct effect in ameliorating high glucose-induced endothelial dysfunction. In the present study, we analyzed the effect of omentin-1 on high glucose-induced endothelial dysfunction in isolated mouse aortas and mouse aortic endothelial cells (MAECs). Vascular reactivity in aortas was measured using wire myography. The expression levels of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), Akt, endothelial nitric-oxide synthase (eNOS), and endoplasmic reticulum (ER)-stress markers in MAECs were determined by Western blotting. The production of reactive oxygen species (ROS) and nitric oxide (NO) was assessed by diluted fluoroprobe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA), respectively. We found that ex vivo treatment with omentin-1 reversed impaired endothelial-dependent relaxations (EDR) in mouse aortas after high-glucose insult. Elevated ER-stress markers, oxidative stress, and reduction of NO production induced by high glucose in MAECs were reversed by omentin-1 treatment. Omentin-1 also effectively reversed tunicamycin-induced ER stress responses in MAECs, as well as ameliorated impairment of endothelial-dependent relaxation in mouse aortas. Moreover, omentin-1 increased AMPK phosphorylation with a subsequent increase in PPARδ expression, while also restoring the decreased phosphorylation of Akt and eNOS. The effects of omentin-1 were abolished by cotreatment of compound C (AMPK inhibitor) and GSK0660 (PPARδ antagonist). These data indicate that omentin-1 protects against high glucose-induced vascular-endothelial dysfunction through inhibiting ER stress and oxidative stress and increasing NO production via activation of AMPK/PPARδ pathway.
Collapse
Affiliation(s)
- Fang Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xinxin Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ji Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xuedong Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinjin Cui
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoying Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Fan Yang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jiangtian Tian
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Hulun Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Li Yin
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
42
|
Niersmann C, Röhrig K, Blüher M, Roden M, Herder C, Carstensen-Kirberg M. Increased Release of Proinflammatory Proteins in Primary Human Adipocytes and Activation of the Inflammatory NFĸB, p38, and ERK Pathways upon Omentin Treatment. Obes Facts 2020; 13:221-236. [PMID: 32252061 PMCID: PMC7250360 DOI: 10.1159/000506405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/09/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES To investigate the impact of omentin on the release of inflammation-related biomarkers and inflammatory pathways in primary human adipocytes. METHODS Adipocytes were treated with or without omentin (500 and 2,000 ng/mL), and the supernatants were analyzed for inflammation-related biomarkers using proximity extension assay technology. Potential upstream regulators of the omentin-stimulated proteins were identified using Ingenuity Pathway Analysis. Protein levels of components of inflammatory pathways were measured using Western blotting. RESULTS 2,000 ng/mL omentin induced the release of 30 biomarkers 97.1 ± 31.1-fold in the supernatants (all p < 0.05). Most biomarkers were proin-flammatory chemokines and cytokines. We identified the transcription factor nuclear factor "kappa-light-chain-enhancer" of activated B cells (NFĸB) and the kinases p38 and extracellular signal-regulated kinase (ERK)1/2 as potential upstream regulators in silico. On the cellular level, treatment with 2,000 ng/mL omentin for 24 h enhanced the phosphorylation levels of NFĸB 2.1 ± 0.3-fold (p < 0.05), of p38 2.6 ± 0.4-fold (p < 0.05), and of ERK1/2 1.8 ± 0.2-fold (p < 0.05). CONCLUSIONS These data argue that omentin exerts proinflammatory effects through the activation of the inflammatory NFĸB, p38, and ERK1/2 pathways in cultured primary adipocytes.
Collapse
Affiliation(s)
- Corinna Niersmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Karin Röhrig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Matthias Blüher
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany,
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany,
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany,
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| |
Collapse
|
43
|
Khaing P, Pandit P, Awsare B, Summer R. Pulmonary Circulation in Obesity, Diabetes, and Metabolic Syndrome. Compr Physiol 2019; 10:297-316. [DOI: 10.1002/cphy.c190018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Li M, Zhao Y, Qi D, He J, Wang D. Tangeretin attenuates lipopolysaccharide-induced acute lung injury through Notch signaling pathway via suppressing Th17 cell response in mice. Microb Pathog 2019; 138:103826. [PMID: 31676364 DOI: 10.1016/j.micpath.2019.103826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Tangeretin, a polymethoxylated flavonoid is abundant in citrus fruits, which has been reported to inhibit inflammation by inhibiting NF-κB activation and proinflammatory cytokines. Notch blockage inhibits Th17 cells response that are involved in the development of acute lung injury (ALI). This study investigated the protective effects of tangeretin on LPS-induced ALI in mice. Male C57BL/6 mice were treated with phosphate-buffered saline (PBS), lipopolysaccharide (LPS), LPS and tangeretin, or LPS and N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT, a Notch signaling inhibitor), which were harvested at 48 h after challenged by LPS. CD4+ T cells were treated with tangeretin or DAPT and harvested after 72 h. Tangeretin notably attenuated pathological changes and decreased the wet to dry weight ratio of the mouse lungs. The total cell and neutrophil counts, tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF), myeloperoxidase activity of lung tissue were markedly reduced by tangeretin. The percentage of CD4+IL-17 + T cells in the lungs and the concentration of interleukin (IL)-17 and IL-22 in BALF were significantly down-regulated by tangeretin. As with the positive control (DAPT), tangeretin inhibited the activity of the Notch signaling pathway accompanied with the down-regulation of acid-related orphan receptor gamma t and IL-23 receptor expression. This study demonstrated that tangeretin protects against LPS-induced ALI by suppressing Th17 response at least partially, through a Notch-dependent mechanism.
Collapse
Affiliation(s)
- Mengqin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China; Department of Emergency, The Affiliated Hospital of North Sichuan Medical College, China
| | - Yan Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Jing He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
45
|
Zheng X, Zhang W, Wang Z. Simvastatin preparations promote PDGF-BB secretion to repair LPS-induced endothelial injury through the PDGFRβ/PI3K/Akt/IQGAP1 signalling pathway. J Cell Mol Med 2019; 23:8314-8327. [PMID: 31576676 PMCID: PMC6850957 DOI: 10.1111/jcmm.14709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
Endothelial barrier dysfunction is a critical pathophysiological process of sepsis. Impaired endothelial cell migration is one of the main reasons for endothelial dysfunction. Statins may have a protective effect on endothelial barrier function. However, the effect and mechanism of statins on lipopolysaccharide (LPS)‐induced endothelial barrier dysfunction remain unclear. Simvastatin (SV) was loaded in nanostructured lipid carriers to produce SV nanoparticles (SV‐NPs). Normal SV and SV‐NPs were used to treat human umbilical vein vascular endothelial cells (HUVECs) injured by LPS. Barrier function was evaluated by monitoring cell monolayer permeability and transendothelial electrical resistance, and cell migration ability was measured by a wound healing assay. LY294002 and imatinib were used to inhibit the activity of PI3K/Akt and platelet‐derived growth factor receptor (PDGFR) β. IQ‐GTPase‐activating protein 1 (IQGAP1) siRNA was used to knockdown endogenous IQGAP1, which was used to verify the role of the PDGFRβ/PI3K/Akt/IQGAP1 pathway in SV/SV‐NPs‐mediated barrier protection in HUVECs injured by LPS. The results show that SV/SV‐NPs promoted the migration and decreased the permeability of HUVECs treated with LPS, and the efficacy of the SV‐NPs exceeded that of SV significantly. LY294002, imatinib and IQGAP1 siRNA all suppressed the barrier protection of SV/SV‐NPs. SV/SV‐NPs promoted the secretion of platelet‐derived growth factor‐BB (PDGF‐BB) and activated the PDGFRβ/PI3K/Akt/IQGAP1 pathway. SV preparations restored endothelial barrier function by restoring endothelial cell migration, which is involved in the regulation of the PDGFRβ/PI3K/Akt/IQGAP1 pathway and PDGF‐BB secretion. As an appropriate formulation for restoring endothelial dysfunction, SV‐NPs may be more effective than SV.
Collapse
Affiliation(s)
- Xia Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Lin Y, Qiu D, Huang L, Zhang S, Song C, Wang B, Wu J, Chen C. A novel chalcone derivative, L2H17, ameliorates lipopolysaccharide-induced acute lung injury via upregulating HO-1 activity. Int Immunopharmacol 2019; 71:100-108. [DOI: 10.1016/j.intimp.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/25/2022]
|
47
|
Type-II endometrial cancer: role of adipokines. Arch Gynecol Obstet 2019; 300:239-249. [PMID: 31062150 DOI: 10.1007/s00404-019-05181-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Type-II endometrial cancer is an estrogen independent and one of the most lethal types of cancer having poor prognosis. Adipokines play a crucial role in the triggering Type-II EMC. In addition, adipokines modulators, therefore, may have beneficial effects in the treatment of Type-II endometrial cancer, which was clinically evidenced. AREAS COVERED This review presents the role of various adipokines involved and also the suitable modulators to treat Type-II endometrial cancer. CONCLUSION In the present review, we try to discuss the role of individual adipokines in the pathogenesis of Type-II endometrial cancer, and also the possible beneficial effects of adipokines modulator in the treatment of Type-II endometrial cancer.
Collapse
|
48
|
The histone demethylase LSD1 promotes renal inflammation by mediating TLR4 signaling in hepatitis B virus-associated glomerulonephritis. Cell Death Dis 2019; 10:278. [PMID: 30894511 PMCID: PMC6427019 DOI: 10.1038/s41419-019-1514-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Renal inflammation significantly contributes to the progression of hepatitis B virus (HBV)-associated glomerulonephritis (HBV-GN), but the mechanisms that control its precise regulation remain largely unknown. In this study, we showed that the lysine-specific demethylase 1 (LSD1) was significantly upregulated in renal tissue of HBV-GN patients, and its expression was positively correlated with inflammation. Functionally, LSD1 could promote HBV-induced release of proinflammatory mediators in HK-2 cells, a human renal tubular epithelial (RTE) cell line. Mechanistic investigations suggested that LSD1 directly promoted the transcription of the inflammatory-related gene Tlr4 by eliminating the mono- or di-methylation of H3K9 near its promoter. Knockdown of Lsd1 further inhibited TLR4-NF-κB/JNK signaling cascades, and subsequently decreased HBV-induced production of proinflammatory mediators in HK-2 cells. Co-transfection with Tlr4-expressing plasmids counteracted these effects. Meanwhile, downregulation of abovementioned TLR4-related pathways using small-molecule inhibitors attenuated inflammation. Importantly, LSD1 inhibitor tranylcypromine (TCP) could inhibit TLR4-NF-κB/JNK signaling axis and alleviate renal inflammation in HBV transgenic mice. Taken together, our data identify LSD1 as a novel regulator of renal inflammation and as a potential therapeutic target in HBV-GN.
Collapse
|
49
|
Zhang XP, Zhang WT, Qiu Y, Ju MJ, Tu GW, Luo Z. Understanding Gene Therapy in Acute Respiratory Distress Syndrome. Curr Gene Ther 2019; 19:93-99. [PMID: 31267871 DOI: 10.2174/1566523219666190702154817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) and its complications remain lifethreatening conditions for critically ill patients. The present therapeutic strategies such as prone positioning ventilation strategies, nitric oxide inhalation, restrictive intravenous fluid management, and extracorporeal membrane oxygenation (ECMO) do not contribute much to improving the mortality of ARDS. The advanced understanding of the pathophysiology of acute respiratory distress syndrome suggests that gene-based therapy may be an innovative method for this disease. Many scientists have made beneficial attempts to regulate the immune response genes of ARDS, maintain the normal functions of alveolar epithelial cells and endothelial cells, and inhibit the fibrosis and proliferation of ARDS. Limitations to effective pulmonary gene therapy still exist, including the security of viral vectors and the pulmonary defense mechanisms against inhaled particles. Here, we summarize and review the mechanism of gene therapy for acute respiratory distress syndrome and its application.
Collapse
Affiliation(s)
- Xue-Peng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Wei-Tao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, No. 179 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Min-Jie Ju
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, No. 668 Jinghu Road, Huli District, Xiamen 361015, China
| |
Collapse
|
50
|
Derwall M, Martin L, Rossaint R. The acute respiratory distress syndrome: pathophysiology, current clinical practice, and emerging therapies. Expert Rev Respir Med 2018; 12:1021-1029. [PMID: 30431366 DOI: 10.1080/17476348.2018.1548280] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION More than fifty years after the first description of acute respiratory distress syndrome (ARDS) by Ashbaugh and colleagues, no specific treatment of the underlying pathophysiological processes is available. The current therapeutic regime is comprised of supportive measures such as lung protective ventilation, restrictive fluid management, paralyzing drugs, and prone positioning. Although vast improvements have been made in ARDS-treatment during the last five decades, mortality among patients with severe ARDS remains at an unacceptable rate of 45%. Areas covered: This article reviews the evolution of the currently used definition, established pathophysiological mechanism, highlights the current best clinical practice to treat ARDS, gives a brief outlook on cutting edge trends in ARDS research and closes with an expert opinion on the subject. Expert commentary: Individualizing the provided measures to specific genotypes is the key challenge in ARDS research today. The ongoing digital revolution will help to individualize ARDS-treatment and will therefore presumably improve survival and quality of life.
Collapse
Affiliation(s)
- Matthias Derwall
- a Klinik für Anästhesiologie , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany.,b Klinik für Operative Intensivmedizin und Intermediate Care , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany
| | - Lukas Martin
- a Klinik für Anästhesiologie , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany.,b Klinik für Operative Intensivmedizin und Intermediate Care , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany
| | - Rolf Rossaint
- a Klinik für Anästhesiologie , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany.,b Klinik für Operative Intensivmedizin und Intermediate Care , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany
| |
Collapse
|